函数的最值经典例题
初中数学最值问题专题
中考数学最值问题【例题1】(经典题)二次函数y二2 (x-3) 2-4的最小值为.【例题2】(2018江西)如图,AB是。
的弦,AB=5,点C是。
上的一个动点,且NACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是___ .C【例题3】(2019湖南张家界)已知抛物线y=ax2+bx+c (a不0)过点A(1, 0), B(3, 0)两点,与y 轴交于点C, OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM^BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当^PBC面积最大时,求P点坐标及最大面积的值;(4)若点Q为线段OC上的一动点,问AQ+ 2 QC是否存在最小值若存在,求出这个最小值;若不存在,请说明理由.1.(2018河南)要使代数式V-2^37有意义,则乂的( )A.最大值为2B.最小值为2C.最大值为-D.最大值为°3 3 2 22.(2018四川绵阳)不等边三角形AABC的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为。
3.(2018齐齐哈尔)设a、b为实数,那么“2+“〃 +从一” 的最小值为04.(2018云南)如图,MN是。
的直径,MN=4, NAMN=40° ,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.C5.(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1WxV15)之间的函数关系式,并求出第几天时销售利润最大(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少元,则第15天在第14天的价格基础上最多可降多少元6.(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R (元),售价每只为P (元),且R、P与x的关系式分别为R = 500 + 30x , P = 170 —2x。
高三数学 函数的单调性和最值典型例题解析之一
高三数学函数的单调性和最值典型例题解析1.由二次函数的值域和对数函数的单调性,求得()f x 的最小值,解不等式112log 48a a ⎛⎫≥+ ⎪⎝⎭,可得所求范围. 【详解】(1)由2040x a a x ->⎧⎨->⎩可得24a x a <<,则()f x 的定义域为()2,4a a ,()log (2)log (4)log (2)(4)a a a f x x a a x x a a x =-+-=--22log (3)a x a a ⎡⎤=--+⎣⎦,当1a >时,()f x 的增区间为()2,3a a ,减区间为()3,4a a .证明:设()22()3g x x a a =--+,()g x 的增区间为(),3a -∞,减区间为()3,a +∞,当1a >时,设1223a x x a <<<,可得()()12g x g x <,()()12log log []a a g x g x <⎡⎤⎣⎦,即()()12f x f x <,可得()f x 在()2,3a a 递增;设1234a x x a <<<,可得()()12g x g x >,()()12log log []a a g x g x >⎡⎤⎣⎦, 即()()12f x f x >,可得()f x 在()3,4a a 递减.(2)由01a <<,()2223x a a a --+≤,可得2()log 2a f x a ≥=,所以112log 48a a ⎛⎫≥+ ⎪⎝⎭,即为211048a a --≤,解得102a <≤,即a 的取值范围是10,2⎛⎤⎥⎝⎦.2. 已知定义域为R 的函数12()12xxf x -=+. (1)试判断函数12()12xxf x -=+在R 上的单调性,并用函数单调性的定义证明;(2)若对于任意t ∈R ,不等式22(2)()0f t t f t k -+-<恒成立,求实数k 的取值范围. 【答案】(1)函数()f x 在R 上单调递减,证明见解析;(2)1,2⎛⎫-∞- ⎪⎝⎭.【详解】(1)函数12()12xx f x -=+在R 上单调递减.证明如下:任取12,x x ∈R ,且12x x <,122112*********(22)()()1212(12)(12)x x x x x x x x f x f x ----=-=++++,因为12x x <,所以1222x x <,1120x +>,2120x +>,即12()()f x f x >,故函数12()12xxf x -=+在R 上单调递减. (2)因为1221()()1221x x x x f x f x -----===-++,故12()12xxf x -=+为奇函数,所以222(2)()()f t t f t k f k t -<--=-, 由(1)知,函数()f x 在R 上单调递减,故222t t k t ->-,即2220t t k -->对于任意t ∈R 恒成立,所以222k t t <-,令()222g t t t =-,则()min k g t <,因为()22111222222g t t t t ⎛⎫=-=--≥- ⎪⎝⎭,所以()min 12g t =-,所以12k <-,即实数k 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.3.下列函数中是偶函数,且在区间(0,1)上单调递增的是() A .22y x =-B .2y x=C .1||||y x x =+D .2||x y x =【答案】AD 【详解】A ,因为()()()2222f x x x f x -=--=-=,22y x =-是偶函数,在区间(0,1)上为增函数,符合题意;B ,因为()()22x x f x f x =--=--=,2y x=是奇函数,且在区间(0,1)上为减函数,不符合题意; C ,因为()()11||||||||f x x x f x x x -=-+=+=-,1||(0)||y x x x =+≠是偶函数,当(0,1)x ∈时,1y x x=+单调递减,不符合题意;D ,因为()()22||||x x f x f x x x -===-,2(0)||x y x x =≠是偶函数,且在区间(0,1)上为增函数,符合题意. 故选:AD4.定义在[1,1]-上的奇函数()f x ,对任意,0m n ≠时,恒有()()0f m f n m n+>+.(1)比较1()2f 与1()3f 大小;(2)判断()f x 在[1,1]-上的单调性,并用定义证明;(3)若810a x -+>对满足不等式11()(2)024f x f x -+-<的任意x 恒成立,求a 的取值范围. 【答案】(1)11()()23f f >;(2)函数()f x 在[1,1]-上为单调递增函数,证明见解析;(3)4a >. 【解析】试题解析:(1)利用作差法,即可比较1()2f 与1()3f 大小;(2)利用单调性定义证明步骤,即可得出结论;(3)先确定x 的范围,再分离参数求最值,即可求a 的取值范围.试题解析:(1)第一步,由()()0f m f n m n+>+得出031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f :∵11()023+-≠,031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , ∵03121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , 第二步,由奇偶性得出结论: ∵11()()23f f >--∵11()()23f f >. (2)第一步,取值、作差: 任取12[1,1]x x ∈-,且12x x <,21212121212121()()()()()()()()()f x f x f x f x f x f x x x x x x x x x -+--=-=--+-.第二步,判断符号:∵2121()()0()f x f x x x +->+-,210x x ->,∵21()()0f x f x ->,第三步,下结论:∵函数()f x 在[1,1]-上为单调递增函数. (3)4a >.考点:函数奇偶性与单调性的综合问题. 5.已知函数()21xf x x =+. (1)判断并证明函数()f x 的奇偶性;(2)判断当()1,1x ∈-时函数()f x 的单调性,并用定义证明; (3)若()f x 定义域为()1,1-,解不等式()()210f x f x -+<. 【答案】(1)奇函数(2)增函数(3)1{|0}3x x <<【解析】试题解析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x ,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
高中数学经典50题(附答案)
将 代入得
得︱AM︱+︱AN︱=8
(2)假设存在a
因为︱AM︱+︱AN︱=︱MM′︱+︱NN′︱=2︱PP′︱
所以︱AP︱=︱PP′︱ ,P点在抛物线上,这与P点是MN的中点矛盾。故a不存在。
7.抛物线 上有两动点A,B及一个定点M,F为焦点,若 成等差数列
16、设 若 是 与 的等比中项,则 的最小值为( )
A.8 B.4 C.1 D.
答案:B
解析:因为 ,所以 ,
,当且仅当 即 时“=”成立,故选择B.
点评:本小题考查指数式和对数式的互化,以及均值不等式求最值的运用,考查了变通能力.
17、设数列 满足 为实数.
(Ⅰ)证明: 对任意 成立的充分必要条件是 ;
因为 ,BC中点 ,所以直线PD的方程为 (1)
又 故P在以A,B为焦点的双曲线右支上。设 ,则双曲线方程为 (2)。联立(1)(2),得 ,
所以 因此 ,故炮击的方位角北偏东 。
说明:本题的关键是确定P点的位置,另外还要求学生掌握方位角的基本概念。
4.河上有抛物线型拱桥,当水面距拱顶5米时,水面宽度为8米,一小船宽4米,高2米,载货后船露出水面的部分高米,问水面上涨到与抛物线拱顶距多少时,小船开始不能通行
6.设抛物线 的焦点为A,以B(a+4,0)点为圆心,︱AB︱为半径,在x轴上方画半圆,设抛物线与半圆相交与不同的两点M,N。点P是MN的中点。
(1)求︱AM︱+︱AN︱的值
(2)是否存在实数a,恰使︱AM︱︱AP︱︱AN︱成等差数列若存在,求出a,不存在,说明理由。
高中数学经典50题(附答案)
高中数学题库1. 求下列函数的值域:解法2 令t =sin x ,则f (t )=-t 2+t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值.本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。
2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32ππ和,求该慧星与地球的最近距离。
解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+by a x (图见教材P132页例1)。
当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ππ=∠=∠xFA xFA 或。
作m FA FB Ox AB 3221B ==⊥,则于故由椭圆第二定义可知得⎪⎪⎩⎪⎪⎨⎧+-=-=)32(34)(22m c c a a c m c ca a c m两式相减得,23)4(21.2,3231c c c m c a m a c m =-==∴⋅=代入第一式得 .32.32m c c a m c ==-∴=∴答:彗星与地球的最近距离为m 32万千米。
说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。
(完整版)高中数学经典50题(附答案)
高中数学题库1. 求下列函数的值域:解法2 令t =sin x ,则f (t )=-t 2+t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值.本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。
2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32ππ和,求该慧星与地球的最近距离。
解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+by a x (图见教材P132页例1)。
当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ππ=∠=∠xFA xFA 或。
作m FA FB Ox AB 3221B ==⊥,则于故由椭圆第二定义可知得⎪⎪⎩⎪⎪⎨⎧+-=-=)32(34)(22m c c a a c m c ca a c m两式相减得,23)4(21.2,3231c c c m c a m a c m =-==∴⋅=代入第一式得 .32.32m c c a m c ==-∴=∴答:彗星与地球的最近距离为m 32万千米。
说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。
牛顿法求解一元函数的极值例题
牛顿法是一种用来求解函数极值的数值方法,它通过不断逼近函数的极值点来找到函数的最优解。
本文将通过一个例题来详细介绍牛顿法的求解过程,并分析其优缺点。
1. 问题描述假设有一个一元函数 f(x),我们希望通过牛顿法求解这个函数的极值点。
我们将首先介绍这个函数的具体形式和求解的目标,为后续的分析做好铺垫。
2. 函数形式我们假设函数 f(x) = x^3 - 2x^2 + 3x - 1,这是一个简单的三次函数,我们希望找到它的极小值点。
3. 牛顿法求解过程我们需要对函数 f(x) 进行求导,得到它的导函数 f'(x) = 3x^2 - 4x + 3。
接下来,我们选取一个初始点 x0,并通过牛顿法的迭代公式来逼近函数的极小值点。
迭代公式如下:xn+1 = xn - f'(xn)/f''(xn)其中 f''(x) 为 f(x) 的二阶导数。
通过不断迭代,我们可以逼近函数的极小值点。
4. 计算过程我们选取初始点 x0 = 2,然后根据迭代公式进行计算:迭代1:f'(2) = 3*2^2 - 4*2 + 3 = 7f''(2) = 6*2 - 4 = 8x1 = 2 - 7/8 ≈ 1.125迭代2:f'(1.125) = 3*1.125^2 - 4*1.125 + 3 ≈ 1.828f''(1.125) = 6*1.125 - 4 ≈ 3.75x2 = 1.125 - 1.828/3.75 ≈ 0.393通过多次迭代,我们可以最终得到函数 f(x) 的极小值点。
5. 分析牛顿法是一种高效的数值计算方法,对于多项式函数和一些特定的非线性函数,通常能够快速收敛到极值点。
但是牛顿法也有一些局限性,首先它需要计算函数的导数和二阶导数,这对于一些复杂的函数来说可能会增加计算的复杂度。
在极值点附近,如果函数的二阶导数趋近于零,那么牛顿法可能会出现不稳定的情况,导致迭代结果发散。
二次函数最值知识点总结典型例题及习题
二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。
一般分为对称轴在区间左侧、中间和右侧三种情况。
例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。
分析:将函数f(x)配方,得到其顶点为(-b/2a。
c - b^2/4a)。
因此,对称轴为x = -b/2a。
当a。
0时,函数f(x)的图像为开口向上的抛物线。
结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。
2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。
当a < 0时,情况类似。
二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。
例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。
t+1]上的最值为f(t)和f(t+1)中的较大者。
最全函数值域的12种求法(附例题,习题)
+x+2≤函数的值域是
点评:
求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。
练习:
求函数y=2x-5+√15-4x的值域.(
答案:
值域为{y∣y≤3})
四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
练习:
求函数y=(10x+10-x)/(10x-10-x)的值域。(
答案:
函数的值域为{y∣y<-1或y>1})
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x+x+2)的值域。
点拨:
将被开方数配方成完全平方数,利用二次函数的最值求。
解:
由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2
例4求函数y=(2x2
-2x+3)/(x2
-x+1)的值域。
点拨:
将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:
将上式化为(y-2)x2
-(y-2)x+(y-3)=0(*)
当y≠2时,由Δ=(y-2)2
-4(y-2)x+(y-3)≥0,解得:2<x≤2当y=2时,方程(*)无解。∴函数的值域为2<y≤。
点拨:
先求出原函数的反函数,再求出其定义域。
解:
显然函数y=(x+1)/(x+2)的反函数为:
x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
高一 函数的单调性及其最值知识点+例题+练习 含答案
1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0) 结论f(x0)为最大值f(x0)为最小值判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x 2”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________. 答案 ①解析 对于①,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x -x 在(0,+∞)内是减函数;②,③,④函数在(0,+∞)上均不单调.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 答案 -6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1解析 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减, 则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增, 则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1.4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________. 答案 (1)① (2)(-∞,-2) (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则 f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +ax (a >0)在(0,a ]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +ax(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +ax(a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数.方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-ax2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数,f (x )min =f (1)=a +3. 所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用命题点1 比较大小例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系) 答案 < >解析 ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1), 得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________.(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)⎣⎡⎦⎤-14,0 (2)[32,2) 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是__________.(2)若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是__________.答案 (1)(8,9] (2)(0,1]解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (14分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1, ∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1] =f (x 2-x 1)+f (x 1)-1,[4分]∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[14分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法.[失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练(时间:40分钟)1.下列函数f (x )中,①f (x )=1x;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)答案 ①解析 由题意知f (x )在(0,+∞)上是减函数.①中,f (x )=1x满足要求; ②中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数;③中,f (x )=e x 是增函数;④中,f (x )=ln(x +1)在(0,+∞)上是增函数.2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.答案 b <a <c解析 ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________. 答案 -2解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.答案 [0,34] 解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数,当a ≠0时,由⎩⎨⎧ a >0,-4(a -3)4a ≥3,得0<a ≤34, 综上a 的取值范围是0≤a ≤34. 6.函数f (x )=⎩⎪⎨⎪⎧12log ,x x ≥1,2x ,x <1的值域为________. 答案 (-∞,2)解析 当x ≥1时,f (x )=log 12x 是单调递减的,此时,函数的值域为(-∞,0];当x <1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝⎛⎭⎫19=f (1)=0,故f ⎝⎛⎭⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝⎛⎭⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝⎛⎭⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x (2-x )>19,0<x <2,由此解得x 的取值范围是⎝⎛⎭⎫1-223,1+223. B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 依题意,h (x )=⎩⎪⎨⎪⎧ log 2x ,0<x <2,-x +3,x ≥2.当0<x <2时,h (x )=log 2x 是增函数;当x ≥2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.12.定义新运算:当a ≥b 时,ab =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.答案 (-3,-1)∪(3,+∞)解析 由已知可得⎩⎪⎨⎪⎧ a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。
最全函数值域的12种求法(附例题,习题)
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1 求函数y=3+√ (-2 3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥,0故3+√(2-3x)≥。
3∴ 函数的知域为.点评:算术xx 具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0 ≤x≤的5值)域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2 求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为 { y∣y≠1,∈y R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{ y∣y<-1 或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√-(x+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0可, 知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-)2+∈[0,∴ 0≤√-x2+x+2≤函数的值域是点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x 的值域.(答案:值域为{y∣ y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
初中含参二次函数的最值问题
初中含参二次函数的最值问题二次函数在数学中是一种比较常见的函数形式,也是我们初中阶段需要掌握的重要知识点之一。
其中,最值问题是二次函数题目中比较典型和常见的一类问题。
在这篇文章中,我将通过一些例题和解题思路的介绍,来帮助大家更好地理解含参二次函数的最值问题。
1. 带参数二次函数的最值问题下面是一个含参数的二次函数的例子:$y=ax^2+bx+c(a>0)$ 。
我们来考虑这个函数的最值问题。
(1)当$a>0$时,这个二次函数的值域为$[q,\infty)$。
其中$q$为$a,b,c$的函数,满足$a>0$时,有如下的公式:$$q=f(\frac{-b}{2a})=\frac{4ac-b^2}{4a}$$那么,这个二次函数的最小值就是$q$,也就是当$x=\frac{-b}{2a}$时,函数取得最小值。
(2)当$a<0$时,这个二次函数的值域为$(-\infty,q]$。
其最大值也是$q$,即当$x=\frac{-b}{2a}$时,函数取得最大值。
可以通过公式来求解含参二次函数的最值问题。
具体来说,找到函数的最小值或最大值所在的$x$坐标,然后代入函数中求出对应的函数值即可。
下面让我们通过一个例题来进一步了解含参二次函数的最值问题。
2. 例题分析【例题】已知函数$y=ax^2+bx+c(a>0)$,并满足:$|x-2|+|x-4|+|x-6|=k(k>0)$求函数$y$的最小值和最大值并确定此时$x$的值。
【解题思路】该题要求我们求解带有约束条件的含参二次函数的最值问题。
实际上,约束条件中的绝对值形式会让我们比较难受,不过我们可以将其转化为分段描述,从而更好地理解这个问题。
具体来说,考虑以下的情况:(1)当$x\leq 2$时,有$|x-2|=2-x$。
(2)当$2<x\leq4$时,有$|x-2|=x-2$、$|x-4|=4-x$。
(3)当$4<x\leq 6$时,有$|x-4|=x-4$、$|x-6|=6-x$。
高三数学三角函数的最值习题精选精讲
三角函数的值域或最值常见的三角函数最值的基本类型有: (1)y=asinx+b (或y=acosx+b )型,利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。
(2)y=asinx+bcosx 型,引入辅助角ϕ,化为y=22b a +sin (x+ϕ),利用函数()1s i n≤+ϕx 即可求解。
Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。
(3)y=asin 2x+bsinx+c (或y=acos 2x+bcosx+c ),型,可令t=sinx (t=cosx ),-1≤t ≤1,化归为闭区间上二次函数的最值问题。
(4)Y=d x c b x a ++sin sin (或y=d x bx a ++cos cos )型,解出sinx (或cosx ),利用()1cos 1sin ≤≤x x 或去解;或用分离常数的方法去解决。
(5)y=d x c b x a ++cos sin (y=dx c b x a ++sin cos )型,可化归为sin (x+ϕ)g (y )去处理;或用万能公式换元后用判别式去处理;当a=c 时,还可利用数形结合的方法去处理上。
(6)对于含有sinx±cosx,sinxcosx 的函数的最值问题,常用的方法是令sinx±cosx=t,2≤t ,将sinxcosx 转化为t 的函数关系式,从而化为二次函数的最值问题。
一、利用三角函数的有界性.求解这类问题,首先利用有关三角函数公式化为sin()y A x kωϕ=++的形式.在化简过程中常常用到公式:sin cos ),tan ,b a x b x x aϕϕϕ+=+=其中由及点(a,b)的位置确定.例1 、(2000年高考)已知:212cos 1siny x x x x R =+⋅+∈,,求y 的最大值及此时x 的集合.解:∵212cos 1siny x x x =⋅+1cos 21521sin(2)4264x x x π+=+=++,∴当sin(2)16x π+=时,max 157244y =+= .此时,2262x k πππ+=+,即6x k ππ=+. 所以y 的最大值为74,此时x 的集合为{|}6x x k k Z ππ=+∈,.例2、求函数1cos 3cos xy x-=+的值域.解:1cos 3cos xy x-=+⇒(1)cos 2y x +=-⇒2cos 1x y =-+,由|cos |1x ≤得2||11y -≤+, |1|2y +≥即,解得31y y ≤-≥或,所以函数1cos 3cos xy x-=+的值域是3][1-∞-∞(,,+)二、利用二次函数最值性质求解这类问题,首先利用有关三角函数公式化为2sin sin y x b x c a =++的形式.例3、求函数278cos 2[,]63sin y x x x ππ=--∈-,的值域. 解:278cos 2sin y x x =--=278cos 2(1)cos x x ---=223,(cos 2)x --∵[,]63x ππ∈-,∴1cos [1]2x ∈,,∴3[1]2y ∈-,.例4、(90年高考)求函数sin cos sin cos y x x x x =++的最小值.解:设sin cos x x t +=,[]t ∈则21sin cos 2x x t-=,所以()y f t ==211,2(1)t ⋅-+([t ∈,当1[]t =-∈时,y 有最小值1-.三、利用均值不等式*利用均值不等式求三角函数时,一定要注意均值不等式中的使用条件:一正、二定、三相等. 例6、当0x π<<时,求sin 2cos xy x=+的最大值.解:设22tan0,(0),233x t t x y tπ=><<=≤=+则(当且仅当tan 2x t ==时取等号)。
求函数最值的方法总结
求函数最值的常用以下方法:1.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现.例1 设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.【思路】 先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a 的值. 【解析】 ∵a >1,∴函数f (x )=log a x 在区间[a,2a ]上是增函数,∴函数在区间[a,2a ]上的最大值与最小值分别为log a 2a ,log a a =1.∴log a 2=12,a =4.故填4.【讲评】 解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m ,n ]上的最值:若函数f (x )在[m ,n ]上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采用分段函数求最值的方法处理.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式去灵活选择换元的方法,以便将复杂的函数最值问题转化为简单函数的最值问题,从而求出原函数的最值.如可用三角代换解决形如a2+b2=1及部分根式函数形式的最值问题.例2 (1)函数f(x)=x+21-x的最大值为________.【解析】方法一:设1-x=t(t≥0),∴x=1-t2,∴y=x+21-x=1-t2+2t=-t2+2t+1=-(t-1)2+2,∴当t=1即x=0时,y max=2.方法二:f(x)的定义域为{x|x≤1},f′(x)=1-11-x,由f′(x)=0得x=0.0<x≤1时,f′(x)<0,f(x)为减函数.x<0时,f′(x)>0,f(x)为增函数.∴当x=0时,f(x)max=f(0)=2.(2)求函数y=x+4-x2的值域.【解析】换元法:由4-x2≥0得-2≤x≤2,∴设x=2cosθ(θ∈[0,π]),则y=2cosθ+4-4cos2θ=2cos θ+2sin θ=22sin(θ+π4),∵θ+π4∈[π4,5π4]∴sin(θ+π4)∈[-22,1],∴y ∈[-2,22].3.配方法配方法是求二次函数最值的基本方法,如F (x )=af 2(x )+bf (x )+c 的函数的最值问题,可以考虑用配方法. 例3 已知函数y =(e x -a )2+(e -x -a )2(a ∈R ,a ≠0),求函数y 的最小值. 【思路】 将函数表达式按e x +e -x 配方,转化为关于变量e x +e -x 的二次函数. 【解析】 y =(e x -a )2+(e -x -a )2 =(e x +e -x )2-2a (e x +e -x )+2a 2-2. 令t =e x +e -x ,f (t )=t 2-2at +2a 2-2.∵t ≥2,∴f (t )=t 2-2at +2a 2-2=(t -a )2+a 2-2的定义域为[2,+∞).∵抛物线y =f (t )的对称轴为t =a ,∴当a ≤2且a ≠0时,y min =f (2)=2(a -1)2; 当a <0时,y min =f (a )=a 2-2.【讲评】 利用二次函数的性质求最值,要特别注意自变量的取值范围,同时还要注意对称轴与区间的相对位置关系.如本题化为含参数的二次函数后,求解最值时要细心区分:对称轴与区间的位置关系,然后再根据不同情况分类解决.4.不等式法利用不等式法求解函数最值,主要是指运用均值不等式及其变形公式来解决函数最值问题的一种方法.常常使用的基本不等式有以下几种:a 2+b 2≥2ab (a ,b 为实数);a +b2≥ab (a ≥0,b ≥0);ab ≤(a +b2)2≤a 2+b 22(a ,b 为实数).例4 设x ,y ,z 为正实数,x -2y +3z =0,则y 2xz的最小值为________.【思路】 先利用条件将三元函数化为二元函数,再利用基本不等式求得最值. 【解析】 因为x -2y +3z =0, 所以y =x +3z2,所以y 2xz=x 2+9z 2+6xz4xz.又x ,z 为正实数,所以由基本不等式, 得y 2xz ≥6xz +6xz 4xz =3, 当且仅当x =3z 时取“=”.故y 2xz的最小值为3.故填3.【讲评】 本题是三元分式函数的最值问题,一般地,可将这类函数问题转化为二元函数问题加以解决.在利用均值不等式法求函数最值时,必须注意“一正二定三相等”,特别是“三相等”,是我们易忽略的地方,容易产生失误.5.平方法对含根式的函数或含绝对值的函数,有的利用平方法,可以巧妙地将函数最值问题转化为我们熟知的、易于解决的函数最值问题.例5 已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM的值为( )A.14B.12C.22D.32【思路】 本题是无理函数的最值问题,可以先确定定义域,再两边平方,即可化为二次函数的最值问题,进而可以利用二次函数的最值解决.【解析】由题意,得⎩⎨⎧1-x ≥0,x +3≥0,所以函数的定义域为{x |-3≤x ≤1}. 又两边平方,得y 2=4+21-x ·x +3=4+21-xx +3.所以当x =-1时,y 取得最大值M =22;当x =-3或1时,y 取得最小值m =2,∴选C【讲评】 对于形如y =a -cx +cx +b 的无理函数的最值问题,可以利用平方法将问题化为函数y 2=(a +b )+2a -cx cx +b 的最值问题,这只需利用二次函数的最值即可求得.6.数形结合法数形结合法,是指利用函数所表示的几何意义,借助几何方法及函数的图像求函数最值的一种常用的方法.这种方法借助几何意义,以形助数,不仅可以简捷地解决问题,又可以避免诸多失误,是我们开阔思路、正确解题、提高能力的一种重要途径.因此,在学习中,我们对这种方法要细心研读,认真领会,并正确地应用到相关问题的解决之中.例6对a ,b ∈R ,记max |a ,b |=⎩⎨⎧a ,a ≥b ,b ,a <b ,函数f (x )=max ||x +1|,|x -2||(x ∈R )的最小值是________.【思路】 本题实质上是一个分段函数的最值问题.先根据条件将函数化为分段函数,再利用数形结合法求解. 【解析】由|x +1|≥|x -2|,得(x +1)2≥(x -2)2,所以x ≥12.所以f (x )=⎩⎪⎨⎪⎧ |x +1|,x ≥12,|x -2|,x <12,其图像如图所示. 由图形易知,当x =12时,函数有最小值, 所以f (x )min =f (12)=|12+1|=32. 7.导数法设函数f (x )在区间[a ,b ]上连续,在区间(a ,b )内可导,则f (x )在[a ,b ]上的最大值和最小值应为f (x )在(a ,b )内的各极值与f(a)、f(b)中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.例7 函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是________.【思路】先求闭区间上的函数的极值,再与端点函数值比较大小,确定最值.【解析】因为f′(x)=3x2-3,所以令f′(x)=0,得x=1(舍去).又f(-3)=-17,f(-1)=3,f(0)=1,比较得,f(x)的最大值为3,最小值为-17.【讲评】(1)利用导数法求函数最值的三个步骤:第一,求函数在(a,b)内的极值;第二,求函数在端点的函数值f(a)、f(b);第三,比较上述极值与端点函数值的大小,即得函数的最值.(2)函数的最大值及最小值点必在以下各点中取得:导数为零的点,导数不存在的点及其端点.8.线性规划法线性规划法,是指利用线性规划的基本知识求解函数最值的方法.线性规划法求解最值问题,一般有以下几步:(1)由条件写出约束条件;(2)画出可行域,并求最优解;(3)根据目标函数及最优解,求出最值.例8 已知点P(x,y)的坐标同时满足以下不等式:x+y≤4,y≥x,x≥1,如果点O为坐标原点,那么|OP|的最小值等于________,最大值等于________.【思路】本题实质上可以视为线性规划问题,求解时,先找出约束条件,再画可行域,最后求出最值.【解析】由题意,得点P (x ,y )的坐标满足⎩⎪⎨⎪⎧ x +y ≤4,y ≥x ,x ≥1.画出可行域,如图所示.由条件,得A (2,2),|OA |=22; B (1,3),|OB |=10;C (1,1),|OC |= 2.故|OP |的最大值为10,最小值为 2.。
高中数学最值问题经典例题
高中数学最值问题经典例题高中数学最值问题的经典例题有很多,以下是其中的几个:1. 求函数f(x)=x^2-2x在区间[0,3]上的最大值和最小值。
解析:这是一个二次函数,其对称轴为x=1,因此在区间[0,1]上是减函数,在区间[1,3]上是增函数。
所以当x=1时,函数取得最小值f(1)=-1;当x=3时,函数取得最大值f(3)=3。
2. 求函数f(x)=x^3-3x^2+4在区间[-2,2]上的最大值和最小值。
解析:这是一个三次函数,其一阶导数为f'(x)=3x^2-6x,令其为0解得x=0或x=2。
通过判断导数的正负,可以知道函数在区间[-2,0]上是增函数,在区间[0,2]上是减函数。
所以当x=-2时,函数取得最大值f(-2)=0;当x=2时,函数取得最小值f(2)=-4。
3. 求函数f(x)=sinx+cosx在区间[0,π/2]上的最大值。
解析:这是一个三角函数的最值问题,可以通过合角公式将其化为f(x)=√2sin(x+π/4)。
因为sin函数在区间[0,π/2]上是增函数,所以当x=π/4时,函数取得最大值f(π/4)=√2。
4. 求函数f(x)=e^x-x-1在区间[-1,1]上的最大值和最小值。
解析:这是一个指数函数与一次函数的复合函数,其一阶导数为f'(x)=e^x-1。
通过判断导数的正负,可以知道函数在区间[-1,0]上是减函数,在区间[0,1]上是增函数。
所以当x=-1时,函数取得最大值f(-1)=e^(-1)+1;当x=0时,函数取得最小值f(0)=0。
5. 求函数f(x)=lnx-ax在区间[1,2]上的最大值和最小值。
解析:这是一个对数函数与一次函数的复合函数,其一阶导数为f'(x)=1/x-a。
通过对a进行分类讨论,可以确定函数的单调性,并求出最值。
当a≤1/2时,函数在区间[1,2]上是增函数;当a≥1时,函数在区间[1,2]上是减函数;当1/2<a<1时,函数在区间[1,1/a]上是增函数,在区间[1/a,2]上是减函数。
函数的单调性最值(含例题详解)
函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值 前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 ①对于任意x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0)=M①对于任意x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0)=M结论 M 为最大值 M 为最小值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________.解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D. y =lg|x |答案:C 2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________. 答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5l og y u =为()0,+∞上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭. 答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________. 解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为120x x <<,所以210x x ->,120x x >. 故当()12,,x x k ∈+∞时,()()12f x f x <,即函数在(),k +∞上单调递增.当()12,0,x x k ∈时,()()12f x f x >,即函数在()0,k 上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调 性,故在(),k -∞-单调递增,在(),0k -上单调递减. 综上,函数f (x )在(),k -∞-和(),k +∞上单调递增,在(),0k -和()0,k 上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2x x -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小 2.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( ) A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选 B ∵函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( )A .一定大于0B .一定小于0C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ). 又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1.又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f (x )是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数.答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x (1-x ),当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4.三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2. 又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7. 又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f(x)在[-1,1]上单调递增.(2)∵f(x)在[-1,1]上单调递增,∴112111121111xxxx⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x<-1.(3)∵f(1)=1,f(x)在[-1,1]上单调递增.∴在[-1,1]上,f(x)≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.。
高考总复习函数的单调性与最值习题及详解
高考总复习函数的单调性与最值习题及详解一、选择题1.已知f〔x〕=-x-x3,x∈[a,b],且f〔a〕·f〔b〕<0,则f〔x〕=0在[a,b]内〔〕A.至少有一实数根B.至多有一实数根C.没有实数根D.有唯一实数根[答案] D[解析] ∵函数f〔x〕在[a,b]上是单调减函数,又f〔a〕,f〔b〕异号.∴f〔x〕在[a,b]内有且仅有一个零点,故选D.2.〔2010·北京文〕给定函数①y=x,②y=log〔x+1〕,③y=|x-1|,④y=2x+1,其中在区间〔0 ,1〕上单调递减的函数的序号是〔〕A.①②B.②③C.③④D.①④[答案] B[解析]易知y=x在〔0,1〕递增,故排除A、D选项;又y=log〔x+1〕的图象是由y=logx的图象向左平移一个单位得到的,其单调性与y=logx相同为递减的,所以②符合题意,故选B.3.〔2010·济南市模拟〕设y1=0.4,y2=0.5,y3=0.5,则〔〕A.y3<y2<y1 B.y1<y2<y3C.y2<y3<y1 D.y1<y3<y2[答案] B[解析]∵y=0.5x为减函数,∴0.5<0.5,∵y=x在第一象限内是增函数,∴0.4<0.5,∴y1<y2<y3,故选B.4.〔2010·广州市〕已知函数,若f〔x〕在〔-∞,+∞〕上单调递增,则实数a的取值范围为〔〕A.〔1,2〕B.〔2,3〕C.〔2,3] D.〔2,+∞〕[答案] C[解析] ∵f〔x〕在R上单调增,∴,∴2<a≤3,故选C.5.〔文〕〔2010·山东济宁〕若函数f〔x〕=x2+2x+alnx在〔0,1〕上单调递减,则实数a的取值范围是〔〕A.a≥0 B.a≤0C.a≥-4 D.a≤-4[答案] D[解析]∵函数f〔x〕=x2+2x+alnx在〔0,1〕上单调递减,∴当x∈〔0,1〕时,f ′〔x〕=2x+2+=≤0,∴g〔x 〕=2x2+2x+a≤0在x∈〔0,1〕时恒成立,∴g〔0〕≤0,g〔1〕≤0,即a≤-4.〔理〕已知函数y=tanωx在内是减函数,则ω的取值范围是〔〕A.0<ω≤1 B.-1≤ω<0C.ω≥1 D.ω≤-1[答案] B[解析]∵tanωx在上是减函数,∴ω<0.当-<x<时,有-≤<ωx<-≤,∴,∴-1≤ω<0.6.〔2010·天津文〕设a=log54,b=〔log53〕2,c=log45,则〔〕A.a<c<b B.b<c<aC.a<b<c D.b<a<c[答案] D[解析] ∵1>log54>log53>0,∴log53>〔log53〕2>0,而log45>1,∴c>a>b.7.若f〔x〕=x3-6ax的单调递减区间是〔-2,2〕,则a的取值范围是〔〕A.〔-∞,0] B.[-2,2]C.{2} D.[2,+∞〕[答案] C[解析] f ′〔x〕=3x2-6a,若a≤0,则f ′〔x〕≥0,∴f〔x〕单调增,排除A;若a>0,则由f ′〔x〕=0得x=±,当x<-和x>时,f ′〔x〕>0,f〔x〕单调增,当-<x<时,f〔x〕单调减,∴f〔x〕的单调减区间为〔-,〕,从而=2,∴a=2.[点评]f〔x〕的单调递减区间是〔-2,2〕和f〔x〕在〔-2,2〕上单调递减是不同的,应加以区分.8.〔文〕定义在R上的偶函数f〔x〕在[0,+∞〕上是增函数,若f〔〕=0,则适合不等式f〔logx〕> 0的x的取值范围是〔〕A.〔3,+∞〕B.〔0,〕C.〔0,+∞〕D.〔0,〕∪〔3,+∞〕[答案] D[解析]∵定义在R上的偶函数f〔x〕在[0,+∞〕上是增函数,且f〔〕=0,则由f〔logx〕>0,得|logx|>,即logx>或logx<-.选D.〔理〕〔2010·南充市〕已知函数f 〔x 〕图象的两条对称轴x =0和x =1,且在x ∈[-1,0]上f 〔x 〕单调递增,设a =f 〔3〕,b =f 〔〕,c =f 〔2〕,则a 、b 、c 的大小关系是〔 〕A .a>b>cB .a>c>bC .b>c>aD .c>b>a [答案] D[解析] ∵f 〔x 〕在[-1,0]上单调增,f 〔x 〕的图象关于直线x =0对称,∴f〔x 〕在[0,1]上单调减;又f 〔x 〕的图象关于直线x =1对称,∴f〔x 〕在[1,2]上单调增,在[2,3]上单调减.由对称性f 〔3〕=f 〔-1〕=f 〔1〕<f 〔〕<f 〔2〕,即a<b<c.9.〔2009·天津高考〕已知函数f 〔x 〕=若f 〔2-a2〕>f 〔a 〕,则实数a 的取值范围是〔 〕A .〔-∞,-1〕∪〔2,+∞〕B .〔-1,2〕C .〔-2,1〕D .〔-∞,-2〕∪〔1,+∞〕[答案] C[解析]∵x≥0时,f 〔x 〕=x2+4x =〔x +2〕2-4单调递增,且f 〔x 〕≥0;当x<0时,f 〔x 〕=4x -x2=-〔x -2〕2+4单调递增,且f 〔x 〕<0,∴f 〔x 〕在R 上单调递增,由f 〔2-a2〕>f 〔a 〕得2-a2>a ,∴-2<a<1.10.〔2010·泉州模拟〕定义在R 上的函数f 〔x 〕满足f 〔x +y 〕=f 〔x 〕+f 〔y 〕,当x<0时,f 〔x 〕>0,则函数f 〔x 〕在[a ,b]上有〔 〕A .最小值f 〔a 〕B .最大值f 〔b 〕C .最小值f 〔b 〕D .最大值f ⎝⎛⎭⎪⎫a +b 2 [答案] C[解析] 令x =y =0得,f 〔0〕=0,令y =-x 得,f 〔0〕=f 〔x 〕+f 〔-x 〕,∴f〔-x 〕=-f 〔x 〕.对任意x1,x2∈R 且x1<x2,,f 〔x1〕-f 〔x2〕=f 〔x1〕+f 〔-x2〕=f 〔x1-x2〕>0,∴f 〔x1〕>f 〔x2〕,∴f〔x 〕在R 上是减函数,∴f〔x 〕在[a ,b]上最小值为f 〔b 〕.二、填空题11.〔2010·重庆中学〕已知函数f 〔x 〕=ax +-4〔a ,b 为常数〕,f 〔lg2〕=0,则f 〔lg 〕=________.[答案] -8[解析] 令φ〔x 〕=ax +,则φ〔x 〕为奇函数,f 〔x 〕=φ〔x 〕-4,∵f〔lg2〕=φ〔lg2〕-4=0,∴φ〔lg2〕=4,∴f〔lg 〕=f 〔-lg2〕=φ〔-lg2〕-4=-φ〔lg2〕-4=-8.12.偶函数f 〔x 〕在〔-∞,0]上单调递减,且f 〔x 〕在[-2,k]上的最大值点与最小值点横坐标之差为3,则k =________.[答案] 3[解析] ∵偶函数f 〔x 〕在〔-∞,0]上单调递减,∴f 〔x 〕在[0,+∞〕上单调递增.因此,若k≤0,则k -〔-2〕=k +2<3,若k>0,∵f 〔x 〕在[-2,0]上单调减在[0,-k]上单调增,∴最小值为f 〔0〕,又在[-2,k]上最大值点与最小值点横坐标之差为3,∴k -0=3,即k =3.13.函数f 〔x 〕=在〔-∞,-3〕上是减函数,则a 的取值范围是________.[答案] ⎝⎛⎭⎪⎫-∞,-13 [解析] ∵f 〔x 〕=a -在〔-∞,-3〕上是减函数,∴3a +1<0,∴a<-.14.〔2010·江苏无锡市调研〕设a 〔0<a<1〕是给定的常数,f 〔x 〕是R 上的奇函数,且在〔0,+∞〕上是增函数,若f =0,f 〔logat 〕>0,则t 的取值范围是______.[答案] 〔1,〕∪〔0,〕[解析] f 〔logat 〕>0,即f 〔logat 〕>f ,∵f〔x 〕在〔0,+∞〕上为增函数,∴logat>,∵0<a<1,∴0<t<.又f 〔x 〕为奇函数,∴f =-f =0,∴f〔logat 〕>0又可化为f 〔logat 〕>f ,∵奇函数f 〔x 〕在〔0,+∞〕上是增函数,∴f〔x 〕在〔-∞,0〕上为增函数,∴0>logat>-,∵0<a<1,∴1<t<,综上知,0<t<或1<t<.三、解答题15.〔2010·北京市东城区〕已知函数f 〔x 〕=loga 〔x +1〕-loga 〔1-x 〕,a>0且a≠1.〔1〕求f 〔x 〕的定义域;〔2〕判断f 〔x 〕的奇偶性并予以证明;〔3〕当a>1时,求使f 〔x 〕>0的x 的取值集合.[解析] 〔1〕要使f 〔x 〕=loga 〔x +1〕-loga 〔1-x 〕有意义,则⎩⎪⎨⎪⎧ x +1>01-x>0,解得-1<x<1.故所求定义域为{x|-1<x<1}.〔2〕由〔1〕知f 〔x 〕的定义域为{x|-1<x<1},且f 〔-x 〕=loga 〔-x +1〕-loga 〔1+x 〕=-[loga 〔x +1〕-loga 〔1-x 〕]=-f 〔x 〕,故f 〔x 〕为奇函数.〔3〕因为当a>1时,f 〔x 〕在定义域{x|-1<x<1}内是增函数,所以f 〔x 〕>0⇔>1.解得0<x<1.所以使f 〔x 〕>0的x 的取值集合是{x|0<x<1}.16.〔2010·北京东城区〕已知函数f 〔x 〕=loga 是奇函数〔a>0,a≠1〕.〔1〕求m 的值;〔2〕求函数f 〔x 〕的单调区间;〔3〕若当x ∈〔1,a -2〕时,f 〔x 〕的值域为〔1,+∞〕,求实数a 的值.[解析] 〔1〕依题意,f 〔-x 〕=-f 〔x 〕,即f 〔x 〕+f 〔-x 〕=0,即loga +loga =0, ∴·=1,∴〔1-m2〕x2=0恒成立,∴1-m2=0,∴m=-1或m =1〔不合题意,舍去〕当m =-1时,由>0得,x ∈〔-∞,-1〕∪〔1,+∞〕,此即函数f 〔x 〕的定义域,又有f 〔-x 〕=-f 〔x 〕,∴m =-1是符合题意的解.〔2〕∵f 〔x 〕=loga ,∴f ′〔x 〕=′logae=·logae =2logae 1-x2①若a>1,则logae>0当x ∈〔1,+∞〕时,1-x2<0,∴f ′〔x 〕<0,f 〔x 〕在〔1,+∞〕上单调递减,即〔1,+∞〕是f 〔x 〕的单调递减区间;由奇函数的性质知,〔-∞,-1〕是f 〔x 〕的单调递减区间.②若0<a<1,则logae<0当x ∈〔1,+∞〕时,1-x2<0,∴f ′〔x 〕>0,∴〔1,+∞〕是f 〔x 〕的单调递增区间;由奇函数的性质知,〔-∞,-1〕是f 〔x 〕的单调递增区间.〔3〕令t ==1+,则t 为x 的减函数∵x∈〔1,a -2〕,∴t∈且a>3,要使f 〔x 〕的值域为〔1,+∞〕,需loga =1,解得a =2+.17.〔2010·山东文〕已知函数f 〔x 〕=lnx -ax +-1〔a ∈R 〕.〔1〕当a=-1时,求曲线y=f〔x〕在点〔2,f〔2〕〕处的切线方程;〔2〕当a≤时,讨论f〔x〕的单调性.[解析] 〔1〕a=-1时,f〔x〕=lnx+x+-1,x∈〔0,+∞〕.f ′〔x〕=,x∈〔0,+∞〕,因此f ′〔2〕=1,即曲线y=f〔x〕在点〔2,f〔2〕〕处的切线斜率为1.又f〔2〕=ln2+2,所以y=f〔x〕在〔2,f〔2〕〕处的切线方程为y-〔ln2+2〕=x-2,即x-y+ln2=0.〔2〕因为f〔x〕=lnx-ax+-1,所以f ′〔x〕=-a+=-x∈〔0,+∞〕.令g〔x〕=ax2-x+1-a,①当a=0时,g〔x〕=1-x,x∈〔0,+∞〕,当x∈〔0,1〕时,g〔x〕>0,f ′〔x〕<0,f〔x〕单调递减;当x∈〔1,+∞〕时,g〔x〕<0,此时f ′〔x〕>0,f〔x〕单调递增;②当a≠0时,f ′〔x〕=a〔x-1〕[x-〔-1〕],〔ⅰ〕当a=时,g〔x〕≥0恒成立,f ′〔x〕≤0,f〔x〕在〔0,+∞〕上单调递减;〔ⅱ〕当0<a<时,-1>1>0,x∈〔0,1〕时,g〔x〕>0,此时f ′〔x〕<0,f〔x〕单调递减;x∈〔1,-1〕时,g〔x〕<0,此时f ′〔x〕>0,f〔x〕单调递增;x∈〔-1,+∞〕时,g〔x〕>0,此时f ′〔x〕<0,f〔x〕单调递减;③当a<0时,-1<0,x∈〔0,1〕时,g〔x〕>0,有f ′〔x〕<0,f〔x〕单调递减x∈〔1,+∞〕时,g〔x〕<0,有f ′〔x〕>0,f〔x〕单调递增.综上所述:当a≤0时,函数f〔x〕在〔0,1〕上单调递减,〔1,+∞〕上单调递增;当a=时,f〔x〕在〔0,+∞〕上单调递减;当0<a<时,f〔x〕在〔0,1〕上单调递减,在〔1,-1〕上单调递增,在〔-1,+∞〕上单调递减.注:分类讨论时要做到不重不漏,层次清楚.。
函数的极值知识点及例题解析
函数的极值知识点及例题解析1. 知识点函数的极值是函数在定义域内所能达到的最大值和最小值。
在求函数的极值时,需要先找出函数的驻点和临界点,然后使用一定的方法进行判断和计算。
1.1 驻点函数的驻点是指函数的导数等于零的点。
驻点可能是函数的极值点,也可能是函数的拐点。
可以通过计算函数的导数,然后将导数等于零的点带入函数进行判断。
1.2 临界点函数的临界点是指函数的定义域内的奇点或导数不存在的点。
临界点可能是函数的极值点,也可能是函数的间断点。
可以通过计算函数的导数,然后将导数不存在或等于无穷大的点带入函数进行判断。
2. 例题解析2.1 例题一已知函数 f(x) = x^3 - 3x^2 + 2x + 1,求函数的极值点。
解析:首先需要求函数的导数 f'(x) = 3x^2 - 6x + 2。
然后找出导数等于零的点,即驻点。
令 f'(x) = 0,解得 x = 1 或 x = 2/3。
将驻点带入原函数,得到 f(1) = 2 和 f(2/3) = 8/27。
所以函数的极小值点为 (1, 2) 和 (2/3, 8/27)。
2.2 例题二已知函数 g(x) = e^x - 2x,求函数的极值点。
解析:首先需要求函数的导数 g'(x) = e^x - 2。
然后找出导数等于零的点,即驻点。
令 g'(x) = 0,解得 x = ln(2)。
将驻点带入原函数,得到 g(ln(2)) = 2 - 2ln(2)。
所以函数的极值点为 (ln(2), 2 - 2ln(2))。
以上是函数的极值知识点及例题解析的内容。
希望对你有帮助!。
高中 函数的单调性与最值知识点+例题+练习 含答案
教学内容函数的单调性与最值教学目标掌握求函数的单调性与最值的方法重点单调性与最值难点单调性与最值教学准备教学过程第2讲函数的单调性与最值知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为A,如果对于定义域A内某个区间I上的任意两个自变量x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义若函数y=f(x)在区间I上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间I叫做函数y=f(x)的单调区间.2.函数的最值一般地,设y=f(x)的定义域为A.如果存在x0∈A,使得对于任意的x∈A,都有f(x)≤f(x0),那么称f(x0)为y=f(x)的最大值,记为y max=f(x0);如果存在x0∈A,使得对于任意的x∈A,都有f(x)≥f(x0),那么称f(x0)为y=f(x)的最小值,记为y min=f(x0).教学效果分析教学过程【训练3】已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-23.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.1.求函数的单调区间:首先应注意函数的单调区间是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.求函数单调区间的常用方法:根据定义、利用图象、单调函数的性质及利用导数的性质.2.复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.3.函数的值域常常化归为求函数的最值问题,要重视函数的单调性在确定函数最值过程中的应用教学效果分析课堂巩固一、填空题1.函数f (x )=log 5(2x +1)的单调增区间是________.2.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是________.3.(2013·南通月考)已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.4.(2014·广州模拟)已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为________.5.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.6.函数f (x )=2x -18-3x 的最大值是________.7.(2012·安徽卷)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.8.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为______.。
函数的最值经典练习及答案
[基础巩固]1.设函数f (x )=2x -1(x <0),则f (x )( )A .有最大值B .有最小值C .既有最大值又有最小值D .既无最大值又无最小值解析 ∵f (x )在(-∞,0)上单调递增,∴f (x )<f (0)=-1.答案 D2.(多选)已知奇函数f (x )在区间[2,5]上是减函数,且f (5)=-5,则函数f (x )在区间[-5,-2]上( )A .是增函数B .是减函数C .最小值为5D .最大值为5 解析 因为f (x )是奇函数,则函数f (x )的图象关于原点对称,又函数f (x )在[2,5]上是减函数,于是得f (x )在[-5,-2]上为减函数,f (-5)=-f (5)=5是f (x )在[-5,-2]上的最大值,所以函数f (x )在区间[-5,-2]上是减函数,且最大值为5.故选BD.答案 BD3.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1-x 2+2,x <1的最大值为________. 解析 当x ≥1时,函数f (x )=1x为减函数,所以在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案 24.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为________.解析 因为f (x )=-x 2+4x +a =-(x -2)2+4+a ,所以f (x )在[0,1]上单调递增. 所以f (0)=-2,即a =-2,所以f (x )的最大值为f (1)=-1+4-2=1.答案 15.已知函数f (x )=2x -1x,x ∈(0,1],求f (x )的值域. 解析 任取0<x 1<x 2≤1,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝⎛⎭⎫1x 1-1x 2=(x 1-x 2)⎝⎛⎭⎫2+1x 1x 2.∵0<x 1<x 2≤1,∴x 1-x 2<0,x 1x 2>0,∴f (x 1)<f (x 2),∴f (x )在(0,1]上单调递增,无最小值.当x =1时取得最大值1.所以f (x )的值域为(-∞,1].[能力提升]6.(2021·北京卷)已知f (x )是定义在[]0,1上的函数,那么“函数f (x )在[]0,1上单调递增”是“函数f (x )在[]0,1上的最大值为f (1)”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 若函数f ()x 在[]0,1上单调递增,则f ()x 在[]0,1上的最大值为f ()1, 若f ()x 在[]0,1上的最大值为f ()1,比如f ()x =⎝⎛⎭⎫x -132, 但f ()x =⎝⎛⎭⎫x -132在⎣⎡⎦⎤0,13上为减函数,在⎣⎡⎦⎤13,1上为增函数, 故f ()x 在[]0,1上的最大值为f ()1推不出f ()x 在[]0,1上单调递增,故“函数f ()x 在[]0,1上单调递增”是“f ()x 在[]0,1上的最大值为f ()1”的充分不必要条件,故选A .答案 A7.设函数f (x )=2x x -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M 等于( ) A .23B .38 C.32D .83解析 易知f (x )=2x x -2=2+4x -2, 所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4, 所以m 2M =166=83.答案 D8.已知二次函数f (x )=ax 2+2ax +1在区间[-2,3]上的最大值为6,则a 的值为________. 解析 f (x )=ax 2+2ax +1=a (x +1)2+1-a ,对称轴x =-1,当a >0时,图象开口向上,在[-2,3]上的最大值为f (3)=9a +6a +1=6,所以a =13, 当a <0时,图象开口向下,在[-2,3]上的最大值为f (-1)=a -2a +1=6,所以a =-5.综上,a 的值为13或-5. 答案 13或-5 9.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为________万元.解析 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎫x -1922+30+1924, ∴当x =9或10时,L 最大为120万元.答案 12010.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)求实数a 的范围,使y =f (x )在区间[-5,5]上是单调函数;(2)求f (x )的最小值.解析 (1)f (x )=(x +a )2+2-a 2,可知f (x )的图象开口向上,对称轴方程为x =-a ,要使f (x )在[-5,5]上单调,则-a ≤-5或-a ≥5,即a ≥5或a ≤-5.(2)当-a ≤-5,即a ≥5时,f (x )在[-5,5]上是增函数,所以f (x )min =f (-5)=27-10a . 当-5<-a ≤5,即-5≤a <5时,f (x )min =f (-a )=2-a 2,当-a >5,即a <-5时,f (x )在[-5,5]上是减函数,所以f (x )min =f (5)=27+10a ,综上可得,f (x )min =⎩⎪⎨⎪⎧ 27-10a ,a ≥5,2-a 2,-5≤a <5,27+10a ,a <-5.[探索创新]11.已知函数f (x )对任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23. (1)求证:f (x )是R 上的减函数;(2)求f (x )在[-3,3]上的最小值.解析 (1)证明 设x 1,x 2是任意的两个实数,且x 1<x 2,则x 2-x 1>0,因为x >0时,f (x )<0,所以f (x 2-x 1)<0,又因为x 2=(x 2-x 1)+x 1,所以f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1),所以f (x 2)-f (x 1)=f (x 2-x 1)<0,所以f (x 2)<f (x 1).所以f (x )是R 上的减函数.(2)由(1)可知f (x )在R 上是减函数,所以f (x )在[-3,3]上也是减函数,所以f (x )在[-3,3]上的最小值为f (3).而f (3)=f (1)+f (2)=3f (1)=3×⎝⎛⎭⎫-23=-2. 所以函数f (x )在[-3,3]上的最小值是-2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的最值根据条件确定函数的参数是否存在例 已知函数1log )(223++++=cx x b ax x x f ,是否存在实数a 、b 、c ,使)(x f 同时满足下列三个条件:(1)定义域为R 的奇函数;(2)在[)+∞,1上是增函数;(3)最大值是1.若存在,求出a 、b 、c ;若不存在,说明理由.分析:本题是解决存在性的问题,首先假设三个参数a 、b 、c 存在,然后用三个已给条件逐一确定a 、b 、c 的值.解:)(x f 是奇函数.1,0log 0)0(3=∴=⇒=⇒b b f又)()(x f x f -=- ,即11log 11log 223223++++-=+-+-cx x ax x cx x ax x , ∴222222222222)1()1(1111x c x x a x axx cx x cx x ax x -+=-+⇔++++=-+-+. ∴c a c a =⇒=22或c a -=,但c a =时,0)(=x f ,不合题意;故c a -=.这时11log )(223+++-=cx x cx x x f 在[)+∞,1上是增函数,且最大值是1. 设11)(22+++-=cx x cx x x u 在[)+∞,1上是增函数,且最大值是3. 222222222)1()1)(1(2)1()1(2)1()1)(2()1)(2()(++-+=++-=+++-+-++-='cx x x x c cx x x c cx x cx x c x cx x c x x u ,当1>x 时0)(012>'⇒>-x u x ,故0>c ;又当1-<x 时,0)(>'x u ;当)1,1(-∈x 时,0)(<'x u ; 故0>c ,又当1-<x 时,0)(>'x u ,当)1,1(-∈x 时,0)(<'x u .所以)(x u 在),1()1,(+∞--∞ 是增函数,在(-1,1)上是减函数.又1>x 时,1,1)(,1122-=∴<++<+-x x u cx x cx x 时)(x u 最大值为3. ∴.1,1,31111-===+-++a c c c 经验证:1,1,1==-=c b a 时,)(x f 符合题设条件,所以存在满足条件的a 、b 、c ,即.1,1,1==-=c b a说明:此题是综合性较强的存在性问题,对于拓宽思路,开阔视野很有指导意义.此题若用相等方法解决是十分繁杂的,甚至无技可施.若用求导数的方法解决就迎刃而解.因此用导数法解决有关单调性和最值问题是很重要的数学方法.切不可忘记.供水站建在何处使水管费最少例 有甲、乙两个工厂,甲厂位于一直线河岸的岸边A 处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km 的B 处,乙厂到河岸的垂足D 与A 相距50km ,两厂要在此岸边合建一个供水站C ,从供水站到甲厂和乙厂的水管费用分别为每千米3a 元和5a 元,问供水站C 建在岸边何处才能使水管费用最省?分析:根据题设条件作出图形,分析各已知条件之间的关系,借助图形的特征,合理选择这些条件间的联系方式,适当选定变元,构造相应的函数关系,通过求导的方法或其他方法求出函数的最小值,可确定点C 的位置.解:解法一:根据题意知,只有点C 在线段AD 上某一适当位置,才能使总运费最省,设C 点距D 点x km ,则222240,50,40+=+=∴-==x CD BD BC x AC BD 又设总的水管费用为y 元,依题意有 ).500(405)50(322<<++-=x x a x a y224053++-='x axa y .令0='y ,解得.30=x在(0,50)上,y 只有一个极值点,根据实际问题的意义,函数在30=x (km )处取得最小值,此时2050=-=x AC (km ).∴供水站建在A 、D 之间距甲厂20km 处,可使水管费用最省.解法二:设θ=∠BCD ,则).20(,cot 40,sin 40πθθθ<<⋅==CD BC ∴θcot 4050⋅-=AC .设总的水管费用为)(θf ,依题意,有 θθθθθsin cos 3540150sin 405)cot 4050(3)(-⋅+=⋅+⋅-=a a a a f ∴θθθθθθ2sin )(sin )cos 35(sin )cos 35(40)('⋅--⋅'-⋅='a f θθ2sin cos 5340-⋅=a 令0)(='θf ,得53cos =θ.根据问题的实际意义,当53cos =θ时,函数取得最小值,此时20cot 4050,43cot ,54sin =-=∴=∴=θθθAC (km ),即供水站建在A 、D 之间距甲厂20km 处,可使水管费用最省.说明:解决实际应用问题关键在于建立数学模型和目标函数.把“问题情景”译为数学语言,找出问题的主要关系,并把问题的主要关系近似化、形式化,抽象成数学问题,再划归为常规问题,选择合适的数学方法求解.对于这类问题,学生往往忽视了数学语言和普通语言的理解与转换,从而造成了解决应用问题的最大思维障碍.运算不过关,得不到正确的答案,对数学思想方法不理解或理解不透彻,则找不到正确的解题思路,在此正需要我们依据问题本身提供的信息,利用所谓的动态思维,去寻求有利于问题解决的变换途径和方法,并从中进行一番选择.利用导数求函数的最值例 求下列函数的最值:1.)33(,3)(3≤≤--=x x x x f ;2.)22(,2sin )(ππ≤≤--=x x x x f ;3.)0,0,10(,1)(22>><<-+=b a x xb x a x f 4.21)(x x x f -+=.分析:函数)(x f 在给定区间上连续可导,必有最大值和最小值,因此,在求闭区间[]b a ,上函数的最值时,只需求出函数)(x f 在开区间),(b a 内的极值,然后与端点处函数值进行比较即可.解:1.233)(x x f -=',令0)(='x f ,得1±=x ,∴2)1(,2)1(-=-=f f .又.18)3(,0)3(-==-f f∴.18)]([,2)]([min max -==x f x f2.12cos 2)(-='x x f ,令0)(='x f ,得6π±=x , ∴6236,6236ππππ+-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛f f , 又22,22ππππ=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛f f . ∴.2)]([,2)]([min max ππ-==x f x f3.2222222222)1()1()1()(x x x a x b x b x a x f ---=-+-='. 令0)(='x f ,即0)1(2222=--x a x b ,解得.ba a x += 当b a a x +<<0时,0)(<'x f ,当1<<+x ba a 时,0)(>'x f . ∴函数)(x f 在点b a a x +=处取得极小值,也是最小值为 .)(2b a b a a f +=⎪⎭⎫ ⎝⎛+即2min )()]([b a x f +=. 4.函数定义域为11≤≤-x ,当)1,1(-∈x 时,.11)(2x xx f --='令0)(='x f ,解得22=x ,∴222=⎪⎪⎭⎫ ⎝⎛f , 又1)1(,1)1(=-=-f f ,∴.1)]([,2)]([min max -==x f x f说明:对于闭区间[]b a ,上的连续函数,如果在相应开区间),(b a 内可导,求[]b a ,上最值可简化过程,即直接将极值点与端点的函数值比较,即可判定最大(或最小)的函数值,就是最大(或最小)值.解决这类问题,运算欠准确是普遍存在的一个突出问题,反映出运算能力上的差距.运算的准确要依靠运算方法的合理与简捷,需要有效的检验手段,只有全方位的“综合治理”才能在坚实的基础上形成运算能力,解决运算不准确的弊病.求两变量乘积的最大值例 已知y x 、为正实数,且满足关系式04222=+-y x x ,求y x ⋅的最大值.分析:题中有两个变量x 和y ,首先应选择一个主要变量,将y x 、表示为某一变量(x 或y 或其它变量)的函数关系,实现问题的转化,同时根据题设条件确定变量的取值范围,再利用导数(或均值不等式等)求函数的最大值.解:解法一:222221,0,24x x y y x x y -=∴>-= , ∴2221x x x y x -=⋅. 由⎩⎨⎧≥->0202x x x 解得20≤<x . 设).20(221)(2≤<-==x x x x xy x f当20<<x 时,⎥⎦⎤⎢⎣⎡--+-='222)1(221)(x x x x x x x f 222)23(x x x x --=.令0)(='x f ,得23=x 或0=x (舍). ∴83323=⎪⎭⎫⎝⎛f ,又0)2(=f ,∴函数)(x f 的最大值为833. 即y x ⋅的最大值为833. 解法二:由04222=+-y x x 得)0,0(14)1(22>>=+-y x y x , 设)0(sin 21,cos 1πααα<<==-y x , ∴)cos 1(sin 21αα+=⋅y x ,设)cos 1(sin 21)(ααα+=f , 则[]ααααcos )cos 1(sin 21)(2⋅++-='f .21cos )1(cos )1cos cos 2(212⎪⎭⎫ ⎝⎛-+=-+=αααα 令0)(='αf ,得1cos -=α或21cos =α. 3,0παπα=∴<< ,此时.43,23==y x ∴.8333,8333max=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∴=⎪⎭⎫ ⎝⎛ππf f 即当43,23==y x 时,[].833max =⋅y x 说明:进行一题多解训练,是一种打开思路,激发思维,巩固基础,沟通联系的重要途径,但要明确解决问题的策略、指向和思考方法,需要抓住问题的本质,领悟真谛,巧施转化,方可快捷地与熟悉的问题接轨,在实现转化的过程中,关键是要注意变量的取值范围必须满足题设条件,以免解题陷于困境,功亏一篑.。