Alpha谱仪实验

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

α射线能谱测量实验报告

核工1201 林勇 20120983

一、实验目的:

1、了解α谱仪的工作原理及其特性。

2、掌握应用谱仪测量α粒子能谱的方法。

3、测量获取表中各种放射源在不同真空度下的能谱图,为不同放射源、不同真空度、不同探源距下α能谱的解谱方法研究准备数据,同时为α能谱库的建立做一些探索性工作。

二、实验容

1、测定谱仪的能量分辨率,并进行能量刻度。

2、测量未知α源的能谱,并确定α粒子能量。

三、实验原理

1、α放射源

α放射源是以发射α粒子为基本特征的放射源。α粒子能量一般为4-8MeV,在空气中的射程为2.5-7.5cm,在固体中的射程为10-20um。由于α粒子穿透物质的能力弱,为此,设计制备α放射源时必须考虑源的自吸收。目前工业用的α放射源主要有241Am、238Pu、239Pu、244Cm(锔)和210Po(钋)等,用量最大的是241Am源。因为241Am容易生产,价格便宜,而且半衰期长。

常用α放射源核素数据

2、α谱仪

本次试验仪器拟采用西南科技大学国防重点试验室α能谱仪,该α谱仪为美国ORTEC公司生产的8通道α能谱仪,型号为:ALPHA-ENSEMBLE.

ORTEC在α谱仪上采用超低本底和PIPS工艺(表面钝化、离子注入、可擦洗)硅探测器,同时真空舱室也为超低本底材料。面积上提供300、450、490、600、900和1200平方毫米的选择,有效耗尽层100μm。

结构特性与性能指标:

样品直径可从13mm至51mm。探测器与被测样品之间有10档距离可选,相邻两档之间的距离差为4mm,最大距离可达44mm。

真空计:围10mTorr到20Torr(1 Torr ≈ 133.322 Pa)。

探测器偏压:围0±100V,大小和正负极性可调节。漏电流检测器:围0到10,000nA,显示分辨率3nA。

脉冲产生器;围0到10MeV,稳定性<50ppm/ºC,脉冲的幅度可调。

数字化MCA(多道脉冲幅度分析仪):通过软件可设置系统转换增益(道数)为256、512、1024、2048或者4096道,细调增益为0.25到1;增益稳定性:≤150ppm/ºC;每个事件的转换时间(死时间):<2µs。

数字化稳谱、ADC的零点(ZERO)和下阈(LLD)均由计算机调节设置。谱仪的探测器偏压、漏电流均可在软件相关界面上以数字和图形显示出来。

输入电源:120/240 V ac,50/60 Hz输入功率50W。

通讯:USB2.0接口。每一个Alpha Ensemble最终提供一条电缆给PC。

应用软件:MAESTRO-32或AlphaVision

工作条件:温度0ºC到50ºC,相对湿度≤ 95%。

分辨率与本底:基于使用450mm2 ULTRA-AS探测器和高质量的241Am点源,能量分辨率(FWHM):≤20KeV (探测器到源的距离等于探测器的直径),探测器效率:≥25% (探测器到源的距离小于10mm),本底:在3MeV以上,每小时计数≤1。

所有型号均可选择用于反冲抑制保护的样品盘选项。

主要特点:

探测室、前放、主放和多道一体化,系统具有高度的可靠性;

全部功能由计算机通过仿真软件控制;

每一路都完全独立、互不干扰或影响;

每一路谱仪可配不同规格型号探测器;

容纳样品直径最大可达51mm,探测器面积最大可达1200mm2;

系统可以扩展至8台共64路探测器。

3、α谱仪工作原理

α粒子通过物质时,主要是与物质的原子的壳层电子相互作用发生电离损失,使物质产生正负离子对,对于一定物质,α在其部产生一对离子所需的平均能量是一定的(即平均电能w),所以在物质中产生的正负离子对数与α粒子损失的能量成正比,即:

E

N=

W

公式中N为α粒子在物质中产生的正负离子对数目,E是在物质中损失的α粒子能量。如果α粒子将其全部能量损失在物质,E就是α粒子的能量。

半导体探测器是在六十年代发展起来的一种新型探测器,它以半导体为探测介质,其最大优点是能量分辨率高,脉冲上升时间短,体积小。

重原子核进行α衰变放出的α粒子是高速的氦原子核,质量数为4,带2个正电荷,其初速度约为1~2×109cm/s围。

由于α粒子在空气中的射程很短(在T=15℃,P=1大气压时,天然放射性核素衰变产生的α粒子,射程最大为Thc’(212Po) 为8.62cm,能量最小232Th为2.5cm),所以测量室应采用真空室,如上图1所示,采用真空泵将测量室抽成真空,这样与探测器接触的α粒子的能量才近似等于放射性核素经过α粒子放出的α粒子的初始能量(近似是因为不可能将测量室抽成绝对真空)。

α粒子在探测器中因电离、激发(由于α粒子的质量很大,所以与物质的散射作用很不明显。α粒子在空气中的径迹是一条直线,这种直线很容易在威尔逊云室中看到。)等效应而产生电流脉冲,其幅度与α粒子能量成正比。电流信号经前置放大器、主放大器放大,出来的电信号通过多道分析器进行数据采集,最后通过计算机采集并显示其仪器谱(实验用α谱仪硬件连接及部结构框图如图1所示)。仪器谱以α粒子的能量(即脉冲幅度)为横坐标,某个能量段α粒子数(或计数率)为纵坐标,即可计算样品中各单个核素发射的α粒子的能量与活度。理论上,单能α粒子谱是线状谱,应是位于相应能量点处垂直于横坐标轴的单一直线,但由于α粒子入射方向、空气吸收、样品源自吸收的差异和低能粒子的叠加等原因,实际测得的是具有一定宽度的单个峰,其峰顶位置相应于α粒子的能量,谱线以下的面积为相应能量的α粒子的总计数率,峰的半高宽与峰顶能量比值的百分数则为α谱仪的能量分辨率。

图α谱仪硬件连接及部结构框图

但电信号经放大器放大之后,由于电路中寄生电容、电感的作用,电脉冲信号结束之后,输出端并不立即回到零点位。电感性的寄生参量造成脉冲反冲,需要经过一段时间才能回到0电位,在更严重的情况下,甚至产生自激。电容性的寄生参量同样使电路需要经过一段时间才能回到0电位。虽然可以采用基线恢复或极零补偿等方式使输出端电位立即恢复,但是还达不到理想状态。要是在恢复时间又有第二个脉冲输入,其脉冲幅度将明显受到影响,在低能端形成拖尾。如果电路中存在电容性的寄生参量,将高能端将产生拖尾。

在计数率较高时,若两个射线粒子(光子)几乎同时入射,探测器和电路的时间分辨能力不足以区分开而作为一个射线来记录,所得的脉冲能量为两个射线粒子(光子)的能量之和,从而在射线谱中得到一个能量很高的谱峰—和峰。

相关文档
最新文档