反比例函数与实际应用PPT课件
合集下载
实际问题与反比例函数-完整版PPT课件
2、利用反比例函数解决实际问题的关键: 建立反比例函数模型.
实际问题与反比例函数
1、物理问题转化为与反比例函数有关的数学问题; 2、根据自变量的范围求相应的函数值的范围; 3、注意数形结合.
实际问题与反比例函数
在物理学中,有很多量之间的变化是反比例 函数的关系,因此,我们可以借助于反比例函数 的图象和性质解决一些物理学中的问数
古希腊科学家阿基米德曾 说过:“给我一个支点, 我可以把地球撬动。” 你认为这可能吗?为什么?
阻力
动力
阻力臂
动力臂
阻力×阻力臂=动力×动力臂
实际问题与反比例函数
实际 问题
建立数学模型 运用数学知识解决
反比例 函数
实际问题与反比例函数
小结 1、通过本节课的学习,你有哪些收获?
列实际问题的反比例函数解析式
(1)列实际问题中的函数关系式首先应分析清楚各变 量之间应满足的分式,即实际问题中的变量之间的关系 立反比例函数模型解决实际问题; (2)在实际问题中的函数关系式时,一定要在关系式 后面注明自变量的取值范围。
实际问题与反比例函数
1、物理问题转化为与反比例函数有关的数学问题; 2、根据自变量的范围求相应的函数值的范围; 3、注意数形结合.
实际问题与反比例函数
在物理学中,有很多量之间的变化是反比例 函数的关系,因此,我们可以借助于反比例函数 的图象和性质解决一些物理学中的问数
古希腊科学家阿基米德曾 说过:“给我一个支点, 我可以把地球撬动。” 你认为这可能吗?为什么?
阻力
动力
阻力臂
动力臂
阻力×阻力臂=动力×动力臂
实际问题与反比例函数
实际 问题
建立数学模型 运用数学知识解决
反比例 函数
实际问题与反比例函数
小结 1、通过本节课的学习,你有哪些收获?
列实际问题的反比例函数解析式
(1)列实际问题中的函数关系式首先应分析清楚各变 量之间应满足的分式,即实际问题中的变量之间的关系 立反比例函数模型解决实际问题; (2)在实际问题中的函数关系式时,一定要在关系式 后面注明自变量的取值范围。
反比例函数应用ppt课件ppt
经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。
反比例函数的应用ppt课件
如图,一辆汽车匀速通过某段公路,所需时间
清
单
解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]
考
点
清
设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质
考
点
清
单
解
读
k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质
重
解题通法
难
解决此类问题需要读懂题目,准确分析出各个量之间的
题
型
突 关系,将需要求的量根据等量关系表示出来.
清
单
解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]
考
点
清
设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质
考
点
清
单
解
读
k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质
重
解题通法
难
解决此类问题需要读懂题目,准确分析出各个量之间的
题
型
突 关系,将需要求的量根据等量关系表示出来.
反比例函数应用课件ppt课件
反比例函数应用课 件ppt课件
目录
• 反比例函数的概念 • 反比例函数的应用 • 反比例函数与实际问题 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识 • 复习与练习
01
CATALOGUE
反比例函数的概念
反比例函数的定义
函数表达式:$y = \frac{k}{x}$(其中k为常数,且k≠0) 定义域:x≠0
在储蓄和投资中,反比例函数可以用来描述本金、利率和时间之间的关系。本金 和时间是成正比的,而利息和时间是成反比的。
反比例函数在药物作用时间中的应用
在药物作用时间中,药物浓度和作用时间之间的关系可以用反比例函数表示。当 药物浓度固定时,作用时间和效果成反比。
数学中的应用
反比例函数在解方程中的应用
在解方程中,有些方程可以通过变形转化为反比例函数的形式,从而更容易求 解。
反比例函数在函数图像中的应用
在函数图像中,反比例函数的图像是双曲线,具有渐近线、焦点和离心率等特 性。
03
CATALOGUE
反比例函数与实际问题
金融领域中的应用
01
02
03
投资组合问题
利用反比例函数关系,计 算不同投资项目的组合收 益率,以制定最佳投资策 略。
货币时间价值
通过反比例函数,计算不 同利率和投资期限下的未 来现金流现值,以评估投 资项目的经济价值。
3
复数在反比例函数中的应用
在复平面上,反比例函数可以表示为两个点之间 的距离,这个距离随着k值的增大而减小,当k为 无穷大时,两个点重合。
三角函数与反比例函数
三角函数的定义
01
三角函数包括正弦、余弦、正切等,它们是描述角度和三角形
边长之间关系的数学工具。
目录
• 反比例函数的概念 • 反比例函数的应用 • 反比例函数与实际问题 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识 • 复习与练习
01
CATALOGUE
反比例函数的概念
反比例函数的定义
函数表达式:$y = \frac{k}{x}$(其中k为常数,且k≠0) 定义域:x≠0
在储蓄和投资中,反比例函数可以用来描述本金、利率和时间之间的关系。本金 和时间是成正比的,而利息和时间是成反比的。
反比例函数在药物作用时间中的应用
在药物作用时间中,药物浓度和作用时间之间的关系可以用反比例函数表示。当 药物浓度固定时,作用时间和效果成反比。
数学中的应用
反比例函数在解方程中的应用
在解方程中,有些方程可以通过变形转化为反比例函数的形式,从而更容易求 解。
反比例函数在函数图像中的应用
在函数图像中,反比例函数的图像是双曲线,具有渐近线、焦点和离心率等特 性。
03
CATALOGUE
反比例函数与实际问题
金融领域中的应用
01
02
03
投资组合问题
利用反比例函数关系,计 算不同投资项目的组合收 益率,以制定最佳投资策 略。
货币时间价值
通过反比例函数,计算不 同利率和投资期限下的未 来现金流现值,以评估投 资项目的经济价值。
3
复数在反比例函数中的应用
在复平面上,反比例函数可以表示为两个点之间 的距离,这个距离随着k值的增大而减小,当k为 无穷大时,两个点重合。
三角函数与反比例函数
三角函数的定义
01
三角函数包括正弦、余弦、正切等,它们是描述角度和三角形
边长之间关系的数学工具。
反比例函数应用课件ppt课件ppt课件
• 举例说明如何利用已知条件求反比例函数的解析 式。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。
实际问题和反比例函数的应用课件
。
与三角函数的结合
三角函数和反比例函数在周期性上的联系
三角函数具有周期性,而反比例函数不具备周期性,但两者在某些情况下可以相互转化。
三角函数和反比例函数的图像变换
通过适当的变量替换和变换,可以将反比例函数的图像转换为三角函数的图像,反之亦然 。
三角函数和反比例函数的应用场景
三角函数常用于描述周期性变化的现象,如振动、波动等;而反比例函数则常用于描述变 量之间成反比的情况。
PART 05
反比例函数在实际问题中 的应用案例
REPORTING
经济问题中的应用
总结词
反比例函数在经济领域的应用广泛,涉及供需关系、运输成本、价格 与销售量等。
供需关系
在市场经济中,反比例函数可用于描述商品供应和需求之间的关系, 当供应量增加时,需求量减少,反之亦然。
运输成本
在物流和运输领域,反比例函数可用于分析运输成本与运输距离的关 系,随着运输距离的增加,运输成本通常呈反比例降低。
REPORTING
解决实际问题的方法
确定问题类型
建立数学模型
首先需要明确问题是关于反比例函数 的实际应用,还是需要利用反比例函 数解决其他数学问题。
根据问题描述,将实际问题转化为数 学问题,建立反比例函数的数学模型 。
分析问题背景
了解问题的实际背景,如物理、化学 、工程等领域的实际问题,有助于更 好地理解问题并建立数学模型。
定义域
所有非零实数。
值域
所有非零实数。
反比例函数的图像
01
当 k > 0 时,图像位于第一象限 和第三象限;
02
当 k < 0 时,图像位于第二象限 和第四象限。
反比例函数的性质
人教版数学九年级下册《 实际问题与反比例函数》PPT课件
例 1 市煤气公司要在地下修建一个容积为 104 m3 的圆 柱形煤气储存室. (1) 储存室的底面积 S (单位:m2) 与其深度 d (单位:m)
有怎样的函数关系?
解:根据圆柱的体积公式,得 Sd =104, ∴ S 关于d 的函数解析式为S 104 . d
(2) 公司决定把储存室的底面积 S 定为 500 m2,施工
探究新知 【思考】第(1)问的解题思路是什么?第(2)问和第(3) 问与过去所学的解分式方程和求代数式的值的问题有何联系?
方法点拨:第(1)问首先要弄清此题中各数量间的关系, 然后根据圆柱的体积公式:圆柱的体积=底面积×高,由 题意知S是函数,d是自变量,改写后所得的函数关系式是 反比例函数的形式.第(2)问实际上是已知函数S的值, 求自变量d的取值,第(3)问则是与第(2)问相反.
方法点拨:此题类似应用题中的“工程问题”,关系式为工作 总量=工作速度×工作时间,题目中货物总量是不变的,两个 变量分别是速度v和时间t,因此具有反比关系.第(2)问涉 及了反比例函数的增减性,即当自变量t取最大值时,函数值v 取最小值.
巩固练习
学校锅炉旁建有一个储煤库,开学时购进一批煤,现在 知道:按每天用煤0.6吨计算,一学期(按150天计算)刚 好用完.若每天的耗煤量为x吨,那么这批煤能维持y天. (1)则y与x之间有怎样的函数关系? (2)画出函数图象; (3)若每天节约0.1吨,则这批煤能维持多少天?
解:设轮船上的货物总量为 k 吨,根据已知条件得k =30×8=240, 所以 v 关于 t 的函数解析式为 v 240 . t
探究新知
(2) 由于遇到紧急情况,要求船上的货物不超过5天卸载完毕, 那么平均每天至少要卸载多少吨?
解:把 t =5 代入 v 240 ,得 t
关于反比例函数的ppt课件
。
鼓励提问
02
鼓励学生提出自己的疑问和不解,可以是对知识点的理解问题
,也可以是相关应用问题。
问题记录
03
老师或助教将学生的问题记录下来,以便在后续环节中进行解
答。
小组讨论环节组织安排
分组方式
根据学生的座位或者自愿组合,将学生分成若干小组,每 组4-6人。
讨论时间
给每个小组分配5-8分钟的讨论时间,要求学生在规定时 间内围绕主题展开讨论。
标轴是反比例函数的渐近线。
对称性
反比例函数图像关于原点对称,即 如果(x,y)在图像上,那么(-x,-y)也 在图像上。
增减性
在第一象限和第三象限内,随着x的 增大,y的值逐渐减小;在第二象限 和第四象限内,随着x的增大,y的 值逐渐增大。
与正比例函数关系
• 正比例函数与反比例函数的关系:正比例函数y=kx和反比例函数y=k/x的图像都经过原点,但它们的图像形状和性质完全 不同。正比例函数的图像是一条过原点的直线,而反比例函数的图像是一条以原点为中心的双曲线。当k>0时,正比例函数 的图像在第一、三象限,而反比例函数的图像也在第一、三象限;当k<0时,正比例函数的图像在第二、四象限,而反比例 函数的图像也在第二、四象限。因此,我们可以通过观察函数的图像来判断它是正比例函数还是反比例函数。
变化。
弹簧振子运动规律
胡克定律
描述弹簧伸长或压缩量与弹力之间的关系,即F=kx,其中 k为弹簧常数,x为伸长或压缩量。当弹力固定时,伸长或 压缩量与弹簧常数成反比。
振动周期与弹簧常数
弹簧振子的振动周期与弹簧常数成反比,可以用反比例函 数来描述这种关系。
能量与振幅
弹簧振子的振动能量与其振幅的平方成正比,而振幅与弹 簧常数成反比,因此能量与弹簧常数之间具有复杂的反比 例关系。
人教版九年级下册 26.2.2反比例函数在实际中的应用 共28张PPT
5 2.A是双曲线y= 上一点,过点A向x x
轴作垂线,垂足为B,向y轴作垂线,垂足为C,
则四边形OBAC的面积= 5
y
.
A
B
C
O
x
课堂小结
用函数观点解实际问题的关键:
一要搞清题目中的基本数量关系,将实际问 题抽象成数学问题,看看各变量间应满足什么样 的关系式;
二是要分清自变量和函数,以便写出正确的 函数关系式,并注意自变量的取值范围;
杠 杆 定 律
阻 力 阻力臂
动 力 动力臂
几位同学玩撬石头的游戏,已知阻力和阻力 臂不变,分别是1200牛顿和0.5米,设动力为F, 动力臂为L.回答下列问题: (1)动力F与动力臂L有怎样的函数关系? 解:(1)由已知得F×L=1200×0.5 变形得: F
600 L
(2)小松、小冰、小宁、小力分别选取了 动力臂为1米、1.5米、2米、4米的撬棍,你能得 出他们各自撬动石头至少需要多大的力吗?
解:(1)蓄水池的容积为:8×6=48(m3). (2)此时所需时间t(h)将减少.
48 (3)t与Q之间的函数关系式为: t Q
(4)当t=5h时,Q=48/5=9.6m3.所以每时 的排水量至少为9.6m3. (5)当Q=12(m3)时,t=48/12=4(h), 所以最少需5h可将满池水全部排空.
小练习
1.如图,某玻璃器皿制造公司要制造一种容积 为1升(1升=1立方分米)的圆锥形漏斗. (1)漏斗口的面积S与漏斗的深d有怎样的函 数关系? (2)如果漏斗口的面积为100厘米2,则漏斗的 深为多少?
3 () 1 S d
(2)30cm.
小练习
2.(03年浙江)为了预防“非典”,某学 校对教室采用药熏消毒法进行消毒.已知药物燃 烧时,室内每立方米空气中的含药量y(mg)与 时间x(min)成正比例,药物燃烧完后,y与x成 反比例,现测得药物8min燃毕,此时室内空气中 每立方米的含药量为6mg.请根据题中所提供的 信息,解答下列问题:
初中九年级下册数学 《实际问题与反比例函数》反比例函数PPT(第1课时)优质课件PPT
2021/02/20
8
新知讲解
典例精析
例1.某校科技小组进行野外考察,利用铺垫木板的方式通过一片烂泥湿地,你能
解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)
的变化,人和木板对地面的压强p (Pa)将如何变化?
如果人和木板对湿地地面的压力合计600N,那么
(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?
2021/02/20
22
2021/02/20
23
(1)输出功率P与电阻R有怎样的函数关系?
(2)用电器输出功率的范围多大? U
2021/02/20
12
新知讲解
小组讨论
根据物理知识可以判断:当用电器两端的电压一定时,用电器的输出功率 与它的电阻之间呈什么关系?这一特征说明用电器的输出功率与它的电阻之间 满足什么函数关系?
【反思小结】解答该类问题的关键是确定两个变量之间的函数关系,然后利用 待定系数法求出它们的关系式,进一步根据题意求解答案.其中往往要用到电 学中的公式PR=U2,P指用电器的输出功率(瓦),U指用电器两端的电压 (伏),R指用电器的电阻(欧姆).
2.某气球内充满了一定质量的气体,当温度不变时,气球 内气体的气压p(kPa)是气体
体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将
爆炸.为了安全起见,气球的体积应( C )
A. 不大于
4 m3 5
B. 小于
4 m3 5
C. 不小于 4 m3 5
D. 大于
4 m3 5
2021/02/20
20
学以致用
蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数, 其图象如图所示.
反比例函数应用ppt课件ppt课件ppt
检验解
将求得的参数代入原方程,检验方 程是否符合实际问题中的条件,如 是否合理、是否符合实际情况等。
验证模型准确性
选择检验方法
根据问题的实际情况,选择合适 的检验方法来验证模型的准确性 ,如残差分析、相关性检验等。
进行模型检验
利用收集到的数据或其他已知条 件,对模型进行检验。通过比较 模型的预测值与实际观测值之间
解题思路
利用简谐振动的周期公式和振 幅定义,建立数学表达式,通 过已知量求解未知量。
PPT内容展示
弹簧振子模型、公式推导、计 算步骤和结果。
例题三:液体流量与管道截面积问题
题目描述
给定管道中液体的流量和管道截面积,求解 液体流速或其他相关量。
解题思路
利用流量公式和流速定义,建立数学表达式 ,通过已知量求解未知量。
液体流量与管道截面积关系
• 流量公式:表述液体在管道中流动时,流量Q、截面积A、流速 v之间的关系,即Q=A×v,当流速确定时,流量与截面积成正 比;当截面积确定时,流量与流速成反比。
03 反比例函数建模与求解方法
CHAPTER
建立数学模型
确定问题类型
明确问题是涉及两个量之 间的反比例关系,即一个 量增加时,另一个量减少 ,反之亦然。
的差异,评估模型的准确性。
调整模型
如果模型检验结果不理想,可以 对模型进行调整,如修改参数、 引入其他变量等,以提高模型的
准确性。
04 典型例题解析及思路梳理
CHAPTER
例题一:电阻、电流、电压问题
01
02
03
04
题目描述
给定电路中电阻、电流和电压 之间的关系,求解未知量。
解题思路
利用欧姆定律,建立电阻、电 流、电压之间的数学表达式,
将求得的参数代入原方程,检验方 程是否符合实际问题中的条件,如 是否合理、是否符合实际情况等。
验证模型准确性
选择检验方法
根据问题的实际情况,选择合适 的检验方法来验证模型的准确性 ,如残差分析、相关性检验等。
进行模型检验
利用收集到的数据或其他已知条 件,对模型进行检验。通过比较 模型的预测值与实际观测值之间
解题思路
利用简谐振动的周期公式和振 幅定义,建立数学表达式,通 过已知量求解未知量。
PPT内容展示
弹簧振子模型、公式推导、计 算步骤和结果。
例题三:液体流量与管道截面积问题
题目描述
给定管道中液体的流量和管道截面积,求解 液体流速或其他相关量。
解题思路
利用流量公式和流速定义,建立数学表达式 ,通过已知量求解未知量。
液体流量与管道截面积关系
• 流量公式:表述液体在管道中流动时,流量Q、截面积A、流速 v之间的关系,即Q=A×v,当流速确定时,流量与截面积成正 比;当截面积确定时,流量与流速成反比。
03 反比例函数建模与求解方法
CHAPTER
建立数学模型
确定问题类型
明确问题是涉及两个量之 间的反比例关系,即一个 量增加时,另一个量减少 ,反之亦然。
的差异,评估模型的准确性。
调整模型
如果模型检验结果不理想,可以 对模型进行调整,如修改参数、 引入其他变量等,以提高模型的
准确性。
04 典型例题解析及思路梳理
CHAPTER
例题一:电阻、电流、电压问题
01
02
03
04
题目描述
给定电路中电阻、电流和电压 之间的关系,求解未知量。
解题思路
利用欧姆定律,建立电阻、电 流、电压之间的数学表达式,
《实际问题与反比例函数》课件
的增大而减小
解:当 V =60 时,p =100,则 pV=6
000,
A.气压 p 与体积 V 表达式为 p= ,则 k>0,故不符
合题意;
6 000
B.当 p=70时,V=
>80,故不符合题意;
70
C.当体积 V 变为原来的一半时,对应的气压 p 变为原
来的2倍,故不符合题意;
D.当60≤V≤100时,气压 p 随着体积 V 的增大而减小,
600
∴ F 关于l 的函数解析式为F= .
600
当 l=1.5 m 时,F= =400 (N).
1.5
600
对于函数 F=
,当 l =1.5 m时,F
=400 N,此时杠
杆平衡. 因此,撬动石头至少需要400 N的力.
例3 小伟欲用撬棍撬动一块大石头,已知阻力和阻力
臂分别为 1200 N 和 0.5 m.
对地面的压强减小,就不会陷入泥中了.
如果人和木板对湿地地面的压力合计为 600 N,那么,
(1)木板面积 S 与人和木板对地面的压强 p 有怎样的函
数关系?
600
解:(1) p 是 S 的反比例函数, =
,S>0.
(2)当木板面积为 0.2 m2 时,压强是多少?
解:(2)当 S=0.2
m2
时, =
(W 是常数).
(2)当压力 F 一定时,压强 p 与受力面积 S 成反比例,
即=
(F 是常数).
新知探究 跟踪训练
1.有一个可以改变体积的密闭容器内装有
一定质量的二氧化碳,当改变容器的体积
时,气体的密度也会随之改变,密度 ρ (单
解:当 V =60 时,p =100,则 pV=6
000,
A.气压 p 与体积 V 表达式为 p= ,则 k>0,故不符
合题意;
6 000
B.当 p=70时,V=
>80,故不符合题意;
70
C.当体积 V 变为原来的一半时,对应的气压 p 变为原
来的2倍,故不符合题意;
D.当60≤V≤100时,气压 p 随着体积 V 的增大而减小,
600
∴ F 关于l 的函数解析式为F= .
600
当 l=1.5 m 时,F= =400 (N).
1.5
600
对于函数 F=
,当 l =1.5 m时,F
=400 N,此时杠
杆平衡. 因此,撬动石头至少需要400 N的力.
例3 小伟欲用撬棍撬动一块大石头,已知阻力和阻力
臂分别为 1200 N 和 0.5 m.
对地面的压强减小,就不会陷入泥中了.
如果人和木板对湿地地面的压力合计为 600 N,那么,
(1)木板面积 S 与人和木板对地面的压强 p 有怎样的函
数关系?
600
解:(1) p 是 S 的反比例函数, =
,S>0.
(2)当木板面积为 0.2 m2 时,压强是多少?
解:(2)当 S=0.2
m2
时, =
(W 是常数).
(2)当压力 F 一定时,压强 p 与受力面积 S 成反比例,
即=
(F 是常数).
新知探究 跟踪训练
1.有一个可以改变体积的密闭容器内装有
一定质量的二氧化碳,当改变容器的体积
时,气体的密度也会随之改变,密度 ρ (单
反比例函数实际生活中的反比例函数课件ppt
$k$为常数,且$k \neq 0$;
数学定义:形如$y = \frac{k}{x}$($k$为常数,$k \neq 0$)的函数称为反比例函数。
理解要点
Байду номын сангаас
反比例函数的图像和性质
图像:在直角坐标系中,反比例函数$y = \frac{k}{x}$的图像是以原点为对称中心的双曲线。
当$k < 0$时,双曲线的两支分别位于第二、第四象限。
图像相似
两种函数在解决实际问题时具有相似的应用场景,如描述变量之间的关系等。
应用场景相似
和幂函数的联系
如何学好反比例函数
05
了解什么是反比例函数,掌握反比例函数的表达式和图像。
掌握基础知识点
反比例函数的定义
了解反比例函数的单调性、对称性、渐近线等基本性质。
反比例函数的性质
学习如何将反比例函数应用于实际问题中,如物理学、工程学等领域。
xx年xx月xx日
反比例函数实际生活中的反比例函数课件ppt
反比例函数概述实际生活中的反比例函数案例反比例函数在数学学科中的应用反比例函数和其他数学知识的联系如何学好反比例函数总结与展望
contents
目录
反比例函数概述
01
反比例函数的定义
因变量$y$与自变量$x$的倒数成正比。
自变量$x$在分母位置;
和二次函数的联系
01
表达式相似
反比例函数和二次函数的表达式具有一定的相似性,如y=ax²和y=k/x。
02
图像相似
两种函数的图像都关于原点成中心对称,且具有相似的形状和趋势。
反比例函数和幂函数的表达式具有一定的相似性,如y=xˣ和y=k/x。
表达式相似
数学定义:形如$y = \frac{k}{x}$($k$为常数,$k \neq 0$)的函数称为反比例函数。
理解要点
Байду номын сангаас
反比例函数的图像和性质
图像:在直角坐标系中,反比例函数$y = \frac{k}{x}$的图像是以原点为对称中心的双曲线。
当$k < 0$时,双曲线的两支分别位于第二、第四象限。
图像相似
两种函数在解决实际问题时具有相似的应用场景,如描述变量之间的关系等。
应用场景相似
和幂函数的联系
如何学好反比例函数
05
了解什么是反比例函数,掌握反比例函数的表达式和图像。
掌握基础知识点
反比例函数的定义
了解反比例函数的单调性、对称性、渐近线等基本性质。
反比例函数的性质
学习如何将反比例函数应用于实际问题中,如物理学、工程学等领域。
xx年xx月xx日
反比例函数实际生活中的反比例函数课件ppt
反比例函数概述实际生活中的反比例函数案例反比例函数在数学学科中的应用反比例函数和其他数学知识的联系如何学好反比例函数总结与展望
contents
目录
反比例函数概述
01
反比例函数的定义
因变量$y$与自变量$x$的倒数成正比。
自变量$x$在分母位置;
和二次函数的联系
01
表达式相似
反比例函数和二次函数的表达式具有一定的相似性,如y=ax²和y=k/x。
02
图像相似
两种函数的图像都关于原点成中心对称,且具有相似的形状和趋势。
反比例函数和幂函数的表达式具有一定的相似性,如y=xˣ和y=k/x。
表达式相似
反比例函数的应用课件
误差分析
在进行数值计算时,需要 进行误差分析,以确保计 算结果的精度和可靠性。
04
反比例函数的应用案例
案例一:解决实际问题
总结词
反比例函数在实际问题中的应用广泛,可以通过建立数学模型来求解实际问题 。
详细描述
反比例函数可以描述一些实际问题的关系,例如电流与电阻、电容与电压等。 通过建立反比例函数模型,可以求解出未知量,为实际问题的解决提供依据。
详细描述
在经济学中,反比例函数可以用于描述供需关系、市场均衡等经济现象和规律。 通过应用反比例函数,可以更好地理解经济现象和规律,为经济政策的制定提供 依据。
案例四:在其他领域中的应用
总结词
反比例函数在其他领域中也有应用,例如生物学、化学等。
详细描述
在生物学中,反比例函数可以用于描述生物种群数量与环境容量的关系;在化学中,反比例函数可以用于描述化 学反应速率与反应物浓度的关系等。通过应用反比例函数,可以更好地理解这些领域的规律和现象,为相关领域 的发展提供支持。
反比例函数在生物学中的应用:计算生物种群数量、繁 殖率等。
反比例函数在心理学中的应用:研究人的行为与心理活 动之间的关系。
03
反比例函数的应用方法
建模方法
建立实际问题与反比例函数的联系
01
通过分析实际问题的数学模型,将问题转化为反比例函数的形
式,以便利用其性质和结论解决问题。
确定变量的实际意义
02
图像变化
当k的值逐渐增大或减小,双曲线的形 状会发生变化,但始终关于原点对称 。
反比例函数的性质
奇函数
无界性
单调性
实际应用
由于反比例函数的图像关于 原点对称,因此它是一个奇 函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l … 1 1.5 2 3 … F … 600 400 300 200 …
. F
600
500 400
..
300 200
....
100
O
1
234源自56l(4)受条件限制,无法得知撬石头时受到 的阻力,小刚选用了动力臂为1.5米的撬 棍,用了500牛顿的力刚好撬动;小明身 体瘦小,最多只能用300牛顿的力,它应 该选择动力臂为多少的撬棍才能撬动这块 大石头呢?(支点不变)
请讨论
阿基米德 (公元前 287-前212),古希 腊伟大的数学家、 力学家。生于西西 里岛的叙拉古,卒 于同地。后人对阿 基米德给以极高的 评价,常把他和I.牛顿、C.F.高斯 并列为有史以来三个贡献最大的 数学家。据说他确立了力学的杠 杆定律之后,曾发出豪言壮语: “给我一个立足点,我就可以移
谈谈收获和体会
小结:
1
实际问题
数学问题
反比例函数
反比例函数知识
解决实际问题
解决数学问题
小结:
2
利用反比例函数解决实际问 题时,既要关注函数本身,又要 考虑实际意义。
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
(1)运输公司平均每天的工作量V(单位: 米3/天)与完成运输任务所需的时间t (单位:天)之间具有怎样的函数关系?
市政府计划建设一项水利工程,工程需 要运送的土石方总量为106立方米,某运输公 司承担了此项工程运送土石方的任务。
(2)这个运输公司有100辆卡车,每 天一共可运送土石方104立方米,则公司 完成全部运输任务需要多长时间?
演讲人:XXXXXX 时 间:XX年XX月XX日
(1)你认为动力F与动力臂l满足函数关系吗?
例:
几位同学玩撬石头的游戏,已知阻 力与阻力臂不变,分别是1200牛顿和 0.5米,设动力为F,动力臂为l。回答下 列问题:
(2)小刚、小强、小健、小明分别选取了 动力臂为1米、1.5米、2米、3米的撬棍, 你能得出他们各自撬动石头需要多大的力 吗?
(3)通过运算你发现了什么? 能说清其中的道理吗?
反比例函数与实际应用
例:
几位同学玩撬石头的游戏,已知阻 力与阻力臂不变,分别是1200牛顿和 0.5米,设动力为F,动力臂为l。回答下 列问题:
阻力
动力
阻力臂
动力臂
阻力Ⅹ阻力臂=动力Ⅹ动力臂
例:
几位同学玩撬石头的游戏,已知阻 力与阻力臂不变,分别是1200牛顿和 0.5米,设动力为F,动力臂为l。回答下 列问题:
动这个地(球!5”)假设阿基米德有500牛顿的力,地
球的重量约为6X1025 牛顿(即为力),
阻力臂为2000千米,帮阿基米德设计该
用动力臂为多长的杠杆才能把地球撬动?
练习
市政府计划建设一项水利工程,工程需 要运送的土石方总量为106立方米,某运输公 司承担了此项工程运送土石方的任务。
市政府计划建设一项水利工程,工程需 要运送的土石方总量为106立方米,某运输公 司承担了此项工程运送土石方的任务。
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End