人教版数学必修三第一章检测

合集下载

(典型题)高中数学必修三第一章《统计》检测卷(含答案解析)(1)

(典型题)高中数学必修三第一章《统计》检测卷(含答案解析)(1)

一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件3.已知变量x ,y 的关系可以用模型kx y ce =拟合,设ln z y =,其变换后得到一组数据下:由上表可得线性回归方程4z x a =-+,则( ) A .4-B .4e -C .109D .109e4.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生5.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表:销售量y (件)3 5 8 910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.76.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③ B .①③④C .①②④D .②③④7.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元 B .11.8万元C .12.0万元D .12.2万元8.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和929.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1310.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y .根据收集到的数据可知12345150x x x x x ++++=,由最小二乘法求得回归直线方程为0.6754.9y x =+,则12345y y y y y ++++的值为( )A .75B .155.4C .375D .466.211.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.下列说法:①设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;②线性回归直线ˆybx a =+必过必过点(),x y ;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3二、填空题13.已知数据1x ,2x ,…,10x 的方差为1,且()()()222123222x x x -+-+-()2102170x ++-=,则数据1x ,2x ,…,10x 的平均数是________.14.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,则下列说法中正确的序号是______.①由样本数据得到的回归直线方程y bx a =+必过样本点的中心 ②残差平方和越小的模型,拟合的效果越好③用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好④若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间线性相关性强 15.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____16.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为____.17.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______. 18.设一个回归方程为0.4 1.8y x =-,则当25x =时,y 的估计值是_______.19.一组样本数据按从小到大的顺序排列为:1-,0,4,x ,y ,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.三、解答题21.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm 到195cm 之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率.22.某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.23.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:x2 3 4 5 6 y 2.23.85.56.57.0若由资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-)24.2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP 抽样调查了非一线城市M 和一线城市N 各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(1)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?活跃用户 不活跃用户 合计城市M 城市N 合计(2)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(3)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度(x )线性相关,得到回归直线为ˆ4ˆyx a =+,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5x =)该读书APP 用户使用时长约为多少百万小时. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.025 0.010 0.005 0.00125.现有某高新技术企业年研发费用投入x (百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:(1)画出散点图;(2)求y 对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,a b 计算公式: 1221ˆˆˆ·,ni ii nii x y nx y bay bx xnx ==-==--∑∑ 26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的列联表,并根据列联表,判断是否有多少的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知求得 x , y ,进一步求得 a ,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =,∴ 80.78100.2a y bx --⨯===. ∴ 0.780.2y x =+.取16x =,得 0.78160.212.68y ⨯+==万元,故选A . 【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.2.D解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.3.D解析:D 【分析】由已知求得x 与z 的值,代入线性回归方程求得a ,再由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,结合z lny =,得z lnc kx =+,则109lnc =,由此求得【详解】 解:1617181917.54x +++==,50344131394z +++==. 代入4z x a =-+,得39417.5a =-⨯+,则109a =.∴4109z x =-+,由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,令z lny =,则z lnc kx =+,109lnc ∴=,则109c e =. 故选:D . 【点睛】本题考查回归方程的求法,考查数学转化思想方法,考查计算能力,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.C解析:C 【解析】 【分析】由题意利用线性回归方程的性质计算可得a 的值. 【详解】 由于468101285x ++++==,35891075y ++++==,由于线性回归方程过样本中心点(),x y ,故:70.98a =⨯+, 据此可得:0.2a =-. 故选C .本题主要考查线性回归方程的性质及其应用,属于中等题.6.C解析:C【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.【详解】①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y∧=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;②关于x的方程x2﹣mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FP时,直线OP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FP时,直线OP,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪(8,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.7.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.8.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.59.C解析:C 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列, ∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.10.C解析:C 【分析】首先求得x 的值,然后利用线性回归方程过样本中心点的性质求解12345y y y y y ++++的值即可. 【详解】由题意可得:12345305x x x x x x ++++==,线性回归方程过样本中心点,则:0.6754.975y x =⨯+=,据此可知:12345y y y y y ++++5375y ==. 本题选择C 选项. 【点睛】本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n =++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.12.C解析:C 【解析】分析:利用回归方程和独立性检验对每一个命题逐一判断.详解:对于①,一个回归方程35y x =-,变量x 增加一个单位时,y 应平均减少5个单位,所以该命题是错误的;对于②,线性回归直线ˆybx a =+必过必过点(),x y ,是正确的;对于③,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,并不能说明他有99%的可能患肺病,所以该命题是错误的. 故答案为:C.点睛:本题主要考查回归方程和独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.或6【分析】由数据…的方差为1且把所给的式子进行整理两式相减得到关于数据的平均数的一元二次方程解方程即可【详解】数据…的方差为1①②将②-①得解得或故答案为:或6【点睛】本题主要考查一组数据的平均数解析:2-或6. 【分析】由数据1x ,2x ,…,10x 的方差为1,且()()()()2222123102222170x x x x -+-+-++-=,把所给的式子进行整理,两式相减,得到关于数据的平均数的一元二次方程,解方程即可. 【详解】数据1x ,2x ,…,10x 的方差为1,()()()()22221231010x x x x x x x x∴-+-+-++-=,()()22221210121010210x x x x x x x x ∴++++-+++=,()222212101010x x x x ∴+++-=,①()()()()2222123102222170x x x x -+-+-++-=, ()()22212101210440170x x x x x x ∴+++-++++=,()22212104040170x x x x ∴+++-+=,②将②-①得24120x x --=,解得2x =-,或6x =, 故答案为:2-或6. 【点睛】本题主要考查一组数据的平均数的求法,解题时要熟练掌握方差的计算公式的灵活运用,属于中档题.14.①②④【分析】根据两个变量线性相关的概念及性质逐项判定即可求解【详解】由题意根据回归直线方程的特征可得线性回归直线方程一定过样本中心所以①正确;根据残差的概念可得残差平方和越小的模型拟合效果越好所以解析:①②④ 【分析】根据两个变量线性相关的概念及性质,逐项判定,即可求解. 【详解】由题意,根据回归直线方程的特征,可得线性回归直线方程一定过样本中心,所以①正确;根据残差的概念,可得残差平方和越小的模型,拟合效果越好,所以②正确; 根据相关指数的概念,可得2R 越大说明拟合效果越好,所以③不正确;若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间负相关,且线性相关性强,所以④正确;故答案为:①②④. 【点睛】本题主要考查了两个变量的线性相关性的概念与判定,其中解答中熟记线性相关的基本概念和结论是解答的关键,属于基础题.15.或【分析】利用平均数与方差公式直接求解即可【详解】由题去掉最高与最低分后的测试成绩为8284848689则平均数方差故答案为:或【点睛】本题考查茎叶图考查平均数与方差的计算是基础题解析:5.6或285【分析】利用平均数与方差公式直接求解即可 【详解】由题去掉最高与最低分后的测试成绩为82,84,84,86,89,则平均数8284848689855x ++++==方差()()()()()2222221288582858485848586858955s ⎡⎤=-+-+-+-+-=⎣⎦ 故答案为:5.6或285【点睛】本题考查茎叶图,考查平均数与方差的计算,是基础题16.【分析】利用频率分布直方图中频率和为1求a 值根据7080)的频率求出在此区间的人数即可【详解】由1﹣005﹣035﹣02﹣01=03故a =003故阅读的时间在7080)(单位:分钟)内的学生人数为: 解析:900【分析】利用频率分布直方图中频率和为1求a 值,根据[70,80)的频率求出在此区间的人数即可. 【详解】由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3, 故a =0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900, 故答案为900. 【点睛】本题考查频率分布直方图中的有关性质的应用,考查直方图中频率和频数的求法.17.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归解析:16-【解析】 【分析】由题意求得样本中心点,代入回归直线方程即可求出b 的值 【详解】 由已知,()12101210330x x x y y y +++=+++=()12101310x x x x ∴=⨯+++= ()12101110y y y y =⨯+++=代入回归直线方程可得:3132b =+ 解得16b =-故答案为16- 【点睛】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果18.2【解析】分析:直接利用回归方程将代入即可求得的估计值详解:∵回归方程为∴当时的估计值为故答案为82点睛:本题考查回归方程的运用考查学生的计算能力属于基础题解析:2 【解析】分析:直接利用回归方程,将25x =代入,即可求得y 的估计值. 详解:∵回归方程为0.4 1.8y x =-,∴当25x =时,y 的估计值为 0.425 1.88.2y =⨯-=.故答案为8.2.点睛:本题考查回归方程的运用,考查学生的计算能力,属于基础题.19.【解析】分析:根据中位数为求出是代入平均数公式可求出从而可得出平均数代入方差公式得到方差详解中位数为这组数据的平均数是可得这组数据的方差是故答案为点睛:本题主要考查平均数与方差属于中档题样本数据的算 解析:743【解析】分析:根据1,0,4,,,14x y -中位数为5,,求出x 是6 ,代入平均数公式,可求出7y =,从而可得出平均数,代入方差公式,得到方差. 详解1,0,4,,7,14x -中位数为45,52x+∴=,6x ∴=,∴这组数据的平均数是10461456y -+++++=,7y =可得这组数据的方差是()17436251148163+++++=,故答案为743. 点睛:本题主要考查平均数与方差,属于中档题.样本数据的算术平均数公式为12n 1(x +x +...+x )x n=.样本方差2222121[()()...()]n s x x x x x x n =-+-++-,标准差222121[()()...()]n s x x x x x x n=-+-++-. 20.【解析】 三、解答题21.(1)见解析;(2)174.5cm ;(3)0.3. 【详解】试题分析:(1)先分别算出第六组和第七组的人数,进而算出其频率与组距的比,补全直方图;(2)利用中位数两边频率相等,求出中位数的值;(3)先借助分层抽样的特征求出第四、第五组的人数,再运用列举法列举出所有可能数及满足题设的条件的数,运用古典概型的计算公式求解:解:(1)第六组与第七组频率的和为:∵第六组和第七组人数的比为5:2.∴第六组的频率为0.1,纵坐标为0.02;第七组频率为0.04,纵坐标为0.008.(2)设身高的中位数为,则∴估计这50位男生身高的中位数为174.5(3)由于第4,5组频率之比为2:3,按照分层抽样,故第4组中应抽取2人记为1,2,第5组应抽取3人记为3,4,5则所有可能的情况有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5}, {3,4},{3,5},{4,5}共10种满足两位男生身高都在[175,180]内的情况有{3,4},{3,5},{4,5}共3种, 因此所求事件的概率为.22.(Ⅰ)0.02;(Ⅱ)10800元. 【分析】(Ⅰ)由频率分布直方图中小矩形面积和为1能求出a .(Ⅱ)根据频率分布直方图,日销售量不低于25件的天数为(0.040.02)5309+⨯⨯=,一个月可获得的奖励为900元,由此可以估计一年内获得的礼金数. 【详解】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a =-+++⨯=. (Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为:()0.040.025309+⨯⨯=(天),一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元. 【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.23.(1) 1.2308ˆ.0yx =+;(2)12.38万元.. 【分析】(1)由已知表格中的数据,易计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.(2)把使用年限10代入回归直线方程,即可估算出维修费用的值. 【详解】 (1)4x =,5y=,52190ii x==∑,51112.3i i i x y ==∑,12215 1.235ni ii nii x yxyb xx ==-==-∑∑,0.08a y bx =-=, 所以回归直线方程为 1.2308ˆ.0yx =+; (2) 1.23100.0812.3ˆ8y=⨯+=, 即估计用10年时维修费约为12.38万元. 【点评】本题考查回归直线的方程求解,关键是要求出回归直线方程的系数,由已知的变量x ,y 的值,我们计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.属于中等题.24.(1)见解析;(2)见解析;(3) 22.3百万小时 【分析】(1)根据频率分布直方图求数据填入对应表格,再根据卡方公式求2K ,最后对照数据作判断,(2)先确定随机变量取法,再判断从M 城市中任选的2名用户中活跃用户数服从二项分布,从N 城市中任选的1名用户中活跃用户数服从两点分布,进而求得对应概率,列表得分布列,最后根据数学期望公式得期望,(3)先求均值,解得ˆa,再估计5x =对应函数值. 【详解】(1)由已知可得以下22⨯列联表:计算()2220060208040200K 9.5247.8791001001406021⨯⨯-⨯==≈>⨯⨯⨯ , 所以有99.5%的把握认为用户是否活跃与所在城市有关. (2)由统计数据可知,城市M 中活跃用户占35,城市N 中活跃用户占45,设从M 城市中任选的2名用户中活跃用户数为X ,则3~2,5X B ⎛⎫ ⎪⎝⎭设从N 城市中任选的1名用户中活跃用户数为Y ,则Y 服从两点分布,其中()415P Y ==. 故0,1,2,3ξ=,()()()20221400055125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭; ()()()()()2012224321*********555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅+⋅⋅⋅=⎪⎝⎭;()()()()()2122223431572112055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅⋅+⋅⋅= ⎪⎝⎭;()()()222343632155125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭. 故所求ξ的分布列为()428573601232125125125125E ξ=⨯+⨯+⨯+⨯=. (3)由已知可得 2.5x =,又12.3y =,可得12.34ˆ2.5a=⨯+,所以ˆ 2.3a =,所以4 2.3ˆy x =+. 以5x =代入可得ˆ22.3y=(百万小时), 即2019年第一季度该读书APP 用户使用时长约为22.3百万小时. 【点睛】本题考查频率分布直方图、回归直线方程以及分布列和数学期望,考查基本分析求解能力,属中档题.25.(1)见解析(2) 1.1.7ˆ0yx =+(3)9.5百万元 【解析】试题分析:(1)根据表格中的数据,在坐标系中描出点,将点连起来,就画出了散点图;(2)根据题目中的数据计算出 1.1,0.ˆˆ7ba ==,代入平均值3,4x y ==,即可得到回归方程;(3)将8x =,代入回归方程即可得到预测值. (1)散点图(2)由题意可知,12345234473,455x y ++++++++====,51122334445771i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555i i x ==++++=∑,根据公式,可求得2715341.1,4 1.130.ˆˆ75553ba-⨯⨯===-⨯=-⨯, 故所求回归直线的方程为 1.1.7ˆ0y x =+; (3)令8x =,得到预测值 1.1809.5ˆ.7y=⨯+=(百万元) 答:如果该企业某年研发费用投入8百万元,预测该企业获得年利润为9.5百万元. 26.(1)概率分别为:43100,27100,21100,9100;(2)350;(3)填表见解析;有95%的把握认为锻炼的人次与该市的空气质量有关.【分析】(1)用频率估计概率,从而得到估计该市一天的空气质量等级为1,2,3,4的概率; (2)利用频率分布直方图估计样本平均值的方法可得得答案; (3)完善列联表,由公式计算卡方的值,从而查表即可, 【详解】解:(1)该市一天的空气质量等级为1的概率为:2162543100100++=;该市一天的空气质量等级为2的概率为:5101227100100++=;该市一天的空气质量等级为3的概率为:67821100100++=;该市一天的空气质量等级为4的概率为:7209100100++=; (2)由题意可得:一天中到该公园锻炼的平均人次的估计值为:1000.203000.355000.45350x =⨯+⨯+⨯=;(3)根据所给数据,可得下面的22⨯列联表,由表中数据可得:2 5.820 3.841()()()()70305545K a b c d a c b d ==≈>++++⨯⨯⨯, 所以有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查了独立性检验与频率估计概率,估计平均值的求法,属于中档题.。

最新人教版高中数学必修3第一章三同步训练测评(a卷)(附答案)1

最新人教版高中数学必修3第一章三同步训练测评(a卷)(附答案)1

第一章 算法初步测评(A 卷)(总分:120分 时间:90分钟)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下四个问题:①输入一个数,输出它的绝对值;②求函数f(x)=⎩⎪⎨⎪⎧x 2+1,x ≥0,x +1,x<0的函数值;③求面积为8的正方形的周长; ④求三个数中的最小数.其中,不需要条件语句描述算法的有A .1个B .2个C .3个D .4个 答案:A 只有③不需要条件语句. 2.下面程序输出的结果是 M =10 N =M -8 M =M -N PRINT M ENDA .10B .8C .2D .-2 答案:B ∵M =10,∴N =10-8=2,M =10-2=8. 3.程序: a =12b =a MOD 10c =ABS(a -b)d =SQR(10*C) PRINT d ENDA .10 B.-10 C .-8 D .6 答案:A ∵a =12,b =2,c =10, ∴d =10×10=10.4.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 的值,若要使输入的x 的值与输出的y 的值相等,则这样的x 的值有A.1个B.2个C.3个D.4个答案:C由题意,当x≤2时,输出y=x2,令y=x2=x,解得x=0或1,适合题意;当2<x≤5时,输出y=2x-3,令y=2x-3=x,解得x=3,适合题意;当x>5时,输出y=1x,令y=1x=x,解得x=1或-1,不适合题意.所以适合题意的x的值有0,1,3三个.5.(2009福建高考,理6)阅读下图所示的程序框图,运行相应的程序,输出的结果是A.2 B.4 C.8 D.16答案:C故S=2时输出n=8.6.读下列程序:INPUT xIF x<10THENP=x*0.35ELSEP=10*0.35+(x-10)*0.7END IFPRINT P END若x =20,则其运行结果P 为A .7B .10.5C .3.5D .17.5 答案:B ∵20>10,∴P =10×0.35+(20-10)×0.7=10.5.7.(2009广东深圳高三第二次调研,理4)某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过50 kg 按0.53元/kg 收费,超过50 kg 的部分按0.85元/kg 收费,相应收费系统的流程图如下图所示,则①处应填A .y =0.85xB .y =50×0.53+(x -50)×0.85C .y =0.53xD .y =50×0.53+0.85x答案:B 由框图可知,①处应填行李重量超过50 kg 时的费用, 故y =50×0.53+(x -50)×0.85.8.下图是一个算法的程序框图,当输入的x 值为3时,输出y 的结果恰好是13,则?处的关系式是A . y =x 3B .y =3-xC .y =3xD .y =31x答案:C 输入的x 值为3时,得3-2=1,则1-2=-1,因为3-1=13,所以y =3x.9.(2009山东济南第二次统考,理9)下面的程序框图所表示算法的运行结果是A.-3 B.-21 C.3 D.21答案:A程序共循环了6次,依次是i=1,S=1;i=2,S=-1;i=3,S=2;i=4,S=-2;i=5,S=3;i=6,S=-3;i=7时,循环结束输出的S是-3.答案:D本程序共循环了5次,它们依次是j=1,a=1;j=2,a=3;j=3,a=1;j =4,a=0;j=5,a=0.二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上)11.把53化成四进制数得__________.答案:311(4)12.两个数102,238的最大公约数是__________.答案:34∵238=2×102+34,102=34×3,∴102,238的最大公约数为34.13.(2009广东广州普通高中毕业班综合测试二,理11)阅读下图所示的程序框图,若输出y的值为0,则输入x的值为__________.答案:2或0由x2-4x+4=0⇒x=2,结合程序框图,可以看出当输入2时,其输出结果为0;再由y=x结合程序框图,可以看出当输入0时,其输出结果也为0.14.一个算法如下:第一步,S取值0,i取值1.第二步,若i不大于12,则执行下一步;否则执行第六步.第三步,计算S+i并将结果代替S.第四步,用i+2的值代替i.第五步,转去执行第二步.第六步,输出S.则运行以上步骤输出的结果为__________.答案:36由程序可知该算法是计算1+3+5+7+9+11的值,则输出结果为36.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分10分)画出解方程ax+b=0(a,b∈R)的算法程序框图.答案:解:解此方程时要讨论a是否为0,还要讨论b是否为0,因此要用条件结构框图来描述算法.+ABS(x)+1 IF =”;y答案:解:本条件语句是用来解决分段函数的求值的. 当x<-1时,y =x 2-1; 当x>1时,y =3x +3;当-1≤x ≤1时,y =|x|+1,即求函数y =⎩⎪⎨⎪⎧ x 2-1,|x|+1,3x +3,x<-1,-1≤x ≤1,x>1的函数值.17.(本小题满分10分)古时候,当边境有敌人来犯时,守边的官兵通过在烽火台上点火向国内报告,如图所示,烽火台上点火表示数字1,不点火表示数字0,约定二进制数对应的十进制的单位是1000,请你计算一下,这组烽火台表示有多少敌人入侵?答案:解:由题图可知从左到右的五个烽火台,表示二进制数的自左到右五个数位,依题意知这组烽火台表示的二进制数是11011,改写为十进制为11011(2)=1×24+1×23+1×21+1×20=16+8+2+1=27. 又27×1000=27000,∴这组烽火台表示边境共有27000个敌人入侵.18.(本小题满分12分)请用算法语句描述下列算法流程图.答案:解:本框图的功能是对分段函数求值.y =⎩⎪⎨⎪⎧12x -5,x>0,0,x =0,12x +3,x<0.程序如下:INPUT “x =”;x IF x>0 THENy =(1/2)*x -5 ELSEIF x<0 THEN y =(1/2)*x +3 ELSE y =0 END IF END IFPRINT “y =”;y END19.(本小题满分12分)设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,写出用基本语句编写的程序.答案:解:这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示.1/(k (kLOOP UNTIL。

(好题)高中数学必修三第一章《统计》检测卷(包含答案解析)(1)

(好题)高中数学必修三第一章《统计》检测卷(包含答案解析)(1)

一、选择题1.某校举行演讲比赛,9位评委给选手A打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若统计员计算无误,则数字x应该是()A.5 B.4 C.3 D.22.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如下图),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是()A.32 B.27 C.24 D.333.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,⋯,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,编号200,480的人数为落入区间[]A.7 B.9 C.10 D.124.某产品的广告费用与销售额的统计数据如下表:()广告费用(万元)销售客(万元)根据上表中的数据可以求得线性回归方程中的为,据此模型预报广告费用为万元时销售额为()A.万元B.万元C.万元D.万元5.从两个班级各随机抽取5名学生测量身高(单位:cm),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙6.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176, 196的5个人中有1个没有抽到,则这个编号是( ) A .006B .041C .176D .1967.已知x ,y 取值如下表:x0 1 4 5 6 8 y 1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且 1.03y x a =+,则a =( ) A .1.53B .1.33C .1.23D .1.138.如图是两组各7名同学体重(单位:kg )数据的茎叶图,设1、2两组数据的平均数依次为1x 和2x ,标准差依次为12s s 、,那么( )(注:标准差222121[()()...()]n s x x x x x x n=-+-++-A .1212,x x s s >>B .1212,x x s s ><C .1212,x x s s <<D .1212,x x s s9.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元10.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1311.已知x ,y 的取值如表: x 2 6 7 8y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .12.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变二、填空题13.某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.14.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第17组抽取的号码为________.15.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高[)120130,,[)130140,,[]140,150三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[]140,150内的学生中抽取的人数应为________.16.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.17.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______.18.某天有10名工人生产同一零部件,生产的件数分别是:15、17、14、10、15、17、17、16、14、12,设其平均数为a ,中位数为b ,众数为c ,则a 、b 、c 从小到大的关系依次是________19.一个容量为40的样本,分成若干组,在它的频率分布直方图中,某一组相应的小长方形的面积为0.4,则该组的频数是__________.20.已知某产品连续4个月的广告费i x (千元)与销售额i y (万元)(1,2,3,4i =),经过对这些数据的处理,得到如下数据信息:①441118,14ii i i xy ====∑∑;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y bx a =+中的0.8b =. 那么广告费用为6千元时,则可预测销售额约为__________万元.三、解答题21.某地级市共有200000中学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元.经济学家调查发现,当地人均可支配年收入较上一年每增加%n ,一般困难的学生中有3%n 会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生有2%n 转为一般困难学生,特别困难的学生中有%n 转为很困难学生.现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x 取13时代表2013年,x 取14时代表2014年,……依此类推,且x 与y (单位:万元)近似满足关系式y x βα=+.(2013年至2019年该市中学生人数大致保持不变)y521()ii yy =-∑51()()iii x x y y =--∑0.8 3.11(1)估计该市2018年人均可支配年收入为多少万元?(2)试问该市2018年的“专项教育基金”的财政预算大约为多少万元?附:对于一组具有线性相关关系的数据11(,)u υ,22(,)u υ,…,(,)n n u υ,其回归直线方程u υβα=+的斜率和截距的最小二乘估计分别为121()()()niii nii u u uu υυβ==--=-∑∑,u αυβ=-.22.某玻璃工艺品加工厂有2条生产线用于生产其款产品,每条生产线一天能生产200件该产品,该产品市场评级规定:评分在10分及以上的为A 等品,低于10分的为B 等品.厂家将A 等品售价定为2000元/件,B 等品售价定为1200元/件. 下面是检验员在现有生产线上随机抽取的16件产品的评分: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,()1616222211110.0451616i i i i s x x x x ===-=-=∑∑,其中i x 为抽取的第i 件产品的评分,1,2,,16i =⋅⋅⋅.该厂计划通过增加生产工序来改进生产工艺,已知对一条生产线增加生产工序每年需花费1500万元,改进后该条生产线产能不变,但生产出的每件产品评分均提高0.05.已知该厂现有一笔1500万元的资金.(1)若厂家用这1500万元改进一条生产线,根据随机抽取的16件产品的评分. (i )估计改进后该生产线生产的产品中A 等品所占的比例; (ii )估计改进后该厂生产的所有产品评分的平均数和方差.(2)某金融机构向该厂推销一款年收益率为8.2%的理财产品,请你利用所学知识分析,将这1500万元用于购买该款理财产品所获得的收益,与通过改进一条生产线使产品评分提高所增加的收益相对比,一年后哪种方案的收益更大? (一年按365天计算) 23.某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x的值;并估计出月平均用水量的众数.(2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?24.从某小区抽取100个家庭进行月用电量调查,发现其月用电量都在50度至350度之间,频率分布直方图如图所示.(1)根据直方图求x的值,并估计该小区100个家庭的月均用电量(同一组中的数据用该组区间的中点值作代表);(2)从该小区已抽取的100个家庭中, 随机抽取月用电量超过300度的2个家庭,参加电视台举办的环保互动活动,求家庭甲(月用电量超过300度)被选中的概率.25.如表为某中学近5年被卓越大学联盟录取的学生人数.记2015年的年份序号为1,2016年的年份序号为2,…,2019年的年份序号为5.年份序号x12345录取人数y 100 130170 200 250(1)求y 关于x 的线性回归方程,并估计2020年该中学被卓越大学联盟录取的学生人数.(2)若在2015年和2019年被卓越大学联盟录取的学生中分层抽样7人,再从这7人中任选2人,求这2人恰好来自同一年份的概率.参考数据:521ii x=∑=55,51i ii x y =∑=2920.参考公式:b =1221ni ii nii x ynx y xnx ==--∑∑,a y bx =-26.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表: 气温()x ℃ 27 29 30 32 33 35 数量y121520272836(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆa y bx=-【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】记分员在去掉一个最高分94和一个最低分87后,余下的7个数字的平均数是91,()89889290939291791x +++++++÷=,635=917=6372x x ,∴+⨯∴=,故选D.2.D解析:D 【详解】高的比就是频率的比,所以各区间上的频率可依次设为2x,3x,5x,6x,3x,x,,同它们的和为1235631,20x x x x x x x +++++=∴=,所以该班学生数学成绩在[80,100)之间的学生人数是1(56)6011603320x +⨯⨯=⨯⨯=,故选D 3.C解析:C 【分析】根据系统抽样的定义,可知抽到的号码数可组成一个以301=-n a n 为通项公式的等差数列,令*200301480,≤-≤∈n n N ,解不等式可得结果. 【详解】每组人数=9603230÷=人,即抽到号码数的间隔为30,因为第一组抽到的号码为29,根据系统抽样的定义,抽到的号码数可组成一个等差数列,且*2930(1)301,=+-=-∈n n n n N a ,令200301480≤-≤n ,得2014813030≤≤n ,可得n 的取值可以从7取到16,共10个,故选C . 【点睛】本题主要考查系统抽样的定义及应用,转化为等差数列是解决本题的关键.4.B解析:B 【解析】 【分析】 先求出,由样本点的中心在回归直线上,可求出,从而求出回归方程,然后令,可求出答案.【详解】 由题意,,则样本中心点在回归方程上,则,故线性回归方程为,则广告费用为万元时销售额为万元,故选B.【点睛】本题考查了线性回归方程的求法,考查了学生的计算能力,属于基础题.5.C解析:C 【解析】 【分析】利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲,乙班平均身高1801601501501651615x ++++==乙,所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲,故选C. 【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.6.B解析:B 【解析】 【分析】求得抽样的间隔为10,得出若在第1组中抽取的数字为6,则抽取的号码满足104n -,即可出判定,得到答案. 【详解】由题意,从200人中用系统抽样的方法抽取20人,所以抽样的间隔为2001020=, 若在第1组中抽取的数字为006,则抽取的号码满足6(1)10104n n +-⨯=-,其中n N +∈,其中当4n =时,抽取的号码为36;当18n =时,抽取的号码为176;当20n =时,抽取的号码为196,所以041这个编号不在抽取的号码中,故选B. 【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的抽取方法是解答的关键,着重考查了运算与求解能力,属于基础题.7.D解析:D 【解析】分析:首先根据题中所给的表中的数据,计算得出样本中心点的坐标,利用回归直线必过样本中心点,代入求得结果. 详解:依题意得,1(014568)46x =⨯+++++=,1(1.3 1.8 5.6 6.17.49.3) 5.256y =+++++=,因为回归直线必过样本中心点(,)x y ,即点(4,5.25),所以有5.25 1.034ˆa=⨯+,解得ˆ 1.13a =,故选D. 点睛:该题考查的是有关回归直线的有关问题,涉及到的知识点有回归直线一定过样本中心点,计算得出相应坐标的平均值,求得样本中心点的坐标,代入求得结果.8.C解析:C 【分析】由茎叶图分别计算出两组数的平均数和标准差,然后比较大小 【详解】读取茎叶图得到两组数据分别为: (1)53565758617072,,,,,, (2)54565860617273,,,,,,()()11503678112022617x kg =+⨯++++++=,()()215046810112223627x kg =+⨯++++++=,1s ==,2s == 则1212,x x s s << 故选C 【点睛】本题给出茎叶图,需要求出数据的平均数和方差,着重考查了茎叶图的认识,样本特征数的计算等知识,属于基础题.9.C解析:C 【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出ˆa,得到线性回归方程,把6x =代入即可求出答案.由题意知4235 3.54x +++==,44253754404y +++==, 则40ˆˆ9.4 3.57.1ay bx =-=-⨯=, 所以回归方程为9.4.1ˆ7yx =+, 则广告费用为6万元时销售额为9.467.163.5⨯+=, 故答案为C. 【点睛】本题考查了线性回归方程的求法与应用,属于基础题.10.C解析:C 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列, ∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.11.B解析:B 【解析】 【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标. 【详解】 根据题意可得,,由线性回归方程一定过样本中心点,.故选:B .本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.12.A解析:A 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,, 所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.二、填空题13.【分析】先分别求出这3组的人数再利用分层抽样的方法即可得出答案【详解】第3组的人数为第4组的人数为第5组的人数为所以这三组共有60名志愿者所以利用分层抽样的方法在60名志愿者中抽取6名志愿者第三组应 解析:3【分析】先分别求出这3组的人数,再利用分层抽样的方法即可得出答案. 【详解】第3组的人数为10050.0630⨯⨯=, 第4组的人数为10050.0420⨯⨯=, 第5组的人数为1000.02510⨯⨯=, 所以这三组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,第三组应抽取306360⨯=名, 故答案为:3. 【点睛】关键点点睛:该题考查的是有关频率分布直方图的识别以及分层抽样某层抽取个数的问题,正确解题的关键是掌握在抽取过程中每个个题被抽到的机会均等.14.331【分析】分段抽样由抽取时的分段间隔是20利用等差数列知识得解【详解】由抽取时的分段间隔是20即抽取20名同学其编号构成首项为11公差为20的等差数列第17组抽取的号码故答案为:331【点睛】本解析:331 【分析】分段抽样由抽取时的分段间隔是20,利用等差数列知识得解.由抽取时的分段间隔是20.即抽取20名同学,其编号构成首项为11,公差为20的等差数列,第17组抽取的号码11(171)20331+-⨯= 故答案为:331 【点睛】本题考查系统抽样,属于基础题.15.3【分析】先由频率之和等于1得出的值计算身高在的频率之比根据比例得出身高在内的学生中抽取的人数【详解】身高在的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【点睛】本题主要考查了根据频率分解析:3 【分析】先由频率之和等于1得出a 的值,计算身高在[)120,130,[)130,140,[]140,150的频率之比,根据比例得出身高在[]140,150内的学生中抽取的人数. 【详解】(0.0050.010.020.035)101a ++++⨯=0.03a ∴=身高在[)120,130,[)130,140,[]140,150的频率之比为0.03:0.02:0.013:2:1= 所以从身高在[]140,150内的学生中抽取的人数应为11836⨯= 故答案为:3 【点睛】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.16.【分析】由平均数的公式求得再利用方差的计算公式求得即可求解【详解】由平均数的公式可得解得所以方差为所以样本的标准差为【点睛】本题主要考查了样本的平均数与方差标准差的计算着重考查了运算与求解能力属于基解析:3【分析】由平均数的公式,求得49a =,再利用方差的计算公式,求得2283s =,即可求解. 【详解】由平均数的公式,可得1(4042404344)436a +++++=,解得49a =, 所以方差为2222222128[(4043)(4243)(4043)(4943)(4343)(4443)]63s =-+-+-+-+-+-=,所以样本的标准差为3s =. 【点睛】本题主要考查了样本的平均数与方差、标准差的计算,着重考查了运算与求解能力,属于基础题.17.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归解析:16-【解析】 【分析】由题意求得样本中心点,代入回归直线方程即可求出b 的值 【详解】 由已知,()12101210330x x x y y y +++=+++=()12101310x x x x ∴=⨯+++=()12101110y y y y =⨯+++=代入回归直线方程可得:3132b =+ 解得16b =-故答案为16- 【点睛】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果18.【详解】分析:将数据由小到大排列好根据众数中位数平均数的概念得到相应的数据即可详解:根据提干得到中位数为b=15众数为c=17平均数为=a 故故答案为点睛:这个题目考查了中位数众数平均数的概念和计算较解析:a b c <<. 【详解】分析:将数据由小到大排列好,根据众数,中位数,平均数的概念得到相应的数据即可. 详解:根据提干得到中位数为b=15,众数为c=17,平均数为10+12+28+30+16+51=14.710=a.故 a b c <<.故答案为a b c <<.点睛:这个题目考查了中位数,众数,平均数的概念和计算,较为基础,众数即出现次数最多的数据,中位数即最中间的数据,平均数即将所有数据加到一起,除以数据个数.19.16【解析】根据频率直方图的含义每组小矩形的面积就是该组数据在总体中出现的频率所以该组频数为故填16解析:16 【解析】根据频率直方图的含义,每组小矩形的面积就是该组数据在总体中出现的频率,所以该组频数为400.4=16⨯,故填16.20.【解析】因此 解析:4.7【解析】18914779,0.80.1424222ˆx y a====∴=-⨯=- 因此0.860.1 4.7y =⨯-= 三、解答题21.(1) 0.10.7y x =-;(2)1624万元. 【解析】分析:(1)根据表中数据,求出x ,代入公式求值,从而得到回归直线方程,代入18x =即可;(2)通过由题意知2017年时该市享受“国家精准扶贫”政策的学生共2000007%14000⨯=人.一般困难、很困难、特别困难的中学生依次有7000人、4200人、2800人,按照增长比例关系求解2017年时该市享受“国家精准扶贫”政策的学生,即可得财政预算.详解:(1)因为()11314151617155x =++++=,所以()()5222221()211210i i x x =-=-+-++=∑.所以()()()515210ˆ.1iii ii x x y y x x β==--==-∑∑,0.80.1150.ˆ7ˆy x αβ=-=-⨯=-,所以0.1.7ˆ0y x =-. 当18x =时,2018年人均可支配年收入0.1180.7ˆ 1.1y=⨯-=(万元). (2)由题意知2017年时该市享受“国家精准扶贫”政策的学生共2000007%14000⨯=人. 一般困难、很困难、特别困难的中学生依次有7000人、4200人、2800人,2018年人均可支配收入比2017年增长()()0.1180.70.1170.70.110%0.1170.7⨯--⨯-==⨯-.所以2018年该市特别困难的中学生有()2800110%2520⨯-=人, 很困难的学生有()4200120%280010%3640⨯-+⨯=人, 一般困难的学生有()7000130%420020%5740⨯-+⨯=人. 所以2018年的“专项教育基金”的财政预算大约为57400.136400.1525200.21624⨯+⨯+⨯=(万元). 点睛:本题考查了线性回归方程的求法及应用.22.(1)(i )1316;(ii )9.995,0.045625;(2)将这1500万元用于改进一条生产线一年后收益更大. 【分析】(1)(i )首先求得改进后随机抽取的16件产品的评分,由此计算出A 等品所占的比例. (ii )首先求得改进后的生产线的产品评分的平均数z ,由此求得改进一条生产线后该厂生产的所有产品评分的平均数.根据方差的计算公式,计算出改进一条生产线后该厂生产的所有产品评分的方差.(2)分别计算出改进生产线和投资理财产品的一年收益,由此确定收益更大的方案. 【详解】(1)(i )改进后,随机抽取的16件产品的评分依次变为: 10.00 10.17 10.01 10.01 10.06 9.97 10.03 10.09 10.31 9.96 10.18 10.07 9.27 10.09 10.10 10.00 其中,A 等品共有13个,所以,估计改进后该生产线生产的产品中A 等品所占的比例为1316; (ii )设一条生产线改进前一天生产出的产品评分为()1,2,3,,200i y i =⋅⋅⋅,改进后生产出的产品评分为()1,2,3,,200i z i =⋅⋅⋅,其中0.05i i z y =+. 由已知得,用样本估计总体可知9.97y =,所以()20020011110.050.0510.02200200i i i i z y y z ====+=+=∑∑, 所以估计改进一条生产线后该厂生产的所有产品评分的平均数为:9.9720010.022009.995400⨯+⨯=,由已知得,用样本估计总体可知20.045y s =,所以()()200200222211110.05(0.05)0.045200200zi i y i i s z zy y s ==⎡⎤=-=+-+==⎣⎦∑∑. 估计改进后该厂生产的所有产品评分的方差为:2002002221119.995400i i i i y z ==⎡⎤+-⎢⎥⎣⎦∑∑ 20020022222221112002002002009.995400i i i i y y y z z z ==⎡⎤=-++-+-⎢⎥⎣⎦∑∑ ()* 因为2002211200yi i s y y ==-∑,所以200221200200i y i y y s =-=∑, 同理200221200200i z i zz s =-=∑,所以()*式2222212002002002009.995400y z s s z y ⎡⎤=+++-⎢⎥⎣⎦ 222229.99522y zs s y z++=+-22229.979.99510.029.9950.04522--=++0.025(9.979.995)0.025(10.029.995)0.04522-++=++20.0450.0250.045625=+=.(2)将这1500万元用于改进一条生产线,一年后因产品评分提高而增加的收益为:445(20001200)2003651500103251016-⨯⨯⨯-⨯=⨯(元); 将这1500万元购买该款理财产品,一年后的收益为: 444150010(18.2%)150********⨯⨯+-⨯=⨯(元),因为443251012310⨯>⨯,所以将这1500万元用于改进一条生产线一年后收益更大. 【点睛】本小题主要考查平均数、方差的计算,考查运算求解能力,属于中档题. 23.(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【分析】(1)根据频率和为1,列方程求出x 的值;(2)根据频率分布直方图中,每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值,由最高矩形的数据组中点为众数;中位数两边的频率相等,由此求出中位数;(3)求出抽取比例数,计算应抽取的户数; (4)利用列举法,由古典概型概率公式可得结果. 【详解】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1,解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为 (0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5, 解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯= (3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++,∴月平均用电量在[10,12)的用户中应抽取11×211=2(户). (4)月平均用电量在[12,14)的用户中应抽取11×111=1(户), 月平均用电量在[10,12)的用户设为A 、B , 月平均用电量在[12,14)的用户设为C ,从[10,12),[12,14)这两组中随机抽取2户共有 ,,AB AC BC ,3种情况, 其中,抽取的两户不是来自同一个组的有,,AC BC ,2种情况, 所以,抽取的两户不是来自同一个组的概率为23. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.24.(1)x=0.0044, 月均用电量约为186度;(2).【详解】 (1)由题意得,.设该小区100个家庭的月均用电量为S 则9+22.5+52.5+49.5+33+19.5=186.(2),所以用电量超过300度的家庭共有6个.分别令为甲、A 、B 、C 、D 、E ,则从中任取两个,有(甲,A )、(甲,B )、(甲,C )、(甲,D )、(甲,E )、(A,B )、(A,C )、(A,D )、(A,E )、(B,C )、(B,D )、(B,E )、(C,D )、(C,E )、(D,E )15种等可能的基本事件,其中甲被选中的基本事件有(甲,A )、(甲,B )、(甲,C )、(甲,D )、(甲,E )5种.家庭甲被选中的概率.25.(1)3759y x =+;281;(2)1121. 【分析】(1)由题意计算平均数,代入公式求出回归系数,写出线性回归方程,再利用线性回归方程计算6x =时的值即可;(2)由分层抽样求出抽取的人数,再利用概率公式求出对应的概率即可. 【详解】(1)由表格可求()11234+5=35x =+++,()1100130170200+250=1705y =+++, 且521ii x=∑=55,51i ii x y =∑=2920,所以12221292053170375553ni ii nii x y nx yxnx b ==--⨯⨯==-⨯-=∑∑,17037359a y bx =-=-⨯=,所以y 关于x 的线性回归方程为3759y x =+,当6x =时,37659281y =⨯+=,所以2020年该中学被卓越大学联盟录取的学生人数约为281;(2)由分层抽样可知7人中有10072100250⨯=+ 人来自2015年,有25075100250⨯=+人来自2019年,从中随机抽取两人共有21种结果,抽取的两人恰好来自同一年的有11种,所以所求概率为1121P =. 【点睛】本题主要考查线性回归方程和古典概型求概率,属于中档题. 26.(1)作图见解析,4310111414y x =-;(2)40. 【分析】(1)描点法得出散点图,根据所给数据及公式计算回归方程的系数,得回归方程; (2)36.6x =代入回归方程计算即得. 【详解】(1)散点图如图所示.根据销量与气温对照表知,272930323335316x +++++==,1215207836236y +++++==,则()()()()()()()()()()()12222222141128131425413421124niii nii x x y y b x x ==---⨯-+-⨯-+-⨯-+⨯+⨯+⨯==-+-+-+++-∑∑129434214==, 43101123311414a y bx =-=-⨯=-, 所以y 关于x 的线性回归方程为4310111414y x =-. (2)当36.6x =时,43101136.640.2401414y =⨯-=≈. 答:当最高气温为36.6℃时,可预测这天小卖部卖出的冷饮数量约为40. 【点睛】本题考查散点图,考查线性回归直线方程,考查学生的数据处理能力,运算求解能力,属于中档题.。

高一数学必修3第一章测试题及答案-人教版(A汇编

高一数学必修3第一章测试题及答案-人教版(A汇编

高一数学必修3第一章测试题及答案-人教版(A)数学第一章测试题一.选择题1.下面的结论正确的是 ( )A .一个程序的算法步骤是可逆的B 、一个算法可以无止境地运算下去的C 、完成一件事情的算法有且只有一种D 、设计算法要本着简单方便的原则2、早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法 ( )A 、 S1 洗脸刷牙、S2刷水壶、S3 烧水、S4 泡面、S5 吃饭、S6 听广播B 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5 听广播C 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭 同时 听广播D 、 S1吃饭 同时 听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3.算法 S1 m=aS2 若b<m ,则m=b S3 若c<m ,则m=c S4 若d<m ,则 m=dS5 输出m ,则输出m 表示 ( ) A .a ,b ,c ,d 中最大值B .a ,b ,c ,d 中最小值C .将a ,b ,c ,d 由小到大排序D .将a ,b ,c ,d 由大到小排序 4.右图输出的是A .2005B .65C .64D .63 5、下列给出的赋值语句中正确的是( )A. 5 = MB. x =-x (第4题)C. B=A=3D. x +y = 06、下列选项那个是正确的( )A 、INPUT A;B B. INPUT B=3 C. PRINT y=2*x+1 D. PRINT 4*x 7、以下给出的各数中不可能是八进制数的是( ) A.123 B.10 110 C.4724 D.7 8578、如果右边程序执行后输出的结果是990,那么 在程序until 后面的“条件”应为( ) A.i > 10 B. i <8 C. i <=9 D.i<9 9.读程序 甲: i=1 乙: i=1000 S=0 S=0 WHILE i<=1000 DO S=S+i S=S+i i=i+l i=i 一1 WEND Loop UNTIL i<1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是 ( )A .程序不同结果不同B .程序不同,结果相同C .程序相同结果不同D .程序相同,结果相同 10.在上题条件下,假定能将甲、乙两程序“定格”在i=500,即能输出i=500 时一个值,则输出结果 ( )A .甲大乙小B .甲乙相同C .甲小乙大D .不能判断 二.填空题.11、有如下程序框图(如右图所示),则该程序框图表示的算法的功能是( 第12题)12、上面是求解一元二次方程)0(02≠=++a c bx ax 的流程图,根据题意填写: (1) ;(2) ;(3) 。

新人教版数学必修三第一章测试题(有答案)复习课程

新人教版数学必修三第一章测试题(有答案)复习课程
二、填空题 ( 本大题共 5 小题 , 每小题 5 分, 共 25 分. 把答案填在题中 的横线上 )
11 为了了解 1 200 名学生对学校某项教改试验的意见 , 打算从中抽取一个容量为 60 的样本 , 考虑用系统抽样 , 则分段的间隔 k 为 . 答案 :20
12(2011 ·广东惠州一模 , 文 11) 某校对全校男女学生共 1 600 名进行健康调查 , 选用 分层抽样法抽取一个容量为 200 的样本 . 已知女生抽了 95 人 , 则该校的女生人数应是 人.
和.
解析 :=
=24, =
=23. 答案 :24 23
14(2011 ·北京朝阳二模 , 文 13) 某射击运动员在一组射击训练中共射击 5 次 , 成绩统
计如下表 :
环数
8
9
10
次数
2
2
1
则这 5 次射击的平均环数为 ;5 次射击环数的方差为 . 解析 : 由统计表可知 , 在射击训练中 , 成绩为 8 环的次数为 2, 成绩为 9 环的次数为 2, 成绩 为 10 环的次数为 1, 则射击训练中的总环数为 8× 2+9×2+10=44, 所以 5 次射击的平均环 数为 =8.8,5 次射击环数的方差 s2==0.56. 答案 :8.8 0.56
由于这说明乙机床生产出的零件直径波动小因此从产品质量稳定性的角度考三解答题本大题共2小题共25解答时应写出必要的文字说明证明过程或演算步骤16本小题满分1066697381899091已知
本章测评 ( 时间 :90 分钟 满分 :100 分 )
一、选择题 ( 本大题共 10 小题 , 每小题 5 分, 共 50 分. 在每小题给出的 四个选项中 , 只有一项是符合题目要求的 )

(压轴题)高中数学必修三第一章《统计》检测题(含答案解析)(1)

(压轴题)高中数学必修三第一章《统计》检测题(含答案解析)(1)

一、选择题1.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件2.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .163.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .724.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生5.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④6.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为37.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .918.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位9.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .1810.已知某企业上半年前5个月产品广告投入与利润额统计如下:由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元11.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( ) A .112种B .100种C .90种D .80种二、填空题13.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第17组抽取的号码为________.14.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.15.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示:根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________.16.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.17.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.18.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.19.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.20.已知一组数据x ,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.2020年1月末,新冠疫情爆发,经过全国人民的努力,2月中旬,疫情得到了初步的控制,湖北省以外地区的每日新增确诊人数开始减少,某同学针对这个问题,选取他在统计学中学到的一元线性回归模型,作了数学探究:他于2月17日统计了2月7日至16日这十天湖北省以外地区的每日新增确诊人数,表格如下: 日期 2.7 2.8 2.9 2.10 2.11 2.12 2.132.14 2.15 2.16代号x 123 45 6 78910新增确诊人数y558 509444381 377 312 267221166 115y x y x 计算出: 5.5,335x y ==,()()1013955iii x x y y =--=-∑,()210182.5ii x x =-=∑(1)请你帮这位同学计算出y 与x 的线性回归方程(精确到0.1),然后根据这个方程估计湖北省以外地区新增确诊人数为零时的大概日期;附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为:()()()1012101iii ii x x y y b x x ==--=-∑∑,a y bx =-(2)实际上2月17日至2月22日的新增确诊人数如下:出评价.22.据统计某品牌服装专卖店一周内每天获取得纯利润y (百元)与每天销售这种服装件数x (百件)之间有如下一组数据.该专卖店计划在国庆节举行大型促销活动以提高该品牌服装的知名度,为了检验服装的质量,现从厂家购进的500件服装中抽取60件进行检验,(服装进货编号为001-500). (1)利用随机数表抽样本时,如果从随机数表第8行第2列的数开始按三位数连贯向右读取,试写出最先检测的5件服装的编号;(2)求该专卖店每天的纯利y 与每天销售件数x 之间的回归直线方程.(精确到0.01) (3)估计每天销售1200件这种服装时获多少纯利润? 附表:(随机数表第7行至第9行)84421 75331 57245 50688 77047 44767 21763 35025 83921 20676 63016 47859 16955 56719 98105 07185 12867 35807 44395 23879 33211 23429 78645 60782 52420 74438 15510 01342 99660 27954 参考数据:721280i i x==∑,72145309i i y ==∑,713487i i i x y ==∑.参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-23.某市为了解疫情过后制造业企业的复工复产情况,随机调查了100家企业,得到这些企业4月份较3月份产值增长率x 的频率分布表如下:企业数13 40 35 8 4(1)估计制造业企业中产值增长率不低于60%的企业比例及产值负增长的企业比例; (2)求制造业企业产值增长率的平均数与方差的估计值(同一组中的数据用该组区间的中点值为代表).24.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表: 气温()x ℃ 27 29 30 32 33 35 数量y121520272836(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆa y bx=- 25.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料: 日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.3.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.B解析:B 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.6.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差7.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.8.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.9.C解析:C【解析】【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数.【详解】 根据题意得,用分层抽样在各层中的抽样比为421105020=, 则在高三年级抽取的人数是14001625⨯=人, 故选C.【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题. 10.C解析:C【解析】【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可【详解】()19.59.39.18.99.79.35x =⨯++++= ()19289898793905y =⨯++++= 代入到回归方程为7.5ˆyx a =+,解得20.25a = 7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。

人教版高中数学必修三第一章算法初步学业分层测评4含答案

人教版高中数学必修三第一章算法初步学业分层测评4含答案

学业分层测评(四)循环结构(建议用时:45分钟)[学业达标]一、选择题1.下列关于循环结构的说法正确的是()A.循环结构中,判断框内的条件是唯一的B.判断框中的条件成立时,要结束循环向下执行C.循环体中要对判断框中的条件变量有所改变才会使循环结构不会出现“死循环”D.循环结构就是无限循环的结构,执行程序时会永无止境地运行下去【解析】由于判断框内的条件不唯一,故A错;由于当型循环结构中,判断框中的条件成立时执行循环体,故B错;由于循环结构不是无限循环的,故C正确,D错.【答案】 C2.执行如图1-1-38所示的程序框图,如果输出的a值大于2 015,那么判断框内应填()图1-1-38A.k≤6?B.k<5?C.k≤5? D.k>6?【解析】第一次循环,a=4×1+3=7,k=1+1=2;第二次循环,a=7<2 015,故继续循环,所以a=4×7+3=31,k=2+1=3;第三次循环,a=31<2 015,故继续循环,所以a=4×31+3=127,k =3+1=4;第四次循环,a=127<2 015,故继续循环,所以a=4×127+3=511,k=4+1=5;第五次循环,a=511<2 015,故继续循环,所以a=4×511+3=2 047,k=5+1=6;第六次循环,a=2 047>2 015,故不符合条件,终止循环,输出a值.所以判断框内应填的条件是k≤5?.【答案】 C3.如图1-1-39所示的程序框图表示的算法功能是()图1-1-39A.计算小于100的奇数的连乘积B.计算从1开始的连续奇数的连乘积C.从1开始的连续奇数的连乘积,当乘积大于或等于100时,计算奇数的个数D.计算1×3×5×…×n≥100时的最小的n的值【解析】循环一次时S=1×3,循环2次时,S=1×3×5,且S 大于或等于100时输出i,故算法功能为D.【答案】 D4.阅读如图1-1-40框图,运行相应的程序,则输出i的值为()图1-1-40A.3 B.4C.5 D.6【解析】i=1时,a=1×1+1=2,i=2时,a=2×2+1=5,i=3时,a=3×5+1=16,i=4时,a=4×16+1=65>50,所以输出i=4.【答案】 B5.如图1-1-41所示,是一个循环结构的算法,下列说法不正确的是()图1-1-41A.①是循环变量初始化,循环就要开始B.②是循环体C.③是判断是否继续循环的终止条件D.①可以省略不写【解析】①是循环变量初始化,表示循环就要开始,不可以省略不写,故选D.【答案】 D二、填空题6.如图1-1-42所示的程序框图,输出的结果为________.图1-1-42【解析】S=1×5×4=20.【答案】207.如图1-1-43所示的程序框图,当输入x的值为5时,则其输出的结果是________.图1-1-43【解析】∵x=5,x>0,∴x=5-3=2,x>0.∴x=2-3=-1.∴y=0.5-1=2.【答案】 28.若执行如图1-1-44所示的程序框图,输入x1=1,x2=2,x3=3,x-=2,则输出的数等于________.图1-1-44【解析】i=1,s=0+(x1-x-)2=(1-2)2=1,i=2,s=1+(x2-x-)2=1+(2-2)2=1,i=3,s=1+(x3-x-)2=1+(3-2)2=2,s =1i ×s =13×2=23.【答案】 23三、解答题9.用循环结构书写求1+12+13+14+…+11 000的算法,并画出相应的程序框图. 【导学号:28750011】【解】 相应的算法如下:第一步,S =0,i =1.第二步,S =S +1i .第三步,i =i +1.第四步,i >1 000是否成立,若成立执行第5步;否则重复执行第二步.第五步,输出S .相应的算法框图如图所示:10.2015年某地森林面积为1 000 km 2,且每年增长5%.到哪一年该地森林面积超过2 000 km 2?(只画出程序框图)【解】程序框图如下:[能力提升]1.执行如图1-1-45所示的程序框图,若m=5,则输出的结果为()图1-1-45A.4B.5C.6D.8【解析】由程序框图可知,k=0,P=1.第一次循环:因为k=0<5,所以P=1×30=1,k=0+1=1.第二次循环:因为k=1<5,所以P=1×31=3,k=1+1=2.第三次循环:因为k=2<5,所以P=3×32=33,k=2+1=3.第四次循环:因为k=3<5,所以P=33×33=36,k=3+1=4.第五次循环:因为k=4<5,所以P=36×34=310,k=4+1=5.此时满足判断框内的条件,输出结果为z=log9310=5.【答案】 B2.某程序框图如图1-1-46所示,若输出的s=57,则判断框内为()A.k>4? B.k>5?C.k>6? D.k>7?【解析】由题意k=1时,s=1;当k=2时,s=2×1+2=4;当k=3时,s=2×4+3=11;当k=4时,s=2×11+4=26;当k=5时,s=2×26+5=57,此时输出结果一致,故k>4时循环终止.【答案】 A图1-1-46图1-1-473.设a是一个各位数字都不是0且没有重复数字的三位数.将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=815,则I(a)=158,D(a)=851).阅读如图1-1-47所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=________.【解析】取a1=815⇒b1=851-158=693≠815⇒a2=693;由a2=693⇒b2=963-369=594≠693⇒a3=594;由a3=594⇒b3=954-459=495≠594⇒a4=495;由a4=495⇒b4=954-459=495=a4⇒b=495.【答案】4954.如图1-1-48所示的程序的输出结果为sum=132,求判断框中的条件.图1-1-48【解】∵i初始值为12,sum初始值为1,第一次循环sum=1×12=12,第二次sum=12×11=132,只循环2次,∴i≥11.∴判断框中应填的条件为“i≥11?”或“i>10?”.附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

人教A版高中数学必修3课后习题 第一章末测评卷

人教A版高中数学必修3课后习题 第一章末测评卷

第一章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算S的值的选项中,不能设计算法求解的是( )A.S=1+2+3+…+90B.S=1+2+3+4C.S=1+2+3+…+n(n≥2且n∈N)D.S=15+25+35+…+2 019,并且这样的步骤和序列可以解决一类问题.它的一个特点为有穷性,是指算法必须能在执行有限个步骤之后终止,而C项中S=1+2+3+…+n(n≥2且n∈N)中n是不确定的,所以不能设计算法求解.2.下列赋值语句错误的是( )A.i=i-1B.m=m∧ 2+1C.k=-1/kD.=m ∧2+1后,m 的值等于原来m 的平方再加1,B 正确;执行k=-1/k 后,k 的值是原来的负倒数,C 正确;赋值号的左边只能是一个变量,D 错误.3.若下列程序执行的结果是2,则输入的x 的值是( )A.2B.-2C.2或-2D.0y={x ,x ≥0,-x ,x <0,故输入2或-2的结果都是2.4.用辗转相除法计算56和264的最大公约数时,需要做除法的次数是( )A.3B.4C.6D.7得最大公约数为8,做了4次除法.5.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为( ) A.4,2 B.5,3 C.5,2 D.6,25-x2+2=((((4x)x)x-1)x)x+2,所以需要做5次乘法运算和2次加减运算.6.若运行下面的程序,输出的结果为5,则横线处应填写的内容可以为( )A.0B.2C.4D.5,根据题意得12+y2=5,y=±2,故选B.7.如图所示的程序框图,已知a1=3,输出的结果为7,则a2的值是( )A.9B.10C.11D.12,所以原.因为输出的结果为7,所以b=7,又b=b2b=14,即a1+a2=14.又a1=3,所以a2=11.8.阅读下面的程序:该程序的功能是( )A.求1+2+3+…+100的值B.求1+3+5+…+99的值C.求1+3+5+…+100的值D.求1+3+5+…+101的值,该程序中循环变量每次的增量是2,且当i=99时,i≤100,继续执行循环体“sum=sum+99,i=i+2”,当i=101时,101>100,循环终止,输出sum的值,此时sum=1+3+5+ (99)9.如图①②,它们都表示的是输出所有立方小于729的正整数的程序框图,那么判断框中应分别补充的条件为( )A.①n3≥729?②n3<729?B.①n3≤729?②n3>729?C.①n3<729? ②n3≥729?D.①n3<729? ②n3<729?,②为直到型循环结构,分析知选C.10.执行两次下图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为( )A.0,0B.1,1C.0,1D.1,0x=7,则b=2(b2<x,且x不能被b整除)→b=3(b2>x)→输出a=1;若输入x=9,则b=2(b2<x,且x不能被b整除)→b=3(b2=x,但x能被b整除)→输出a=0.故选D.11.已知多项式p(x)=3x5+9x4+x3+kx2+4x+11当x=3时的值为1 616,则k的值为( )A.12B.13C.14D.15p(x)=((((3x+9)x+1)x+k)x+4)x+11,则当x=3时,p(3)=(((54+1)×3+k)×3+4)×3+11=(495+3k+4)×3+11=9k+1508=161 6,所以k=12.12.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”, 如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:√3≈1.732,sin 15°≈0.258 8,sin7.5°≈0.130 5)()A.12B.24C.48D.96≈2.598,不满足条件n=6,S=3sin60°=3√32S≥3.10;n=12,S=6sin30°=3,不满足条件S≥3.10;n=24,S=12sin15°≈12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知以下程序,若输出的结果是12,则横线处应填写.M=4,S=10,i=2;第二次执行循环体后M=2,S=12,i=3;所以横线处应填i≤2(或i<3).i<3)14.如图所示的程序框图,若输入x=4.5,则输出的i= .i=1时,x=4.5-1=3.5;当i=1+1=2时,x=3.5-1=2.5;当i=2+1=3时,x=2.5-1=1.5;当i=3+1=4时,x=1.5-1=0.5;0.5<1,输出i=4.15.用秦九韶算法求多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8当x=5时的值的过程中,v3= .f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8=((((5x+2)x+3.5)x-2.6)x+1.7)x-0. 8,∴v3=((5x+2)x+3.5)x-2.6,将x=5代入得v3=((5×5+2)×5+3.5)×5-2.6=689.9.16.定义n!=1×2×3×…×n,如图是求10!的程序框图,其中k为整数,则k= .10!=1×2×…×10,所以判断框内的条件为“i<11?”,故k=11.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)求三个数168,56,264的最大公约数.168=56×3+0,所以168与56的最大公约数为56.又因为264=56×4+40,56=40×1+16,40=16×2+8,16=8×2,所以264与56的最大公约数为8.所以168,56与264的最大公约数为8.18.(本小题满分12分)利用秦九韶算法判断方程x5+x3+x2-1=0在[0,2]上是否存在实根.x=0及x=2时f(x)=x5+x3+x2-1的值,f(x)=x5+x3+x2-1可改写成如下形式:f(x)=((((x+0)x+1)x+1)x+0)x-1.当x=0时,v0=1,v1=0,v2=1,v3=1,v4=0,v5=-1,即f(0)=-1.当x=2时,v0=1,v1=2,v2=5,v3=11,v4=22,v5=43,即f(2)=43.由f(0)f(2)<0,且f(x)在[0,2]上连续知f(x)在[0,2]上存在零点,即方程x5+x3+x2-1=0在[0,2]上存在实根.19.(本小题满分12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:20.(本小题满分12分)已知函数y={x 2-3,x ≥0,2x 2-6,x <0,编写一个程序,对于输入的每一个x 的值,都能得到相应的函数值,并写出算法步骤,画出程序框图.:第一步,输入x 值.第二步,判断x 的范围,若x≥0,则y=x 2-3;否则y=2x 2-6.第三步,输出y 值.程序如下:程序框图如图所示:21.(本小题满分12分)“鸡兔同笼”问题是我国古代著名的趣题之一,大约在1 500年前,《孙子算经》中就记载了这个有趣的问题,书中这样描述:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?试编写一个程序,解决这一问题.:设鸡、兔的头的总数为H,脚的总数为F,则可求出共有鸡x=4H-F2(只),兔子y=F-2H2(只),也可以用H-x来表示兔子的数量.要解决这一类问题,只要设计好公式,输入头、脚的数目,运用公式即可.程序如下:执行这个程序时,输入H=35,F=94,则会输出相应的x,y的值.22.(本小题满分12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.由程序框图知,当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=时,输出最后一对,共输出(x,y)的组数为1009.(3)程序框图的程序语句如下:。

(典型题)高中数学必修三第一章《统计》检测卷(有答案解析)

(典型题)高中数学必修三第一章《统计》检测卷(有答案解析)

一、选择题1.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如下图),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是( )A .32B .27C .24D .332.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+3.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[)9,11的学生人数为25,则n 的值为( )A.40 B.50 C.80 D.1004.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是()A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量C.华为销量最大的是第四季度D.三星销量最小的是第四季度5.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价元和销售量件之间的一组数据如下表所示:价格99.510.511销售量11865由散点图可知,销售量与价格之间有较强的线性相关关系,其线性回归方程是,且,则其中的()A.10 B.11 C.12 D.10.56.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为( )A .1167B .365C .36D .6757.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( ) x 8 10 11 12 14 y2125m2835A .26B .27C .28D .298.通过实验,得到一组数据如下:2,5,8,9,x ,已知这组数据的平均数为6,则这组数据的方差为( ) A .3.2B .4C .6D .6.59.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .081510.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A .15.5B .15.6C .15.7D .1611.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定12.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表: 时间周一 周二 周三周四 周五 车流量x (万辆) 100 102 108 114 116 浓度y (微克)7880848890根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 二、填空题13.某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.14.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.15.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示: 资金投入x 2 3 4 5 6 利润y0.40.611.21.8根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________.16.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,则下列说法中正确的序号是______.①由样本数据得到的回归直线方程y bx a =+必过样本点的中心 ②残差平方和越小的模型,拟合的效果越好③用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好④若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间线性相关性强 17.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____18.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..19.某校有高一学生n 名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10n的样本,若样本中男生比女生多12人,则n =_______.20.已知一组数据x ,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.某科研课题组通过一款手机APP 软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表: 周跑量 [)10,15 [)15,20 [)20,25 [)25,30 [)30,35 [)35,40 [)40,45 [)45,50 []50,55人数100120130180220150603010周跑量 小于20公 20公里到 不小于40 类别 休闲跑者 核心跑者 精英跑者 装备价格250040004500);(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样(如表),根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?22.某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.下图是根据该水库历年的日泄流量的水文资料画成的日泄流量X (单位:万立方米)的频率分布直方图(不完整),已知[)0,120X ∈,历年中日泄流量在区间[30,60) 的年平均天数为156,一年按364天计.(Ⅰ)请把频率分布直方图补充完整;(Ⅱ)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才够运行一台发电机,如6090X ≤<时才够运行两台发电机,若运行一台发电机,每天可获利润为4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据,问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?23.假设关于某设备的使用年限x (年)和所支出的维修费用y (万元),有如下的统计资料:由资料可知y 对x 呈线性相关关系. (1)求y 关于x 的线性回归方程;(2)请估计该设备使用年限为15年时的维修费用.参考公式:线性回归方程y bx a =+的最小二乘法计算公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-,参考数据:5115263748510120i ii x y==⨯+⨯+⨯+⨯+⨯=∑24.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料:经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:()()()1122211ˆn ni i i i i i n n i i i i x x y y x y nxy b x x x nx ====---==--∑∑∑∑,ˆˆa y bx =-) 25.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数;(2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.26.某公司有400名员工,根据男女员工人数比例,用分层随机抽样的方法从中抽取了100人,调查他们的通勤时间(上下班途中花费的总时间,单位:分钟),将数据按照[)20,30,[)30,40,,[]80,90分成7组,并整理得到如下频率分布直方图:(I )从总体中随机抽取1人,估计其通勤时间小于40分钟的概率; (Ⅱ)求样本数据的中位数的估计值;(Ⅲ)已知样本中通勤时间大于或等于60分钟的人都是男员工,通勤时间小于60分钟的人中有一半是男员工,求该公司男员工的人数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】高的比就是频率的比,所以各区间上的频率可依次设为2x,3x,5x,6x,3x,x,,同它们的和为1235631,20x x x x x x x +++++=∴=,所以该班学生数学成绩在[80,100)之间的学生人数是1(56)6011603320x +⨯⨯=⨯⨯=,故选D 2.D解析:D 【分析】根据散点图的分布可选择合适的函数模型. 【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+. 故选:D. 【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.3.B解析:B 【分析】由频率分布直方图的性质,求得0.25x =,再结合频率分布直方图的频率的计算方法,即可求解. 【详解】由频率分布直方图的性质,可得()20.050.150.051x +++=,解得0.25x =, 所以学习时长在[)9,11的频率2520.5x n==,解得50n =. 故选:B . 【点睛】本题主要考查了频率分布直方图性质及其应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了数据分析能力,以及计算能力.4.A解析:A 【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B ,C ,D 都错误. 【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B ∴,C ,D 都错误,故选A . 【点睛】本题主要考查对销量百分比堆积图的理解.5.A解析:A 【解析】 【分析】由表求得,,代入回归直线方程,联立方程组,即可求解,得到答案.【详解】由题意,5家商场的售价元和销售量件之间的一组数据,可得,,又由回归直线的方程,则,即,又因为,解得,故选A.【点睛】本题主要考查了回归直线方程的特征及其应用,其中解答中熟记回归直线方程的特征,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.6.B解析:B 【分析】由剩余5个分数的平均数为21,据茎叶图列方程求出x =4,由此能求出5个剩余分数的方差. 【详解】∵将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为21, ∴由茎叶图得:1724202020215x+++++=得x =4,∴5个分数的方差为:S 2=()()()()()222221361721242120212021242155⎡⎤-+-+-+-+-=⎣⎦ 故选B 【点睛】本题考查方差的求法,考查平均数、方差、茎叶图基础知识,考查运算求解能力,考查数形结合思想,是基础题.7.A解析:A 【解析】 【分析】首先求得x 的平均值,然后利用线性回归方程过样本中心点求解m 的值即可. 【详解】 由题意可得:810111214115x ++++==,由线性回归方程的性质可知:99112744y =⨯+=, 故21252835275m++++=,26m ∴=.故选:A .【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.8.C解析:C 【解析】分析:利用平均数的公式,求得6x =,得到数据2,5,8,9,6,再利用方差的计算公式,即求解数据的方差.详解:由题意,一组数据2,5,8,9,x 的平均数为6,即258924655x xx +++++===,解得6x =,所以数据2,5,8,9,6的方差为2222221[(26)(56)(86)(96)(66)]65s =-+-+-+-+-=,故选C.点睛:本题主要考查了数据的数字特的计算,其中熟记数据的平均数的公式和数据的方差的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.9.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.10.B解析:B 【分析】由频率分布直方图分别计算出各组得频率、频数,然后再计算出体重的平均值 【详解】由频率分布直方图可以计算出各组频率分别为:0.10.20.250.250.15,,,,,0.05 频数为:367.57.54.51.5,,,,, 则平均值为:113136157.5177.519 4.521 1.515.630⨯+⨯+⨯+⨯+⨯+⨯=故选B 【点睛】本题主要考查了由频率分布直方图计算平均数,需要注意计算不要出错11.C解析:C 【分析】先求均值,再根据标准差公式求标准差,最后比较大小. 【详解】乙选手分数的平均数分别为7885848192767780949384,84,55++++++++====因此s 1<s 2,选C. 【点睛】本题考查标准差,考查基本求解能力.12.B解析:B 【解析】 【分析】利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果. 【详解】由题意,b=22222210078102801088411488116905108841001021081141165108⨯+⨯+⨯+⨯+⨯-⨯⨯++++-⨯=0.72, a=84﹣0.72×108=6.24,∴y =0.72x+6.24, 故选:B . 【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,nnii i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆy bx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.二、填空题13.【分析】先分别求出这3组的人数再利用分层抽样的方法即可得出答案【详解】第3组的人数为第4组的人数为第5组的人数为所以这三组共有60名志愿者所以利用分层抽样的方法在60名志愿者中抽取6名志愿者第三组应解析:3【分析】先分别求出这3组的人数,再利用分层抽样的方法即可得出答案. 【详解】第3组的人数为10050.0630⨯⨯=, 第4组的人数为10050.0420⨯⨯=, 第5组的人数为1000.02510⨯⨯=, 所以这三组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,第三组应抽取306360⨯=名, 故答案为:3. 【点睛】关键点点睛:该题考查的是有关频率分布直方图的识别以及分层抽样某层抽取个数的问题,正确解题的关键是掌握在抽取过程中每个个题被抽到的机会均等.14.5【分析】求出数据的中心(26)代入回归直线方程即可【详解】由已知∵回归直线方程一定过样本点中心∴∴故答案为:5【点睛】本题考查了线性回归方程考查了计算能力和逻辑推理能力属于一般题目解析:5 【分析】求出数据的中心(2,6),代入回归直线方程即可. 【详解】由已知2x =,6y =,∵回归直线方程12y x a =+一定过样本点中心(),x y ∴1622a =⨯+ ∴5a = 故答案为:5 【点睛】本题考查了线性回归方程,考查了计算能力和逻辑推理能力,属于一般题目.15.【分析】根据线性回归方程过样本数据中心点可求出b 代入即可求解【详解】由表中数据可得所以过点代入可得所以当时即获得利润大约为万元故答案为:【点睛】本题主要考查了线性回归方程样本数据中心点线性回归方程的 解析:4.74【分析】根据线性回归方程过样本数据中心点,可求出b ,代入15x =即可求解. 【详解】由表中数据可得4,1x y ==,所以0.36ˆˆybx =-过点(4,1), 代入可得0.34b =,所以ˆˆ0.340.36yx =-, 当15x =时,0.34150.34ˆ6 4.7y=⨯-=, 即获得利润大约为4.74万元. 故答案为:4.74 【点睛】本题主要考查了线性回归方程,样本数据中心点,线性回归方程的应用,属于中档题.16.①②④【分析】根据两个变量线性相关的概念及性质逐项判定即可求解【详解】由题意根据回归直线方程的特征可得线性回归直线方程一定过样本中心所以①正确;根据残差的概念可得残差平方和越小的模型拟合效果越好所以解析:①②④ 【分析】根据两个变量线性相关的概念及性质,逐项判定,即可求解. 【详解】由题意,根据回归直线方程的特征,可得线性回归直线方程一定过样本中心,所以①正确;根据残差的概念,可得残差平方和越小的模型,拟合效果越好,所以②正确; 根据相关指数的概念,可得2R 越大说明拟合效果越好,所以③不正确;若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间负相关,且线性相关性强,所以④正确; 故答案为:①②④. 【点睛】本题主要考查了两个变量的线性相关性的概念与判定,其中解答中熟记线性相关的基本概念和结论是解答的关键,属于基础题.17.或【分析】利用平均数与方差公式直接求解即可【详解】由题去掉最高与最低分后的测试成绩为8284848689则平均数方差故答案为:或【点睛】本题考查茎叶图考查平均数与方差的计算是基础题解析:5.6或285【分析】利用平均数与方差公式直接求解即可 【详解】由题去掉最高与最低分后的测试成绩为82,84,84,86,89,则平均数8284848689855x ++++==方差()()()()()2222221288582858485848586858955s ⎡⎤=-+-+-+-+-=⎣⎦ 故答案为:5.6或285【点睛】本题考查茎叶图,考查平均数与方差的计算,是基础题18.5000【分析】由题意其他年级抽取200人其他年级共有学生2000人根据题意列出等式即可求出该校学生总人数【详解】由题意其他年级抽取200人其他年级共有学生2000人则该校学生总人数为人故答案是:5解析:5000 【分析】由题意,其他年级抽取200人,其他年级共有学生2000人,根据题意列出等式,即可求出该校学生总人数. 【详解】由题意,其他年级抽取200人,其他年级共有学生2000人, 则该校学生总人数为20005005000200⨯=人,故答案是:5000. 【点睛】该题考查的是有关分层抽样的问题,涉及到的知识点有分层抽样要求每个个体被抽到的概率是相等的,属于简单题目.19.【分析】依题意可得解之即得解【详解】依题意可得解得故答案为1320【点睛】本题主要考查分层抽样意在考查学生对这些知识的理解掌握水平和分析推理能力 解析:1320【分析】 依题意可得6512111110n⎛⎫-⨯= ⎪⎝⎭,解之即得解. 【详解】依题意可得6512111110n⎛⎫-⨯= ⎪⎝⎭,解得1320n =. 故答案为1320 【点睛】本题主要考查分层抽样,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.【解析】因为平均数为所以方差为解析:45【解析】因为平均数为8,所以9,x = 方差为222214[10111]55++++=三、解答题21.(1)见解析;(2)中位数29.2,众数32.5;(3)平均花费3720元. 【分析】(1)由频数分布表能补全该市1000名跑步爱好者周跑量的频率分布直方图. (2)由频率分布直方图能求出样本的中位数.(3)分别求出休闲跑者、核心跑者、精英跑者的人数,由此能估计该市每位跑步爱好者购买装备平均需要花费多少钱. 【详解】(1)补全该市1000名跑步爱好者周跑量的频率分布直方图,如下:(2)中位数的估计值:由50.0250.02450.0260.350.5⨯+⨯+⨯=<,0.3550.0360.530.5+⨯=>, 所以中位数位于区间[)25,30中,设中位数为x ,则()0.35250.0360.5x +-⨯=, 解得29.2x ≈.即样本中位数是29.2.因为样本中频率最高的一组为[30,35),所以样本的众数为32.5.(3)依题意可知,休闲跑者共有()50.0250.024*******⨯+⨯⨯=人, 核心跑者()50.02650.03650.04450.0301000680⨯+⨯+⨯+⨯⨯=人, 精英跑者1000220680100--=人, 所以该市每位跑步爱好者购买装备,平均需要22025006804000100450037201000⨯+⨯+⨯=元.即该市每位跑步爱好者购买装备,平均需要3720元. 【点睛】本题考查频率分布直方图的作法,考查样本的中位数、平均数的求法,考查运算求解能力,是基础题.22.(Ⅰ)见解析;(Ⅱ)要使水电站日利润的期望值最大,该水电站应安装3台发电机. 【详解】试题分析:(Ⅰ)可利用频率分布直方图的性质,补全图像;(Ⅱ)分别计算安装1台,2台,3台的日利润的期望值,然后进行比较. (Ⅰ)在区间[30,60)的频率为15633647= 31==73070⨯频率组距, 设在区间[0,30)上,a 频率组距=, 则11130170105210a ⎛⎫+++⨯= ⎪⎝⎭, 解得1210a =, 补充频率分布直方图如图;(Ⅱ)记水电站日利润为Y 元.由(Ⅰ)知:不能运行发电机的概率为17,恰好运行一台发电机的概率为37,恰好运行二台发电机的概率为27,恰好运行三台发电机的概率为17,①若安装1台发电机,则Y 的值为-500,4000,其分布列为Y -5004000P1767E (Y )=5004000777-⨯+⨯=; ②若安装2台发电机,则Y 的值为-1000,3500,8000,其分布列为 Y-100035008000E (Y )=1000350080007777-⨯+⨯+⨯=; ③若安装3台发电机,则Y 的值为-1500,3000,7500,12000,其分布列为E (Y )=1500300075001200077777-⨯+⨯+⨯+⨯=; ∵345003350023500777>> ∴要使水电站日利润的期望值最大,该水电站应安装3台发电机. 23.(1) 1.2 3.6y x =+;(2)21.6万元. 【分析】(1)先求出年限x 和维修费用y 的平均值,即得到样本中心点,利用最小二乘法得到线性回归方程的系数,根据样本中心点在线性回归直线上,得到a 值,即得线性回归方程; (2)将15x =代入回归直线方程即可求得结果. 【详解】 (1)1234535x ++++==,5678107.25++++==y51120i i i x y ==∑,522222211234555ii x ==++++=∑ 25945nx =⨯=,537.2108nx y =⨯⨯=∴1201081.25545b -==-,7.2 1.23 3.6a =-⨯=∴y 关于x 的线性回归方程为 1.2 3.6y x =+(2)在上述回归方程中,当15x =时得21.6y = ∴该设备使用年限为15年时的维修费用大约为21.6万元. 【点睛】本题考查回归直线方程的求解及其应用,其中认真审题,准确合理的运算是解决此类问题的关键,考查运算能力,属于基础题.24.(1)5ˆ32yx =-(2)可靠 【分析】(1)根据所给的数据,先做出,y x 的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程;(2)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的. 【详解】 (1)由题意:111312123x ++==,253026273y ++==, ()()()()()()()()()()()()31122331322221231ˆii i i i x x y y x x y y x x y y x x y y b x x x x x x x x ==----+--+--==-+-+--∑∑ ()()()()()()()()()22211122527131230271212262752111213121212-⨯-+-⨯-+-⨯-==-+-+-. 527123ˆˆ2ay bx =-=-⨯=-, 故回归直线方程为:ˆ532yx =-. (2)当10x =时,510322,2223122y =⨯-=-=<, 当8x =时,58317,1716122y =⨯-=-=<,所以(1)中所得的回归直线方程是可靠的. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nniiii i x y x x y==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势. 25.(1)=83.2x 甲,=84x 乙;(2)22=26.36=13.2S S 甲乙,,=5.13S 甲,=3.63S 乙;(3)乙班的总体学习情况比甲班好 【解析】试题分析:每组样本数据有10个,求样本的平均数利用平均数公式,10个数的平均数等于这10个数的和除以10;比较平均分的大小可以看出两个班学生平均水平的高低,求样本的方差只需使用方差公式,求这10个数与平均数的差的平方方和再除以10;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 . 试题 (1)x 甲=110×(82+84+85+89+79+80+91+89+79+74)=83. 2, x 乙=110×(90+76+86+81+84+87+86+82+85+83)=84.(2)2S 甲=110×[(82-83. 2)2+(84-83. 2)2+(85-83. 2)2+(89-83. 2)2+(79-83. 2)2+(80-83. 2)2+(91-83. 2)2+(89-83. 2)2+(79-83. 2)2+(74-83. 2)2]=26. 36,2S 甲=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13. 2,则s 甲,s 乙≈3. 63.(3)由于x x <甲乙,则甲班比乙班平均水平低.由于S S >甲乙,则甲班没有乙班稳定. 所以乙班的总体学习情况比甲班好【点睛】怎样求样本的平均数,n 个数的平均数等于这n 个数的和除以n ;比较平均数的大小可以看出两个样本平均水平的高低,怎样求样本的方差,就是求这n 个数与平均数的差的平方方和再除以n ;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 .26.(Ⅰ)0.6;(Ⅱ)37.5;(Ⅲ)220. 【分析】(Ⅰ)根据频率分布直方图求解即可;(Ⅱ)先根据频率分布直方图判断中位数落在哪一区间上,然后利用中位数将频率分布直方图的面积分为相等的两部分求解;(Ⅲ)先计算出样本中男员工的人数,计算出男员工所占的比例,然后估计总体中男员工的人数. 【详解】解:(1)由频率分布直方图可知,样本中通勤时间小于40的概率()100.020.040.6p =⨯+=,故从总体中随机抽取1人,估计其通勤时间小于40分钟的概率也为0.6.(Ⅱ)由图可知,样本的中位数位于[)30,40之间,设中位数为x ,则()0.2300.040.5x +-⨯=,解得37.5x =,故中位数为37.5.(Ⅲ)样本中通勤时间大于或等于60分钟的人的概率为0.1,共10人,通勤时间小于60分钟的人的频率为0.9,其中男员工有11000.9452⨯⨯=人,所以样本中男员工共有55人,占样本容量的55%,故该公司男员工人数为40055%220⨯=人. 【点睛】本题考查频率分布直方图的应用,考查用样本估计总体,难度一般.。

人教新课标版数学高一-必修3第一章自主检测

人教新课标版数学高一-必修3第一章自主检测

第一章自主检测(满分150分,时间120分钟)一、选择题(每小题5分,共50分)1.下列说法错误的是()A.一个算法应包含有限的操作步骤,而不能是无限的B.有的算法执行完后,可能有无数个结果C.一个算法可以有0个或多个输入D.算法中的每一步都是确定的,算法的含义是唯一的2.程序框图中表示计算、赋值功能的是()A. B. C. D.3.在赋值语句中,“N=N+1”是()A.没有意义B.N与N+1相等C.将N的原值加1再赋给N,N的值增加1D.无法进行4.用二分法求方程x2-5=0的近似根的算法中要用哪些算法结构()A.顺序结构B.条件结构C.循环结构D.以上都用5.如图1-1所示的程序框图,若输入n=5,则输出的n值为()图1-1A.3 B.1 C.-1 D.-36.阅读如图1-2所示的程序框图,运行相应的程序,则输出n的值为()图1-2A.7B.6 C.5D.47.左下程序语句输出的结果S为()A.17 B.19 C.21 D.23i=1WHILE i<8S=2*i+3i=i+2WENDPRINT SENDINPUT nS=0i=1WHILES=S+ii=i+1WENDPRINT“S=”;SEND8.编写程序求S=1+2+3+…+n的值(n由键盘输入),程序如上,在程序的横线上应填()A.i>n B.i>=n C.i<n D.i<=n9.某程序框图如图1-3,该程序运行后输出的值是()A.-3 B.-12 C.13D.2图1-310.如图1-4(1)、(2),它们表示的都是输出所有立方不大于1000的正整数的程序框图,那么应分别补充的条件为()图1-4A.n3≤1000,n3>1000 B.n3<1000,n3≥1000C.n3>1000,n3≤1000 D.n3≥1000,n3<1000二、填空题(每小题5分,共20分)11.把二进制数1011(2)化为十进制数是________.12.某算法的程序框图如图1-5,若输出结果为2,则输入的实数x的值是________.图1-513.如图1-6所示的程序框图,输出的W=________.图1-614.如图1-7所示的程序框图,若输入x=8,则输出k=____________;若输出k=2,则输入x的取值范围是_____________.图1-7三、解答题(共80分)15.(12分)写出作△ABC外接圆的一个算法.16.(12分)某城区一中要求学生数学学分由数学成绩构成,数学成绩由数学考试成绩和平时成绩两部分决定,且各占50%.若数学成绩大于或等于60分,获得2学分;否则不能获得学分,即0学分.设计一个算法,通过数学考试成绩和平时成绩计算学分,并画出程序框图.17.(14分)编写一个程序,输入正方形的边长,输出它的对角线长和面积的值.18.(14分)某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:f =⎩⎪⎨⎪⎧0.53ω (ω≤50),50×0.53+(ω-50)×0.85 (ω>50). 其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f 的算法,并画出相应的程序框图.19.(14分)根据下面的要求,求满足1+2+3+…+n>500的最小自然数n.(1)画出执行该问题的程序框图;(2)以下是解决该问题的一个程序,但有几处错误,请找出错误并予以更正.i=1S=1n=0DO S<=500S=S+ii=i+1n=n+1WENDPRINT n+1END20.(14分)火车站对乘客退票收取一定的费用,具体办法是:按票价每10元(不足10元按10元计算)核收2元;2元以下的票不退.试写出票价为x元的车票退掉后,返还的金额y元的算法的程序框图( 注:可用函数[x]表示某些算式,[x]表示不超过x的最大整数).第一章自主检测1.B 2.A 3.C 4.D 5.C 6.D7.A8.D9.D10.A11.11解析:1011(2)=1×23+0×22+1×21+1×20=11.12.4解析:∵log2x=2,∴x=4>1.13.22解析:程序执行过程为S=1-0=1,T=T+2=3;S=9-1=8,T=T+2=5;S=25-8=17,此时S≥10,退出循环,W=S+T=17+5=22,输出W.14.4(28,57]15.解:第一步,作线段AB的垂直平分线l1.第二步,作线段BC的垂直平分线l2,交l1于点O.第三步,以O为圆心,OA为半径作圆,则圆O就是△ABC的外接圆.16.解:算法如下:第一步,输入考试成绩a和平时成绩b.第二步,计算数学成绩S=a+b 2.第三步,若S≥60,则学分c=2;否则,学分c=0. 第四步:输出c.程序框图如图D26.图D26 17.解:程序如下:INPUT“a=”;al=SQR(2)*as=a*aPRINT“l,s=”;l,sEND18.解:算法如下:第一步,输入物品重量ω.第二步,如果ω≤50,那么f=0.53ω;否则f=50×0.53+(ω-50)×0.85. 第三步,输出物品重量ω和托运费f.相应的程序框图如图D27.图D2719.解:(1)程序框图如图D28或图D29.或者:图D28 图D29(2)①S=1应改为S=0;②DO应改为WHILE;③PRINT n+1应改为PRINT n.20.解:如图D30.图D30。

中学人教版高中数学必修三同步练习:第一章算法初步单元测评(附答案)

中学人教版高中数学必修三同步练习:第一章算法初步单元测评(附答案)

单元测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.算法有三种基本逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是()A.一个算法只能包含一种基本逻辑结构B.一个算法最多可以包含两种基本逻辑结构C.一个算法必须包含三种基本逻辑结构D.一个算法可能包含三种基本逻辑结构2.389化成的四进制数的末位是()A.1 B.2C.3 D.03.关于终端框的说法正确的是()A.表示一个算法的起始和结束,图形符号是B.表示一个算法输入和输出的信息,图形符号是C.表示一个算法的起始和结束,图形符号是D.表示一个算法输入和输出的信息,图形符号是4.执行图C1­1所示的程序框图,若输出的结果为11,则M处可填入的条件为()图C1­1A.k≥31 B.k≥15C.k>31 D.k>155.用秦九韶算法求多项式f(x)=12+35x+9x3+5x5+3x6当x=-1时的值,有如下说法:①要用到6次乘法;②要用到6次加法和15次乘法;③v0=12;④v3=11.其中说法正确的是()A.①③B.①④C.②④D.①③④6.执行图C1­2所示的程序框图,若输入x=-2,h=0.5,则输出的各个数的和等于()图C1­2A.3 B.3.5C.4 D.4.57.由辗转相除法得三个数720,120,168的最大公约数是()A.24 B.30 C.120 D.688.执行图C1­3所示的程序框图,若输出的S值为16,则输入的自然数n的最小值等于()图C1­3A.7 B.8 C.9 D.109.执行下面程序,若输出y的值为1,则输入x的值为()A.0 B.1 C.0或1 D.-1,0或110.如果下面程序执行后输出的结果是990,那么在程序中①处应为()A.i>10 B.i<8C.i<=9 D.i<911.某店一个月的收入或支出为a1,a2,…,a N,其中收入记为正数,支出记为负数.该店用如图C1­4所示的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中应分别填入()图C1­4A.A>0,V=S-TB.A<0,V=S-TC.A>0,V=S+TD.A<0,V=S+T12.计算机中常用到的十六进制采用数字0~9和字母A~F共16个计数符号,各符号与十进制的对应关系如下表:例如用十六进制表示有D+E=1B,则A×B=()A.6E B.7C C.5F D.B0请将选择题答案填入下表:第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若输入8,则执行下列程序后输出的结果是________.14.将二进制数101101(2)化为十进制数,结果为________;再将这个十进制数化为八进制数,结果为________.15.按如图C1­5所示的程序框图运算,若输入的x 的值为8,则输出的k 等于________.图C1­516.阅读下面的程序,该算法的功能是______________________________________.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥0),2x 2-5(x <0), 每输入一个x 值,都得到相应的函数值,画出程序框图并写出程序.18.(12分)图C1­6所示的程序框图表示了一个什么样的算法?试用当型循环写出它的算法并画出相应的程序框图.图C1­6 19.(12分)用秦九韶算法求多项式f(x)=x5+x3+x2+x+1当x=3时的值.20.(12分)(1)用更相减损术求184,253的最大公约数;(2)用辗转相除法求98,280的最大公约数.21.(12分)设计算法求11×2+ 12×3+ 13×4+…+ 199×100的值,要求画出程序框图,并用基本的算法语句编写程序.22.(12分)输入x ,求函数y =⎩⎪⎨⎪⎧3x -2,x ≥2,-2,x <2 的值的程序框图如图C1­7所示.(1)指出程序框图中的错误之处并写出正确的算法步骤. (2)重新绘制程序框图,并回答下面提出的问题. ①要使输出的值为7,则输入的x 的值应为多少? ②要使输出的值为正数,则输入的x 应满足什么条件?图C1­7单元测评(一)1.D2.A [解析] 将389化成四进制数是12011(4).3.C [解析] 终端框表示一个算法的起始和结束,图形符号是.4.B [解析] 依题意k =1,S =0,进入循环,循环过程依次为:S =0+1=1,k =2×1+1=3;S =1+3=4,k =2×3+1=7;S =4+7=11,k =2×7+1=15,终止循环,输出S =11.结合选项知,M 处可填k ≥15.5.B [解析] 因为x 的最高次数为6,所以①正确,②错误;v 0=3,故③错误;v 1=v 0x +5=2,v 2=v 1x +0=-2,v 3=v 2x +9=11,故④正确.6.B [解析] 按照程序框图依次执行为x =-2,h =0.5,输出y =0;x =-1.5,h =0.5,输出y =0;x =-1,h =0.5,输出y =0;x =-0.5,h =0.5,输出y =0;x =0,h =0.5,输出y =0;x =0.5,h =0.5,输出y =0.5;x =1,h =0.5,输出y =1;x =1.5,h =0.5,输出y =1;x =2,h =0.5,输出y =1,结束循环.故输出的各个数的和为3.5,选B.7.A [解析] 由辗转相除法得120和168的最大公约数是24,再由辗转相除法得24和720的最大公约数是24.故选A.8.C [解析] 根据程序框图可知i =2,k =1,S =1,进入循环后,循环次数与S ,i ,k 的值的变化如下表:第3次循环后,S =8,i =8,应满足条件“i <n ”,故自然数n ≥9;第4次循环后,S =16,i =10,应退出循环,不满足条件“i <n ”,故自然数n ≤10.所以9≤n ≤10,因此自然数n 的最小值等于9.9.C [解析] 由题意得⎩⎪⎨⎪⎧x ≥1,1=x 2 或⎩⎪⎨⎪⎧x <1,1=-x 2+1,解得x =1或x =0,故选C. 10.D [解析] 由程序易知①处为“i<9”.11.C [解析] 月总收入S 应当为本月的各项收入之和,故需满足A >0.月净盈利应当为月总收入减去本月各项支出的和,又T <0,所以V =S +T .因此,判断框内应填“A >0”,处理框内应填“V =S +T ”.12.A[解析] A×B对应的十进制数是110,所以用十六进制表示有A×B=6E.13.0.7[解析] 这是一个利用条件结构编写的程序,当输入t=8时,执行c=0.2+0.1×(t-3),得c=0.7.14.4555(8)[解析] 101101(2)=1×25+0×24+1×23+1×22+0×21+1×20=45,∴化为十进制数为45.又45=8×5+5,∴45=55(8).15.3[解析] 第一次循环x=88,k=1,通过判断得,需要继续循环;第二次循环x =888,k=2,通过判断得,需要继续循环;第三次循环x=8888,k=3,通过判断,结束循环,输出k=3.故最后输出的k值为3.16.求S=1+2+3+…+20和t=1×2×3×…×20的值17.解:程序框图和程序如下.18.解:这是一个计算10个数的平均数的算法.当型循环的算法如下:第一步,S=0.第二步,I=1.第三步,如果I小于等于10,执行第四步;否则,转第七步.第四步,输入G.第五步,S=S+G.第六步,I=I+1,返回第三步.第七步,A=S10. 第八步,输出A. 程序框图如图.19.解:f(x)=x5+x3+x2+x+1=((((x+0)x+1)x+1)x+1)x+1.当x=3时,v0=1,v1=1×3+0=3,v2=3×3+1=10,v3=10×3+1=31,v4=31×3+1=94,v5=94×3+1=283,∴f(3)=283.20.解:(1)用更相减损术,得253-184=69,184-69=115,115-69=46,69-46=23,46-23=23,∴184与253的最大公约数是23.(2)用辗转相除法,得280=98×2+84,98=84×1+14,84=14×6,∴98与280的最大公约数是14.21.解:程序框图和程序如下.22.解:(1)函数y =⎩⎪⎨⎪⎧3x -2,x ≥2,-2,x <2是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断x ≥2是否成立.若是,则y =3x -2;否则y =-2. 第三步,输出y .(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则3x -2=7,故x =3,即输入的x 的值应为3.②要使输出的值为正数,则⎩⎪⎨⎪⎧x ≥2,3x -2>0,得x ≥2.故当x ≥2时,输出的值为正数.。

人教版高中数学必修三第一章《算法初步》单元检测精选(含答案解析)

人教版高中数学必修三第一章《算法初步》单元检测精选(含答案解析)

人教版高中数学必修三第一章《算法初步》单元检测精选(含答案解析)一、选择题(本大题共12小题,每小题5分,共60分)1.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()2.运行如下的程序,输出结果为()A.32 B.33 C.61 D.633.表达算法的基本逻辑结构不包括()A.顺序结构B.条件结构C.循环结构D.计算结构4.设计一个计算1×2×3×…×10的值的算法时,下面说法正确的是()A.只需一个累乘变量和一个计数变量B.累乘变量初始值设为0C.计数变量的值不能为1D.画程序框图只需循环结构即可5.阅读下边的程序框图,运行相应的程序,则输出s的值为()A.-1 B.0C.1 D.36.,输出的结果是()A C.0,0 D.6,07.给出30个数:1,2,4,7,11,…,其规律是第一个数是1,第二个数比第一个数大1,第三个数比第二个数大2,第四个数比第三个数大3,……依此类推,要计算这30个数的和,现已知给出了该问题的程序框图如图所示.那么框图中判断框①处和执行框②处应分别填入()A.i≤30?;p=p+i-1 B.i≤29?;p=p+i-1C.i≤31?;p=p+i D.i≤30?;p=p+i8.当x=5,y=-20时,下面程序运行后输出的结果为()A.22,-22 B.22,22C.12,-12 D.-12,129.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.2 B.4 C.8 D.1610.时,则输入的x值的取值范围是()A.(-∞,-1)B.(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,0)∪(0,+∞)11.用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.5112.以下给出了一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值有()A.1个B.2个13.读程序本程序输出的结果是________.14.人怕机械重复,如计算1+2+3+…+100,十岁的高斯就想到类似于梯形面积的求法:其和S =1+1002×100=5 050,而不是算99次加法,但计算机不怕重复,使用________来做完99步计算,也是瞬间的事,编写这个程序可用________,______两种语句结构.15.某工厂2010年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%.为了求年生产总值超过300万元的最早年份,有人设计了解决此问题的程序框图(如图),请在空白判断框内填上一个适当的式子应为________________.16.如图是一个程序框图,则输出的S 的值是________________________________.三、解答题(本大题共6小题,共70分)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.18.(12分)画出计算12+32+52+…+9992的程序框图,并编写相应的程序.19.(12分)已知函数f (x )=⎩⎨⎧x 2-1 (x ≥0),2x 2-5(x <0),对每输入的一个x 值,都得到相应的函数值.画出程序框图并写出程序.20.(12分)用秦九韶算法计算f (x )=2x 4+3x 3+5x -4在x =2时的值.21.(12分)高一(2)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图.22.(12分)已知函数f (x )=x 2-5,写出求方程f (x )=0在[2,3]上的近似解(精确到0.001)的算法并画出程序框图.参考答案与解析1.B [先把b 的值赋给中间变量c ,这样c =17,再把a 的值赋给变量b ,这样b =8,把c 的值赋给变量a ,这样a =17.]2.D [本程序实现的是:求满足1+3+5+…+n>1 000的最小的整数n.当n =61时,1+3+…+61=31(1+61)2=312=961<1 000; 当n =63时,1+3+…+63=32(1+63)2=322=1 024>1 000.] 3.D 4.A5.B [当i =1时,s =1×(3-1)+1=3;当i =2时,s =3×(3-2)+1=4;当i =3时,s =4×(3-3)+1=1;当i =4时,s =1×(3-4)+1=0;紧接着i =5,满足条件i>4,跳出循环,输出s 的值为0.]6.B [把1赋给变量a ,把3赋给变量b ,把4赋给变量a ,把1赋给变量b ,输出a ,b.]7.D8.A [具体运行如下:(x ,y)→(5,-20)→(5,-17)∴x -y =22,y -x =-22.]9.C [本小题考查的是程序框图中的循环结构,循环体中两个变量S 、n 其值对应变化,执行时,S 与n故S =2时,输出n =8.]10.C [由程序可得y =⎩⎪⎨⎪⎧x (x>0)⎝⎛⎭⎫12x -1 (x ≤0), ∵y>1,∴①当x ≤0时,⎝⎛⎭⎫12x -1>1,即2-x >2,∴-x>1,∴x<-1.②当x>0时,x>1,即x>1,故输入的x 值的范围为(-∞,-1)∪(1,+∞).]11.D [459=357×1+102,357=102×3+51,102=51×2,51是102和51的最大公约数,也就是459和357的最大公约数.] 12.C13.33解析由题意知V=34×2×2×3=3 3.14.循环语句WHILE型UNTIL型15.a>300?16.63解析当n=1时,S=1+21=3;当n=2时,S=3+22=7;当n=3时,S=7+23=15;当n=4时,S=15+24=31;当n=5时,S=31+25=63>33.故S=63. 17.解辗转相除法:470=1×282+188,282=1×188+94,188=2×94,∴282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.∴235-141=94,141-94=47,94-47=47,∴470与282的最大公约数为47×2=94. 18.解程序框图如下图:程序:S =0i=1WHILE i<=999S=S+i∧2i=i+2WENDPRINT SEND19.解程序框图:程序为:20.解 f(x)改写为f(x)=(((2x +3)x +0)x +5)x -4,∴v 0=2,v 1=2×2+3=7,v 2=7×2+0=14,v 3=14×2+5=33,v 4=33×2-4=62,∴f(2)=62.21.解 程序如下: 程序框图如下图:S =0M =0i =1DOINPUT xIF x>90 THENM =M +1 S =S +xEND IFLOOP UNTIL i>54P =S/MPRINT PEND22.解 本题可用二分法来解决,设x 1=2,x 2=3,m =x 1+x 22. 算法如下:第一步:x 1=2,x 2=3;第二步:m=(x1+x2)/2;第三步:计算f(m),如果f(m)=0,则输出m;如果f(m)>0,则x2=m,否则x1=m;第四步:若|x2-x1|<0.001,输出m,否则返回第二步.程序框图如图所示:。

人教版高中数学必修三第一章算法初步学业分层测评7含答案

人教版高中数学必修三第一章算法初步学业分层测评7含答案

学业分层测评(七)循环语句(建议用时:45分钟)[学业达标]一、选择题1.下列问题可以设计成循环语句计算的有()①求1+3+32+…+39的和;②比较a,b两个数的大小;③对于分段函数,要求输入自变量,输出函数值;④求平方值小于100的最大整数.A.0个B.1个C.2个D.3个【解析】①和④用到循环语句,②和③用不到.【答案】 C2.下面的程序:a=1WHILE a<100a=a+1WENDPRINT aEND执行完毕后a的值为()A.99 B.100C.101 D.102【解析】该程序中使用了当型循环语句,当执行到a=99+1=100时,不满足条件a<100,退出循环输出a的值为100.【答案】 B3.如图1-2-5是求1~1 000内所有偶数的和的程序,把程序框图补充完整,则()图1-2-5A.①处为S=S+i,②处为i=i+1.B.①处为S=S+i,②处为i=i+2.C.①处为i=i+1,②处为S=S+i.D.①处为i=i+2,②处为S=S+i.【解析】程序框图求的是1~1 000内所有偶数的和,故i步长为2,应有i=i+2,排除A、C;i初值为2,S应加的第一个偶数为2,而不是4,故语句S=S+i应在i=i+2的前面,排除D.【答案】 B4.下列程序运行后输出的结果为()A.17 B.19C.21 D.23【解析】第一次循环,i=1+2=3,S=3+2×3=9,i=4;第二次循环,i=6,S=3+2×6=15,i=7;第三次循环,i=9,S=3+2×9=21,i=10,∴输出S=21.【答案】 C5.有以下程序段,下面说法正确的是()K=8WHILE K=0K=K+1WENDA.WHILE循环执行8次B.该循环体是无限循环C.循环体语句一次也不执行D.循环体语句只执行一次【解析】 对于WHILE 语句,若满足条件,则执行循环体,而K =8,不满足条件K =0,所以循环体一次也不执行.【答案】 C 二、填空题6.根据下列算法语句,当输入x 为60时输出y 的值为________.【解析】 由题意,得y =⎩⎪⎨⎪⎧0.5x ,x ≤5025+0.6(x -50),x >50当x =60时,y =25+0.6(60-50)=31. ∴输出y 的值为31. 【答案】 317.在下面的程序中,若输出k =3,则输入的最小整数n =________. 【导学号:28750019】【解析】 设n =a ,则第一次循环,n =2a +1,k =1;第二次循环,n =2(2a +1)+1=4a +3,k =2;第三次循环,n =2(4a +3)+1=8a +7,k =3,此时,执行“是”,结束循环,输出k =3.因此8a +7>100,即a >938,故n 最小整数为12.【答案】 128.下面为一个求10个数的平均数的程序,则在横线上应填充的语句为________.【解析】此为直到型循环,在程序一开始,即i=1时,开始执行循环体,当i=10时继续执行循环体,题目中求10个数的平均数,所以当i>10时应终止循环.【答案】i>10三、解答题9.设计一个计算1+3+5+7+…+99的值的程序,并画出程序框图.【解】程序框图如图所示:程序如下: i =1 S =0WHILE i<=99 S =S +i i =i +2 WEND PRINT S END10.设计算法求11×2+12×3+13×4+…+199×100的值,编写程序,并画出程序框图.【解】 算法如下: 第一步:令S =0,i =1. 第二步:若i ≤99成立, 则执行第三步;否则,输出S ,结束算法.第三步:S=S+1i(i+1).第四步:i=i+1,返回第二步.程序:S=0i=1WHILE i<=99S=S+1/(i*(i+1))i=i+1WENDPRINT SEND程序框图:[能力提升] 1.读下面甲、乙两个程序:对甲、乙两个程序和输出的结果表述正确的是()A.程序不同,结果相同B.程序不同,结果不同C.程序相同,结果相同D.程序相同,结果不同【解析】执行甲,乙程序后可知都是计算1+2+3+4+…+1 000的值.【答案】 A2.执行如图1-2-6的程序框图,如果输出的是a=341,那么判断框应为()图1-2-6A.k<4?B.k<5?C.k<6?D.k<7?【解析】a=1,k=2;a=5,k=3;a=21,k=4;a=85,k=5;a=341,k=6.【答案】 C3.阅读如图1-2-7的程序框图,若输入n=6,则输出k的值为________.图1-2-7【解析】n=6,k=0,n=13,k=1;n=27,27<100,k=2;n=55,55<100,k=3;n=111,111>100,输出k=3.【答案】 34.求200以内(包括200)的所有偶数和,试用两种循环结构画出其程序框图并编写程序.【解】当型循环,程序框图如图所示:程序为:i=2sum=0WHILE i<=200sum=sum+ii=i+2WENDPRINT“偶数和为:”;sum END直到型循环,程序框图如图所示:程序为:附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

人教版高中数学必修三第一章算法初步学业分层测评1含答案

人教版高中数学必修三第一章算法初步学业分层测评1含答案

学业分层测评(一) 算法的概念(建议用时:45分钟)[学业达标]一、选择题1.下列四种自然语言叙述中,能称作算法的是( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米【解析】 算法是做一件事情或解决一类问题的程序或步骤,故选B.【答案】 B2.下列问题中,不可以设计一个算法求解的是( )A .二分法求方程x 2-3=0的近似解B .解方程组⎩⎪⎨⎪⎧x +y +5=0x -y +3=0C .求半径为3的圆的面积D .判断函数y =x 2在R 上的单调性【解析】 A 、B 、C 选项中的问题都可以设计算法解决,D 选项中的问题由于x 在R 上取值无穷尽,所以不能设计一个算法求解.【答案】 D3.(2016·东营高一检测)一个算法步骤如下:S 1,S 取值0,i 取值1;S2,如果i≤10,则执行S3,否则执行S6;S3,计算S+i并将结果代替S;S4,用i+2的值代替i;S5,转去执行S2;S6,输出S.运行以上步骤后输出的结果S=()A.16B.25C.36 D.以上均不对【解析】由以上计算可知S=1+3+5+7+9=25.【答案】 B4.有如下算法:第一步,输入不小于2的正整数n.第二步,判断n是否为2.若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次从2到n-1检验能不能整除n,若不能整除,则n 满足条件.则上述算法满足条件的n是()A.质数B.奇数C.偶数D.约数【解析】根据质数、奇数、偶数、约数的定义可知,满足条件的n是质数.【答案】 A5.下列各式中T 的值不能用算法求解的是( )A .T =12+22+32+42+…+1002B .T =12+13+14+15+…+150C .T =1+2+3+4+5+…D .T =1-2+3-4+5-6+…+99-100【解析】 根据算法的有限性知C 不能用算法求解.【答案】 C二、填空题6.求过P (a 1,b 1),Q (a 2,b 2)两点的直线斜率有如下的算法,请将算法补充完整:第一步,令x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.第二步,若x 1=x 2,则输出斜率不存在,结束算法;否则,________. 第三步,输出结果k .【答案】 k =y 1-y 2x 1-x 27.给出下列算法:第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则执行下一步.第三步,计算y =4-x .第四步,输出y .当输入x =0时,输出y =________.【解析】 因为0<4,执行第三步,所以y =4-0=2.【答案】 28.如下算法:第一步,输入x 的值.第二步,若x ≥0成立,则y =x ;否则执行下一步.第三步,计算y =x 2.第四步,输出y 的值.若输入x =-2,则输出y =________.【解析】 输入x =-2后,x =-2≥0不成立,则计算y =x 2=(-2)2=4,则输出y =4.【答案】 4三、解答题9.已知某梯形的底边长AB =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法.【解】 算法如下:第一步,输入梯形的底边长a 和b ,以及高h .第二步,计算a +b 的值.第三步,计算(a +b )×h 的值.第四步,计算S =(a +b )×h 2的值. 第五步,输出结果S .10.设计一个解方程x 2-2x -3=0的算法.【解】 算法如下:第一步,移项,得x 2-2x =3. ①第二步,①式两边加1,并配方得(x-1)2=4. ②第三步,②式两边开方,得x-1=±2. ③第四步,解③得x=3或x=-1.第五步,输出结果x=3或x=-1.[能力提升]1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用的分钟数为() A.13 B.14C.15 D.23【解析】①洗锅盛水2分钟,②用锅把水烧开10分钟(同时②洗菜6分钟,③准备面条及佐料2分钟),⑤煮面条3分钟,共为15分钟.【答案】 C2.已知一个算法如下:第一步,令m=a.第二步,如果b<m,则m=b.第三步,如果c<m,则m=c.第四步,输出m.如果a=3,b=6,c=2,则执行这个算法的结果是________.【解析】这个算法是求a,b,c三个数中的最小值,故这个算法的结果是2.【答案】 23.鸡兔同笼问题:鸡和兔各若干只,数腿共100条,数头共30只,试设计一个算法,求鸡和兔各有多少只. 【导学号:28750002】【解】 第一步,设有x 只鸡,y 只兔,列方程组⎩⎪⎨⎪⎧x +y =30,①2x +4y =100.②第二步,②÷2-①,得y =20.第三步,把y =20代入①,得x =10.第四步,得到方程组的解⎩⎪⎨⎪⎧x =10,y =20.第五步,输出结果,鸡10只,兔20只.4.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?【解】 法一 算法如下:第一步,任取2枚银元分别放在天平的两边,若天平左、右不平衡,则轻的一枚就是假银元,若天平平衡,则进行第二步.第二步,取下右边的银元放在一边,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.法二 算法如下:第一步,把9枚银元平均分成3组,每组3枚.第二步,先将其中两组放在天平的两边,若天平不平衡,则假银元就在轻的那一组;否则假银元在未称量的那一组.第三步,取出含假银元的那一组,从中任取2枚银元放在天平左、右两边称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称量的那一枚是假银元.附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

【免费下载】数学必修3第一章检测

【免费下载】数学必修3第一章检测

D.150
. (填上正确
.
14 如图,输出的结果是
15
已知函数
y=
xx≤32, x>33x 2,
应函数值的算法.请将该流程图补充完整.其中①处应填
,②处应填
16.如图,输出结果为
三、解答题
.
流程图表示的是给定 x 值,求其相
.若输入 x=3,则输出结果为
第 5 页 共 11 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

人教版高中数学必修三第一章算法初步学业分层测评6含答案

人教版高中数学必修三第一章算法初步学业分层测评6含答案

学业分层测评(六) 条件语句(建议用时:45分钟)[学业达标]一、选择题1.求下列函数的函数值的算法中需要用到条件语句的函数为( )A .f (x )=3x -1B .f (x )=log 2xC .f (x )=⎩⎪⎨⎪⎧x 2(x >0)x 3(x ≤0)D .f (x )=e x【解析】 A 、B 、D 只用顺序结构就能描述算法,C 需要逻辑判断要用条件语句,故选C.【答案】 C2.阅读下列程序: INPUT “x =”;4IF x>3 THENy =x*xELSEy =2*xEND IFPRINT yEND则该程序运行后,变量y 的值为( )A .4B .16C.6 D.8【解析】因x=4满足“x>3”的条件,所以执行的是THEN后面的y=4×4=16.【答案】 B3.阅读下列程序:如果输入5,则该程序运行结果为()A.1 B.10C.25 D.26【解析】b=a2+1=25+1=26.【答案】 D4.下列程序语句是求函数y=|x-4|+1的函数值,则①处为()A .y =3-xB .y =x -5C .y =5-xD .y =ABS (x -4)+1【解析】 因y =|x -4|+1=⎩⎪⎨⎪⎧x -3, (x ≥4)5-x , (x <4)故选C.【答案】 C5.下列关于条件语句的说法正确的是( )A .条件语句中必须有ELSE 和END IFB .条件语句中可以没有END IFC .条件语句中可以没有ELSE ,但是必须有END IFD .条件语句中可以没有END IF ,但是必须有ELSE【解析】 条件语句中必须有END IF ,但可以没有ELSE ,故选C.【答案】 C二、填空题6.根据以下程序,则f(-2)+f(3)=________.【解析】∵-2≤0,∴f(-2)=4×(-2)=-8;∵3>0,∴f(3)=23=8,∴f(-2)+f(3)=-8+8=0.【答案】07.下面给出的条件语句编写的程序,该程序的功能是求函数________的函数值.【解析】 当x ≤3时,y =2x ;当x >3时,y =x 2-1.所以函数为f (x )=⎩⎪⎨⎪⎧2x , x ≤3,x 2-1, x >3. 【答案】 f (x )=⎩⎪⎨⎪⎧2x , x ≤3x 2-1, x >38.根据如图所示的程序,当输入a ,b 分别为2,3时,最后输出的m 的值为________.【解析】a=2,b=3,∵2<3,∴m=3.【答案】 3三、解答题9.编写程序求方程ax+b=0的根.【解】程序如下:10.如图1-2-3所示,在边长为16的正方形ABCD的边上有一动点P,点P沿边线由B→C→D→A(B为起点,A为终点)运动,设P运动的路程为x,△APB的面积为y,试写出程序,根据输入的x值,输出相应的y值. 【导学号:28750017】图1-2-3【解】 由题意可得函数关系式为:y =⎩⎪⎨⎪⎧8x ,128,8(48-x ),0<x ≤16,16<x ≤32,32<x <48,程序如下: INPUT “x =”;xIF x>0 AND x<=16 THENy =8*xELSEIF x<=32 THENy =128ELSEy =8*(48-x)END IFEND IFPRINT yEND[能力提升]1.已知程序如下:如果输出的结果为2,那么输入的自变量x的取值范围是()A.0B.(-∞,0]C.(0,+∞) D.R【解析】由输出的结果为2,则执行了ELSE后面的语句y=2,即x>0不成立,所以有x≤0.故选B.【答案】 B2.下列程序语句的算法功能是()A.输出a,b,c三个数中的最大数B.输出a,b,c三个数中的最小数C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列【解析】由程序语句可知,当比较a,b的大小后,选择较大的数赋给a;当比较a,c的大小后,选择较大的数赋给a;最后输出a,所以此程序的作用是输出a,b,c中最大的数.【答案】 A3.下面程序在开始运行后,通过键盘输入三个值a=3,b=24,c =7,则输出结果是________.程序:【解析】当a=3,b=24,c=7时,此时b>a,首先是a、b交换数值即a=24,b=3,c=7,又此时c>b,执行的程序是b、c交换数值,即b=7,c=3,所以a=24,b=7,c=3.【答案】24,7,34.画出求函数y =⎩⎨⎧12x +5, (x >0)0, (x =0)x 2-3, (x <0)的值的程序框图,并写出程序.【解】 程序框图为:程序为: INPUT “x =”;xIF x<0 THENy =x^2-3;ELSEIF x>0 THENy =x/2+5ELSE y =0END IFEND IFPRINT yEND附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

人教版高中数学必修三第一章算法初步学业分层测评3含答案

人教版高中数学必修三第一章算法初步学业分层测评3含答案

学业分层测评(三)条件结构(建议用时:45分钟)[学业达标]一、选择题1.下列算法中含有条件结构的是()A.求点到直线的距离B.已知三角形三边长求面积C.解一元二次方程x2+bx+4=0(b∈R)D.求两个数的平方和【解析】A、B、D均为顺序结构,由于解一元二次方程时需判断判别式值的符号,故C选项要用条件结构来描述.【答案】 C2.下列关于条件结构的描述,不正确的是()A.条件结构的出口有两个,但在执行时,只有一个出口是有效的B.条件结构的判断条件要写在判断框内C.条件结构只有一个出口D.条件结构根据条件是否成立,选择不同的分支执行【解析】条件结构的出口有两个,算法的流程根据条件是否成立有不同的流向.【答案】 C3.若f(x)=x2,g(x)=log2x,则如图1-1-21所示的程序框图中,输入x=0.25,输出h(x)=() 【导学号:28750008】图1-1-21 A.0.25B.2 C.-2 D.-0.25 【解析】h(x)取f(x)和g(x)中的较小者.g(0.25)=log20.25=-2,f(0.25)=0.252=116.【答案】 C4.若输入-5,按图1-1-22中所示程序框图运行后,输出的结果是()图1-1-22A.-5 B.0C .-1D .1【解析】 因为x =-5,不满足x >0,所以在第一个判断框中执行“否”,在第2个判断框中,由于-5<0,执行“是”,所以得y =1.【答案】 D5.下列算法中,含有条件结构的是( )A .求两个数的积B .求点到直线的距离C .解一元二次方程D .已知梯形两底和高求面积【解析】 解一元二次方程时,当判别式Δ<0时,方程无解,当Δ≥0时,方程有解,由于分情况,故用到条件结构.【答案】 C二、填空题6.如图1-1-23所示,是求函数y =|x -3|的函数值的程序框图,则①处应填________,②处应填________.图1-1-23【解析】 ∵y =|x -3|=⎩⎪⎨⎪⎧x -3, x ≥3,3-x , x <3.∴①中应填x<3?又∵若x≥3,则y=x-3.∴②中应填y=x-3.【答案】x<3?y=x-37.如图1-1-24所示的算法功能是________.图1-1-24【解析】根据条件结构的定义,当a≥b时,输出a-b;当a<b时,输出b-a.故输出|b-a|的值.【答案】计算|b-a|8.如图1-1-25是求某个函数的函数值的程序框图,则满足该程序的函数的解析式为________.图1-1-25【解析】 由框图可知f (x )=⎩⎪⎨⎪⎧2x -3, x <0,5-4x , x ≥0. 【答案】 f (x )=⎩⎪⎨⎪⎧2x -3,x <05-4x ,x ≥0 三、解答题9.写出输入一个数x ,求分段函数y =⎩⎪⎨⎪⎧x ,e x , (x ≥0),(x <0)的函数值的程序框图.【解】 程序框图如图所示:10.设计一个程序框图,使之能判断任意输入的数x 是奇数还是偶数.【解】 程序框图如下:[能力提升]1.根据图1-1-26中的流程图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则()图1-1-26A.①框中填“是”,②框中填“否”B.①框中填“否”,②框中填“是”C.①框中填“是”,②框中可填可不填D.①框中填“否”,②框中可填可不填【解析】当x≥60时,应输出“及格”;当x<60时,应输出“不及格”.故①中应填“是”,②中应填“否”.【答案】 A2.执行如图1-1-27所示的程序框图,如果输入t∈[-1,3],则输出的s属于()图1-1-27A.[-3,4]B.[-5,2]C.[-4,3] D.[-2,5]【解析】 因为t ∈[-1,3],当t ∈[-1,1)时,s =3t ∈[-3,3);当t ∈[1,3]时,s =4t -t 2=-(t 2-4t )=-(t -2)2+4∈[3,4],所以s ∈[-3,4].【答案】 A3.(2015·太原高一检测)某程序框图如图1-1-28所示,若输出的结果是8,则输入的数是________.图1-1-28【解析】 由程序框图知,⎩⎪⎨⎪⎧x 2≥x 3x 2=8或⎩⎨⎧x 2<x 3x 3=8, 解得x =-22或x =2.【答案】 -22或24.如图1-1-29所示是某函数f (x )给出x 的值,求相应函数值y 的程序框图.图1-1-29(1)写出函数f (x )的解析式;(2)若输入的x 取x 1和x 2(|x 1|<|x 2|)时,输出的y 值相同,试简要分析x 1与x 2的取值范围.【解】 (1)f (x )=⎩⎪⎨⎪⎧x 2-1,|x |≥1,1-x 2,|x |<1.(2)画出y =f (x )的图象:由图象及y =f (x )为偶函数,且|x 1|<|x 2|时,f (x 1)=f (x 2)知x 1∈(-1,1),x 2∈[-2,-1)∪(1,2].附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

(必考题)高中数学必修三第一章《统计》检测题(含答案解析)

(必考题)高中数学必修三第一章《统计》检测题(含答案解析)

一、选择题1.一组数据的平均数为m ,方差为n ,将这组数据的每个数都加上(0)a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均不变 B .这组新数据的平均数为am C .这组新数据的方差为2a nD .这组新数据的方差不变2.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④3.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为125-号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为()A .95B .96C .97D .984.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .5.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08156.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30B .25C .20D .157.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元8.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为39.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1310.已知x ,y 的取值如表: x 2 6 7 8y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .11.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表: 时间周一 周二 周三 周四 周五 车流量x (万辆)100102108114116浓度y (微克)78 80 8488 90根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 二、填空题13.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.14.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.49 54 43 54 82 17 37 93 23 28 87 35 20 56 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7615.已知一组数据为2,3,4,5,6,则这组数据的方差为______.16.变量X 与Y 相对应的5组数据和变量U 与V 相对应的5组数据统计如表: X 10 11.3 11.8 12.5 13 U 10 11.3 11.8 12.5 13 Y12345V54321用b 1表示变量Y 与X 之间的回归系数,b 2表示变量V 与U 之间的回归系数,则b 1与b 2的大小关系是___.17.抽样统计甲、乙两位同学5次数学成绩绘制成如下图所示的茎叶图,则成绩较稳定的那位同学成绩的方差为__________.18.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.19.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在7078()kg ~的人数为__________.20.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:x1 2 3 4 5 y 7.06.5m3.82.2已知x 和y 具有线性相关关系,且回归方程为 1.238.69y x =-+,那么表中m 的值为__________.三、解答题21.我国为全面建设社会主义现代化国家,制定了从2021年到2025年的“十四五”规划.某企业为响应国家号召,汇聚科研力量,加强科技创新,准备增加研发资金.现该企业为了了解年研发资金投入额x (单位:亿元)对年盈利额y (单位:亿元)的影响,研究了“十二五”和“十三五”规划发展期间近10年年研发资金投入额i x 和年盈利额i y 的数据.通过对比分析,建立了两个函数模型:①2y x αβ=+,②x ty e λ+=,其中α,β,λ,t 均为常数,e 为自然对数的底数.令2i i u x >,()ln 1,2,,10ii v y i ==⋅⋅⋅,经计算得如下数据:xy()1021ii x x =-∑()1021ii yy =-∑uv2621565 26805.36()1021ii uu =-∑()()101iii u u y y =--∑()1021ii v v =-∑()()101iii x x v v =--∑11250130 2.612(2)(ⅰ)根据(1)的选择及表中数据,建立y关于x的回归方程;(系数精确到0.01)(ⅱ)若希望2021年盈利额y为250亿元,请预测2021年的研发资金投入额x为多少亿元?(结果精确到0.01)附:①相关系数12211()()()()ni iinni ii ix x y yrx x y y===--=--∑∑∑,回归直线ˆˆˆy a bx=+中:121()()ˆ()ni iiniix x y ybx x==--=-∑∑,ˆˆa y bx=-②参考数据:ln20.693≈,ln5 1.609≈.22.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m=-,投资新型项目B的投资额x(单位:十万元)与纯利润y(单位:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线y bx a=+的斜率和截距的最小二乘估计分别为1221ni iiniix y nx ybx nx==-=-∑∑,a y bx=-.23.某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x的值;并估计出月平均用水量的众数.(2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?24.某市为了解疫情过后制造业企业的复工复产情况,随机调查了100家企业,得到这些企业4月份较3月份产值增长率x的频率分布表如下:-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80) x的分组[0.20,0)企业数13403584(1)估计制造业企业中产值增长率不低于60%的企业比例及产值负增长的企业比例;(2)求制造业企业产值增长率的平均数与方差的估计值(同一组中的数据用该组区间的中点值为代表).25.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表:x℃272930323335气温()数量y121520272836(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆa y bx=- 26.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章检测
一.选择题
1.如果输入n=2,那么执行如图中算法的结果是()
A.输出3 B.输出4
C.输出5 D.程序出错,输不出任何结果
2.阅读程序框图,如果输出的函数值在区间内,则输入的实数x的取值范围是()
A.(﹣∞,﹣2]B.[﹣2,﹣1]C.[﹣1,2]D.[2,+∞)
3.一算法的程序框图如图所示,若输出的,则输入的x可能为()
A.﹣1 B.1 C.1或5 D.﹣1或1
4.给出一个如图所示的程序框图,若要使输入的x的值一输出的y的值相等,则x的可能值的个数为()
A.1个 B.2个 C.3个 D.4个
5.阅读如图的程序框图,若运行相应的程序,则输出的S的值是()
A.39 B.21 C.81 D.102
6.阅读如图的程序框图.若输入n=5,则输出k的值为()
A.2 B.3 C.4 D.5
7.若执行如图所示的程序框图,输出S的值为3,则判断框中应填入的条件是()
A.k<6?B.k<7?C.k<8?D.k<9?
8.执行如图的程序框图,那么输出S的值是()
A.﹣1 B.C.2 D.1
9.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x的取值
范围是()
A.{x∈R|0≤x≤log23}B.{x∈R|﹣2≤x≤2}
C.{x∈R|0≤x≤log23,或x=2} D.{x∈R|﹣2≤x≤log23,或x=2}
10.执行下列程序后,输出的i的值是()
A.5 B.6 C.10 D.11
11.下面为一个求20个数的平均数的程序,在横线上应填充的语句为()
A.i>20 B.i<20 C.i>=20 D.i<=20
12.为估测某校初中生的身高情况,现从初二(四)班的全体同学中随机抽取10人进行测量,其身高数据如茎叶图所示,则这组数据的众数和中位数分别为()
A.172,172 B.172,169 C.172,168.5 D.169,172
13.如图程序运行的结果是()
A.515 B.23 C.21 D.19
14.如果程序执行后输出的结果是990,那么在程序UNTIL后面的“条件”应为()
A.i<9 B.i<8 C.i<=9 D.i>10
15.将51转化为二进制数得()
A.100111(2)B.110011(2)C.110110(2)D.110101(2)
16.如图给出了计算3+5+7+…+19的值的一个程序框图,其中空白处应填入()
A.i>9 B.i>10 C.i>19 D.i>20
17.三位七进制的数表示的最大的十进制的数是()
A.322 B.332 C.342 D.352
18.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6的值,当x=-4时,v4的值为( )
A.-57 B.124
C.-845 D.220
三、解答题
19.试用更相减损术求80和36的最大公约数。

20.写出用辗转相除法求下列两组数的最大公约数的过程.
(1)8251与6105;
(2)6731与2809.
21.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值.。

相关文档
最新文档