江西理工大学大学物理(下)习题册及答案详解
大学物理下习题册答案详解
解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
(完整word版)大学物理下册课后习题答案
大学物理下册课后习题答案习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p=,场点到偶极子中心O 点的距离为r ,矢量r与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos rp E r εθ= 垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a xE E llP P -==⎰⎰-ελ ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2) 2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπR E y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021lr E P +-=εθθλ ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220lr ll r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220lr rl r l r l E +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan=α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq =[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 03ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε)11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-= (2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d=0.5cm解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图 ∴ 0200π4r rq r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR qU +=ε ∴ ()i xR qxi x U E 2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql l l r q U εθθθε=+--= ∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图 (1)∵ AB ACU U =,即∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A= 得 ,32S q A =σ Sq A321=σ而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R Rqr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 S q261==σσS qd U 2032-=-=εσσSqd U 2054+=-=εσσ所以CB 间电场 Sqd U E 00422εεσ+== )2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4rr Q E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ 外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21UE E ==∴ r D Dεσσ==1212rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ C Q W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U ABV8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+- (2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C += 8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcd μ∴ 21B B = (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ 这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S BΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rIr I πμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理习题集(下,含解答)
大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大物下册课后习题答案
大物下册课后习题答案大物下册课后习题答案大学物理是一门重要的基础学科,它涉及到我们周围的自然现象和物质运动规律的研究。
作为学习大学物理的学生,课后习题是巩固知识、提高能力的重要途径。
下面将为大家提供大物下册课后习题的答案,希望对大家的学习有所帮助。
第一章:运动的描述1. 速度与位移的区别是什么?答:速度是描述物体在单位时间内位移的快慢,是矢量量,有大小和方向;位移是描述物体从一个位置到另一个位置的距离和方向,是矢量量,有大小和方向。
2. 什么是匀速直线运动?答:匀速直线运动是指物体在相等时间内位移相等的运动。
在匀速直线运动中,速度大小和方向保持不变。
3. 什么是加速度?答:加速度是描述物体速度变化率的物理量,是矢量量,有大小和方向。
加速度的大小等于速度变化量与时间的比值。
第二章:牛顿定律与运动学1. 牛顿第一定律是什么?答:牛顿第一定律,也称为惯性定律,指出当物体受力为零时,物体将保持静止或匀速直线运动的状态。
2. 什么是牛顿第二定律?答:牛顿第二定律指出,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
即F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。
3. 什么是牛顿第三定律?答:牛顿第三定律指出,任何一个物体受到的作用力都有一个大小相等、方向相反的反作用力作用在另一个物体上。
第三章:动能、功和能量守恒定律1. 动能是什么?答:动能是物体由于运动而具有的能量,它与物体的质量和速度的平方成正比。
动能的表达式为:K=1/2mv²,其中K为动能,m为物体的质量,v为物体的速度。
2. 什么是功?答:功是描述力对物体做功的物理量,它等于力与物体位移的乘积。
功的表达式为:W=Fs,其中W为功,F为力,s为物体的位移。
3. 能量守恒定律是什么?答:能量守恒定律指出,在一个封闭系统内,能量的总量是不变的。
能量可以相互转化,但不能被创造或破坏。
第四章:动量和碰撞1. 动量是什么?答:动量是物体运动的量度,它等于物体的质量与速度的乘积。
大学物理练习册答案(下册)-
(1) x Acos( 2π t )
T
(2)
x Acos( 2π t 1 )
T2
(3)x Acos( 2π t 1 ) (4) x Acos( 2π t 3 )
T3
T4
2.两位外星人A和B生活在一个没有自转,没有大气, 表面光滑的匀质球形小星球上。有一次他们决定进 行一场比赛,从他们所在的位置出发,各自采用航 天技术看谁能先达到星球的对径位置。A计划穿过星 体直径凿一条通道,采用自由下落方式到达目标位 置;B计划沿着紧贴着星球表面的空间轨道,象人造 卫星一样航行到目标位置。试问A和B谁会赢得比赛?
C. 1 , 1 ,0.05 22
D. 2,2,0.05
9. 一列机械横波在t时刻的波形曲线如图所示, 则该时刻能量为最大值的媒y质质元的位置是:
A. o, b, d, f B. a, c, e, g O'
C. o, d
D. b, f O
d
a
eg
c
b
fx
(二) 填空题 1.一横波的波动方程为: y 0.01cos(250πt 10πx)(m)
解: 以星球中心为原点在直径 通道上设置x轴,A在x处受引力:
Fx
G
Mm R3
x
(注: 只有半径为x的星球部分对A有引力)
式中M为星球质量, R为星球半径, m为A的质量
A做简谐振动, 周期为 T 2 m / k k GMm / R3
A到达目标所需的时间为 tA T / 2 R R / GM B以第一宇宙速度做圆周运动 vB GM / R B到达目标所需的时间为 tB R / vB R R / GM
4. 一质点在x轴上作谐振动振幅A=4cm, 周期T=2s, 其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动, 则质点第二次通过 x=-2cm,处时刻为:[]
60大学物理下册(热力学(习题课))-江西理工大学
习题课(热一定律及其应用)1.一定量的双原子理想气体从压强为1×105帕,体积为10升的初态等压膨胀到末态,在此过程中对外作功200J ,则该过程中气体吸热Q =700J ;气体的体积变为12升。
解: 双原子分子气体i =5 R R i C p2722=+= )(1221V V P P d VA V V -==⎰ 升1210123312=⨯=+=-m PAV V2. 2mol 氢气(视为理想气体)从状态参量P 0、V 0、T 0的初态经等容过程到达末态,在此过程中:气体从外界吸收热量Q ,则氢气末态温度T =T 0+Q/(5R);末态压强P =P 0[1+Q/(5RT 0)]解: H 2: i =5 , C v =5R /2 , A =0∵ Q=E 2-E 1=νC v (T -T 0)=5R (T -T 0) ,50RQT T +=∴ )51( 000000RT Q P P T T P T P T P +===得由 3.一定量的理想气体经等容升压过程,设在此过程中气体内能增量为△E ,气体作功为A ,外界对气体传递的热量为Q ,则:( D )(A)△E <0,A <0 (B)△E >0,A >0 (C)△E <0,A =0 (D)△E >0,A =0解: 等容(体)过程,A=0,排除(A)、(B ))(2)(2)(000P P V i T T R iT T C E V -=-ν=-ν=∆D)( 0 , 0选>∴>E P P ∆4.一定量的理想气体从体积为V 0的初态分别经等温压缩和绝热压缩,使体积变为V 0/2,设等温过程中外界对气体作功为A 1,绝热过程中外界对气体作功为A 2,则( A )(A) A 1<A 2 (B) A 1=A 2 (C) A 1>A 25.一定量的理想气体经历一准静态过程后,内能增加,并对外作功则该过程为:( C )(A)绝热膨胀过程 (B)绝热压缩过程 (C)等压膨胀过程 (D)等压压缩过程 解:对外做功,体积膨胀,排除(B )、(D )。
大学物理下册练习与答案解析
200 1.5 8.4 10 28 (1.6 10 19 ) 1.0 10 3
2.23 10 5 V,
负号表示 a' 侧电势高。
(2)铜片宽度 b 对U aa' =U H 无影响。因为U H = E H b vb / B 和 b 有关, 而在电流 I 一定的情况下,漂移速度 v I /(nqbd) 又和 b 成反比的
解:(1)力矩
M
m
B
大小 M mBsin ISBsin 900 R2 IB 7.9 102 Nm 2
由矢量关系可以判断力矩方向沿直径向上。
(2)力矩所做的功
A
2 1
Id
I (2
1 )
IB( 2
R2
0)
7.9 102 J
FCF
DC7-9 如 图 所 示 , 在 长 直 导 线 AB 内 通 有 电 流 A C
d dx
(2)由于两电流在矩形上的磁通对称且大小相 I1
l
I2
等,所以其大小为两倍单个导线在此的磁通量。 0
x
x
r1
r2
r3
设立如图的坐标,取长为 l ,宽为 dx 的面元,
则
21 2
B
• dS
2
r1 r2 r
0I 2r
cos0 ldx
0 I ln x 0.3 2.2 106Wb
r
0.1
3.6 10 10 s
螺距为 h v cos890T 2.6 107 cos890 3.6 1010 1.6 104 m
半径为 r mv sin 89 0 9.11 10 31 2.6 10 7 sin 89 0 1.5 10 3 m
eB
1.6 10 19 0.1
江西理工大学大学物理(下)习题册及答案详解
班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=3π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t TA x A ; )22cos()(ππ-=t T A x B)32cos()(ππ+=t T A x C ; )452cos()(ππ+=t T A x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。
求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。
解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===s m a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 44. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。
《大学物理学》第二版下册习题解答
大学物理学第二版下册习题解答第一章:力学1.1 力学基本概念1.1.1 力的概念问题:什么是力?力的种类有哪些?解答:力是物体之间相互作用导致的物体运动或形变的原因。
力可以分为以下几种:•接触力:当两个物体接触时产生的力,如弹簧力、摩擦力等。
•引力:天体之间由于引力而产生的力,如地球引力、行星引力等。
•重力:地球上物体受到的引力,是一种特殊的引力。
•弹力:当物体被弹性体拉伸或压缩时,物体回复原状所产生的力。
•阻力:物体在流体中运动时受到的阻碍力,如空气阻力、水阻力等。
1.1.2 力的合成与分解问题:什么是力的合成与分解?如何进行力的合成与分解?解答:力的合成是指将多个力按照一定的规律合成为一个力的过程。
力的分解是指将一个力按照一定的规律分解为多个力的过程。
力的合成可以使用力的三角法进行。
假设有两个力F₁、F₂,其方向分别为α₁、α₂,大小分别为|F₁|、|F₂|,则合力F的大小可以通过以下公式计算:F = √(F₁² + F₂² + 2F₁F₂cos(α₁-α₂))合力F的方向则可以通过以下公式计算:tan(θ) = (F₂sin(α₁-α₂))/(F₁+F₂cos(α₁-α₂))力的分解可以使用力的正弦法和余弦法进行。
假设有一个力F,其大小为|F|,方向为α,要将该力分解为水平方向的力F x和竖直方向的力F x,可以通过以下公式计算:Fₓ = |F|cosα, Fᵧ = |F|sinα1.2 牛顿定律与惯性1.2.1 牛顿第一定律问题:什么是牛顿第一定律?牛顿第一定律适用于哪些情况?解答:牛顿第一定律,也称为惯性定律,指的是:物体在没有受到外力或受到的合外力为零时,物体保持静止或匀速直线运动的状态。
牛顿第一定律适用于只有一个物体或多个物体之间相互独立运动的情况。
当物体受到外力时,按照该定律,物体会发生运动或停止运动。
1.2.2 牛顿第二定律问题:什么是牛顿第二定律?如何计算物体所受合外力和加速度的关系?解答:牛顿第二定律指的是:物体所受合外力等于物体的质量乘以加速度。
大学物理(下册)课后题答案_完整版
大学物理下册课后习题答案习题八8-1电量都是q 的三个点电荷,分别放在正三角形的三个顶点 .试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡 (即每个电荷受其他三个电荷的库 仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ?解:如题8-1图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2-1 q1 qq2cos30 ----------------------a4 n0/.3 2(T a)T q(2)与三角形边长无关.8-2两小球的质量都是m ,都用长为I 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所 带的电量.解:如题8-2图示T cos mg解得 q 21 sin 4mgtan8-3根据点电荷场强公式 E J ,当被考察的场点距源点电荷很近(r T 0)时,贝U 场强4°r*,这是没有物理意义的,对此应如何理解解:Ey^r °仅对点电荷成立,当r 0时,带电体不能再视为点电荷,再用上式求4 n 0r场强是错误的,实际带电体有一定形状大小 ,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4在真空中有 A , B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+ q 和解得 题8-1图题8-2图T sinF e4 n 0 (2l sin )2H |2-q •则这两板之间有相互作用力f ,有人说f = q2,又有人说,因为4 o d 22f = qE ,E —,所以f =卫•试问这两种说法对吗?为什么? f 到底应等于多少? o S o S解:题中的两种说法均不对 .第一种说法中把两带电板视为点电荷是不对的 ,第二种说法 把合场强E 2看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一oS2个板的电场为E —,另一板受它的作用力 f q q q ,这是两板间相互作2 o S 2 o S 2 o S用的电场力.p ql ,场点到偶极子中心 0点的距离为r ,矢量r 与丨的夹角为l .试证P 点的场强E 在r 方向上的分量 E r 和垂直于r 的分量E分别为•••场点P 在r 方向场强分量垂直于r 方向,即方向场强分量psi n 34n o r8-6长l =15.0cm 的直导线AB 上均匀地分布着线密度=5.0x10求:(1)在导线的延长线上与导线 B 端相距a i =5.ocm 处P 点的场强;⑵在导线的垂直平分 线上与导线中点相距 d 2=5.ocm 处Q 点的场强. 解:如题8-6图所示(1)在带电直线上取线元 dx ,其上电量dq 在P 点产生场强为dE p1dx4no (a x)2E P dE P1 2dx 4 n o 2(ax)28-5 一电偶极子的电矩为 ,(见题8-5图),且r E r =2pcos3 , orE =严 4 o r证:如题8-5所示,将p 分解为与 r 平行的分量psin 和垂直于lr 的分量psinE rp cos 2 n o r 3 E o题8-5图 -9Cm -1的正电荷.试题8-6图用I 15 cm , 5.0E P(2)同理dE Q 6.741由于对称性dElQx 0,dE Qy5.0 10 C cm14.9612 2~n 0(4a l )9 110 9 C m 1, a 12.5 cm 代入得2 110 N C 方向水平向右dx—2方向如题8-6图所示x d2即E Q只有y分量,1 dx d24nxd2―dfE Qy l dE Qyl4n 22 dx1 32 z 2 2\2(x d2) l2 n 0 J l24d;1, l 15 cm,d2 5 cm代入得102 N C 1,方向沿y轴正向R的均匀带电半圆环,电荷线密度为,求环心处0点的场强•一个半径为8-7RdE Q E Qydq dl Rd ,它在O点产生场强大小为RddE4 n0R2方向沿半径向外则dE x dE sin sin4 n 0 R积分E x dE y dE cos( cos d4 n 0 Rsin dE y cos d 04 n 0RE E x,方向沿x轴正向.2 n 0R8-8均匀带电的细线弯成正方形,边长为I,总电量为q . (1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在r I处,它相当于点电荷q产生的场强E .q解:如8-8图示,正方形一条边上电荷在P点产生物强dE p方向如图,大小为4COS 12COS 2 COS 1dE P在垂直于平面上的分量dE dE P COSdE I r| 2 f 1 2 丨I 2/ 1 2I 1 2I I 2 I4 n °」—<r—i1r —4 \ 2 V 4题8-8图由于对称性,P点场强沿OP方向,大小为8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该dE pCOS 1 COS 2E PE P4 dE4n o(r2g4lqr4 lr方向沿OPdE p平面轴线上的A点处,求:通过圆平面的电通量.(R arcta n — )x解:⑴由高斯定理E dS -S立方体六个面,•••各面电通量(2)电荷在顶点时当q在立方体中心时,每个面上电通量相等q6 0 .,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中心qe6 0边长2a的正方形上电通量对于边长a的正方形,如果它不包含q所在的顶点,则e 如果它包含q所在顶点则 e 0 .如题8-9(a)图所示.题8-9(3)图题8-9(b)图题8-9(a)图(3) ••通过半径为面积* 题8-9(c)图R的圆平面的电通量等于通过半径为..R2x2的球冠面的电通量,球冠S 2 M R2x2)[1q。
江西理工大学 大学物理练习题与答案_张流生
===《大学物理》课程习题册====运动学(一)一、填空:1、已知质点的运动方程:X=2t,Y=(2-t2)(SI制),则t=1s 时质点的位置矢量_________,速度_________,加速度________,第1s 末到第2s末质点的位移____________,平均速度_________。
2、一人从田径运动场的A点出发沿400米的跑道跑了一圈回到A 点,用了1分钟的时间,则在上述时间内其平均速度为__________________。
二、选择:1、以下说法正确的是:()(A)运动物体的加速度越大,物体的速度也越大。
(B)物体做直线运动前进时,如果物体向前的加速度减小了,则物体前进的速度也减小。
(C)物体加速度的值很大,而物体速度的值可以不变,是不可能的。
(D)在直线运动中且运动方向不发生变化时,位移的量值与路程相等。
2、如图河中有一小船,人在离河面一定高度的岸上通过绳子以匀速度V O拉船靠岸,则船在图示位置处的速率为:()θ(A)V O(B)V O cosθ(C)V O /cosθ(D)V O tgθ三、计算题1、一质点沿OY轴直线运动,它在t时刻的坐标是:Y=4.5t2-2t3(SI制)求:(1) t=1-2秒内质点的位移和平均速度(2) t=1秒末和2秒末的瞬时速度(3)第2秒内质点所通过的路程(4)第2秒内质点的平均加速度以及t=1秒和2秒的瞬时加速度。
运动学(二)一、填空:1、一质点沿X轴运动,其加速度为a=4t(SI制),当t=0时,物体静止于X=10m处,则t时刻质点的速度_______________,位置________________。
2、一质点的运动方程为(SI制) ,任意时刻t的切向加速度为__________;法向加速度为____________。
二、选择:1、下列叙述哪一种正确()在某一时刻物体的(A)速度为零,加速度一定为零。
(B)当加速度和速度方向一致,但加速度量值减小时,速度的值一定增加。
大学物理课后习题答案(全册)
《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。
解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。
解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
江西理工大学大学物理(下)习题册
大学物理(二)习题册物理教研室2020-9-1本习题册适用于《大学物理(二)》课程,请注意保管,按时独立完成!班级____________学号____________姓名__________气体动理论(一)(30)一、填空:1.一定量的理想气体,在保持温度T 不变的情况下,使压强由P 1增大到P 2,则单位体积内分子数的增量为2.一个具有活塞的圆柱形容器中贮有一定量的理想气体,压强为P ,温度为T ,若将活塞压缩并加热气体,使气体的体积减少一半,温度升高到2T ,则气体压强增量为 ,分子平均平动动能增量为 。
3.N 个同种理想气体分子组成的系统处于平衡态,分子速度V 在直角坐标系中用Vx 、Vy 、Vz 表示,按照统计假设可知Vx =V y =V z =4.A 、B 两个容器中皆装有理想气体,它们的分子数密度之比为n A ∶n B ∶=2∶1,而分子的平均平动动能之比为A ε∶B ε=1∶2,则它们的压强之比A P ∶B P = .二、选择:1.一定量的理想气体,当其体积变为原来的三倍,而分子的平均平动动能变为原来的6倍时,则压强变为原来的:( )(A)9倍 (B)2倍 (C)3倍 (D)4倍2.氧气和氦气分子的平均平动动能分别为ω1和ω2 ,它们的分子数密度分别为n 1和n 2,若它们的压强不同,但温度相同,则:( ) (A)ω1=ω2 ,n 1≠n 2 (B)ω1≠ω2 ,n 1=n 2 (C)ω1≠ω2 ,n 1≠n 2 (D)ω1 =ω2 ,n 1=n 23.一定量的理想气体可以:( )(A)保持压强和温度不变同时减小体积(B)保持体积和温度不变同时增大压强(C)保持体积不变同时增大压强降低温度(D)保持温度不变同时增大体积降低压强三、计算设某理想气体体积为V,压强为P,温度为T,每个分子质量为μ,玻尔兹曼常数为k,求该气体的分子总数。
班级_____________学号____________姓名____________气体动理论(二)(31)一、填空:1.当气体的温度变为原来的4倍时,则方均根速率变为原来的倍。
江西理工大学 大学物理习题册及答案 完整版
o
x
; ;
由相对运动可知: 解得:
2、在倾角为30°的固定光滑斜面上放一质量为M的楔形滑块,其上表面与水平面平行,在其上放一质量为m的小球(如图),M与m间无摩擦,且M=2m,试求小球的加速度及楔形滑块对斜面的作用力。
解:受力分析如图: y
0 x
(1); (2); (3);
(4); (5); (6); (7)
(A)μ≥1/2(B)μ≥(C)μ≥(D)μ≥
三、计算题
1、桌上有一块质量M=1kg的木板,板上放着一个质量m=2kg的物体,物体与板之间,板和桌面之间的滑动摩擦系数均为μk=0.25,静摩擦系数均为μs=0.30。
二、选择:
1、以下说法正确的是:(D)
(A)运动物体的加速度越大,物体的速度也越大。
(B)物体在直线运动前进时,如果物体向前的加速度减小了,物体前进的速度也减小。
(C)物体加速度的值很大,而物体速度的值可以不变,是不可能的。
(D)在直线运动中且运动方向不发生变化时,位移的量值与路程相等。
2、如图河中有一小船,人在离河面一定高度的岸上通过绳子以匀速度VO拉船靠岸,则船在图示位置处的速率为:(C)
(1)质点的运动轨道方程
(2)写出t=1s和t=2s时刻质点的位矢;并计算这一秒内质点的平均速度;
(3)t=1s和t=2s时刻的速度和加速度;
(4)在什么时刻质点的位矢与其速度恰好垂直?这时,它们的X、Y分量各为多少?y
(5)在什么时刻,质点离原点最近?距离是多少?
解:(1)轨道方程: (
(2)任意时刻t质点的位矢:
质点从xxo到x2xo处所需的时间tmkmakvdtdxdtdvdxkxdtvdtdx二选择题1体重身高相同的甲乙两人分别用双手握住跨过无摩擦轻滑轮的绳子各一端他们由初速为零向上爬经过一定时间甲相对绳子的速率是乙相对绳子速率的两倍则到达顶点情况是a甲先到达b乙先到达c同时到达d不能确定2一质量为m的质点自半径为r的光滑半球形碗口由静止下滑质点在碗内某处的速率为v则质点对该处的压力数值为b3如图所示用一斜向上的力f与水平成30角将一重为的木块压靠竖直壁面上如果不论用怎样大的力f都不能使木块向上运动则说明木块与壁面间的静摩擦系数的大小为三计算题1桌上有一块质量m1kg的木板板上放着一个质量m2kg的物体物体与板之间板和桌面之间的滑动摩擦系数均为k025静摩擦系数均为s030
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t T A x A ; )22cos()(ππ-=t T A x B )32cos()(ππ+=t TA x C ; )452cos()(ππ+=t TA x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。
求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。
解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===sm a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 4, 4. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。
已知第一振动的振幅为0.173m ,求第二振动的振幅以及第一和第二两振动之间的周相差。
解:作旋转矢量如图: m A A A A A 10.0cos 2612212≈-+=π++=22122212A A A A A0cos 21222122≈=∆--A A A A A φ2πφ±≈∆班级_____________ ________________振动(习题课)1. 一质点作谐振动, 周期为T, 它由平稳位置沿X 正方向运动到离最大位移一半处所需要的最短时间为( )(A) T/4 (B) T/6 (C) T/8 (D) T/122. 如图为用余弦函数表示的一质点作谐振动曲线, 振动圆频率为 ,从初始状态到达状态a 所需时间为 .3. 质量为0.1kg 的小球与轻弹簧组成的弹簧振子, 按X=0.1 COS(8πt +2π/3)的规律作谐振动,(SI), 求: (1) 振动周期、振幅、初相及速度、加速度的最大值;(2) 求最大弹性力及振动能量.4. 一质点在X 轴上作简谐振动, 选取该质点向右运动通过A 点时作为计时起点(t=0), 经过2秒后质点第一次经过B 点, 再经过2秒后质点第二次经过B 点, 若已知该质点在A 、B 两点具有相同的速率, 且AB=10cm, 求(1) 质点的振动方程(2) 质点在A 点处的速率.A BXX(m)6 3 0 1 t(s) -3 a -6 505. 劲度为K1的轻弹簧与劲度为K2的弹簧如图连接, 在K2的下端挂一质量为m的物体, (1) 证明当m 在竖直方向发生微小位移后, 系统作谐振动。
(2) 将m从静止位置向上移动a, 然后释放任其运动, 写出振动方程(取物体开始运动为计时起点, X 轴向下为正方向)K1K1K2m班级_____________ 学号___________姓名________________振动(习题课后作业)1. 当谐振子的振幅增大到2A时, 它的周期不变, 速度最大值变为原来的2倍, 加速度最大值变为原来的2倍.(填增大、减小、不变或变几倍)2. 如图所示质点的谐振动曲线所对应的振动方程(D)(A) X=2COS(3t/4+π/4) (m) (B) X=2COS(πt/4+5π/4) (m)(C) X=2COS(πt-π/4) (m) (D) X=2COS(3πt/4-π/4) (m)X(m)23. 两个同方向同频率的谐振动, 其合振幅为20cm, 合振动周相与第一个振动的周相差为60°,第一个振动的振幅为A 1=10cm ,则第一振动与第二振动的周相为(B )(A) 0 (B) π/2 (C) π/3 (D) π/44. 一劲度为k 的轻弹簧截成三等份, 取出其中两根, 将它们并联在一起, 下面挂一质量为m 的物体, 则振动系统的频率为(B ) (A) (B) (C) (D)5. 已知两谐振动的位置时间及速度时间曲线如图所示, 求它们的振动方程.)2/(m /k π)2/(m /k 6π)2/(m /k 3π)2/(m 3/k πX(cm)V(cm/s) 2 10 10 1 t(s) 0 1 2 3 4 t(π/10)S -1-2 -10解(1)设振动方程为)cos(0ϕω+=t A x 由x —t 图可知:cm A 2=;0sin 2;cos 21,0000>-==-=ϕωϕv t πϕ340=∴πωϕ34+=t t ; ,1s t =ππω2334=+6πω=∴cm t x )346cos(2ππ+=∴(2) 设振动方程为)cos(0ϕω+=t A x ;)sin(0ϕωω+-=∴t A v ; 由v —t 图知:s cm A v m ⋅==10ω;152104-⋅==⇒∴=s rad TT πωπcm v A m 2==ω.0sin 1010,0ϕ-==t ,πϕ230=∴cm t x )235cos(2π+=∴班级_____________ 学号___________姓名________________ 波动(一)1. 位于原点的波源产生的平面波以u=10m/s 的波速沿X 轴正向传播, 使得X=10m 处的P 点振动规律为Y=0.05COS(2πt -π/2) (m), 该平面波的波动方程为:m x t y ]2)1010(2cos[05.0ππ---=2. 如图表示t=0 时刻正行波的波形图, O 点的振动位相是( c )(A) -π/2 (B) 0 (C) π/2 (D) π3. 已知一平面谐波的波动方程为Y=0.1COS(3t-6x)m, 则周期是:)(322s T πωπ==,波线上相距2m 的两点间相差是:rad 12=∆ϕ.4. 已知波源在原点(X=0)的平面谐波的方程为Y=A COS(Bt -CX), 式中A 、B 、C 为正值恒量, 则此波的振幅为:A ,波速为:c B u =, 周期为:B T π2=, 波长 为:c πλ2=, 在任何时刻,在波传播方向上相距为D的两点的周相差为:CD =∆ϕ.5. 如图所示是一平面余弦波在t=0.25s 时刻的波u Y 0 X形图, 波速为u=40m/s, 沿X 的正方向传播, 写出此波的波动方程.解,由t=0.25s 时刻的波形图知:suT m m A 1;40;1.0====λλ设0点的的振动方程为:)2cos(1.000ϕπ+=t y)2cos(1.00:0,25.00ϕπ+==点时刻s t0)2sin(2.000<+-=ϕππv02200=⇒=+∴ϕπϕπ故0点的振动方程为: m t y )2cos(1.00π= 该波的波动方程为: m xt y )]40(2cos[1.0-=π班级_____________ 学号___________姓名________________ 波动(二)1. 一平面谐波在弹性媒质中传播时, 在传播方向上某质元在平衡位置时,则它的能量为: (C )(A) 动能为零, 势能最大 (B) 动能为零,势能为零(C) 动能最大, 势能最大 (D) 动能最大,势能为零2. 下面说法正确的是:(B )(A) 在两个相干波源连线中垂线上各点必为干涉极大(B) 在两列波相遇的区域的某质点若恒为静止, 则这两列波必相干(C) 在同一均匀媒质中两列相干波干涉结果由波程差来确定(D) 两相干波相遇区各质点, 振幅只能是A 1+A 2或(A 1-A 2)的绝对值. 3. 如图A 、B 为两个同位相的相干波源, 相距4m, 波长为1m, 设BC 垂直AB, BC=10m, 则B 、C 之间(B 点除外)将会出现 3 个干涉加强点λδk r r r r =-+=-=1212124)(2162162221m k k k k r -=-=λλ 1001≤<r ;2;1=∴k 4. S 1和S 2是两相干波源, 相距1/4波长, S 1比S 2周相超前π/2, 设两波在S 1S 2连线方向上的振幅相同, 且不随距离变化, 问S 1S 2连线上在S 1外侧各点处合成波的振幅为多少? 又在S 2波的振幅都为A 0) 解: :1点外侧p sABπλππλπϕϕϕλ-=--=---=∆41212222r r 所以P 点:A=0:2点外侧Q s0)(22241212=---='-'--=∆λππλπϕϕϕλr r所以Q 点:A=2A 05. 设平面横波1沿BP 方向传播, 它在B 的振动方程为 Y 1=0.2COS2πt(cm),平面横波2沿CP 方向传播,它在C 点的振动方程为Y 2=0.2COS(2πt+π)(cm),PB=0.40m, PC=0.50m,(1) 两波传到P 处时的周相差 (2) 在P 点合振动的振幅.(3)若两波振动方向相互垂直,则在p 点的合振幅为多少?解(1)两波在p 点的相位差:λπϕϕϕ12122--=∆.20.0;40.0;50.0;0;1212m uT m r m r ======λϕπϕ020.040.050.02=--=∆∴ππϕ),2(为干涉加强πϕk ±=∆(2)p 点的合振幅:cm A A A 4.021=+=(3) 两波振动方向相互垂直, 则在p 点的振动合成为: )cos(2221ϕπ++=t A A scm A A A 83.222.02221==+=∴班级_____________ 学号___________姓名________________波动(三)1. 某时刻驻波波形曲线如图所示, 则a,b 两的位相差是(A )(A) π (B) π/2 (C) π/4 (D) 02. 如图, 在X=0处有一平面余弦波波源, 其振动方程是Y=ACOS(ωt+π), 在距O 点为1.25λ处有一波密媒质界面MN, 则O 、B 间产生的驻波波节的坐标是:.45;43;4λλλ,波腹的坐标是:.;2;0λλ3. 空气中声速为340m/s, 一列车以72km/h 的速度行驶, 车上旅客听到汽笛声频率为360Hz, 则目送此火车离去的站台上的旅客听到此汽笛声的频率为( B )(A) 360Hz (B) 340Hz (C) 382.5Hz (D) 405Hz解:1340-⋅=s m u ;112072--⋅=⋅=s m h km v sYa λ/2 9λ/8bXMX BN OHz 360=ν.4. 设入射波的波动方程为Y 1=ACOS2π(t/T+x/λ), 在x=0处发生反射, 反射点为一自由端,求: (1) 反射波的波动方程(2) 合成波的方程,并由合成波方程说明哪些点是波腹,哪些点是波节.解:(1)反射波在反射点0点振动方程为:)2cos(20Tt A y π= 所以反射波为沿x 轴正向传播的波.其波动方程: )](2cos[2λπx Tt A y -= (2)合成波为驻波,其方程为:)cos()cos(22221t x A y y y Tπλπ=+= ; )0(≥x 波腹A A A 2cos 22==*λπ; ),1,0(;2:4==∴k k x λ腹点 波节: 0cos 22==*λπA A 节点:),1,0(;)12(4=+=k k x λ 5.一声源的频率为1080Hz,相对于地以30m/s 的速率向右运动, 在其右方有一反射面相对于地以65m/s 的速率向左运动, 设空气的声速为334m/s, 求: (1) 声源在空气中发出声音的波长; (2) 每秒钟到达反射面的波数;(3) 反射波的速率; (4) 反射波的波长54解:Hz 1080=ν;130-⋅=s m v s ;1065-⋅=s m v ;1334-⋅=s m u(1)声源运动的前方:m v u s281.01080303341=-=-=νλ声源运动的后方:m v u s337.01080303342=+=+=νλ(2)Hz v u v u s s 1418108030334653340=⨯-+=-+='νν (3)反射波的波速仍为:1334-⋅=s m u(4)反射波的频率:Hz 1418='=νν反,165-⋅=s m v s 反 mv u s19.0141865334=-=-=∴反反反νλ班级_____________ 学号___________姓名________________ 波动(习题课)1. 一平面谐波在弹性媒质中传播时, 在传播方向上某质元在负的最大位移处, 则它的能量是( )(A) 动能最大, 势能最大 (B) 动能为零, 势能为零(C) 动能最大, 势能最大 (D) 动能最大, 势能为零2. 一平面谐波在媒质中传播中, 若一媒质质元在t 时刻的波的能量是10J, 则在(t+T)(T 为波的周期)时刻该媒质质元的振动动能是 .3.沿X 轴正方向传播的一平面余弦横波, 在t=0时,原点处于平衡位置且向负方向运动, X 轴上的P 点位移为A/2, 且向正方向运动, 若OP=10cm <λ, 则该波的波长为( )(A) 120/11cm (B) 120/7cm (C) 24cm (D) 120cm4. 图示为一平面谐波在t=2s 时刻的波形图, 波的振幅为0.2m, 周期为4s, 则图中P 点处点的振动方程为 .5.已知一沿X 轴正方向传播的平面余弦横波, 波速为20cm/s, 在t=1/3s 时的波形曲线如图所示, BC=20cm, 求:Y(mu OP X(m55(1) 该波的振幅A、波长λ和周期T;(2) 写出原点的振动方程;(3) 写出该波的波动方程.Y(cm)10 u0 B C X(cm)-5-106. 一平面谐波沿X正向传播, 波的振幅A=10cm, ω=7π, 当t=1s时;X=10cm处的a质点正通过其平衡位置向Y轴负方向运动, 而X=20cm处的b质点正通过Y=5cm点向Y轴正方向运动, 波长λ>10cm, 求该平面波的表达式.班级_____________ 学号___________姓名________________波动(习题课后作业)1. 传播速度为200m/s, 频率为50Hz的平面简谐波, 在波线上相距为0.5m 的两点之间的相位差是( D )(A) π/3 (B) π/6 (C) π/2 (D) π/4ux∆=∆πνϕ22. 图为沿X 轴正向传播的平面余弦横波在某一时刻的波形图, 图中P 点距原点1m, 则波长为( C )(A) 2.75m (B) 2.5m (C) 3m (D) 2.75mY(cm)2)2(62ππλπϕ--=∆=∆xO P X3. 一横波沿X 轴负方向传播, 若t 时刻波形曲线如图所示, 在t+T/4时刻原X 轴上的1、2、3三点的振动位移分别是( B ) (A) A 、0、-A (B) -A 、0、A (C) 0、A 、0 (D) 0、-A 、0 Y0 1 2 3 X4. 两个相干波源S 1和S 2, 相距L=20m, 在相同3时刻, 两波源的振动均通过其平衡位置, 但振动的速度方向相反, 设波速u=600m/s, 频率ν=100Hz, 试求在S 1和S 2间的连线上因干涉产生最弱点的所有位置(距S 1的距离).解:在1s 和2s 连线间任取p 点.如图: m u6==νλπππλπϕϕϕ)12(6220221212+=--=---=∆k xr r )200(;103≤≤+=∴x k x)(19,16,13,10,7,4,13;2;1;0m x k =⇒±±±=∴。