数值积分与数值微分

合集下载

数值微分与数值积分

数值微分与数值积分

数值微分与数值积分数值微分与数值积分是现代计算机科学中非常重要的数学工具。

它们可以用来处理各种研究。

在本文中,我们将讨论这两种方法的基础原理,以及它们在不同领域中的应用。

什么是数值微分?数值微分是指对给定函数进行求导的一种数值方法。

在实际应用中,函数的导数通常很难求得解析解,这时需要使用数值微分的方法来进行近似计算。

数值微分通常是通过在函数的某个点进行差分计算来完成的。

考虑一个函数$f(x)$在某个点$x_0$进行微分的情况。

我们可以计算$f(x_0+h)$和$f(x_0-h)$,其中$h$是一个小的正数。

然后,我们可以计算$[f(x_0+h) - f(x_0-h)]/2h$来得到$f'(x_0)$的近似值。

数值微分的应用非常广泛。

在科学和工程领域中,它通常用于计算物理量相关的导数。

例如,流体力学中的速度梯度、量子力学中的波函数导数,都可以使用数值微分进行近似计算。

此外,在金融领域中,数值微分也可用于计算期权价格等任意变量导数的近似解。

什么是数值积分?数值积分是指对给定函数进行积分的一种数值方法。

与数值微分类似,函数的积分通常很难求得解析解,而不得不使用数值积分的方法来近似计算。

在数值积分中,我们通常使用数值积分公式来计算定义在一个区间$[a,b]$上的函数(如果积分问题是无限积分,我们需要进行变形,将其转化为有限积分问题)。

数值积分公式通常基于插值方法,即将函数转化为一个多项式,并对多项式进行积分。

数值积分也应用广泛。

在科学和工程领域中,它通常用于计算面积、物质质量,以及探测信号的峰值等。

在金融领域中,数值积分也可用于计算期权定价公式的近似解。

数值微分和数值积分的误差分析在应用数值微分和数值积分时,误差是一个重要的考虑因素。

误差源可以来自于采样、采样噪声、近似方法等。

通常,我们使用误差分析来评估误差大小。

数值微分的误差通常归因于选取的$h$值。

当$h$太大时,我们会失去一些重要的信息,如函数的局部斜率。

数值分析-第4章 数值积分和数值微分

数值分析-第4章  数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即

b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1

数值计算_第7章数值微分和数值积分

数值计算_第7章数值微分和数值积分

数值计算_第7章数值微分和数值积分数值微分和数值积分是数值计算中的两个重要内容,它们在科学、工程和经济等领域有着广泛的应用。

本文将详细介绍数值微分和数值积分的概念、方法和应用,并分析其优缺点。

数值微分是通过数值方法来近似计算函数的导数。

在实际问题中,往往很难直接计算函数的导数,因此需要使用数值方法来进行近似计算。

常用的数值微分方法有中心差分法、向前差分法和向后差分法。

中心差分法是一种通过利用函数在特定点两侧的数据点来计算函数的导数的方法。

具体方法是用函数在该点两侧的差值来估计导数。

中心差分法具有较高的精度和稳定性,适用于函数光滑的情况。

向前差分法和向后差分法是一种通过利用函数在该点的数据点来计算函数的导数的方法。

向前差分法用函数在该点的后一点数据来估计导数,向后差分法用函数在该点的前一点数据来估计导数。

这两种方法的精度相对较低,但计算简单,适用于函数不太光滑的情况。

数值微分方法的优点是计算简单、直观易懂、易于实现。

缺点是对函数的平滑性和间隔大小要求较高,误差较大。

数值积分是通过数值方法来近似计算函数的积分。

在实际问题中,往往很难直接计算函数的积分,因此需要使用数值方法来进行近似计算。

常用的数值积分方法有梯形法则、辛普森法则和数值积分公式。

梯形法则是一种通过将区间划分为多个小区间,在每个小区间上用梯形面积来近似计算积分的方法。

辛普森法则是一种通过将区间划分为多个小区间,在每个小区间上用抛物线面积来近似计算积分的方法。

这两种方法的精度较高,适用于函数较光滑的情况。

数值积分公式是通过选取节点和权重,将积分转化为对节点函数值的加权求和。

常用的数值积分公式有高斯求积公式和牛顿-寇茨公式。

这些公式具有较高的精度和稳定性,适用于计算复杂函数的积分。

数值积分方法的优点是适用范围广、精度较高、计算稳定。

缺点是计算量较大、计算复杂、需要选取合适的节点和权重。

数值微分和数值积分在科学、工程和经济等领域有着广泛的应用。

8-数值微分与数值积分1解析

8-数值微分与数值积分1解析

有 n 1 次代数精确度。
30
例 判断求积公式
1 f (x)dx 1 [5 f ( 0.6) 8 f (0) 5 f ( -0.6)]
1
9
的代数精确度。
解:记I ( f ) 1 f (x)dx, 1
I ( f ) 1 [5 f ( 0.6) 8 f (0) 5 f ( -0.6)] 9
32
梯形公式的截断误差
定理:

f
(
x)
C
2 [a,b
],
则:
b
ba
R( f ) f (x)dx a
2
( f (a) f (b))
(b a)3 f '' ()
12
(a,b)
注意:当 f ''(x) 0, x [a,b], 则积分值小于 计算值,此时 f(x) 是凹的; 反之类似。
0.0015831 7.1106
1.151 3.1613527
1.1499 3.1578771
104 1.15
3.1581929 3.15838
3.158
0.0001871 0.0001929
1.1501 3.1585087
1.149999 3.1581897
106 1.15
3.1581929 3.2
1 h
[
f
( x1 )
f
( x0 )]
h 2
f " (2 )6.
三点公式
设已给出三个节点x0 , x1 x0 h, x2 x0 2h上的 函数值
P2 (x)
(x x1)(x x2 ) (x0 x1)(x0 x2 )
f
(x0 )

数值积分与数值微分ppt课件

数值积分与数值微分ppt课件

a
,
x1

b
2
a
,
x2

b
,h

b
2
a
Cotes系数:
C0( 2 )

1 4
2
1
(t 1)(t 2)dt
0
6
4.5 4
C1(2)

1 2
2
t(t 2)dt
0
4 6
3.5 3
2.5
C2(2)

1 4
2
1
(t 1)tdt
0
6
2 1.5
1
求积公式:
2
Q2( f ) (b a)
n (t j)h
0

0
jn
(k

j)h


h
dt
jk
jk

h (1)nk n

(t j)dt
k!(n k)! 0 0 jn
jk
Ak
ˆ
(b

a
)

C (n) k
C
(n)称
k
为Cotes系

(1)nk
n
Ak
(b a)
3
I3(
f
)

b
6
a
(a2

(a

b)2

b2
)

b3
3
a3
R( , x2 ) 0
(3)当 f (x) x3时,I ( f ) b4 a4
4
I3(
f
)

b

第4章 数值积分与数值微分

第4章  数值积分与数值微分

1 (a b).得到的求积公式就是中 矩形公式。再令 2 f ( x) x 2 , 代入(1.4)式的第三式有
b ab 2 ba 2 1 2 A x (b a)( ) (a b ) x 2 dx (b 3 a 3 ), a 2 4 3 说明中矩形公式对 ( x) x 2不精确成立,故它的代 f 数精确度为 . 1
定 理 1 求积公式 f ( x)dx Ak f k 至少具有n次代数精度
a k 0
它是插值型求积公式 .
四、求积公式的余项 若求积公式(1.3)的代数精确度为m,则由求积 公式余项的表达式(1.7)可以证明余项形如
R[ f ] f ( x)dx Ak f ( xk ) Kf ( m1) ( ), (1.8)
k 0 n
Hale Waihona Puke 第4章 数值积分与数值微分
~ 定 义 3 若 0, 0,只要 f ( xk ) f k (k 0,, n), 就有 ~ | I n ( f ) I n ( f ) |
《 数 值 分 析 》
~ Ak [ f ( xk ) f ( xk )] ,
此求积公式的余项。
第4章 数值积分与数值微分
1 A1 B0 2 1 1 《 A1 0 x 2 dx 3 1 2 数 1 1 A1 , A0 , B0 于是有 f ( x)dx 2 f (0) 1 f (1) 1 f ' (0) 值解得 3 3 6 3 3 6 分 0 1 1 析当 3时 x 3 dx . 而上式右端为1/3,故公式对 f ( x) x 》 4 0
k 0
n
则称求积公式 (1.3) 是稳定的 .

数值方法中的数值微分和数值积分

数值方法中的数值微分和数值积分

泰勒展开法:将函数 在某点处展开成泰勒 级数,然后利用级数 的各项系数计算数值 微分
牛顿插值法:利用牛 顿插值多项式计算数 值微分,其思想是通 过构造插值多项式ห้องสมุดไป่ตู้ 逼近导数函数
数值微分的误差分析
数值微分的基本概念
数值微分误差的来源
数值微分误差的估计
减小误差的方法
数值微分的应用
计算物理量的变化 率
应用领域的比较
数值微分的应用领域:主要应用于求解微分方程的近似解,例如在物理学、 工程学和经济学等领域。
数值积分的应用领域:主要应用于求解定积分、不定积分等积分问题,例 如在计算面积、体积、物理实验数据处理等领域。
比较:数值微分和数值积分在应用领域上存在差异,但两者都是数值计算 中的重要工具,可以相互补充。
矩形法:将积分区 间划分为若干个小 的矩形,用矩形面 积的和近似积分
梯形法:将积分区 间划分为若干个小 的梯形,用梯形面 积的和近似积分
辛普森法:将积分 区间划分为若干个 等分的子区间,用 抛物线面积的和近 似积分
牛顿-莱布尼茨法 :利用定积分的定 义和牛顿-莱布尼 茨公式,通过求和 的方式计算定积分
预测函数的变化趋 势
优化问题中的梯度 计算
机器学习中的梯度 下降算法
Part Three
数值积分
数值积分的概念
数值积分定义:用数值方法近似计算定积分的值 常用方法:矩形法、梯形法、辛普森法等 近似误差:与使用的数值方法有关,通常误差随迭代次数增加而减小 应用领域:科学计算、工程、数学建模等
数值积分的计算方法
数值积分的误差分析
算法稳定性:数值积分方法的稳定性和误差控制 步长选择:步长对误差的影响和最佳步长选择 收敛性:数值积分方法的收敛速度和误差收敛性 误差来源:数值积分中误差的来源和减小误差的方法

数值分析--第4章数值积分与数值微分[1]详解

数值分析--第4章数值积分与数值微分[1]详解

第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。

在微积分中,我们熟知,牛顿-莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。

对定积分()ba I f x dx =⎰,若()f x 在区间[,]ab 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()baf x dx F b F a =-⎰似乎问题已经解决,其实不然。

如1)()f x 是由测量或数值计算给出数据表时,Newton-Leibnitz 公式无法应用。

2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-= 等等,它们的原函数不能用初等函数的有限形式表示。

3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。

例如下列积分241arc 1)arc 1)1dx tg tg C x ⎡⎤=+++-+⎣⎦+⎰ 对于上述这些情况,都要求建立定积分的近似计算方法—-数值积分法。

1。

1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定.由积分中值定理:对()[,]f x C a b ∈,存在[,]a b ξ∈,有()()()baf x dx b a f ξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a -而高为()f ξ的矩形面积(图4-1)。

问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()f ξ。

我们将()f ξ称为区间[,]a b 上的平均高度。

这样,只要对平均高度()f ξ提供一种算法,相应地便获得一种数值求积分方法.如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b aT f a f b -=+ (4—1) 便是我们所熟悉的梯形公式(图4-2)。

《数值分析-李庆杨》第4章 数值积分与数值微分-文档资料

《数值分析-李庆杨》第4章  数值积分与数值微分-文档资料

(a

b).得到的求积公式就是中矩形公式。再令

f (x) x2, 代入(1.4)式的第三式有

分 析 》
A0 x02
(b
a)( a
b)2 2

b
a 4
(a2
b2)

b x2dx 1 (b3 a3 ),
a
3
说明中矩形公式对f (x) x2不精确成立,故它的代数精确度为1.
当f(x)=x2时(1.4)式的第三个式子不成立,因为
b a (a2 b2 ) b x2dx 1 (b3 a3).
2
a
3
故梯形公式(1.1)的代数精确度为1.
第4章 数值积分与数值微分
在方程组(1.4)中如果节点xi及系数Ai都不确定,那么方 程组(1.4)是关于xi及Ai(i=0,1,…,n)的2n+2个参数的非线性方 程组。此方程组当n>1时求解是很困难的,但当n=0及n=1的 情形还可通过求解方程组(1.4)得到相应的求积公式。
练习 设有求积公式
1
1 f (x)dx A0 f (1) A1 f (0) A2 f (1)
试确定系数A0, A1, A2, 使上述求积公式的代数精度尽量高.
三、插值型求积公式
第4章 数值积分与数值微分
在n 1个互异节点a x0 x1 xn b上已知函数值f0,

A1

1(b a).于是得 2
数 值
I ( f ) b f ( x)dx b a [ f (a) f (b)]
a
2

析 这就是梯形公式(1.1),它表明利用线性方程组(1.4)推出的求积公式,

数值微分与数值积分

数值微分与数值积分

数值微分与数值积分数值微分和数值积分是数值分析中两个重要的概念和技术。

它们在数学与工程领域中都有着广泛的应用。

本文将介绍数值微分和数值积分的概念、原理和应用。

1. 数值微分数值微分是指通过数值计算方法来逼近函数的导数。

在实际计算中,我们常常需要求解某一函数在特定点的导数值,这时数值微分就能派上用场了。

一种常用的数值微分方法是有限差分法。

它基于函数在离给定点很近的两个点上的函数值来逼近导数。

我们可以通过选取合适的差分间距h来求得函数在该点的导数值。

有限差分法的一般形式可以表示为:f'(x) ≈ (f(x+h) - f(x))/h其中,f'(x)是函数f(x)在点x处的导数值,h是差分间距。

数值微分方法有很多种,比如前向差分、后向差分和中心差分等。

根据实际需求和计算精度的要求,我们可以选择合适的数值微分方法来进行计算。

2. 数值积分数值积分是指通过数值计算方法来近似计算函数的定积分。

在实际问题中,我们经常需要求解函数在某一区间上的积分值,而数值积分可以提供一个快速而准确的近似。

一种常见的数值积分方法是复合梯形法。

它将积分区间分割成若干个小区间,然后在每个小区间上应用梯形面积的计算公式。

最后将所有小区间上的梯形面积相加,即可得到整个积分区间上的积分值。

复合梯形法的一般形式可以表示为:∫[a, b] f(x)dx ≈ h/2 * [f(a) + 2∑(i=1 to n-1)f(x_i) + f(b)]其中,[a, b]是积分区间,h是分割的小区间宽度,n是划分的小区间个数,x_i表示第i个小区间的起始点。

除了复合梯形法,还有其他常用的数值积分方法,比如复合辛普森法、龙贝格积分法等。

根据被积函数的性质和计算精度要求,我们可以选择合适的数值积分方法来进行计算。

3. 数值微分和数值积分的应用数值微分和数值积分在科学研究和工程实践中具有广泛的应用。

以下是一些常见的应用领域:3.1 物理学在物理学中,我们经常需要对物体的位置、速度和加速度进行计算。

数值微分与积分算法

数值微分与积分算法

数值微分与积分算法数值微分和积分算法是计算数学中常用的数值计算方法,它们通过离散化数学函数来估计导数和定积分的值。

本文将介绍数值微分和积分的基本概念,并介绍几种常用的数值方法。

1. 数值微分数值微分是计算函数导数的数值方法。

导数表示了函数在某一点的斜率或变化率。

常见的数值微分方法有:向前差分、向后差分和中心差分。

1.1 向前差分向前差分计算导数的方法是通过近似函数在某一点的切线斜率。

假设有函数f(x),可选取小的增量h,并使用如下公式计算导数:f'(x) ≈ (f(x+h) - f(x)) / h1.2 向后差分向后差分与向前差分类似,也是通过近似函数在某一点的切线斜率。

使用如下公式计算导数:f'(x) ≈ (f(x) - f(x-h)) / h1.3 中心差分中心差分是向前差分和向后差分的结合,计算导数时使用函数在点前后进行采样。

使用如下公式计算导数:f'(x) ≈ (f(x+h) - f(x-h)) / (2h)2. 数值积分数值积分是计算函数定积分的数值方法。

定积分表示函数在某一区间上的面积。

常见的数值积分方法有:矩形法、梯形法和辛普森法则。

2.1 矩形法矩形法是通过将函数曲线分割成若干个矩形,然后计算每个矩形的面积之和来近似定积分。

常见的矩形法有:左矩形法、右矩形法和中矩形法。

2.2 梯形法梯形法是通过将函数曲线分割成若干个梯形,然后计算每个梯形的面积之和来近似定积分。

使用如下公式计算:∫[a,b] f(x)dx ≈ (h/2) * [f(x0) + 2f(x1) + 2f(x2) + ... + 2f(x(n-1)) + f(xn)]2.3 辛普森法则辛普森法则是通过将函数曲线分割成若干个抛物线来近似定积分。

使用如下公式计算:∫[a,b] f(x)dx ≈ (h/3) * [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ... + 4f(x(n-1))+ f(xn)]3. 总结数值微分和积分是实际计算中常用的数值方法,它们通过将连续的数学问题离散化来进行数值计算。

数值计算方法 第4版 第6章 数值积分和数值微分

数值计算方法 第4版 第6章   数值积分和数值微分

m 次的代数精度。
定义 求积公式
对 f (x) 1, x, x2,
ab
f
( x)dx
n
Ak
f
(xk )
k 0
, xm ,准确成立,而对于 f (x) xm1 ,不能准确成立,
则称该求积公式
ab
f
( x)dx
n
Ak
f
(xk )
k 0
具有 m 次的代数精度。
求积公式
ab
f
( x)dx
n
Ak
, xn
,使求积公式 ab
f
( x)dx
n
Ak
f
(xk )

k 0
A0 A1 An b a
A0
x0
A1x1
An xn
1 2
(b 2
a2)
A0
x0n
A1 x1n
An xnn
1 (bn1 n 1
an1)
这是关于Ak 的线性方程组,其系数矩阵是凡德蒙矩阵,当节点xk 互
异时, Ak , k 0,1, , n 有唯一解。即对 f (x) 1, x, x2 , , xn 求积公式
定理 对于给定的 n+1 个节点 xk , k 0,1, , n 总存在求积系数
Ak , k 0,1,
精度。
, n 使求积公式 ab
n
f (x)dx
Ak
f (xk ) 至少有
n
次的代数
k 0
证明此时 Ak , k 0,1, , n 有唯一解即可。
证 令 f (x) 1, x, x2 ,
确成立,即
a
Ak f (xk )
k 0

数值分析中的数值微分与数值积分

数值分析中的数值微分与数值积分

数值分析中的数值微分与数值积分数值微分和数值积分是数值分析领域中两个重要的概念。

它们在计算机科学、工程学和物理学等领域中有广泛的应用。

本文将介绍数值微分和数值积分的概念、原理以及一些常用的方法和技巧。

一、数值微分数值微分是通过数值方法来计算函数的导数。

导数是描述函数变化率的工具,它在物理学、经济学和生物学等领域中具有重要的作用。

1. 前向差分法(Forward Difference)前向差分法是一种简单而常用的计算导数的方法。

它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。

具体公式如下:f'(x) ≈ (f(x+h) - f(x))/h其中,h为步长,为了提高精度,需要选择足够小的步长。

2. 后向差分法(Backward Difference)后向差分法与前向差分法类似,不同之处在于它利用函数在某一点上的值与函数在该点附近的一个点上的值之间的差异来估计导数。

具体公式如下:f'(x) ≈ (f(x) - f(x-h))/h同样地,步长h需要选择足够小。

3. 中心差分法(Central Difference)中心差分法是一种更加准确的数值微分方法,它利用函数在某一点上的前后两个点的值来估计导数。

具体公式如下:f'(x) ≈ (f(x+h) - f(x-h))/(2h)中心差分法相对于前向差分法和后向差分法而言,具有更高的精度。

二、数值积分数值积分是通过数值方法来计算函数的积分。

积分在物理学、经济学和统计学等领域中起着重要的作用,它可以用来计算面积、体积以及概率等。

1. 矩形法(Rectangle Method)矩形法是一种简单的数值积分方法,它利用多个矩形来逼近曲线下的面积。

具体来说,将积分区间等分为若干子区间,然后在每个子区间上选择一个点作为高度,从而构造出多个矩形。

最后,将各个矩形的面积相加,即可得到近似的积分值。

2. 梯形法(Trapezoidal Method)梯形法是一种更加准确的数值积分方法,它利用多个梯形来逼近曲线下的面积。

数值分析中的数值微分与数值积分

数值分析中的数值微分与数值积分

数值分析中的数值微分与数值积分数值分析是一门重要的数学分支,用于研究如何使用计算机来求解各种数学问题。

数值微分和数值积分是数值分析中的两个基本概念,它们在科学计算和工程应用中具有广泛的应用。

一、数值微分数值微分是通过数值方法来近似计算函数的导数。

在实际计算中,往往很难直接求得函数的导数表达式,这时候数值微分方法就派上用场了。

1. 前向差分公式前向差分公式是最简单的数值微分方法之一,它基于导数的定义,用函数值的差商来近似计算导数。

假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0)) / h其中h是一个足够小的正数,通常称为步长。

通过取不同的步长h,可以得到不同精度的数值微分结果。

2. 中心差分公式中心差分公式是数值微分中较为常用的方法,它利用了函数值的前向和后向差商来近似计算导数。

假设函数f(x)在点x0处可导,则其导数f'(x0)可以近似表示为:f'(x0) ≈ (f(x0 + h) - f(x0 - h)) / (2h)与前向差分公式相比,中心差分公式的精度更高,但计算量稍大一些。

二、数值积分数值积分是通过数值方法来近似计算函数在某个区间上的定积分值。

定积分在数学、物理等领域中具有广泛的应用,尤其是对于无法用解析方法求解的积分问题,数值积分提供了可行的解决办法。

1. 矩形法则矩形法则是最简单的数值积分方法之一,它将函数在积分区间上分成若干个小矩形,然后计算这些小矩形的面积之和。

假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * f(x)其中x是[a, b]上的随机点。

2. 梯形法则梯形法则是数值积分中较常用的方法,它将函数在积分区间上分成若干个小梯形,然后计算这些小梯形的面积之和。

假设函数f(x)在区间[a, b]上积分,则其定积分值可以近似表示为:∫[a,b] f(x)dx ≈ (b - a) * (f(a) + f(b)) / 2梯形法则的精度要比矩形法则要高一些。

数值积分和数值微分

数值积分和数值微分
一般来说,代数精度越高,求积公式越精确。 显然,梯形公式与中矩形公式均具有一次代数精度。
定理 对于n+1节点的插值型求积公式至少具有n 次代数精度。
§5.2 牛顿-柯特斯求积公式
Newton-Cotes公式是指等距节点下使用Lagrange插 值
多一项、式公建式立推的导数:值求积公式
将积分区间[a, b]分割为n等份, 步长为h b a , n
从几何上看,就是计算曲 边梯形面积的近似值。
最简单的办法,是用直线、 抛物线等代替曲边,使得 面积容易计算。
用直线代替曲边
f(x)
f(a) a
a
f(a) a
b f(x)
(a+b)/2
b
f(x)
f(b)
b
左矩公式
b
a
f ( x)dx
f ab a
中矩公式
b f ( x)dx f a b b a
a1 dx b a =
b
x
dx
b2
a2
=
a
2
b
2
a
[1
1]
b a [a b] 2
b x2dx b3 a3
a
3
b
2
a
[a 2
b2 ]
因此梯形公式只对一次多项式精确成立。
➢代数精度
定义 如果某个求积公式对于次数不超过m的一切多
项式都准确成立,而对 某个m+1次多项式并不准确成 立,则称该求积公式的代数精度为m。
各节点为 xk a kh , k 0,1, , n ,
以此分点为节点,构造出的插值型求积公式。
根据插值型求积公式
b
f ( x)dx
a

5.2 数值积分和数值微分

5.2 数值积分和数值微分

8000 6000 4000 2000 0 -2000 -4000 -6000 -8000 -8000 -6000 -4000 -2000
0
2000
4000
6000
8000
图5.10 卫星轨道和地球表面示意图
5.2.1 数值积分
例 5.2.1 卫星轨道长度 分析 椭圆参数方程为 x = a cos t , y = b sin t , t ∈ [0, 2π ] , 所以椭圆长度 s 等于定积分
x∈[ a ,b ]
仍然分三种情况讨论: 仍然分三种情况讨论:
5.2.2 数值微分
( 1 ) 中 间 点 x j ( j = 1, , n 1) : 记 L2 ( x) 为 由
( x j 1 , y j 1 ) 、 ( x j , y j ) 和 ( x j +1 , y j +1 ) 这三个结点确定的至
式,则 {c1h 2 c2 h + c3 = y0 , c3 = y1 , c1h 2 + c2 h + c3 = y2 } ,
y2 2 y1 + y0 y2 y0 所以 c1 = , c2 = , c3 = y1 . 2 2h 2h
是由结点 ( x j , y j ) (j=0,1,2)确定的至多 2 次插值多项 确定的至多
a b
h2 I Tn ≤ (b a ) M 2 12 其中 h = (b a) n , M 2 = max f ′′( x) .
a ≤ x ≤b
5.2.1 数值积分
证明 根据定理 5.2.1,有 ,
I Tn ≤ ∑
j =1 n n

xj
x j 1
h f ( x)dx ( y j 1 + y j ) 2

数值微分与数值积分的技术原理

数值微分与数值积分的技术原理

数值微分与数值积分的技术原理数值微分和数值积分是数值分析中常用的数学方法,它们在工程、科学等领域具有广泛的应用,例如数值模拟、数据处理、信号处理等。

本文将介绍数值微分和数值积分的技术原理,旨在帮助读者更好地理解这些方法所基于的原理和实现方式。

一、数值微分数值微分是用数值方法来近似计算函数的导数,它的核心思想是利用函数在一点附近的局部信息来估计导数。

数值微分的比较常用的方法是前向差分、后向差分和中心差分。

下面将分别介绍它们的原理和实现。

1.前向差分前向差分是利用函数在某一点的函数值和函数在该点处的导数来近似计算函数在该点的导数。

其原理如下:$f'(x_0)=\lim_{h\to0}\frac{f(x_0+h)-f(x_0)}{h}$由于$h$趋近于0时,上式右侧的分式求值较为困难,所以我们可以将其替换为有限的、足够小的$h$,这样就得到了前向差分公式:$f'(x_0)\approx\frac{f(x_0+h)-f(x_0)}{h}$其中,$h$是差分步长,越小则得到的结果越接近真实值,但是计算量也越大。

2.后向差分后向差分与前向差分的思路相似,只是差分点的位置不同。

其原理如下:$f'(x_0)=\lim_{h\to0}\frac{f(x_0)-f(x_0-h)}{h}$同样地,将上式右侧的分式替换为有限的$h$,就得到了后向差分公式:$f'(x_0)\approx\frac{f(x_0)-f(x_0-h)}{h}$3.中心差分中心差分是利用函数在某一点前后两个点的函数值来近似计算函数在该点的导数。

其原理如下:$f'(x_0)=\lim_{h\to0}\frac{f(x_0+h)-f(x_0-h)}{2h}$同样地,将上式右侧的分式替换为有限的$h$,就得到了中心差分公式:$f'(x_0)\approx\frac{f(x_0+h)-f(x_0-h)}{2h}$二、数值积分数值积分是用数值方法来近似计算函数的定积分值,它的核心思想是将定积分转化为曲线下面的面积,然后用数值积分方法来近似计算这个面积。

数值积分与数值微分

数值积分与数值微分

数值积分与数值微分数值积分和数值微分是数值计算中重要的概念和方法,它们在科学、工程和统计等领域有广泛的应用。

本文将介绍数值积分和数值微分的基本概念、原理和方法,并对其在实际问题中的应用进行讨论。

一、数值积分数值积分是求解定积分的数值近似值的方法。

定积分是函数在给定区间内的面积,表示为∫f(x)dx。

在实际计算中,由于很多函数的原函数求解十分困难或不可求得,因此需要借助数值积分方法来进行求解。

1.1 矩形法矩形法是最基本的数值积分方法之一。

它将积分区间等分为若干小区间,并在每个小区间上取一点,然后用这些小区间上的函数值的平均值来近似积分值。

具体而言,对于等分为n个小区间的积分,矩形法可以表示为:∫f(x)dx ≈ Δx * (f(x0) + f(x1) + ... + f(xn-1))其中,Δx为每个小区间的长度,xi为每个小区间上的取点。

矩形法的计算简单,但精度较低。

1.2 梯形法梯形法是另一种常用的数值积分方法,它通过用梯形面积来逼近积分值。

类似于矩形法,梯形法将积分区间等分为若干小区间,并在每个小区间上取两个点,然后用这些小区间上的梯形面积之和来逼近积分值。

具体而言,梯形法可以表示为:∫f(x)dx ≈ Δx/2 * (f(x0) + 2f(x1) + 2f(x2) + ... + 2f(xn-1) + f(xn))其中,Δx为每个小区间的长度,xi为每个小区间上的取点。

梯形法相对于矩形法有更高的精度,但计算复杂度也相应提高。

1.3 辛普森法则辛普森法则是一种更加精确的数值积分方法,它利用三次多项式来逼近积分值。

辛普森法则将积分区间等分为若干小区间,并在每个小区间上取三个点,然后通过构造一个三次多项式,利用多项式的积分近似面积来逼近积分值。

具体而言,辛普森法则可以表示为:∫f(x)dx ≈ Δx/3 * (f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ... + 2f(xn-2) +4f(xn-1) + f(xn))其中,Δx为每个小区间的长度,xi为每个小区间上的取点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶中心差商
f ( x + h) − 2 f ( x ) + f ( x − h) 2 + Ο h ( ) 2 h
f ′′( x ) =
例:已知函数 y=f(x) 的数值表,试用两点、二阶中 心差商计算 x=2.7处的一、二阶导数值
x y 2.5 12.1825 2.6 13.4637 2.7 14.8797 2.8 16.4446 2.9 18.1741
k =0
C
(1) 0
b−a T( f ) = f ( a ) + f ( b )] [ 2
C
(n) k n n ( − 1) n − k = ( t − j )dt ∏ ∫ 0 k !( n − k )! n j=0 j≠k
1 = − ∫ ( t − 1 )dt = 0 2
1
C
(1) 1
1 = ∫ tdt = 0 2
′( x) f ′( x ) ≈ L2
( x − x0 )( x − x2 ) ( x − x1 )( x − x2 ) L2 ( x) = y0 + y1 ( x0 − x1 )( x0 − x2 ) ( x1 − x0 )( x1 − x2 ) ( x − x0 )( x − x1 ) + y2 ( x2 − x0 )( x2 − x1 )
I 3 ( f ) = ∑ Ak f ( x k )
k =0
3
= A0 f ( x0 ) + A1 f ( x1 ) + A2 f ( x 2 ) + A3 f ( x 3 )
1 f ′( x1 ) = ⎡ − f ( x0 ) + f ( x2 )⎤ ⎣ ⎦ 2h
1 f ′( x2 ) = ⎡ f ( x0 ) − 4 f ( x1 ) + 3 f ( x2 )⎤ ⎣ ⎦ 2h
计算结果如下:
xi f ′( x i )
1 .2 1 .1 1 .0 − 0 .24792 − 0 .21694 − 0 .18596
当 t = 0 , 1, 2 时得到三点公式:
1 −3 y0 + 4 y1 − y2 ⎤ f ′( x0 ) = ⎡ ⎣ ⎦ 2h 1 f ′( x1 ) = ⎡ − y0 + y2 ⎤ ⎣ ⎦ 中点公式 2h
1 f ′( x2 ) = ⎡ y0 − 4 y1 + 3 y2 ⎤ ⎣ ⎦ 2h
对于左右边界点的一阶导数与内点的 一阶导数是不一样的关系
C
(n) k
1 2 4 C = − ∫ t ( t − 2 )dt = 2 0 6 1 2 1 ( 2) C 2 = ∫ t ( t − 1 )dt = 4 0 6
( 2) 1
n n ( − 1) n − k = ( t − j )dt ∏ ∫ 0 k !( n − k )! n j=0 j≠k
b−a a+b x1 = a + h = a + = 2 2
第四章
数值微分和数值积分
§4.1 数值微分
1.差商
f(x)
向前差商
f ( x 0 + h) − f ( x 0 ) f ' ( x0 ) ≈ h
x0
x0+h
x
由Taylor展开
h2 f ( x0 + h) = f ( x0 ) + hf ' ( x0 ) + f ' ' ( x0 ) 2!
误差:
f ( x 0 + h) − f ( x 0 ) h R( x ) = f ' ( x 0 ) − = − f ' ' ( x 0 ) = O ( h) h 2!
h D ( h) − D ( ) < ε 2

h/2 ----合适的步长
2. 插值型求导公式 已知表格函数 y = f ( x )
x y
x0 y0
n
x1 y1
x2 y2
L L
xn yn
以 {( x i , y i )}i = 0 构造n次Lagrange插值多项式: Ln ( x )
插值型求导公式:
中心差商
f(x)
f ( x 0 + h) − f ( x 0 − h ) f ' ( x0 ) ≈ 2h
由Taylor展开
误差
h2 h2 f ( x0 + h) = f ( x0 ) + hf ' ( x0 ) + f ' ' ( x0 ) + f ' ' ' ( x0 ) 2! 3! h2 h2 f ( x0 − h) = f ( x0 ) − hf ' ( x0 ) + f ' ' ( x0 ) + f ' ' ' ( x0 ) 2! 3!
为了求导数方便,令 x = x0 + th
dx = hdt
x1 = x0 + h , x 2 = x0 + 2h
1 1 L2 ( x0 + th) = (t − 1)(t − 2) y0 − t(t − 2) y1 + t(t − 1) y2 2 2
1 ′ ( x0 + th) = ⎡ L2 (2t − 3) y0 − (4t − 4) y1 + (2t − 1) y2 ⎤ ⎣ ⎦ 2h
例:已知函数 f ( x ) 在 x = 1.0, 1.1, 1.2 处的函数值,
应用三点公式计算这些点处的导数值.
xi f ( xi )
1 .2 1 .1 1 .0 0 .2 5 0 0 0 0 0 .2 2 6 7 5 7 0 .2 0 6 6 1 2
解: 应用三点公式
1 −3 f ( x0 ) + 4 f ( x1 ) − f ( x2 )⎤ f ′( x0 ) = ⎡ ⎣ ⎦ 2h
¾ 三点公式 已知表格函数 y = f ( x )
x y
x0 y0
x1 y1
x2 y2
其中x k = x 0 + kh k = 1, 2
作二次插值
( x − x0 )( x − x2 ) ( x − x1 )( x − x2 ) L2 ( x) = y0 + y1 ( x0 − x1 )( x0 − x2 ) ( x1 − x0 )( x1 − x2 ) ( x − x0 )( x − x1 ) + y2 ( x2 − x0 )( x2 − x1 )
n n j≠k
( b − a )( −1) ( t − j )h =∫ ∏ hdt = 0 k !( n − k )! n j = 0 ( k − j )h
n n j≠k
n− k
∫ ∏ ( t − j )dt
0 j=0 j≠k
n
n
Ak = (b − a )C
(n) C 其中 k
(n) k
n n ( − 1) n − k = ( t − j )dt ∏ ∫ k !( n − k )! n 0 j = 0 j≠k
向后差商
f (x)
f ( x 0 ) − f ( x 0 − h) f ' ( x0 ) ≈ h
x0-h
由Taylor展开
x0
x
误差:
h2 f ( x0 − h) = f ( x0 ) − hf ' ( x0 ) + f ' ' ( x0 ) 2!
f ( x 0 ) − f ( x 0 − h) h R( x ) = f ' ( x 0 ) − = f ' ' ( x 0 ) = O ( h) 2! h
x0-h
x0
x0+h x
f ( x 0 + h) − f ( x 0 − h) R( x ) = f ' ( x 0 ) − 2h h2 h2 f ' ' ' ( x0 ) = O( h2 ) = [ f ' ' ' ( x0 ) + f ' ' ' ( x0 )] = 12 6
三点公式
− f ( x + 2 h ) + 4 f ( x + h) − 3 f ( x ) f '( x ) = + Ο ( h2 ) 2h
¾数值积分公式的一般形式:
(∗)
其中 求积节点
I n ( f ) = ∑ Ak f ( xk ) ≈
k =0
n

b a
f ( x )dx
a ≤ x0 < x1 < L < xn −1 < xn ≤ b
k = 0,1,L , n
b n
求积系数 Ak
仅与求积节点有关
求积公式的截断误差或余项:
Rn ( f ) = ∫ f ( x )dx − ∑ Ak f ( xk )
k =0
n
其中 Ak =

b a
l k ( x )dx =

b a
ω n +1 ( x )dx ′ +1 ( x k ) ( x − x k )ω n
二、 Newton—Cotes求积公式 Newton—Cotes公式是插值型求积公式的特殊形式: 求积节点 xk
{ }k = 0 取等距分布:
n
b b a
1
用梯形面积近似
a
b
(2)Simpson公式(1/3 法则) n=2时的求积公式
I2 ( f ) = ∑ Ak f ( xk ) = A0 f ( x0 ) + A1 f ( x1 ) + A2 f ( x2 )
相关文档
最新文档