高中物理机械能守恒定律经典例题及技巧

合集下载

机械能守恒定律典型例题剖析

机械能守恒定律典型例题剖析

机械能守恒定律典型例题剖析例1、如图示,长为l 的轻质硬棒的底端和中点各固定一个质量为m 的小球,为使轻质硬棒能绕转轴O 转到最高点,则底端小球在如图示位置应具有的最小速度v=。

解:系统的机械能守恒,ΔE P +ΔE K =0因为小球转到最高点的最小速度可以为0,所以,例2.如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。

一柔软的细线跨过定滑轮,两端分别与物块A 和B 连结,A 的质量为4m ,B 的质量为m ,开始时将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升。

物块A 与斜面间无摩擦。

设当A 沿斜面下滑S 距离后,细线突然断了。

求物块B 上升离地的最大高度H.解:对系统由机械能守恒定律4mgSsin θ–mgS=1/2×5mv 2∴v 2=2gS/5细线断后,B 做竖直上抛运动,由机械能守恒定律mgH=mgS+1/2×mv 2∴H=1.2S 例3.如图所示,半径为R 、圆心为O 的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m 的重物,忽略小圆环的大小。

(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图).在两个小圆环间绳子的中点C 处,挂上一个质量M =m的重物,使两个小圆环间的绳子水平,然后无初速释放重物M .设绳子与大、小圆环间的摩擦均可忽略,求重物M 下降的最大距离.(2)若不挂重物M .小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态?解:(1)重物向下先做加速运动,后做减速运动,当重物速度为零时,下降的距离最大.设下降的最大距离为h , 2由机械能守恒定律得解得(另解h=0舍去)(2)系统处于平衡状态时,两小环的可能位置为两小环同时位于大圆环的底端.b .两小环同时位于大圆环的顶端.c .两小环一个位于大圆环的顶端,另一个位于大圆环的底端.d .除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧α角的位置上(如图所示).对于重物,受绳子拉力与重力作用,有T=mg对于小圆环,受到三个力的作用,水平绳的拉力T 、竖直绳子的拉力T 、大圆环的支持力N.两绳子的拉力沿大圆环切向的分力大小相等,方向相反得α=α′,而α+α′=90°,所以α=45°例4.如图质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。

高中物理实验【验证机械能守恒定律】内容+典例

高中物理实验【验证机械能守恒定律】内容+典例

图1图2实验:验证机械能守恒定律一、实验目的通过实验验证机械能守恒定律.二、实验原理如图1所示,质量为m 的物体从O 点自由下落,以地面作为零重力势能面,如果忽略空气阻力,下落过程中任意两点A 和B 的机械能守恒即12mv 2A +mgh A =12mv 2B +mgh B 上式亦可写成12mv 2B -12mv 2A =mgh A -mgh B . 等式说明,物体重力势能的减少等于动能的增加.为了方便,可以直接从开始下落的O 点至任意一点(如图1中A 点)来进行研究,这时应有:12mv 2A =mgh ,即为本实验要验证的表达式,式中h 是物体从O 点下落至A 点的高度,v A 是物体在A点的瞬时速度.三、实验器材打点计时器,低压交流电源,带有铁夹的铁架台,纸带,复写纸,带夹子的重物,刻度尺,导线两根.四、实验步骤1.安装置:按图2将检查、调整好的打点计时器竖直固定在铁架台上,接好电路.2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔用手提着纸带使重物静止在靠近打点计时器的地方.先接通电源,后松开纸带,让重物带着纸带自由下落.更换纸带重复做3~5次实验.3.选纸带:分两种情况说明(1)用12mv 2n =mgh n 验证时,应选点迹清晰,且1、2两点间距离略小于或接近2 mm 的纸带.(2)用12mv 2B -12mv 2A =mg Δh 验证时,由于重力势能的相对性,处理纸带时,选择适当的点为基准点,只要后面的点迹清晰就可选用.五、数据处理方法一:利用起始点和第n 点计算代入mgh n 和12mv 2n ,如果在实验误差允许的条件下,mgh n 和12mv 2n 相等,则验证了机械能守恒定律.方法二:任取两点计算(1)任取两点A、B测出h AB,算出mgh AB.(2)算出12mv2B-12mv2A的值.(3)在实验误差允许的条件下,若mgh AB=12mv2B-12mv2A,则验证了机械能守恒定律.方法三:图象法从纸带上选取多个点,测量从第一点到其余各点的下落高度h,并计算各点速度的平方v2,然后以12v2为纵轴,以h为横轴,根据实验数据作出12v2-h图线.若在误差允许的范围内图线是一条过原点且斜率为g的直线,则验证了机械能守恒定律.六、误差分析1.本实验中因重物和纸带在下落过程中要克服各种阻力(如空气阻力、打点计时器阻力)做功,故动能的增加量ΔE k稍小于重力势能的减少量ΔE p,即ΔE k<ΔE p,这属于系统误差.改进的办法是调整器材的安装,尽可能地减小阻力.2.本实验的另一个误差来源于长度的测量,属偶然误差.减小误差的办法是测下落距离时都从0点量起,一次将各打点对应的下落高度测量完,或者多次测量取平均值来减小误差.七、注意事项1.打点计时器要稳定的固定在铁架台上,打点计时器平面与纸带限位孔调整在竖直方向,以减小摩擦阻力.2.应选用质量和密度较大的重物,增大重力可使阻力的影响相对减小,增大密度可以减小体积,可使空气阻力减小.3.实验中,需保持提纸带的手不动,且保证纸带竖直,待接通电源,打点计时器工作稳定后,再松开纸带.4.测下落高度时,要从第一个打点测起,并且各点对应的下落高度要一次测量完.5.速度不能用v n=gt n或v n=2gh n计算,因为只要认为加速度为g,机械能当然守恒,即相当于用机械能守恒定律验证机械能守恒定律,况且用v n=gt n计算出的速度比实际值大,会得出机械能增加的结论,而因为摩擦阻力的影响,机械能应该减小,所以速度应从纸带上直接测量计算.同样的道理,重物下落的高度h,也只能用刻度尺直接测量,而不能用h n=12gt2n或h n=v2n2g计算得到.记忆口诀自由落体验守恒,阻力减小机械能.仪器固定竖直向,先开电源物后放.开头两点两毫米,从头验证式容易.不管开头看清晰,任取两点就可以.图象验证也很好,关键记住两坐标.例1某实验小组在做“验证机械能守恒定律”实验中,提出了如图3所示的甲、乙两种方案:甲方案为用自由落体运动进行实验,乙方案为用小车在斜面上下滑进行实验.图1(1)组内同学对两种方案进行了深入的讨论分析,最终确定了一个大家认为误差相对较小的方案,你认为该小组选择的方案是__________,理由是_______________________________。

高中物理---机械能守恒定律-----典型例题(含答案)【经典】

高中物理---机械能守恒定律-----典型例题(含答案)【经典】

第五章:机械能守恒定律第一讲:功和功率考点一:恒力功的分析与计算1.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是( ).答案D A.500 J B.4 500 J C.5 000 JD.5 500 J2.(单选)如图所示,三个固定的斜面底边长度相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。

完全相同的三物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部,在此过程中( ) 选DA.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多3、(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图所示,则( ).答案ADA.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3 s内,力F做的功为零C.除力F外,其他外力在第1 s内做正功D .力F 在第3 s 内做的功是第2 s 内做功的3倍 4.(单选)质量分别为2m 和m 的A 、B 两种物体分别在水平恒力F 1和F 2的作用下沿水平面运动,撤去F 1、F 2后受摩擦力的作用减速到停止,其v -t 图象如图所示,则下列说法正确的是( ).答案 CA .F 1、F 2大小相等B .F 1、F 2对A 、B 做功之比为2∶1C .A 、B 受到的摩擦力大小相等D .全过程中摩擦力对A 、B 做功之比为1∶25. (单选)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1 答案 C6.如所示,建筑工人通过滑轮装置将一质量是100 kg 的料车沿30°的斜面由底端匀速地拉到顶端,斜面长L 是4 m ,若不计滑轮的质量和各处的摩擦力,g 取10 N/kg ,求这一过程中:(1)人拉绳子的力做的功;(2)物体的重力做的功;(3)物体受到的各力对物体做的总功。

【高考物理必刷题】机械能守恒定律(后附答案解析)

【高考物理必刷题】机械能守恒定律(后附答案解析)

12C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功4竖直悬挂.用外力将绳的下端缓慢地竖直向上拉.在此过程中,外力做功为()5的两点上,弹性绳的原长也为.将;再将弹性绳的两端缓慢移至天花板)6时,绳中的张力大于如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为,到小环的距离为,其两侧面与夹子间的最大静摩擦力均为.小环和物块以速度右匀速运动,小环碰到杆上的钉子后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为.下列说法正确的是()78受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下9的太空飞船从其飞行轨道返回地面.飞船在离地面高度的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为1 2C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功天体椭圆运行中,从远日点向近日点运行时,天体做加速运动,万有引力做正功,引力势能转化为动能;反之,做减速运动,引力做负功,动能转化为引力势能;而整个过程机械能守恒.从这个规律出发,CD正确,B错误.同时由于速度的不同,运动个椭圆4,那么重心上升,外力做的功即为绳子增5答案解析6C设斜面的倾角为,物块的质量为,去沿斜面向上为位移正方向,根据动能定理可得:上滑过程中:,所以;下滑过程中:,所以据能量守恒定律可得,最后的总动能减小,所以C正确的,ABD错误.故选C.7时,绳中的张力大于A.物块向右匀速运动时,对夹子和物块组成的整体进行分析,其在重力和绳拉力的作B.绳子的拉力总是等于夹子对物块摩擦力的大小,因夹子对物块的最大摩擦力为,C.当物块到达最高点速度为零时,动能全部转化为重力势能,物块能达到最大的上升8受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下和受到地面的支持力大小均为;在的动能达到最大前一直是加速下降,处于失受到地面的支持力小于,故A、B正确;达到最低点时动能为零,此时弹簧的弹性势能最大,9答案解析考点一质量为的太空飞船从其飞行轨道返回地面.飞船在离地面高度处以的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为.(结果保留2位有效数字)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(1)求飞船从离地面高度处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的.(2);(1)(2)地地,地,大大大,大.(1)大,,由动能定理得:地,.(2)机械能机械能和机械能守恒定律机械能基础。

物理机械能守恒定律题及解析

物理机械能守恒定律题及解析

物理机械能守恒定律题及解析
题目:一个质量为10kg的物体,从高度为5m的斜面顶端下滑,初始速度为零,斜面底端有一个垂直向上的弹簧。

物体压缩弹簧后被弹起,最后飞出斜面,求物体飞出斜面的速度和弹簧对物体做的功。

解析:根据机械能守恒定律,物体在运动过程中,其重力势能和动能之间相互转化,而总的机械能保持不变。

在本题中,物体在斜面上运动,重力势能转化为动能,而弹簧的弹力对物体做功,将一部分动能再次转化为弹簧的势能,最终物体飞出斜面时,其速度和弹簧的势能分别为:
1.物体飞出斜面的速度
根据机械能守恒定律,物体在斜面上的重力势能和动能之和保持不变,即:
mgh + 0 = 1/2 m v^2
其中,m为物体的质量,g为重力加速度,h为物体在斜面上的高度,v为物体在斜面上的速度。

根据题目给出的条件,可以计算出物体在斜面上的速度:
v = sqrt(2gh) = sqrt(2 x 9.8 x 5) = 7.98 m/s
2.弹簧对物体做的功
弹簧对物体做功,将物体的动能转化为弹簧的势能,根据机械能守恒定律,有:
1/2 m v^2 = W
其中,m为物体的质量,v为物体在斜面上的速度,W为弹簧对物体做的功。

根据题目给出的条件,可以计算出弹簧对物体做的功:
W = 1/2 m v^2 = 1/2 x 10 x 7.98^2 = 304.1 J
因此,弹簧对物体做的功为304.1焦耳。

高中物理必修2机械能守恒定律-例题解析

高中物理必修2机械能守恒定律-例题解析

机械能守恒定律-例题解析应用机械能守恒定律时需要注意下面的步骤:(1)明确研究对象及要研究的物理过程,分析其受力和做功情况,判定机械能是否守恒.(2)根据物体的位置及速度,明确初、末状态的动能和势能.(3)利用机械能守恒定律列出方程并求解、讨论等.(4)机械能守恒定律只涉及初、末两状态的机械能,而不涉及中间运动细节.不管是直线运动还是曲线运动,是加速运动还是减速运动,都可用机械能守恒定律解决.有了机械能守恒定律,我们就可以解决动力学中许多用牛顿运动定律难以求解的复杂问题了.当满足守恒条件,要把守恒定律变成具体的数学方程时,可用两种方法:方法一:按初状态的机械能等于末状态的机械能列方程;方法二:按减少的能量与增加的能量相等列方程.方法一必须规定零势能面,方法二则不需要规定零势能面.无论哪条思路都要注意,机械能包含了重力势能、弹性势能、动能三种能量.【例1】在距离地面20 m高处以15 m/s的初速度水平抛出一小球,不计空气阻力,取g=10 m/s2,求小球落地速度的大小.思路:(1)小球下落过程中,只有重力对小球做功,满足机械能守恒条件,可以用机械能守恒定律求解;(2)应用机械能守恒定律时,应明确所选取的运动过程,明确初、末状态小球所具有的机械能.解析:方法一:取地面为参考平面,抛出时小球具有的重力势能E p1=mgh,动能为E k1=mv02.落地时,小球的重力势能E p2=0,动能为E k2=mv2.根据机械能守恒定律,有E1=E2,即mgh+mv02=mv2落地时小球的速度大小为v== m/s=25 m/s.方法二:本题也可以这样理解:小球下落过程中减少的重力势能等于小球动能的增加,即mgh=mv2-mv02同样可求出落地速度v的值,而且,这种方法不需要规定零势能面.请比较:本题如果用运动的合成与分解知识求解,是简单还是复杂?【例2】已知山谷间有一轨道ACB,AC高度为h1,BC高度为h2.若有一小车要从A滑到B,则在A处小车的速度至少为多大(图4-15)?图4-15思路:小车从A到B,如果不考虑轨道上的阻力,机械能是守恒的.很明显,小车在A处的速度越大,它的机械能就越大.小车只要能滑到B处,在B处速度可以是零.解析:设车在A处时,其重力势能为零,则E A=mv A2,E B=mg(h2-h1)E A=E B,即mv A2=mg(h2-h1)所以在A处小车的速度至少是v A=.【例3】图4-16所示是游乐园里的滑车,滑车至少要从多高处冲下才能使它从圆环内顶端滑过?图4-16思路:游乐园中的滑车从倾斜轨道高处下滑时,速度越来越大,到了圆环底端速度达到最大,接着就沿圆环冲上去,速度逐渐变小.为了滑车能安全地从圆环顶端通过,滑车在顶端必须要有一定的速度,滑车做圆周运动,因此,本题要考虑用圆周运动规律和能量规律求解.解析:在圆环顶点,滑车受到重力、弹力的作用,这两个力的合力为N+mg,此合力提供滑车所需的向心力图4-17N+mg=为使v C最小,让N=0,则v C=滑车在运动过程中,只受重力和轨道对它的弹力作用,摩擦力很小可以忽略不计.弹力方向处处与滑车运动方向垂直,因此弹力做功为零,这样小球在运动过程中机械能是守恒的,即E A=E C,则mgH=mv C2+mg·2R将v C=代入上式,得H=R.【例4】一根长为L的均匀绳索,一部分放在光滑水平桌面上,长为L1的另一部分自然垂在桌面下,如图4-18所示,开始时绳索静止,释放后绳索将沿桌面滑下.求绳索刚滑离桌面时的速度大小.图4-18思路:绳索下滑过程中,只有重力做功,整根绳索的机械能守恒.解析:设整根绳索的质量为m,把绳索分为两部分:下垂部分的质量为m1=L1m/L,在桌面上部分质量为m2=m(L-L1)/L.选取桌面为零势能参考面.释放时绳索的机械能E1=-m1gL1/2=-mgL12-2L刚离开桌面时绳索的机械能E2=mv2/mgL由机械能守恒定律得解得v=.点评:(1)对绳索、链条之类的物体,由于在考查过程中常发生形变,其重心位置相对物体来说并不是固定不变的.能否正确确定重心的位置,常是解决该类问题的关键.一般情况下常分段考虑各部分的势能,并用各部分势能之和作为系统总的重力势能.至于参考平面,可任意选取,但以系统初、末重力势能便于表示为宜.(2)此题也可运用等效法求解:绳索要脱离桌面时重力势能的减少,等效于将图中在桌面部分移至下垂部分下端时重力势能的减少,然后由ΔE p=ΔE k列方程求解.【例5】如图4-19所示,一根轻质弹簧和一根细绳共同拉住一个重2 N的小球,平衡时细绳恰好水平,若此时烧断细绳,并且测出小球运动到悬点正下方时弹簧的长度正好等于未烧断细绳时弹簧的长度.试求:小球运动到悬点正下方时向心力的大小.图4-19解析:由于已知量太少,需引入一些分析问题需要的辅助参数.设弹簧原长为L0,初始状态平衡时弹簧长为L,令此时弹簧与竖直方向的夹角为θ,小球的质量为m,开始为平衡态,有k(L-L0)cosθ=mg=2 N①设小球运动到最低点时速度为v,由向心力公式有m=k(L-L0)-mg ②未烧断线时的位置和最低点位置弹簧的长度相同,所以初、末位置的弹性势能相同,设为E p(从初位置到末位置的整个过程中,弹性势能变不变?)从初位置到末位置的整个过程用机械能守恒定律有:E p+mgL(1-cosθ)= mv2+E p所以2mg(1-cosθ)=m ③①②代入③得2(1-cosθ)=-1所以θ=60°所以k(L-L0)= =2mg所以向心力为:F向=k(L-L0)-mg=mg=2 N.点评:本题是一道综合题,虽然已知数据只有一个,但是由于条件恰到好处,使得问题巧妙地解决了. 该题表面上涉及弹性势能的计算,实际上计算时并不需要.。

高中物理(机械能守恒定律)习题训练与答案解析

高中物理(机械能守恒定律)习题训练与答案解析

基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。

2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。

3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。

2.计算功率的公式有、,若求瞬时功率,则要用。

3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。

2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。

四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。

重力对物体所做的功等于物体的减小量。

即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。

大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。

习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。

高中物理机械能守恒定律专题练习(带详解)

高中物理机械能守恒定律专题练习(带详解)

高中物理机械能守恒定律专题练习(带详解)一、多选题1.如图所示,轻杆一端固定一小球,绕另一端O 点在竖直面内做匀速圆周运动,则( )A .轻杆对小球的作用力方向始终沿杆指向O 点B .小球在最高点处,轻杆对小球的作用力可能为0C .小球在最低点处,小球所受重力的瞬时功率为0D .小球从最高点到最低点的过程中,轻杆对小球一直做负功2.如图甲所示,在距离地面高为0.18h m =的平台上有一轻质弹簧,其左端固定在竖直挡板上,右端与质量1m kg =的小物块相接触(不粘连),平台与物块间动摩擦因数040μ=.,OA 长度等于弹原长,A 点为BM 中点.物块开始静止于A 点,现对物块施加一个水平向左的外方F ,大小随位移x 变化关系如图乙所示.物块向左运动050x m =.到达B 点,到达B 点时速度为零,随即撤去外力F ,物块被弹回,最终从M 点离开平台,落到地面上N 点,取210/g m s =,则( )A .弹簧被压缩过程中外力F 做的功为78J .B .弹簧被压缩过程中具有的最大弹性势能为60J .C .整个运动过程中克服摩擦力做功为60J .D .MN 的水平距离为036m .3.如图所示,轻弹簧的一端悬挂在天花板上,另一端固定一质量为m 的小物块,小物块放在水平面上,弹簧与竖直方向夹角为θ=30o 。

开始时弹簧处于伸长状态,长度为L ,现在小物块上加一水平向右的恒力F 使小物块向右运动距离L ,小物块与地面的动摩擦因数为μ,重力加速度为g ,弹簧始终在弹性限度内,则此过程中分析正确的是( )A .小物块和弹簧系统机械能改变了(F-μmg )LB .弹簧的弹性势能可能先减小后增大接着又减小再增大C .小物块在弹簧悬点正下方时速度最大D .小物块动能的改变量等于拉力F 和摩擦力做功之和4.一质量为m 的物体,以13g 的加速度减速上升h 高度,不计空气阻力,则( ) A .物体的机械能不变B .物体的动能减少13mghC .物体的机械能增加23mgh D .物体的重力势能增加mgh5.下列说法中正确的是( )A .某种形式的能减少,一定存在其他形式的能增加B .因为能量守恒,所以“能源危机”是不可能的C .能量耗散表明,在能源的利用过程中,能量在数量上并未减少,但在可利用的品质上降低了D .能源的利用受能量耗散的制约,所以能源的利用是有条件的,也是有代价的 6.如图所示,由电动机带动着倾角θ=37°的足够长的传送带以速率v=4m/s 顺时针匀速转动,一质量m=2kg 的小滑块以平行于传送带向下'2v m s =/的速率滑上传送带,已知小滑块与传送带间的动摩擦因数78μ=,取210/g m s =,sin370.60cos370.80︒=︒=,,则小滑块从接触传送带到与传送带相对静止静止的时间内下列说法正确的是A .重力势能增加了72JB .摩擦力对小物块做功为72JC .小滑块与传送带因摩擦产生的内能为252JD.电动机多消耗的电能为386J7.在高台跳水比赛中,质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,那么在他减速下降h的过程中,下列说法正确的是(g为当地的重力加速度)()A.他的重力势能减少了mghB.他的动能减少了FhC.他的机械能减少了(F﹣mg)hD.他的机械能减少了Fh8.如图所示,斜面固定在水平面上,轻质弹簧一端固定在斜面顶端,另一端与物块相连,弹簧处于自然长度时物块位于O点,物块与斜面间有摩擦.现将物块从O点拉至A点,撤去拉力后物块由静止向上运动,经O点到达B点时速度为零,则物块从A运动到B的过程中()A.经过位置O点时,物块的动能最大B.物块动能最大的位置与AO的距离无关C.物块从A向O运动过程中,弹性势能的减少量等于动能与重力势能的增加量D.物块从O向B运动过程中,动能的减少量大于弹性势能的增加量9.航空母舰可提供飞机起降,一飞机在航空母舰的水平甲板上着陆可简化为如图所示模型,飞机钩住阻拦索减速并沿甲板滑行过程中A.阻拦索对飞机做正功,飞机动能增加B.阻拦索对飞机做负功,飞机动能减小C.空气及摩擦阻力对飞机做正功,飞机机械能增加D.空气及摩擦阻力对飞机做负功,飞机机械能减少10.如图所示,质量相等、材料相同的两个小球A、B 间用一劲度系数为k 的轻质弹簧相连组成系统,系统穿过一粗糙的水平滑杆,在作用在B 上的水平外力F 的作用下由静止开始运动,一段时间后一起做匀加速运动,当它们的总动能为4E k 时撤去外力F,最后停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力.则在从撤去外力F 到停止运动的过程中,下列说法正确的是( )A.撤去外力F 的瞬间,弹簧的伸长量为F2kB.撤去外力F 后,球A、B 和弹簧构成的系统机械能守恒C.系统克服摩擦力所做的功等于系统机械能的减少量D.A 克服外力所做的总功等于2E k二、单选题11.长为L的轻绳悬挂一个质量为m的小球,开始时绳竖直,小球与一个倾角θ=45°的静止三角形物块刚好接触,如图所示.现在用水平恒力F向左推动三角形物块,直至轻绳与斜面平行,此时小球的速度速度大小为v,重力加速度为g,不计所有的摩擦.则下列说法中正确的是( )A.上述过程中,斜面对小球做的功等于小球增加的动能B.上述过程中,推力F做的功为FLC.上述过程中,推力F做的功等于小球增加的机械能D.轻绳与斜面平行时,绳对小球的拉力大小为mgsin45°12.市面上出售一种装有太阳能电扇的帽子(如图所示).在阳光的照射下,小电扇快速转动,能给炎热的夏季带来一丝凉爽.该装置的能量转化情况是()A.太阳能→电能→机械能B.太阳能→机械能→电能C.电能→太阳能→机械能D.机械能→太阳能→电能13.自动充电式电动车的前轮装有发电机,发电机与蓄电池连接.骑车者用力蹬车或电动车自动滑行时,发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现使车以500J的初动能在粗糙的水平路面上自由滑行,第一次关闭自充电装置,其动能随位移变化关系如图线①所示;第二次启动自充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是()A.500J B.300J C.250J D.200J14.如图所示,一小孩从公园中粗糙的滑梯上自由加速滑下,其能量的变化情况是()A.重力势能减少,动能不变,机械能减少B.重力势能减少,动能增加,机械能减少C.重力势能减少,动能增加,机械能增加D.重力势能减少,动能增加,机械能守恒15.有关功和能,下列说法正确的是( )A.力对物体做了多少功,物体就具有多少能B.物体具有多少能,就一定能做多少功C.物体做了多少功,就有多少能量消失D.能量从一种形式转化为另一种形式时,可以用功来量度能量转化的多少16.如图所示,A、B、C三个一样的滑块从粗糙斜面上的同一高度同时开始运动,Av,C的初速度方向沿斜面水平,大由静止释放,B的初速度方向沿斜面向下,大小为v。

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题在高中力学的学习中,机械能守恒定律是一个非常重要的知识点。

它不仅在解决物理问题时经常用到,也是理解能量转化和守恒的关键。

下面,我们就来一起探讨一些机械能守恒定律的典型例题。

例题一:自由落体运动一个质量为 m 的物体从高度为 h 的地方自由下落,忽略空气阻力,求物体下落至地面时的速度 v。

解析:在自由落体运动中,物体只受到重力的作用,重力势能逐渐转化为动能。

初始时刻,物体的机械能为重力势能 mgh,下落至地面时,物体的机械能为动能 1/2mv²。

因为机械能守恒,所以有 mgh =1/2mv²,解得 v =√2gh 。

这个例题是机械能守恒定律的最基本应用之一,它清晰地展示了重力势能如何转化为动能。

例题二:竖直上抛运动一个质量为 m 的物体以初速度 v₀竖直上抛,忽略空气阻力,求物体上升的最大高度 h。

解析:物体竖直上抛时,动能逐渐转化为重力势能。

在初始时刻,物体的机械能为动能 1/2mv₀²,当物体上升到最大高度时,速度为 0,机械能为重力势能 mgh。

由于机械能守恒,所以 1/2mv₀²= mgh,解得 h = v₀²/ 2g 。

这个例题与自由落体运动相反,是动能转化为重力势能的过程。

例题三:光滑斜面运动一个质量为 m 的物体从光滑斜面的顶端由静止开始下滑,斜面的高度为 h,斜面的长度为 L,求物体滑到底端时的速度 v。

解析:物体在斜面上运动时,重力势能转化为动能。

初始时刻,物体的机械能为重力势能 mgh,滑到底端时,物体的机械能为动能1/2mv²。

因为斜面光滑,没有摩擦力做功,机械能守恒。

根据几何关系,物体下落的高度 h 与斜面长度 L 和斜面倾角θ 有关,h =Lsinθ。

所以mgh = 1/2mv²,解得 v =√2gh =√2gLsinθ 。

这个例题展示了在斜面这种常见的情境中机械能守恒定律的应用。

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法要点一机械能守恒的判断(系统摩擦力做功,系统机械能一定不守恒)例1.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对跟踪训练1.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大要点二机械能守恒定律的简单应用(熟练理解“守恒”)例2.如图所示,一轻杆可绕O点的水平轴无摩擦地转动,杆两端各固定一个小球,球心到O轴的距离分和r2,球的质量分别为m1和m2,且m1>m2,r1>r2,将杆由水平位置从静止开别为r始释放,不考虑空气阻力,求小球m1摆到最低点时的速度是多少?跟踪训练2.如图所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?要点三应用机械能守恒定律处理竖直平面内的圆周运动(整体分析)例3.如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0 m的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为半径r=0.69 m的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m=0.01 kg的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到曲面N的某一点上,取g=10 m/s2.问:(1)发射该钢珠前,弹簧的弹性势能E p多大?(2)钢珠落到圆弧N上时的动能E k多大?(结果保留两位有效数字)跟踪训练3.如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF 是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合的点.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放.(g取10 m/s2)(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.课堂分组训练A组机械能守恒的判断1.[多选]一个轻质弹簧,固定于天花板的O点处,原长为L,如图所示.一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,在此过程中()A.由A到C的过程中,物块的机械能守恒B.由A到B的过程中,物块的动能和重力势能之和不变C.由B到C的过程中,弹性势能的变化量与克服弹力做的功相等D.由A到C的过程中,重力势能的减少量等于弹性势能的增加量2.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()A.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mghD.弹簧的弹性势能最大时圆环动能最大3.[多选]如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始运动过程中()A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒B组机械能守恒的简单应用4.如图是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系物体A、B,且m A=2m B,从图示位置由静止开始释放A物体,当物体B到达半圆顶点时,求绳的张力对物体B所做的功.C组应用机械能守恒定律处理竖直平面内的圆周运动5.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点).a 站在地面上,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态.当演员b摆至最低点时,a刚好对地面无压力,则演员a的质量与演员b的质量之比为()A.1∶1 B.2∶1 C.3∶1 D.4∶16.为了研究过山车的原理,物理兴趣小组提出了下列设想:如图所示,取一个与水平方向夹角为30°,长L=0.8 m的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道都是光滑的.其中AB与BC轨道以微小圆弧相接,竖直圆轨道的半径R=0.6 m.现使一个质量m=0.1 kg的小物块从A点开始以初速度v0沿倾斜轨道滑下,g取10 m/s2.问:(1)若v0=5.0 m/s,则小物块到达B点时的速度为多大?(2)若v0=5.0 m/s,小物块到达竖直圆轨道的最高点时对轨道的压力为多大?(3)为了使小物块在竖直圆轨道上运动时能够不脱离轨道,v0大小应满足什么条件?7. 如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。

高中物理机械能守恒定律(解析版)

高中物理机械能守恒定律(解析版)

机械能守恒定律目录一.练经典---落实必备知识与关键能力 (1)二.练新题---品立意深处所蕴含的核心价值 (1)一.练经典---落实必备知识与关键能力1.(2022·山东学考)若忽略空气阻力的影响,下列运动过程中物体机械能守恒的是()A.被掷出后在空中运动的铅球B.沿粗糙斜面减速下滑的木块C.随热气球一起匀速上升的吊篮D.随倾斜传送带加速上行的货物【答案】A【解析】:机械能守恒的条件是只有重力做功,被掷出后在空中运动的铅球只有重力做功,机械能守恒;沿粗糙斜面下滑的木块除重力外还有摩擦力做功,机械能不守恒;随热气球一起匀速上升的吊篮在上升过程中动能不变,重力势能随高度增大而增大,机械能不守恒;随倾斜传送带加速上行的货物在上行过程中动能增大,重力势能增大,机械能不守恒。

故A正确。

2.(多选)如图所示,下列关于机械能是否守恒的判断正确的是()A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,A置于光滑水平面,物体B沿光滑斜面下滑,物体B机械能守恒C.丙图中,不计滑轮质量和任何阻力时A加速下落,B加速上升过程中,A、B组成的系统机械能守恒D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒【答案】CD【解析】:甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错误。

乙图中物体B除受重力外,还受弹力,弹力对B做负功,机械能不守恒,但从能量特点看A、B组成的系统机械能守恒,B错误。

丙图中A、B组成的系统只有重力做功,动能和势能相互转化,总的机械能守恒,C正确。

丁图中动能不变,势能不变,机械能守恒,D正确。

3.(2022·浙江7月学考)如图所示,质量为m的小球从距桌面h1高处的A点由静止释放,自由下落到地面上的B点,桌面离地高为h2。

选择桌面为参考平面,则小球()A.在A点时的重力势能为-mgh1B .在A 点时的机械能为mg (h 1+h 2)C .在B 点时的重力势能为mgh 2D .在B 点时的机械能为mgh 1 【答案】D【解析】: 选择桌面为参考平面,小球在A 点的重力势能为mgh 1,A 错误;小球在A 点的机械能等于重力势能和动能之和,而动能为零,所以在A 点的机械能为mgh 1,B 错误;小球在B 点的重力势能为-mgh 2,小球在B 点的机械能与在A 点的机械能相同,也是mgh 1,C 错误,D 正确。

高三物理机械能守恒定律试题答案及解析

高三物理机械能守恒定律试题答案及解析

高三物理机械能守恒定律试题答案及解析1.(10分)光滑水平面上静置两个小木块A和B,其质量分别为mA =150g、mB=200g,它们中间用一根轻质弹簧相连,弹簧处于原长状态。

一颗水平飞行的子弹质量为m=50g,以v=400m/s的速度在极短时间内打入木块A并镶嵌在其中,求系统运动过程中弹簧的最大弹性势能。

【答案】500J【解析】取子弹和木块A为研究对象,根据动量守恒定律得出取子弹和木块A、B为研究对象,根据动量守恒定律得出根据能量守恒可得【考点】本题考查了动量守恒定律和能量守恒定律2.关于动能,下列说法中正确的是()A.动能是机械能中的一种基本形式,凡是运动的物体都有动能B.公式Ek=中,速度v是物体相对地面的速度,且动能总是正值C.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化D.动能不变的物体,一定处于平衡状态【答案】AC【解析】动能的计算式为EK=mV2,物体的质量和速度的大小都可以引起物体动能的变化,它是没有方向的,它是标量解:A、动能就是物体由于运动而具有的能量,是普遍存在的机械能中的一种基本形式,凡是运动的物体都有动能,所以A正确.B、物体的动能是没有方向的,它是标量,速度v是物体相对参考平面的速度,所以B错误.C、对于一定质量的物体,动能变化时,速度一定变化的,但速度变化时,动能不一定变化,所以C正确D、动能不变的物体,可以是物体速度的大小不变,但速度的方向可以变化,比如匀速圆周运动,此时的物体并不一定是受力平衡状态,所以D错误.故选:AC【点评】本题考查的是学生对动能的理解,由于动能的计算式中是速度的平方,所以速度变化时,物体的动能不一定变化3.斜面倾角为60°,长为3L,其中AC段、CD段、DB段长均为L,一长为L,质量均匀分布的长铁链,其总质量为M,用轻绳拉住刚好使上端位于D点,下端位于B点,铁链与CD段斜面的动摩擦因数,斜面其余部分均可视为光滑,现用轻绳把铁链沿斜面全部拉到水平面上,人至少要做的功为A.B.C.D.【答案】D【解析】试题分析: 拉力做功最小时,铁链重心到达水平面时的速度刚好为零,从开始拉铁链到铁链的重心到达水平面的过程中运用动能定理得:,解得:,故D 正确.故选D 。

高中物理必修二机械能守恒定律解题方法技巧

高中物理必修二机械能守恒定律解题方法技巧

(每日一练)高中物理必修二机械能守恒定律解题方法技巧单选题1、如图所示,弹簧下面挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好为原长,弹簧在弹性限度内,则物体在振动过程中()A.弹簧的最大弹性势能等于2mgAB.弹簧的弹性势能和物体动能总和不变C.物体在最低点时的加速度大小应为2gD.物体在最低点时的弹力大小应为mg答案:A解析:A.因物体振动到最高点时,弹簧正好为原长,此时弹簧弹力等于零,物体的重力mg=F回=kA当物体在最低点时,弹簧的弹性势能最大等于2mgA,故A正确;B.由能量守恒知,弹簧的弹性势能和物体的动能、重力势能三者的总和不变,故B错误;C.在最低点,由故C错误;D.在最低点,由F弹-mg=F回得F弹=2mg故D错误。

故选A。

2、如图所示,一传送带的上表面以v1向右做匀速运动,其右侧平台上有一质量为m的物体以初速度v0向左冲上传动带。

若传送带足够长,并且v1>v0,则物体在返回平台的瞬间,其动能与刚离开平台瞬间相比,变化了()A.0B.12mv02C.12mv12-12mv02D.12mv12+12mv02答案:A解析:物块以速度v0滑上传送带后,在滑动摩擦力作用下向左做匀减速直线运动,直至速度为零,此后在滑动摩擦力作用下向右做匀加速运动,由于v1>v0,传送带足够长,所以根据对称性可知,物体在返回平台的瞬间速度大小为v0,则物体动能的变化量为ΔE k=12mv02-12mv02=0故A正确,BCD错误。

3、如图所示为质量为m的汽车在水平路面上启动过程的v﹣t图象,Oa为过原点的倾斜直线,ab段是汽车以额定功率行驶时的加速阶段速度随时间变化的曲线,bc段是与ab段相切的水平直线。

整个启动过程中阻力恒为f,则下列说法正确的是()A.0~t1时间内汽车牵引力F=f+m v1t1B.0~t1时间内汽车以恒定功率做匀加速运动C.t1~t2时间内汽车的平均速度为v1+v22D.t1时刻汽车的牵引力小于t2时刻汽车的牵引力答案:A解析:A.0~t1时间内汽车的加速度为a=v1 t1在此过程中,水平方向受到牵引力和阻力,根据牛顿第二定律F−f=ma 解得F=f+mv1 t1故A正确;B.0~t1时间内汽车做匀加速运动,牵引力恒定,速度逐渐增大,根据P=Fv 可知,汽车的功率逐渐增大,故B错误;C.t1~t2时间内汽车做变加速直线运动,平均速度v̅≠v1+v22故C错误;D.t1~t2时间内汽车的功率不变,速度增大,牵引力减小,t2时刻后,牵引力减小到与阻力相同,汽车做匀速直线运动,故t1时刻汽车的牵引力大于t2时刻汽车的牵引力,故D错误。

机械能守恒定律典型例题

机械能守恒定律典型例题

机械能守恒定律典型例题题型一:单个物体机械能守恒问题1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1 m,长2 m,不计空气阻力,物体滑到斜面底端的速度是多大?拓展:若光滑的斜面换为光滑的曲面,求物体滑到斜面底端的速度是多大?2、把一个小球用细绳悬挂起来,就成为一个摆,摆长为l,最大偏角为θ,求小球运动到最低位置时的速度是多大?.题型二:连续分布物体的机械能守恒问题1、如图所示,总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,则铁链刚脱离滑轮的瞬间的速度多大?2、一条长为L的均匀链条,放在光滑水平桌面上,链条的一半垂于桌边,如图所示,现由静止开始使链条自由滑落,当它全部脱离桌面时的速度多大?3、如图所示,粗细均匀的U型管内装有同种液体,开始两边液面高度差为h,管中液体总长度为4h,后来让液体自由流动,当液面的高度相等时,右侧液面下降的速度是多大?题型三:机械能守恒定律在平抛运动、圆周运动中的应用(单个物体)1、如图所示,AB是竖直平面内的四分之一圆弧轨道,其下端B与水平直轨道相切,一小球自A点起由静止开始沿轨道下滑。

已知圆弧轨道半径为R,小球的质量为m,不计各处摩擦。

求:(1)小球运动到B点时的动能(2)小球下滑到距水平轨道的高度为12R时的速度大小和方向(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大?2、如图所示,固定在竖直平面内的光滑轨道,半径为R,一质量为m的小球沿逆时针方向在轨道上做圆周运动,在最低点时,m对轨道的压力为8mg,当m 运动到最高点B时,对轨道的压力是多大?3、如上图所示,可视为质点的小球以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道.若不计轨道的摩擦,为使小球能通过圆形轨道的最高点,则v0至少应为多大?4、如右图所示,长度为l的无动力“翻滚过山车”以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道,若不计轨道的摩擦,且l>2πR,为使“过山车”能顺利通过圆形轨道,则v0至少应为多大?5、游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如左图所示,我们把这种情况抽象为右图所示的模型:弧形轨道的下端与竖直圆轨道相接.使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h 大于一定值.小球就可以顺利通过圆轨道的最高点. 如果已知圆轨道的半径为R,h至少要等于多大?不考虑摩擦等阻力。

机械能守恒定律的综合应用经典例题

机械能守恒定律的综合应用经典例题

机械能守恒定律的综合应用例1、如图所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴。

AO 、BO 的长分别为2L 和L 。

开始时直角尺的AO 部分处于水平位置而B 在O 的正下方。

让该系统由静止开始自由转动,求:⑴当A 到达最低点时,A 小球的速度大小v ;⑵ B 球能上升的最大高度h ;⑶开始转动后B 球可能达到的最大速度v m 。

解析:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。

⑴过程中A 的重力势能减少, A 、B 的动能和B 的重力势能增加,A 的即时速度总是B 的2倍。

222321221322⎪⎭⎫ ⎝⎛⋅+⋅⋅+⋅=⋅v m v m L mg L mg ,解得118gL v = ⑵B 球不可能到达O 的正上方,它到达最大高度时速度一定为零,设该位置比OA 竖直位置向左偏了α角。

2mg ∙2L cos α=3mg ∙L (1+sin α),此式可化简为4cos α-3sin α=3,解得sin (53°-α)=sin37°,α=16°⑶B 球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功W G 。

设OA 从开始转过θ角时B 球速度最大,()223212221v m v m ⋅⋅+⋅⋅=2mg ∙2L sin θ-3mg ∙L (1-cos θ) =mgL (4sin θ+3cos θ-3)≤2mg ∙L ,解得114gL v m =例2、如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?解析:A 球沿半圆弧运动,绳长不变,B A 、两球通过的路程相等,A 上升的高度为R h =;B 球下降的高度为242R R H ππ==;对于系统,由机械能守恒定律得:K P E E ∆=∆- ;2)(212v m M mgR R Mg E P +=+-=∆∴π m M mgR RMg v c +-=∴2π例3、如图所示,均匀铁链长为L ,平放在距离地面高为L 2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度? 解:选取地面为零势能面:2212)102(51254mv L mg L L mg L mg +=-+ 得:gL v 7451=v 1⑴ ⑵⑶例4、如图所示,粗细均匀的U 形管内装有总长为4L 的水。

机械能守恒定律典型例题

机械能守恒定律典型例题

机械能守恒定律典型例题一、单物体在重力作用下的机械能守恒1. 例题- 质量为m = 1kg的物体从离地面h = 5m高处以初速度v_0= 10m/s水平抛出,不计空气阻力,求物体落地时的速度大小。

2. 解析- (1)首先分析物体的运动过程,物体在平抛运动过程中,只有重力做功。

- (2)取地面为零势能面,根据机械能守恒定律E_1=E_2。

- (3)物体抛出时的机械能E_1包括动能E_k1和重力势能E_p1。

- 动能E_k1=(1)/(2)mv_0^2=(1)/(2)×1×10^2 = 50J。

- 重力势能E_p1=mgh = 1×10×5=50J。

- 所以E_1=E_k1 + E_p1=50 + 50 = 100J。

- (4)物体落地时的机械能E_2只有动能E_k2(因为重力势能E_p2 = 0)。

- (5)由E_1=E_2,即100=(1)/(2)mv^2,解得v=√(frac{2×100){1}} =10√(2)m/s。

二、系统内物体间机械能守恒(轻绳连接)1. 例题- 如图所示,一轻绳跨过定滑轮,两端分别系着质量为m_1和m_2的物体(m_1,m_2开始时静止在地面上,当m_1由静止释放下落h高度时(m_1未落地),求此时m_2的速度大小。

(不计滑轮质量和摩擦)2. 解析- (1)对于m_1和m_2组成的系统,只有重力做功,系统机械能守恒。

- (2)设m_1下落h高度时,m_1和m_2的速度大小均为v。

- (3)以地面为零势能面,系统初始机械能E_1为m_1的重力势能m_1gh。

- (4)系统末态机械能E_2为m_1的动能(1)/(2)m_1v^2、m_1的重力势能m_1g(h - h)(此时m_1相对于初始位置下降了h),以及m_2的动能(1)/(2)m_2v^2和m_2的重力势能m_2gh。

- (5)根据机械能守恒定律E_1=E_2,即m_1gh=(1)/(2)m_1v^2+(1)/(2)m_2v^2+m_2gh。

高中物理第八章机械能守恒定律知识总结例题(带答案)

高中物理第八章机械能守恒定律知识总结例题(带答案)

高中物理第八章机械能守恒定律知识总结例题单选题1、如图所示,用细绳系住小球,让小球从M点无初速度释放,小球从M点运动到N点的过程中( )A.若忽略空气阻力,则机械能不守恒B.若考虑空气阻力,则机械能守恒C.绳子拉力不做功D.只有重力做功答案:CA.忽略空气阻力,拉力与运动方向垂直不做功,只有重力做功,机械能守恒,故A错误;B.若考虑空气阻力,阻力做功,则机械能不守恒,故B错误;C.拉力与运动方向即速度方向垂直不做功,故C正确;D.如果考虑阻力,重力和阻力都做功,不考虑阻力,重力做功,故D错误。

故选C。

2、如图,高台跳水项目中要求运动员从距离水面H的高台上跳下,在完成空中动作后进入水中。

若某运动员起跳瞬间重心离高台台面的高度为h1,斜向上跳离高台瞬间速度的大小为v0,跳至最高点时重心离台面的高度为h2,入水(手刚触及水面)时重心离水面的高度为h1。

图中虚线为运动员重心的运动轨迹。

已知运动员的质量为m,不计空气阻力,则运动员跳至最高点时速度及入水(手刚触及水面)时速度的大小分别是()A.0,√v02+√2gHB.0,√2g(H+ℎ2−ℎ1)C.√v02+2g(ℎ1−ℎ2),√v02+2gH D.√v02+2g(ℎ1−ℎ2),√v02+2g(H−ℎ1)答案:C从跳离高台瞬间到最高点,据动能定理得−mg(ℎ2−ℎ1)=12mv2−12mv02解得最高点的速度v=√v02+2g(ℎ1−ℎ2)从跳离高台瞬间到入水过程,据动能定理得mgH=12mvʹ2−12mv02解得入水时的速度vʹ=√v02+2gH故选C。

3、如图所示,斜面倾角为θ=37°,物体1放在斜面紧靠挡板处,物体1和斜面间动摩擦因数为μ=0.5,一根很长的不可伸长的柔软轻绳跨过光滑轻质的小定滑轮,绳一端固定在物体1上,另一端固定在物体2上,斜面上方的轻绳与斜面平行。

物体2下端固定一长度为h的轻绳,轻绳下端拴在小物体3上,物体1、2、3的质量之比为4:1:5,开始时用手托住小物体3,小物体3到地面的高度也为h ,此时各段轻绳刚好拉紧。

(word完整版)高中物理机械能守恒定律经典例题及技巧

(word完整版)高中物理机械能守恒定律经典例题及技巧

一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。

(2)固定的光滑斜面类。

(3)固定的光滑圆弧类。

(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。

那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。

机械能守恒定律的应用和解题技巧{有详细答案}

机械能守恒定律的应用和解题技巧{有详细答案}

机械能守恒定律的应用和解题技巧{有详细答案}能量转化和守恒定律是自然界四大基本规律之一,机械能守恒定律又是能量守恒定律在机械运动中的具体表现形式,由于机械能守恒定律不涉及运动过程中的加速度和时间,用它来处理动力学问题要远比牛顿运动定律方便。

机械能守恒定律适用的对象可以是单个物体(弹簧)和地球组成的系统,也可以是多个物体(弹簧)和地球组成的系统。

不过,对象不同,在守恒的判断上、运用的方式上略有差异。

机械能包括动能、重力势能和弹性势能三种,由于重力势能属于物体和地球组成的系统,因此,只要涉及重力势能,地球就必定是研究对象的一部分,也正因为如此,在交代研究对象时地球可以不特别指明。

一、单个物体(弹簧)和地球组成的系统机械能守恒条件:(1)只受重力或系统内弹簧弹力;(注意:从研究对象的组成可知,重力也属内力)(2)受其它外力,但其它外力不做功;(3)其它外力做功,但其它外力做功的代数和始终为0。

满足上述三个条件中任何一个,该系统的机械能都守恒。

其中第三个条件需要进行一点补充说明,以沿水平公路匀速直线运动的汽车为例,运行过程中,发动机内部燃烧汽油,一部分化学能转化为机械能,同时,汽车克服阻力做功,一部分机械能又转化为内能,两个转化过程中机械能变化的数值相等,因此汽车机械能的总量保持不变。

正因如此,严格地讲,第三个条件不属于机械能守恒的条件之列,只是研究过程中机械能的数值始终保持不变而已。

例:如图所示,小球从某一高处自由下落到竖直放置的轻弹簧上,在将弹簧压缩到最短的过程中,下列关于机械能的叙述中正确的是()(A)重力势能和动能之和总保持不变(B)重力势能和弹性势能之和总保持不变(C)动能和弹性势能之和总保持不变(D)重力势能、弹性势能和动能之和总保持不变分析:这是一个经典问题,难点在于研究对象的选择。

若以小球、地球组成的系统为对象,弹簧弹力属于外力,系统机械能不守恒;若以小球、弹簧、地球组成的系统为对象,弹簧弹力属于内力,系统机械能守恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。

(2)固定的光滑斜面类。

(3)固定的光滑圆弧类。

(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。

那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等】2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

例,以初速度v 0 冲上倾角为光滑斜面,求物体在斜面上运动的距离是多少分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等—22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。

由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。

因此只有重力做功,物体的机械能守恒。

例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为,然后从静止释放,求小球运动到最低点小球对悬线的拉力分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等221)cos 1(t mv mgL =-θ 得:)cos 1(22θ-=gL v t 由向心力的公式知:Lmv mg T t 2=-可知θcos 23mg mg T -= 作题方法:一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。

~注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。

这在计算中是要特别注意的。

习题:1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L aL b L c ,则悬线摆至竖直位置时,细线中张力大小的关系是( ) A T c T b T a B T aT b T c C T b T c T a D T a =T b =T c 2、一根长为l 的轻质杆,下端固定一质量为m 的小球,欲使它以上端o 为转轴刚好能在竖直平面内作圆周运动(如图),球在最低点A 的速度至少多大如将杆换成长为L 的细线,则又如何3、如图,一质量为m 的木块以初速V 0从A 点滑上半径为R 的光滑圆弧轨道,它通过最高点B 时对轨道的压力FN 为多少4、一质量m = 2千克的小球从光滑斜面上高h = 米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:(1)小球滑至圆环顶点时对环的压力;(2)小球至少要从多高处静止滑下才能越过圆环最高点;(3)小球从h 0 = 2米处静止滑下时将在何处脱离圆环(g =米/秒2)。

(二、系统的机械能守恒由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。

不做功,系统的机械能就不变。

(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。

系统内物体的重力所做的功不会改变系统的机械能系统间的相互作用力分为三类:1) 刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2) 弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。

3) |4) 其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。

在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。

虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。

但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。

归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类(3)在水平面上可以自由移动的光滑圆弧类。

(4)悬点在水平面上可以自由移动的摆动类。

(1)轻绳连体类这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,倾角为的光滑斜面上有一质量为M 的物体,通过一根跨过定滑轮的细绳与质量为m 的物体相连,开始时两物体均处于静止状态,且m 离地面的高度为h ,求它们开始运动后m 着地时的速度分析:对M 、m 和细绳所构成的系统,受到外界四个力的作用。

它们分别是:M 所受的重力Mg ,m 所受的重力mg ,斜面对M 的支持力N ,滑轮对细绳的作用力F 。

M 、m 的重力做功不会改变系统的机械能,支持力N 垂直于M 的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。

!在能量转化中,m 的重力势能减小,动能增加,M 的重力势能和动能都增加,用机械能的减少量等于增加量是解决为一类题的关键222121sin mv Mv Mgh mgh ++=θ 可得mM M m gh v +-=)sin (2θ 需要提醒的是,这一类的题目往往需要利用绳连物体的速度关系来确定两个物体的速度关系例:如图,光滑斜面的倾角为,竖直的光滑细杆到定滑轮的距离为a ,斜面上的物体M 和穿过细杆的m 通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m 的轻绳处于水平状态,放手后两物体从静止开始运动,求m 下降b 时两物体的速度大小(2)轻杆连体类这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,质量均为m 的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L 、2L ,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小分析:由轻杆和两个小球所构成的系统受到外界三个力的作用,即A 球受到的重力、B 球受到的重力、轴对杆的作用力。

两球受到的重力做功不会改变系统的机械能,轴对杆的作用力由于作用点没有位移而对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是轻杆的弹力,弹力对A 球做负功,对B 球做正功,但这种做功只是使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有A 的重力势能减小,A 球的动能以及B 球的动能和重力势能都增加,我们让减少的机械能等于增加的机械能。

有:…2221212B A mv mv mgL L mg ++= 根据同轴转动,角速度相等可知B A v v 2=所以:⎩⎨⎧==gL v gL v B A 52522 需要强调的是,这一类的题目要根据同轴转动,角速度相等来确定两球之间的速度关系(3)在水平面上可以自由移动的光滑圆弧类。

光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:四分之一圆弧轨道的半径为R ,质量为M ,放在光滑的水平地面上,一质量为m 的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度分析:由圆弧和小球构成的系统受到三个力作用,分别是M 、m 受到的重力和地面的支持力。

m 的重力做正功,但不改变系统的机械能,支持力的作用点在竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是圆弧和球之间的弹力,弹力对m 做负功,对M 做正功,但这种做功只是使机械能在系统内部进行等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。

在整个机械能当中,只有m 的重力势能减小,m 的动能以及M 球的动能都增加,我们让减少的机械能等于增加的机械能。

有:&222121m M mv Mv mgR += 根据动量守恒定律知 M m Mv mv -=0 所以:⎩⎨⎧+=+=)(2)(2m M M gR M v m M M gR m v M m (4)悬点在水平面上可以自由移动的摆动类。

悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:质量为M 的小车放在光滑的天轨上,长为L 的轻绳一端系在小车上另一端拴一质量为m 的金属球,将小球拉开至轻绳处于水平状态由静止释放。

相关文档
最新文档