初中数学中考总复习之专题训练含答案
中考数学复习专题训练精选试题及答案
中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
中考数学专题知识点题型复习训练及答案解析(经典珍藏版):26 应用题
备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.3.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.4.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.5.一次函数的应用(1)分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)概括整合①简单的一次函数问题:a建立函数模型的方法;b分段函数思想的应用.②理清题意是采用分段函数解决问题的关键.6.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.五年中考1.(2019•成都)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p x来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?2.(2018•成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?3.(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)8 9 10 11.5 13y1(分钟)18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.4.(2016•成都)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?5.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?一年模拟6.(2019•成华区模拟)随着人们生活水平的提高,对饮水品质的需求也越来越高,某商场购进甲、乙两种型号的净水器,每台甲型净水器比每台乙型净水器进价多200元,已知用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等.(1)求每台甲型,乙型净水器的进价各是多少元?(2)该商场计划花费不超过9.8万元购进两种型号的净水器共50台进行销售,甲型净水器每台销售2500元,乙型净水器每台售价2200元,商场还将从销售甲型净水器的利润中按每台a元(70<a<80)捐献给贫困地区作为饮水改造扶贫资金.设该公司售完50台净水器并捐献扶贫资金后获得的利润为W元,求W的最大值.7.(2019•邛崃市模拟)某健身馆普通票价为40元/张,6﹣9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6﹣9月使用,不限次数.设健身x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.8.(2019•武侯区模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.9.(2019•锦江区模拟)十三五”以来,党中央,国务院不断加大脱贫攻坚的支持决策力度,并出台配套文件,国家机关各部门也出台多项政策文件或实施方案.某单位认真分析被帮扶人各种情况后,建议被帮扶人大力推进特色产业,大量栽种甜橙;同时搭建电商运营服务平台,开设网店销售农产品橙.丰收后,将一批甜橙采取现场销售和网络销售相结合进行试销,统计后发现:同样多的甜橙,现场销售可获利800元,网络销售则可获利1000元,网络销售比现场销售每件多获利5元(1)现场销售和网络销售每件分别多少元?(2)根据甜橙试销情况分析,现场销售量a(件)和网络销售量b(件)满足如下关系式:b a2+12a ﹣200.求a为何值时,农户销售甜橙获得的总利润最大?最大利润是多少?10.(2019•武侯区模拟)成都市某商场购进甲、乙两种商品,甲商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l1所示,乙商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l2所示.(1)请分别求出直线l1,l2的函数表达式,并直接写出甲、乙两种商品的购进单价各是多少元?(2)现该商场购进甲、乙两种商品各100件,甲、乙商品的销售单价均为70元,销售一段时间后,商场对甲商品搞促销活动,打八折继续销售剩余甲商品,乙商品的销售单价始终保持不变.若商场规定甲商品打折前的销售数量不得多于甲商品打折后的销售数量的,那么甲商品应接原销售单价销售多少件,才能使得甲、乙两种商品全部销售完后商场获得最大利润?最大利润为多少元?11.(2019•双流区模拟)某文具店出售一种文具,每个进价为2元,根据长期的销售情况发现:这种文具每个售价为3元时,每天能卖出500个,如果售价每上涨0.1元,其销售量将减少10个.物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润,每个文具的售价应是多少?(2)该如何定价,才能使这种文具每天的利润最大?最大利润是多少?12.(2016•荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.13.(2019•郫都区模拟)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?14.(2019•郫都区模拟)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)求果园增种橙子树x(棵)与果园橙子总产量y(个)的函数关系式;(2)多种多少棵橙子,可以使橙子的总产量在60420个以上?15.(2019•成都模拟)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?精准预测1.天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?3.已知A、B两地相距2.4km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y(km)与他行驶所用的时间x(min)之间的关系.根据图象解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方0.6km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离A地的距离y乙(km)与所用时间x(min)的关系的大致图象;(3)乙在第几分钟到达B地?(4)两人在整个行驶过程中,何时相距0.2km?4.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.5.某水果店经销一种高档水果,售价为每千克60元(1)连续两次降价后售价为每千克48.6元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克48元,每天可售出80千克,经市场调查发现,若售价每涨价1元,日销售量将减少4千克,设每千克涨价t元,每天获得的利润为w元.①当售价为多少元时,每天获得的利润为最大?最大为多少元?②水果店老板为保证每天的利润不低于988元,请直接写出t的取值范围是.6.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?7.我国为了实现到达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w (万元)的范围.8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.某公司生产的一种商品其售价是成本的1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?10.永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?11.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)12.为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?13.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?14.某运动品商场欲购进篮球和足球共100个,两种球进价和售价如下表所示,设购进篮球x个(x为正整数),且所购进的两种球能全部卖出,获得的总利润为w元.(1)求总利润W关于x的函数关系式.(2)如果购进两种球的总费用不低于5800元且不超过6000元,那么该商场如何进货才能获利最多?并求出最大利润.(3)在(2)的条件下,若每个篮球的售价降低a元,请分析如何进货才能获得最大利润.篮球足球进价(元/个)62 54售价(元/个)76 6015.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作。
中考数学九年级专题训练50题含答案
中考数学九年级专题训练50题含答案一、单选题1.若23a b =,则a b b +的值为( ) A .23 B .53 C .35 D .322.下列函数关系式中属于反比例函数的是( )A .3y x =B .3y x =-C .23y x =+D .3x y += 3.已知反比例函数k y x=(0k <)的图象上有两点()()1122,,,A x y B x y ,且12x x <,则12y y -的值是( )A .正数B .负数C .非正数D .不能确定 4.在函数y=中,自变量的取值范围是A .x≠B .x≤C .x ﹤D .x≥ 5.一个几何体的三视图如图,则该几何体是( )A .B .C .D .6.已知二次函数2y ax bx c =++的图象如图所示,有下列结论: ①11024a b c ++>; ①方程20ax bx c ++=的两根之积小于0;.①y 随x 的增大而增大;=+的图象一定不经过第四象限.其中正确的结论有()①一次函数y ax bcA.4个B.3个C.2个D.1个7.如图,在①O内有折线OABC,其中OA=8,AB=12,①A=①B=60°,则BC的长为()A.19B.16C.18D.208.如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则CO:C ′O的值为()A.1:2B.2:1C.1:4D.1:39.关于抛物线244=﹣,下列说法错误的是()y x x+A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=2D.当x>2时,y随x的增大而减小10.已知①O的半径为5cm,点P在直线l上,且点P到圆心O的距离为5cm,则直线l与①O()A.相离B.相切C.相交D.相交或相切11.如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A.ABBC=DEEFB.ABAC=DEDFC.EFBC=DEABD.OEEF=EBFC12.用5个完全相同的小正方体组成如图所示的立体图形,它的俯视图是()A.B.C.D.13.某足球运动员在同一条件下进行射门,结果如下表所示:则该运动员射门一次,射进门的概率为()A.0.7B.0.65C.0.58D.0.514.如图,在①O中,直径AB①弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.①A=12①BOD D.①A=12①ACD15.如图,在矩形ABCD中,AB=3,BC=4,点P在AD上,若将①ABP沿BP折叠,使点A落在矩形对角线AC上,则AA′的长为()A.95B.94C.185D.9216.如图,在Rt ABC中,90C∠=︒,6AC=,8BC=,点F在边AC上,并且2CF=,点E为边BC上的动点,将CEF△沿直线EF翻折,点C落在点P处,则点P 到边AB距离的最小值是().A.1B.4C.1.2D.2.417.如图,测量队为了测量某地区山顶P的海拔高度,选M点作为观测点,从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30,在比例尺为1:50000的该地区等高线地形图上,量得这两点的图上距离为6厘米,则山顶P的海拔高度为()A.1732米B.1982米C.3000米D.3250米18.如图,在平面直角坐标系中,矩形ABCD的对角线BD经过坐标原点O,矩形的边分别平行于坐标轴,点A在函数kyx=(k≠0,x<0)的图象上,点C的坐标为(2,2-),则k的值为()A.4B.2C.2-D.4-19.如图,四边形ABCD为半径为R的O的内接四边形,若AB R=,CD=,4AD,BC=O的直径为()=A.4B.C.8D.二、填空题20.如图,AB是①O的直径,BC与①O相切于点B,AC交①O于点D,若①ACB=50°,则①BOD=______度.21.如图,在长方体ABCD EFGH-中,棱BC与棱AE的位置关系是______.22.测得一种树苗的高度与树苗生长的年数有关的数据如下表所示(树高原高100 cm)假设以后每年树苗的高度的变化规律与表中相同,请用含n ( n 为正整数)的式子表示生长了n 年的树苗的高度为__________cm.23.如图:折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知AB=8,①B=300,则CD 的长是_______.24.已知1x 、2x 是方程2210x x --=的两根,则2212x x +=______________ 25.如图,已知AB CD EF ∥∥,则下列四个结论①EF BE CD EC =;①AE BE ED EC =;①1EF EF AB CD+=中,正确的有__________(填正确结论序号).26.比的意义:两个数____又叫做两个数的比.“:”是比号,读作比;比号前面的数叫做比的____,比号后面的数叫做比的____.27.如图所示是某商场营业大厅自动扶梯示意图,自动扶梯AB 的长为12米,大厅两层之间的高度BC 的长为6米,自动扶梯AB 的坡比BC i AC==_______________________.(坡比是坡面的铅直高度BC 与水平宽度AC 之比)28.设α,β是关于4x 2﹣4mx +m +2=0的两个实数根,当α2+β2有最小值时,则m 的值为_____.29.如图,ABC 是O 的内接三角形,点D 是BC 的中点,已知98AOB ∠=,120COB ∠=,则ABD ∠的度数是________度.30.如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为__________厘米.31.抛物线21212y x x =++与y 轴的交点是________,解析式写成2()y a x h k =-+的形式是________,顶点坐标是________.32.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将①ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin①ECF =__________.33.在平面直角坐标系中,M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB AC ⊥交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,)b ,则b 的取值范围是_____.34.如图,正比例函数y =kx 与反比例函数y =6x的图象有一个交点A (m ,3),AB ①x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数解析式是___.35.如图,已知点A (0),直线y=x+b (b >0)与y 轴交于点B ,连接AB ,①α=75°,则直线y x b =+的解析式为_________.36.在①ABCD 中,E 是AD 上一点,23AE DE =,连接BE 、AC 相交于F ,则下列结论:①23AE BC =;①ΔΔ425AEF CBF S S =;①52BF EF =;①Δ1031ABF CDEF S S =四边形,正确的是 __________.37.点C 是AB 的黄金分割点,4AB =,则线段AC 的长为__________.38.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若2AC BC ==,则图中阴影部分的面积是_______.39.如图,两个同心圆的半径分别为2和4,矩形ABCD 的边AB 和CD 分别是两圆的弦,则矩形ABCD 面积的最大值是______.三、解答题40.如图1,在四边形ABCD 中,AB ①AD ,AB ①BC ,以AB 为直径的①O 与CD 相切于点E ,连接OC 、OD .(1)求证:OC ①OD ;(2)如图2,连接AC 交OE 于点M ,若AB =4,BC =1,求CM AM的值.41.已知ABC ①111A B C △,111A B C △①222A B C △,则ABC 与222A B C △有怎样的关系?为什么?42.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件.设这段时间内售出该商品的利润为y 元.(1)直接写出利润y 与售价x 之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?43.某商场销售一批工艺品,平均每天可售出20件,每件赢利45元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件工艺品每降价1元,商场平均每天可多售出4件.(1)设每件工艺品降价x 元,商场销售这种工艺品每天盈利y 元,求出y 与x 之间的函数关系式;(2)每件工艺品降价多少元时,才能使每天利润最大,最大利润为多少?44.某水库大坝的横截面是如图所示的四边形ABCD ,其中AB①CD .大坝顶上有一瞭望台PC ,PC 正前方有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,渔船N 在俯角45β=︒,已知MN 所在直线与PC 所在直线垂直,垂足为点E ,且PE 长为30米.(1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方加固,坝底BA 加宽后变为BH ,加固后背水坡DH 的坡度为,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan 310.60,sin 310.52︒≈︒≈)45.某公园在一个扇形OEF 草坪上的圆心O 处垂直于草坪的地上竖一根柱子OA ,在A 处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高109m ,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与D 点的水平距离4米处达到最高点B ,点B 距离地面2米.当喷头A 旋转120°时,这个草坪可以全被水覆盖.如图1所示.(1)建立适当的坐标系,使A 点的坐标为(O ,109),水流的最高点B 的坐标为(4,2),求出此坐标系中抛物线水流对应的函数关系式;(2)求喷水装置能喷灌的草坪的面积(结果用π表示);(3)在扇形OEF 的一块三角形区域地块①OEF 中,现要建造一个矩形GHMN 花坛,如图2的设计方案是使H 、G 分别在OF 、OE 上,MN 在EF 上.设MN =2x ,当x 取何值时,矩形GHMN 花坛的面积最大?最大面积是多少?46.解方程:(1)()()3525x x x +=+(2)22310x x --=47.在阳光体育活动时间,小亮、小莹、小芳到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余两人中随机选取一人打第一场,选中小莹的概率是________.(2)如果确定小亮打第一场,用投掷硬币的方法确定小莹、小芳谁打第一场,并决定小亮做裁判,由小亮抛掷一枚硬币,规定正面朝上小莹胜,反面朝上小芳胜,最终胜两局以上者(包括两局)打第一场.小亮第一次投掷的结果是正面朝上,请用列表或画树状图的方法表示最后两次投掷硬币的所有情况,并求小芳打第一场的概率.48.在ABC 中,90BAC ∠=︒,AB AC =,点D 在边BC 上,13BD BC =,将线段DB 绕点D 顺时针旋转至DE ,记旋转角为α,连接BE ,CE ,以CE 为斜边在其一侧制作等腰直角三角形CEF .连接AF .(1)如图1,当180α=︒时,请直接写出....线段AF 与线段BE 的数量关系; (2)当0180α︒<<︒时,①如图2,(1)中线段AF 与线段BE 的数量关系是否仍然成立?请说明理由;①如图3,当B ,E ,F 三点共线时,连接AE ,判断四边形AECF 的形状,并说明理由.49.已知抛物线214y x bx c =++与x 轴交于A ,B 两点(点A 在点B 左边),与y 轴交于点C.直线1y x42=-经过B,C两点.(1)求抛物线的解析式;(2)如图1,动点M,K同时从A点出发,点M以每秒4个单位的速度在线段AB上运动,点K AC上运动,当其中一个点到达终点时,另一个点也随之停止运动设运动的时间为()0t t>秒.①如图1,连接MK,再将线段MK绕点M逆时针旋转90︒,设点K落在点H的位置,若点H恰好落在抛物线上,求t的值及此时点H的坐标;②如图2,过点M作x轴的垂线,交BC于点D,交抛物线于点P,过点P作PN BC⊥于N,当点M运动到线段OB上时,是否存在某一时刻t,使PNC△与AOC相似.若存在,求出t的值;若不存在,请说明理由.参考答案:1.B 【分析】依据23a b =,可得a 23=b ,代入即可得出答案案. 【详解】①23a b =, ①3a =2b ,①a 23=b , ①2533b b a b b b ++==. 故选:B .【点睛】本题考查了比例的性质,解题时注意:内项之积等于外项之积.2.B【分析】根据反比例函数的定义进行判断.【详解】A 、该函数是正比例函数,故本选项错误;B 、该函数符合反比例函数的定义,故本选项正确;C 、该函数是二次函数,故本选项错误;D 、该函数是一次函数,故本选项错误;故选:B . 【点睛】本题考查了反比例函数的定义,反比例函数的一般形式是k y x=(0k ≠) . 3.D【分析】分,A B 在同一象限,和不在同一象限,两种情况进行讨论求解即可.【详解】解:①k y x =(0k <), ①反比例函数的图象过二、四象限,在每一个象限内,y 随x 的增大而增大,当,A B 在同一象限时:①12x x <,①12y y <,①120y y -<,当,A B 不在同一象限时,①12x x <,①A 在第二象限,B 在第四象限,①120y y >>,①120y y ->;综上:12y y -的值无法确定;故选D .【点睛】本题考查比较反比例函数的函数值大小.熟练掌握反比例函数的性质,是解题的关键.注意,分类讨论.4.C【详解】 1-2x≥0且x-≠0 解得:x ﹤.故选C5.D【分析】根据主视图与左视图可以判断几何体的下部是柱体,上部为台体,再结合俯视图即可确定答案.【详解】由三视图知,从正面和侧面看都是上面梯形,下面长方形,从上面看为圆环,可以想象到实物体上面是圆台,下面是空心圆柱.故选:D .【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.6.B【分析】根据二次函数的图象与性质依次判断即可求出答案.【详解】①由图象可知:x =2时,y >0,①y =4a +2b +c >0, 即a +12b +14c >0,故①正确; ①由图象可知:a >0,c <0,①ax 2+bx +c =0的两根之积为c a<0,故①正确; ①当x >−2b a时,y 随着x 的增大而增大,故①错误;①由图象可知:−2b a>0, ①b <0,①bc >0, ①一次函数y =ax +bc 的图象一定不经过第四象限,故①正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.7.D【分析】延长AO 交BC 于D ,根据①A 、①B 的度数易证得①ABD 是等边三角形,由此可求出OD 、BD 的长;过O 作BC 的垂线,设垂足为E ;在Rt①ODE 中,根据OD 的长及①ODE 的度数易求得DE 的长,进而可求出BE 的长;由垂径定理知BC=2BE ,由此得解.【详解】解: 延长AO 交BC 于D ,作OE①BC 于E ;①①A=①B=60°,①①ADB=60°;①①ADB 为等边三角形;①BD=AD=AB=12;①OD=4,又①①ADB=60°, ①DE=12OD=2;①BE=10;①BC=2BE=20;故选D . 【点睛】此题主要考查了等边三角形的判定和性质以及垂径定理的应用,解答此题的关键是正确做出辅助线,得到①ADB为等边三角形.8.A【分析】根据位似图形的性质知:BC①C′B′,则①BCO①①B′C′O′,根据该相似三角形的对应边成比例得到答案.【详解】解:如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则①ABC与①A′B′C′的相似比为1:2.①①ABC与①A′B′C′是位似图形,①BC∥C′B′,①①BCO①①B′C′O′.①CO:C′O=BC:B′C′=1:2.故选:A.【点睛】本题考查了位似图形的性质:两个图形的对应边平行,面积的比等于位似比的平方.9.D【分析】根据抛物线解析式求出顶点坐标和对称轴,利用二次函数的性质即可判断.【详解】解①a=1>0,①开口向上,故A正确;①22=﹣=(﹣),442y x x x①顶点坐标(2,0),对称轴x=2,①抛物线的顶点在x轴上,①与x轴有两个重合的交点,故B、C正确;①抛物线开口向上,对称轴为直线x=2,①当x>2时,y随x的增大而增大,故D错误.故选:D.【点睛】本题考查抛物线与x轴的交点以及二次函数的性质,解题的关键是熟练掌握配方法全等抛物线的顶点坐标,对称轴,属于中考常考题型.10.D【分析】直接根据直线与圆的位置关系即可得出结果;【详解】①①O的半径为5cm且点P到圆心O的距离为5cm,当OP的距离是圆心到直线的距离时,①点P在圆上,①直线l与①O相切,当OP的距离不是圆心到直线的距离时,得到直线与圆相交.故答案选D.【点睛】本题主要考查了直线与圆的位置关系,准确分析判断是解题的关键.11.D【分析】直接根据平行线分线段成比例定理进行判断即可得出结论.【详解】A、①直线a①直线b①直线c,①ABBC=DEEF,正确,故本选项不符合题意;B、①直线a①直线b①直线c,①ABAC=DEDF,正确,故本选项不符合题意;C、①直线a①直线b①直线c,①EFBC=DEAB,正确,故本选项不符合题意;D、不能证明OEEF=EBFC,错误,故本选项符合题意.故选D.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.12.D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为1,1,1,故选D.【点睛】本题主要考查了三视图的知识,关键是找准俯视图所看的方向.13.D【分析】根据表格中实验的频率,然后根据频率即可估计概率.【详解】解:由击中靶心频率mn分别为:0.65、0.7、0.58、0.52、0.51、0.5,可知频率都在0.5上下波动,所以估计这个运动员射击一次,击中靶心的概率约是0.5,故选D.【点睛】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.14.C【分析】根据垂径定理判断即可.【详解】连接DA,①直径AB①弦CD,垂足为M,①CM=MD,①CAB=①DAB,①2①DAB=①BOD,①①CAD=12①BOD.故答案选:C.【点睛】本题考查了垂径定理及其推论,解题的关键是熟练的掌握垂径定理及其推论.15.C【分析】在Rt ABC 中,由勾股定理求得AC ,根据折叠可得到BP 是AA '的垂直平分线,从而得到BP AA '⊥,2AA OA ''=,而由矩形ABCD 可知AB BC ⊥,从而可以得到90AOB ABC ∠=∠=,以及12901390∠+∠=∠+∠=,,进而可证得AOB ABC ~,由相似的性质求得线段长度.【详解】解:由题意知, AB BC ⊥,BP AA '⊥,2AA OA ''=,①90AOB ABC ∠=∠=,① 12901390∠+∠=∠+∠=,,①23∠∠=,①AOB ABC ∠=∠,23∠∠=,①AOB ABC ~, ①AB AO AC AB=,在Rt ABC 中,AC =, ①29=5AB AO AC =,182=5AA OA '=, 故答案选:C .【点睛】本题考查垂直平分线的判定和性质,相似三角形的判定和性质,矩形的性质,勾股定理,比较综合.16.C【分析】先依据勾股定理求得AB 的长,然后依据翻折的性质可知PF =FC ,故此点P 在以F 为圆心,以2为半径的圆上,依据垂线段最短可知当FP ①AB 时,点P 到AB 的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【详解】解:如图所示:当PE ①A B .在Rt①ABC中,①①C=90°,AC=6,BC=8,①AB,由翻折的性质可知:PF=FC=2,①FPE=①C=90°.①PE①AB,①①PDB=90°.由垂线段最短可知此时FD有最小值.又①FP为定值,①PD有最小值.又①①A=①A,①ACB=①ADF,①①AFD①①AB C.①AF DFAB BC=,即4108DF=,解得:DF=3.2.①PD=DF-FP=3.2-2=1.2.故选:C.【点睛】本题考查翻折变换,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17.B【分析】根据地形图上的等高线的比例尺和图上距离求得两点间的实际距离,再利用解直角三角形的知识求得山顶的海拔高度即可.【详解】解:①两点的图上距离为6厘米,例尺为1:50000,①两点间的实际距离为:6÷150000=3000米,①从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30°,米,①点M的海拔为250米,①山顶P的海拔高度为=1732+250=1982米.故选B .【点睛】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形.18.D【分析】根据反比例函数的几何意义只要求出矩形OGAH 的面积也可,依据矩形的性质发现S 矩形OGAH =S 矩形OECF ,而S 矩形OECF 可通过点C (2,2-)转化为线段长而求得,再根据反比例函数的所在的象限,确定k 的值即可.【详解】解:如图,根据矩形的性质可得:S 矩形OGAH =S 矩形OECF ,①点C 的坐标为(2,-2),①OE=2,OF=2,①S 矩形OECF =OE•OF=4,设A (a ,b ),则OH=-a ,OG=b ,①S 矩形OGAH =OH•OG=-ab=4,又①点A 在函数k y x=(k≠0,x <0)的图象上, ①4k ab ==-;故选:D. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x =(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.19.C【分析】取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,先证得①AOB =60°及①COD =120°,可得AOD+①BOC =180°,再利用垂径定理可得①AOG+①BOF =90°,最后通过证①BOF①①OAG 得OF =AG =2,再利用勾股定理求解即可.【详解】解:如图,取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,①OA =OB =AB =R ,①①AOB 为等边三角形,①①AOB =60°,①OE①CD,CD =,①12CE CD R ==, 在Rt①COE 中,2sin CE COE CO R ∠===①①COE =60°,①①COD =2①COE =120°,①①AOD+①BOC =360°﹣①COD ﹣①AOB =180°,①OF①BC ,OG①AD ,①AG =12AD =2,BF =12BC =①AOG =12①AOD ,①BOF =12①BOC , ①①AOG+①BOF =12(①AOD+①BOC )=90° 又①①AOG+①OAG =90°,①①BOF =①OAG ,①①BOF =①OAG ,①BFO =①OGA =90°,OB =OA ,①①BOF①①OAG (AAS ),①OF =AG =2,在Rt①BOF中,4OB ==,①O 的直径=2OB =8,故选:C .【点睛】本题考查了垂径定理,等边三角形的判定及性质,解直角三角形,全等三角形的判定及性质和勾股定理,通过理清题目意思并作出正确的辅助线是解决本题的关键.20.80【分析】根据切线的性质得到①ABC=90°,根据直角三角形的性质求出①A,根据圆周角定理计算即可.【详解】解:①BC是①O的切线,①①ABC=90°,①①A=90°-①ACB=40°,由圆周角定理得,①BOD=2①A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.21.异面【分析】棱BC与棱AE不在同一平面内,属于异面线段.【详解】解:棱BC与棱AE不在同一平面内,属于异面线段,故答案为:异面.【点睛】本题考查了认识立体图形,理解异面直线的意义是正确解题的前提.22.100+5n【分析】从上表可以看出,树每年长高5厘米.所以生长了n 年的树苗的高度为100+5n.【详解】解:根据题意有:生长了n 年的树苗的高度为100+5n故答案为100+5n.【点睛】本题的关键是算出树每年长高多少厘米.通过观察,分析、归纳并发现其中的规律.23.【详解】试题分析:根据题意,得①EAD=①B=30°,AE=BE=4.设DE=x,则AD=2x,根据勾股定理,得x2+16=4x2,解得x=.①DE=.考点:了翻折变化;角平分线的性质;勾股定理24.6【分析】根据根与系数的关系变形后求解.【详解】解:①x 1、x 2是方程x 2−2x−1=0的两根,①x 1+x 2=2,x 1×x 2=−1,①x 12+x 22=(x 1+x 2)2−2x 1x 2=22−2×(−1)=6.故答案为6.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 25.①①【分析】~BEF BCD ∆∆根据相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,可得三组三角形相似,然后依据相似三角形的性质:对应边成比例即可进行判断,得出结果.【详解】解:①∵EF CD ∥,∴~BEF BCD ∆∆, ∴EF BE CD BC=,故①错误; ①AB CD ∥,∴~AEB DEC ∆∆, ∴AE BE ED EC=,故①正确; ①AB EF ∥,∴~DEF DAB ∆∆, ∴EF DF AB BD=, 由①得:~BEF BCD ∆∆, ∴EF BF CD BD=, 1EF EF DF BF BD AB CD BD BD BD+=+==,故①正确; 综合可得:①①正确,故答案为:①①.【点睛】题目主要考查相似三角形的判定定理和性质,熟练掌握相似三角形的判定定理和性质是解题关键.26. 相除 前项 后项【解析】略27【分析】铅直高度BC 可得①ACB =90°,由勾股定理AC =AB 的坡比即可.【详解】解:①BC ①AC ,①①ACB =90°,在Rt △ABC 中,①AB =12米,BC =6米,由勾股定理=①自动扶梯AB 的坡比BC i AC ==.【点睛】本题考查解直角三角形应用,掌握坡比概念,利用勾股定理求出AC 是解题关键.28.-1【分析】由已知中α,β是方程4x 2-4mx+m+2=0∥∥x∥R∥∥∥∥∥∥∥∥∥∥∥∥∥∥≥0∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥α2+β2的表达式,然后根据二次函数的性质,即可得到出m 为何值时,α2+β2有最小值,进而得到这个最小值.【详解】解:①关于4x 2﹣4mx +m +2=0的两个实数根,①b 2﹣4ac =(-4m )2-4×4(m +2)≥0,①m 2﹣m ﹣2≥0,即21924m ⎛ ⎪⎝⎭≥⎫-, ①m ≥2或m ≤﹣1,①α+β=﹣44m -=m ,α•β=14(m +2), ①α2+β2=(α+β)2﹣2αβ=m 2﹣2×14(m +2)=m 2﹣12m -1=(m -14)2-1716, ①当m =-1时,α2+β2有最小值,故答案为-1.【点睛】本题考查的知识点是一元二次方程根的颁布与系数的关系,二次函数的性质,其中易忽略,方程有两个根时△≥0的限制,直接利用韦达定理和二次函数的性质求解, 29.101【分析】根据周角为360°,可求出①AOC 的度数,由圆周角定理可求出①ABC 的度数,关键是求①CBD 的度数;由于D 是弧BC 的中点,根据圆周角定理知①DBC =12①BAC ,而①BAC 的度数可由同弧所对的圆心角①BOC 的度数求得,由此得解.【详解】①①AOB =98°,①COB =120°①①AOC =360°-①AOB -①COB =142°,①①ABC =71°,①D 是弧BC 的中点,①①CBD =12①BAC ,又①①BAC =12①COB =60°,①①CBD =30°,①①ABD =①ABC +①CBD =101°,故答案为101度.【点睛】本题主要考查了圆心角、圆周角的应用能力,解此题的要点在于求①CBD 的度数.30.()3【分析】四边形ABCD 是菱形,由图象可得AC 和BD 的长,从而求出OC 、OB 和ACB ∠.当点P 在A D -段上运动且P 、Q 两点间的距离最短时,此时PQ 连线过O 点且垂直于BC .根据三角函数和已知线段长度,求出P 、Q 两点的运动路程之和.【详解】由图可知,2AC BD ==(厘米),①四边形ABCD 为菱形①11122OC AC OB BD ====(厘米) ①30ACB ∠=︒P 在AD 上时,Q 在BC 上,PQ 距离最短时,PQ 连线过O 点且垂直于BC .此时,P 、Q 两点运动路程之和2()S OC CQ =+①3cos 2CQ OC ACB =⋅∠==(厘米)①3232S ⎫==⎪⎭(厘米)故答案为3).【点睛】本题主要考查菱形的性质和三角函数.解题的关键在于从图象中找到菱形对角线的长度.31. ()0,1 21(2)12y x =+- ()2,1-- 【分析】令抛物线的x =0,即可求得与y 轴交点坐标;将等号右边配成完全平方式即可;根据抛物线的顶点式解析式即可求出其顶点坐标.【详解】令x =0,则y =1,即抛物线与y 轴的交点为(0,1);y =12 (x 2+4x )+1=12 (x 2+4x +4)−1=12(x +2)2−1, ①顶点坐标为(−2,−1).故答案填空为(0,1),y =12 (x +2)2−1,(−2,−1).【点睛】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质与应用.32.45 【详解】过E 作EH①CF 于H ,则有①HEC+①ECH=90°,由折叠的性质得:BE=EF ,①BEA=①FEA ,①点E 是BC 的中点,①CE=BE ,①EF=CE ,①①FEH=①CEH ,①①AEB+①CEH=90°, ①①ECH=①AEB ,即①ECF=①AEB ,在矩形ABCD 中,①①B=90°,, ①sin①ECF=sin①AEB=AB AE=45 , 故答案为45.33.32b -≤≤-【分析】延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E ,即可求出CE 的长,设点A 的坐标为(x ,1),由题意可得1≤x ≤3,用x 和b 表示出AD 、BD 、AE ,然后证出①BDA ①①AEC ,列出比例式即可求出b 与x 的二次函数关系,然后根据x 的取值范围即可求出b 的取值范围.【详解】解:延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E①①AEC =90°①M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),①MN ①y 轴①CE =1,①DBA +①DAB =90°设点A 的坐标为(x ,1),由题意可得1≤x ≤3①AD =x ,BD =yA -yB =1-b ,AE =xC -xA =4-x①AB AC ⊥①①EAC +①DAB =90°①①DBA =①EAC①①BDA =①AEC =90°①①BDA ①①AEC ①=BD AD AE CE 即141-=-b x x 整理,得241=-+b x x =()223x --,b 是x 的二次函数,其中1>0①1≤x ≤3①当x =2时,b 最小,最小值为-3;当x =1时,b 最大,最大值为-2①-3≤b ≤-2故答案为:-3≤b ≤-2.【点睛】此题考查的是相似三角形的判定及性质和二次函数的应用,掌握相似三角形的判定及性质和利用二次函数求最值是解决此题的关键.34.y =32x ﹣3. 【分析】可以先求出点A 的坐标,进而知道直线平移的距离,得出点B 的坐标,平移前后的k 相同,设出平移后的关系式,把点B 的坐标代入即可.【详解】①点A (m ,3)在反比例函数y =6x的图象, ①3=6m,即:m =2, ①A (2,3)、B (2,0)点A 在y =kx 上,①k =32①y =32x ①将直线y =32x 平移2个单位得到直线l , ①k 相等设直线l 的关系式为:y =32x +b ,把点B (2,0)代入得:b =﹣3, 直线l 的函数关系式为:y =32x ﹣3; 故答案为y =32x ﹣3. 【点睛】本题考查反比例函数的图象上点的坐标的特点、待定系数法求函数解析式、一次函数和平移等知识,理解平移前后两个因此函数的k 值相等,是解决问题的关键. 35.5y x =+【分析】首先根据直线y=x+b (b >0)与x 轴、y 轴分别交于点C 、点B ,求出点C ,点B 的坐标各是多少;然后根据①α=75°,①BCA=45°,应用三角形的外角的性质,求出①BAC 的度数是多少,进而求出b 的值是多少即可.【详解】如图,,①直线y=x+b(b>0)与x轴、y轴分别交于点C、点B,①点C的坐标是(-b,0),点B的坐标是(0,b),①①α=75°,①BCA=45°,①①BAC=75°-45°=30°,tan30=︒=解得b=5.故答案为y=x+5.【点睛】(1)此题主要考查了解直角三角形问题,要熟练掌握,解答此题的关键是要明确解直角三角形要用到的关系:①锐角直角的关系:①A+①B=90°;①三边之间的关系:a2+b2=c2.(2)此题还考查了一次函数图象上点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.36.①①①【分析】根据平行四边形的性质可得AD BC∥,AD BC=进而可得AEF CBF∽△△,根据23AEDE=,即可求得25AEBC=,ΔΔ425AEFCBFSS=,52BFEF=进而判断①①①,根据三角形的面积和平行四边形的面积可得,分别用ABCDS表示出ABFS△与CDEFS四边形,进而求得其比值【详解】解:四边形ABCD是平行四边形∴AD BC∥,AD BC=∴AEF CBF∽△△AF AE EFCF BC BF∴==23AEDE=25AEAD∴=∴25AE AEBC AD==∴2425AEFCBFS AES BC⎛⎫==⎪⎝⎭。
中考数学复习专题训练试题及答案
中考数学复习专题训练精选试题及答案目录实数专题训练 (3)实数专题训练答案 (6)代数式、整式及因式分解专题训练 (7)代数式、整式及因式分解专题训练答案 (10)分式和二次根式专题训练 (11)分式和二次根式专题训练答案 (14)一次方程及方程组专题训练 (15)一次方程及方程组专题训练答案 (19)一元二次方程及分式方程专题训练 (20)一元二次方程及分式方程专题训练答案 (24)一元一次不等式及不等式组专题训练 (25)一元一次不等式及不等式组专题训练答案 (28)一次函数及反比例函数专题训练 (29)一次函数及反比例函数专题训练答案 (33)二次函数及其应用专题训练 (34)二次函数及其应用专题训练答案 (38)立体图形的认识及角、相交线与平行线专题训练 (39)立体图形的认识及角、相交线与平行线专题训练答案 (43)三角形专题训练 (44)三角形专题训练答案 (48)多边形及四边形专题训练 (49)多边形及四边形专题训练答案 (53)圆及尺规作图专题训练 (54)圆及尺规作图专题训练答案 (58)轴对称专题训练 (59)轴对称专题训练答案 (63)平移与旋转专题训练 (64)平移与旋转专题训练答案 (69)相似图形专题训练 (69)相似图形专题训练答案 (74)图形与坐标专题训练 (75)图形与坐标专题训练答案 (80)图形与证明专题训练 (81)图形与证明专题训练答案 (84)概率专题训练 (85)概率专题训练答案 (89)统计专题训练 (90)统计专题训练答案 (94)实数专题训练一、填空题:(每题 3 分,共 36 分)1、-2 的倒数是____。
2、4 的平方根是____。
3、-27 的立方根是____。
4、3-2 的绝对值是____。
5、2004年我国外汇储备3275.34亿美元,用科学记数法表示为____亿美元。
6、比较大小:-12____-13。
7、近似数0.020精确到____位,它有____个有效数字。
初中数学中考专项复习有理数的运算(选择题)复习习题1-100(含答案解析)
初中数学中考专项复习有理数的运算(选择题)复习习题1-100(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.若a≠0,b≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个B .3个C .4个D .5个2.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==3.计算12+16+112+120+130+……+19900的值为( )A .1100 B .99100C .199D .100994.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( ) A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( ) A .a >0,b >0 B .a <0,b >0 C .a 、b 同号D .a 、b 异号,且正数的绝对值较大 6.计算(-2)100+(-2)99的结果是( )A .2B .2-C .992-D .9927.若|a|=3,|b|=2,且a +b >0,那么a-b 的值是( ) A .5或1B .1或-1C .5或-5D .-5或-18.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( ) A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯9.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( ) A .4B .6C .7D .1010.-2的倒数是( ) A .-2B .12- C .12D .211.如图所示,根据有理数a 、b 在数轴上的位置,下列关系正确的是 ( )A .a b >B .a >-bC .b <-aD .a +b >012.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .13.260000000用科学计数法表示为( ) A .90.2610⨯B .82.610⨯C .92.610⨯D .72610⨯14.实数a,b在数轴上对应点的位置如图所示,化简( )A.﹣2a-b B.2a﹣b C.﹣b D.b15.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为()A.5049B.99! C.9900 D.2!16.若ab≠0,m=|a|a +|b|b+|ab|ab,则m的值是()A.3B.−3C.3或−1D.3或−3 17.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 18.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为()A.135×107B.1.35×109C.13.5×108D.1.35×1014 19.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×105 20.若m是有理数,则m m+的值是()A.正数B.负数C.0或正数D.0或负数21.股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是()A.27.1元B.24.5元C.29.5元D.25.8元22.若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或723.在下列各式中.计算正确的是( ) A .-9÷6×16=-9B .-35-58÷12=−3 C .-2÷(-4)-5=-412D .-15÷(-3×2)=10 24.如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,那么2a bm m++-cd 的值( ) A .2B .3C .4D .不确定25.我县人口约为530060人,用科学记数法可表示为( ) A .53006×10人B .5.3006×105人C .53×104人D .0.53×106人26.下列运算及判断正确的是( ) A .﹣5×15÷(﹣15)×5=1 B .方程(x 2+x ﹣1)x+3=1有四个整数解C .若a×5673=103,a÷103=b ,则a×b=6310567D .有序数对(m 2+1,m )在平面直角坐标系中对应的点一定在第一象限27.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012B .8×1013C .8×1014D .0.8×101328.计算-(-1)+|-1|,其结果为( ) A .-2B .2C .0D .-129.计算–(+1)+|–1|,结果为( ) A .–2 B .2 C .1 D .030.已知a ,b ,c 是三角形的三边长,如果满足(a ﹣b )2+|c 2﹣64|=0,则三角形的形状是( )A .底和腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形31.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A .42B .49C .76D .7732.已知|a|=3,|b|=4,并且a >b ,那么a +b 的值为( ) A .+7B .-7C .±1D .-7或-133.﹣2018的倒数是( ) A .2018B .12018C .﹣2018D .12018-34.若ab≠0,则a ba b+的结果不可能是( )A .﹣2B .0C .1D .235.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( ) A .62.2110⨯B .52.2110⨯C .322110⨯D .60.22110⨯36.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106B .2.18×105C .21.8×106D .21.8×105 37.下列各组数中,相等的一组是( ) A .23和32 B .|﹣2|3和|2|3C .﹣(+2)和|﹣2|D .(﹣2)2和﹣2238.下列有理数6(2),(1),5, 3.14,0------,其中负数的个数有( ) A .1个B .2个C .3个D .4个39.已知(x -2)2+|2x -3y -m|=0中,y 为正数,则m 的取值范围为( ) A .m <2B .m <3C .m <4D .m <540.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯41.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米,其中数据186000000用科学记数法表示是( )A .1.86×107B .186×106C .1.86×108D .0.186×10942.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为283,则满足条件的x 不同值最多有( )A .6个B .5个C .4个D .3个43.今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为( ) A .50.77810⨯B .47.7810⨯C .377.810⨯D .277810⨯44.如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->-D .b a b a >>->-45.有理数a 、b 、c 满足a+b+c >0,且abc <0,则a 、b 、c 中正数有( )个. A .0 B .1 C .2 D .346.某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A .星期一B .星期二C .星期三D .星期四47.若12x -+(y +1)2=0,则x 2+y 3的值是( ) A .34 B .14C .-14D .-3448.2017年国内生产总值达到827 000亿元,稳居世界第二.将数827 000用科学记数法表示为( ) A .82.7×104B .8.27×105C .0.827×106D .8.27×10649.下列各组的两个数中,运算后结果相等的是( ) A .23和32B .﹣33和(﹣3)3C .﹣22和(﹣2)2D .323⎛⎫- ⎪⎝⎭和323-50.截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为( ) A .2311000亿 B .31100亿 C .3110亿 D .311亿51.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为( ) A .81×103 B .8.1×104 C .8.1×105 D .0.81×105 52.下列说法中,正确的是( ) A .两个有理数的和一定大于每个加数 B .3与13-互为倒数 C .0没有倒数也没有相反数D .绝对值最小的数是053.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( ) A .259×104B .25.9×105C .2.59×106D .0.259×10754.若两个数的和是负数,那么一定是( ) A .这两个数都是负数B .两个加数中,一个是负数,另一个是0C .一个加数是正数,另一个加数是负数,且负数的绝对值较大D .以上三种均有可能55.2017年我省粮食总产量为635.2亿斤,其中635.2亿科学记数法表示( ) A .66.35210⨯B .86.35210⨯C .106.35210⨯D .8635.210⨯56.若 |a |= 3, |b | =1 ,且 a > b ,那么 a -b 的值是( ) A .4B .2C .-4D .4或257 ) A .a ﹦b -1 B .a +b ﹦1C .a ﹦b +1D .a +b ﹦-158.若a ≠0,则aa+1的值为( ) A .2B .0C .±1D .0或259.a 是不为2的有理数,我们把22a-称为a 的“哈利数”.如:3的“哈利数”是2223=-- ,-2的“哈利数”是()21222=--, 已知13a =,2a 是1a 的“哈利数”, 3a 是2a 的“哈利数”, 4a 是3a 的“哈利数”,…,依次类推,则2018a =( ).A .3B .-2C .12D .4360.下列说法正确的有( )(1)—a 一定是负数;(2)有理数分为正有理数和负有理数;(3)如果a 大于b ,那么a 的倒数小于b 的倒数;(4)几个有理数相乘,负因数的个数是奇数个时,积为负数;(5)符号不同的两个数互为相反数 A .0个 B .1个 C .2个 D .3个61.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( )A .0b a ->B .0a b ->C .0ab >D .0a b +>62.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( ) A .3或7B .-3或-7C .-3D .-763.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32-64.若m 、n≠0,则|n|+m mn的取值不可能是( ) A .0B .1C .2D .-265.2019的倒数的相反数是( ) A .-2019B .12019-C .12019D .201966.李克强总理在2017年政府工作报告中回顾过去一年我国经济运行缓中趋稳、稳中向好,国内生产总值达到74.4万亿元,名列世界前茅.将74.4万亿用科学记数法表示应为( ) A .7.44×1011B .7.44×1012C .7.44×1013D .0.744×101467.有理数a 、b 在数轴上的位置如图所示,则下列各式中,①ab >0;②|b ﹣a|=a ﹣b ;③a+b >0;④1a >1b;⑤a ﹣b <0;正确的有( )A .3个B .2个C .5个D .4个68.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为( ) A .1.269×1010B .1.269×1011C.12.69×1010D.0.1269×1012 69.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零70.辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×106C.8.1×104D.8.1×10671.-12017的相反数的倒数是( )A.1 B.-1 C.2017 D.-2017 72.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时73.有理数a,b在数轴上的位置如图所示,则下列判断正确的是( )A.ab>0 B.a+b>0 C.|a|<|b| D.a-b<074.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1 D.平方等于自身的数只有0和1 75.在某一段时间里,计算机按如图所示程序工作,如果输入的数是2,那么输出的数是( )A .-54B .54C .-558D .55876.下列说法:①﹣a 一定是负数;②|﹣a |一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个77.在下列式子:①()()542⨯-⨯-; ②()1126-÷; ③4(4)-; ④5(3)-中.其中,计算结果是负数的有( ) A .①②B .①②③C .①③④D .②④78.式子7-3-4+18-11=(7+18)+(-3-4-11)是应用了( ) A .加法交换律 B .加法结合律 C .分配律 D .加法的交换律与结合律 79.下列说法正确的有( )①所有的有理数都能用数轴上的点表示 ②符号不同的两个数互为相反数 ③有理数分为正有理数和负有理数 ④两数相减,差一定小于被减数 A .1个B .2个C .3个D .4个80.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( ) A .84.610⨯B .84610⨯C .94.6D .94.610⨯81.已知|a|=3,b=﹣8,ab >0,则a ﹣b 的值为( ) A .11B .﹣11C .5D .﹣582.若x <0,则()x x --等于( ) A .-xB .0C .2xD .-2x83.下列各式结果等于3的是( ) A .(﹣2)﹣(﹣9)+(+3)﹣(﹣1) B .0﹣1+2﹣3+4﹣5 C .4.5﹣2.3+2.5﹣3.7+2D .﹣2﹣(﹣7)+(﹣6)+0+(+3) 84.下列叙述正确的是( )A .两个有理数的和一定大于每一个加数B .两数相加,只需把两个数的绝对值相加C .符号相反的两个数相加,结果为零D .异号两数相加,如果正数的绝对值大,那么和为正数,如果负数的绝对值大,那么和为负数85.两个数相加,若和为负数,则这两个数( )A .必定都为负数B .总是一正一负C .可以都是正数D .至少有一个负数86.遵义市2019年6月1日的最高气温是25℃,最低气温是15℃,遵义市这一天的最高气温比最低气温高( )A .25℃B .15℃C .10℃D .﹣10℃87.下列说法:①一个数的绝对值一定不是负数;②一个数的相反数一定是负数;③两个数的和一定大于每一个加数;④若ab >0,则a 与b 都是正数;⑤一个非零数的绝对值等于它的相反数,那么这个数一定是负数,其中正确说法的个数是( )个.A .1B .2C .3D .488.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A .0个B .1个C .2个D .3个89.下列结论:①几个有理数相乘,若其中负因数有奇数个,则积为负;②若m 是有理数,则m m +一定是非负数;③()a b c a a b a c a d ÷++=÷+÷+÷; ④若0m n +<,0mn >,则0m <,0n <;其中一定正确的有( )A .1个B .2个C .3个D .4个90.若a 是负数,则下列各式不正确的是( )A .a 2=(﹣a )2B .a 2=|a 2|C .a 3=(﹣a )3D .a 3=﹣(﹣a 3)91.若a 1b 2c 30++-++=,则()()()a 1b 2c 3-+-的值是( )A .48-B .48C .0D .无法确定 92.计算11111133557793739+++++⨯⨯⨯⨯⨯L 的结果是( ) A .1937 B .1939 C .3739 D .383993.1﹣2+3﹣4+5﹣6+…+2017﹣2018的结果不可能是( )A .奇数B .偶数C .负数D .整数 94.现有以下五个结论:①正数、负数和0统称为有理数;②若两个非0数互为相反数,则它们相除的商等于﹣1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数.其中正确的有( )A .0个B .1个C .2个D .3个95.下列各式:①﹣(﹣7),②﹣|﹣7|,③﹣(﹣2)2,④﹣52,计算结果为负数的有( ). A .4个 B .3个 C .2个 D .1个96.近似数3.02×106精确到( )A .百分位B .百位C .千位D .万位97.据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为( )A .0.102×105B .10.2×103C .1.02×104D .1.02×10398.下列各数中比﹣1小2的数是( )A .﹣1B .﹣2C .1D .﹣399.若|a|=3,|b|=2,且a-b<0,则a+b 的值等于 ( )A .1或5B .1或-5C .-1或-5D .-1或5100.下列各组数中,数值相等的是( )A .﹣22和(﹣2)2B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×22参考答案1.A【解析】【分析】分①a>0,b>0,②a>0,b<0,③a<0,b<0,④a<0,b>0,4种情况分别讨论即可得. 【详解】由分析知:可分4种情况:①a>0,b>0,此时ab>0,所以a b aba b ab++=1+1+1=3;②a>0,b<0,此时ab<0,所以a b aba b ab++=1﹣1﹣1=﹣1;③a<0,b<0,此时ab>0,所以a b aba b ab++=﹣1﹣1+1=﹣1;④a<0,b>0,此时ab<0,所以a b aba b ab++=﹣1+1﹣1=﹣1;综合①②③④可知:代数式a b aba b ab++的值为3或﹣1,故选A.【点睛】本题考查了绝对值的运用,熟知绝对值都为非负数并且运用分类讨论思想是解题的关键. 2.C【解析】【分析】由题可知,代入x、y值前需先判断y的正负,再进行运算方式选择,据此逐项进行计算即可得.【详解】A 选项0y ≥,故将x 、y 代入22x y +,输出结果为15,不符合题意;B 选项0y ≤,故将x 、y 代入22x y -,输出结果为20,不符合题意;C 选项0y ≥,故将x 、y 代入22x y +,输出结果为12,符合题意;D 选项0y ≥,故将x 、y 代入22x y +,输出结果为20,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行y 的正负判断,选择对应运算方式,然后再进行计算.3.B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=111111223344599100++++⋯+⨯⨯⨯⨯⨯ =111111112233499100-+-+-+⋯+-, =1-1100=99100. 故选B .点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.C【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:214.7亿,用科学记数法表示为2.147×1010, 故选C .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.D【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【详解】∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选D.【点睛】本题考查了有理数的乘法、加法,熟练掌握和灵活应用有理数的加法法则和乘法法则是解题的关键.6.D【解析】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299.故选D.7.A【解析】【分析】根据绝对值的意义和a+b>0,求出a、b的值,再代入a-b求值即可【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a+b>0,∴a=3,b=2或a=3,b=-2,∴a-b=1或a-b=3-(-2)=5.故选A【点睛】此题主要考查了绝对值的意义,解题时先根据绝对值的意义,求出a、b的值,然后根据a、b的关系分类讨论求解即可.8.B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将360000000用科学记数法表示为:3.6×108.故选:B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时,n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.10.B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握11.C【解析】观察数轴可知:b<0<a ,|b|>|a|,所以 a<-b , b<-a , a+b<0,故选C.【点睛】本题考查了数轴、绝对值、有理数的比较、有理数的加法法则等,解题的关键是根据数轴上表示有理数a 、b 两个点的位置进行判断,体现了数形结合的优点.12.B【解析】【分析】根据班级序号的计算方法一一进行计算即可.【详解】A. 第一行数字从左到右依次为1,0,1,0,序号为32101202120210⨯+⨯+⨯+⨯=,表示该生为10班学生.B. 第一行数字从左到右依次为0,1, 1,0,序号为3210021212026⨯+⨯+⨯+⨯=,表示该生为6班学生.C. 第一行数字从左到右依次为1,0,0,1,序号为3210120202129⨯+⨯+⨯+⨯=,表示该生为9班学生.D. 第一行数字从左到右依次为0,1,1,1,序号为3210021212127⨯+⨯+⨯+⨯=,表示该生为7班学生.故选B.【点睛】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.13.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】260000000的小数点向左移动8位得到2.6,所以260000000用科学记数法表示为82.610⨯,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.A【解析】【详解】由图可知:00a b <>,,∴+0a b <,∴2+=---=--a a b a a b .故选A.15.C【解析】【详解】根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴100!1009998198!98971⨯⨯⨯⨯=⨯⨯⨯L L =100×99=9900,故选C . 16.C【解析】【分析】可分4种情况分别讨论,解出此时的代数式的值,然后综合得到所求的值.【详解】解:由分析知:可分4种情况:①a >0,b >0,此时ab >0所以m =|a|a +|b|b +|ab|ab =1+1+1=3 ;②a >0,b <0,此时ab <0所以 m =|a|a +|b|b +|ab|ab =1-1-1=-1;③a <0,b <0,此时ab >0所以 m =|a|a +|b|b +|ab|ab =-1-1+1=-1;④a <0,b >0,此时ab <0所以 m =|a|a +|b|b +|ab|ab =-1+1-1=-1综合①②③④可知:代数式|a|a +|b|b+|ab|ab的值为3或-1.故选C.【点睛】本题考查了有理数的运算,读懂题意学会分情况讨论是解题的关键.17.A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.18.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1350000000用科学记数法表示为:1350000000=1.35×109,故选B.【点睛】本题考查科学记数法的表示方法. 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.19.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将度55000用科学记数法表示为5.5×104. 故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.C【解析】【分析】根据:如果m>0,则|m|=m; 如果m<0,则|m|=-m; 如果m=0,则|m|=0.【详解】如果m 是正数,则m m +是正数;如果m 是负数,则m m +是0;如果m 是0,则m m +是0.故选C【点睛】本题考核知识点:有理数的绝对值.解题关键点:理解绝对值的意义.21.B【解析】【分析】本题是一道较为基础的题型,考查的是对正数和负数的实际意义的熟练程度,对于本题而言,星期五收盘时,该股票每股是:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元).【详解】解:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元),故选B .【点睛】本题考查正数和负数的实际意义,解题关键是掌握本题中正数和负数的意义,这样可以提高解题的速度和准确率.22.D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.23.C【解析】【分析】根据有理数的混合运算顺序和运算法则分别进行计算,即可得出答案.【详解】解:A. -9÷6×16=-14, 故本选项错误;B. -35-58÷12=−3720,故本选项错误;C. -2÷(-4)-5=-412, 故本选项正确;D. -15÷(-3×2)=2.5, 故本选项错误.故选:C.【点睛】本题考查有理数的混合运算,掌握有理数的混合运算顺序是解题关键,注意结果的符号.24.B【解析】【分析】此题的关键是由a,b互为相反数,c,d互为倒数,m的绝对值是2得知:a+b=0,cd=1,m=±2;据此即可求得代数式的值.【详解】解:∵a ,b 互为相反数则a+b=0又∵c ,d 互为倒数则cd=1又知:m 的绝对值是2,则m=±2 ∴a b m+m 2−cd=4-1=3. 故选:B .【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b ,cd ,m 的值,然后利用“整体代入法”求代数式的值.25.B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B .【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.26.B【解析】【分析】依据有理数的乘除混合运算法则、零指数幂、同底数幂的乘法法则以及点的坐标,进行判断即可得出结论.【详解】A .﹣5×15÷(﹣15)×5=﹣1×(﹣5)×5=25,故错误; B .方程(x 2+x ﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C .若a×5673=103,a÷103=b ,则a×b=3333310110567567567⨯=,故错误; D .有序数对(m 2+1,m )在平面直角坐标系中对应的点一定在第一象限或第四象限或x 轴正半轴上,故错误,故选B .【点睛】本题主要考查了点的坐标,有理数的混合运算以及零指数幂的综合运用,解题时注意:坐标平面内的点与有序实数对是一一对应的关系.27.B【解析】80万亿用科学记数法表示为8×1013.故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.28.B【解析】试题分析:由题可得:原式=1+1=2,故选B .29.D【解析】【分析】先利用相反数及绝对值的意义化简各数,然后再进行有理数加法运算即可.【详解】–(+1)+|–1|=-1+1=0,故选D.【点睛】本题考查了有理数的加法运算,涉及了相反数和绝对值,熟练掌握有理数加法法则是解题的关键.30.B【解析】【分析】首先根据绝对值,偶次方与算术平方根的非负性,求出a,b,c的值,再根据等边三角形的概念即可得出答案.【详解】解:由(a-b)2c2-64|=0得:a-b=0,b-8=0,c2-64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选B.【点睛】本题主要考查了非负数的性质和等边三角形的概念,根据几个非负数的和为零则这几个数都为零求得a、b、c的值是解决此题的关键.31.C【解析】试题分析:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.依题意有,刀鞘数为76.考点:有理数的乘方32.D【解析】【分析】根据题意,利用绝对值的代数意义确定出a与b的值,即可求出a+b的值.【详解】∵|a|=3,|b|=4,且a>b,∴a=3,b=-4或a=-3,b=-4,则a+b=-1或-7,故选D.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握加法法则是解本题的关键.33.D【解析】【分析】根据倒数的概念解答即可.【详解】﹣2018的倒数是:﹣1 2018.故选D.【点睛】本题考查了倒数的知识点,解题的关键是掌握互为倒数的两个数的乘积为1. 34.C【解析】【分析】根据绝对值的意义得到aa=±1,bb=±1,然后计算出a ba b+的值,从而可对各选项进行判断.【详解】∵aa=±1,bb=±1,∴a ba b+=2或﹣2或0.故选C.【点睛】本题考查了绝对值:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a;当a是零时,a的绝对值是零.35.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】221000的小数点向左移动5位得到2.21,所以221000用科学记数法表示为2.21×105,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.36.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.37.B【解析】解:A.∵23=8,32=9,∴23≠32;B.∵|﹣2|3=8,|2|3=8,∴|﹣2|3=|2|3;C.∵﹣(+2)=﹣2,|﹣2|=2,∴﹣(+2)≠|﹣2|;D.∵(﹣2)2=4,﹣22=﹣4,∴(﹣2)2≠﹣22.故选B.38.B【解析】【分析】计算出各数的结果,再利用负数的定义判断即可.【详解】−(−2)=2,(−1)6=1,−|−5|=−5,所以负数有两个,故选B.【点睛】此题考查正数和负数问题,关键是利用负数的定义判断.39.C【解析】【分析】根据非负数的性质,可得x-2=0,2x-3y-m=0,用含m的式子表示出y,再根据y为正数列不等式求解即可.【详解】由题意得x-2=0,2x-3y-m=0,∴x=2,y=43m -,∵y为正数,∴43m->0,∴m<4.故选C.【点睛】本题考查了非负数的性质,一元一次不等式的解法,用含m的式子表示出y是解答本题的关键.40.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.41.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】将186000000用科学记数法表示为:1.86×108.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.42.B【解析】【分析】根据题意重复代入求值即可解题.【详解】解:令3x+1=283,解得x=94,令3x+1=94,解得x=31,令3x+1=31,解得x=10,令3x+1=10,解得x=3,令3x+1=3,解得x=2 3 ,综上一共有5个正数, 故选B.【点睛】。
初中数学 中考复习二次根式专题练习(含答案)
二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
中考数学总复习《反比例函数》专项提升训练题(带答案)
中考数学总复习《反比例函数》专项提升训练题(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,4A -是反比例函数()0ky k x=≠图象上一点,则常数k 的值为( ) A .4 B .14-C .4-D .142.函数6y x=的图象位于第( )象限 A .一、二 B .一、三 C .二、三 D .二、四3.已知反比例函数2y x =图象上有三点()14,A y ,()22,B y 和31,2C y ⎛⎫⎪⎝⎭,则1y 、2y 和3y 的大小关系为( ) A .y y y >>₁₂₃B .y y y >>₂₁₃C .y y y >>₃₂₁D .y y y >>₃₁₂4.已知二次函数2y x bx c =++的图象如图所示,则一次函数y bx c =+与反比例函数bcy x=的图象可能..是( )A .B .B .C .D .5.如图,点P ,Q 在反比例函数4y x=的图象上,点M 在x 轴上,点N 在y 轴上,下列说法正确的是( )A .图1、图2中阴影部分的面积分别为2,4B .图1、图2中阴影部分的面积分别为1,2C .图1、图2中阴影部分的面积之和为8D .图1、图2中阴影部分的面积之和为3 6.下列各点中,不在反比例函数6y x=图像上的点是( ) A .()1,6B .()6,1--C .()6,1D .()2,3-7.如图,OAB 是面积为4的等腰三角形,底边OA 在x 轴上,若反比例函数图象过点B ,则它的解析式为( )A .2y x=B .-2y x=C .4y x =D .4y x=-8.已知如图,一次函数14y x =+图象与反比例函数25y x=图象交于()1,A n ,()5,B m -两点,则12y y >时x 的取值范围是( )A .5x 0-<<或1x >B .5x <-或01x <<C .5x 0-<<或01x <<D .51x -<<二、填空题9.在平面直角坐标系中,将点()2,3A 向下平移5个单位长度得到点B ,若点B 恰好在反比例函数的图象上,则此反比例函数的表达式为 .10.已知点()()1221A yB y --,,,和()34C y ,都在反比例函数8y x=的图象上,则123y y y ,,的大小关系为 .(用“<”连接)11.如图,点A 是反比例函数2y x=-的图象上一点,过点A 向y 轴作垂线,垂足为点B ,点C 、D 在x 轴上,且BC AD ∥,则四边形ABCD 的面积为 .12.如图,直线6y x =-+与y 轴交于点A ,与反比例函数ky x=图象交于点C ,过点C 作CB x ⊥轴于点B ,3AO BO =,则k 的值为 .13.如图,已知点(3,3)A 和(3,1)B ,反比例函数(0)ky k x=≠图象的一支与线段AB 有交点,写出一个符合条件的k 的整数值: .三、解答题14.如图,在ABCD 中(1,0)A -,(2,0)B 和(0,2)D ,反比例函数ky x=在第一象限内的图象经过点C .(1)点C 的坐标为 . (2)求反比例函数的解析式.(3)点E 是x 轴上一点,若BCE 是直角三角形,请直接写出点E 的坐标.15.科学课上,同学用自制密度计测量液体的密度.密度计悬浮在不同的液体中时,浸在液体中的高度()cm h 是液体的密度()3g /cm ρ的反比例函数,如图是该反比例函数的图象,且0ρ>.(1)求h 关于ρ的函数表达式;(2)当密度计悬浮在另一种液体中时25cm h =,求该液体的密度ρ.16.通过试验研究发现:一节40分钟的课堂,初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.如图,学生注意力指标y 随时间x (分钟)变化的函数图象,当010x ≤<和1020x ≤<时,图象是线段;当2040x ≤≤时,图象是反比例函数的一部分.(1)求反比例函数解析式和点A 、D 的坐标;(2)陈老师在一节课上讲解一道数学综合题需要16分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32?请说明理由.17.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x 元与日销售量y 之间满足某种函数关系. x (元)3 4 5 6y (个) 20 15 12 10(1)根据表中的数据请你写出请y 与x 之间的函数关系式;(2)设经营此贺卡的销售利润为w 元,试求出w 与x 之间的函数关系式,若物价局规定此贺卡的销售价每个最高不能超过10元,请你求出当日销售单价x 定为多少元时,才能使日销售获得最大利润?18.如图,一次函数()10y kx b k =+≠的图象与x 轴,y 轴分别交于点A ,B ,与反比例函数()20my x x=>的图象交于点()1,2C 和()2,D n .(1)分别求出两个函数的解析式; (2)当12y y >时,直接写出x 的取值范围. (3)连接OC ,OD ,求COD △的面积;(4)点P 是反比例函数上一点,PQ x ∥轴交直线AB 于Q ,且3PQ =请直接写出点P 的坐标.答案第1页,共1页参考答案:1.C 2.B 3.C 4.B 5.A 6.D 7.D 8.A9.4y x =-10.213y y y << 11.2 12.16-13.4(答案不唯一) 14.(1)()3,2 (2)6y x=(3)(3,0)或(7,0) 15.(1)20h ρ=(2)0.8ρ=16.(1)反比例函数的解析式为800y x=,()0,20A 和()40,20D (2)陈老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于32 17.(1)60y x=(2)1018.(1)一次函数的解析式为13y x =-+,反比例函数的解析式为22y x=; (2)12x <<; (3)32; (4)()37,37P +-或()37,37P -+.。
中考数学复习专项之等腰三角形(含答案)
等腰三角形一、选择题1、(2022年聊城莘县模拟)如图,等边三角形的边长为3,点为边上一点,且,点为边上一点,若,则的长为( ).A .B .C .D .1答案:B2、(2022年惠州市惠城区模拟)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( ) A.16 B.18 C. 20 D. 16或20 答案:C3、(2022浙江永嘉一模)10.如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于点D ,F ,下列结论: ①∠CDF =α;②A 1E =CF ;③DF =FC ;④BE =BF . 其中正确的有( ▲ )A .②③④B .①③④C .①②④D .①②③【答案】C4、(2022重庆一中一模)11.如图,在等腰ABC Rt ∆中,︒=∠90C ,6=AC ,D 是AC 上一点.若51tan =∠DBA ,那么AD 的长为 A . 2 B .3 C .2 D . 1 【答案】A5. (2022江西饶鹰中考模拟)如图,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′,BC ′,则图中共有等腰三角形的个数是( ) A .1 B.2(第1 题图)FED C 1C BAA 1第2题图A BD′ P CD M NE C′Q F第6题CA PBDC.3D.4 答案:C6、(2022年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36°D7、 (2022年江苏无锡崇安一模)如图,在五边形ABCDE 中,∠BAE =120°,∠B =∠E =90°,AB =BC =1,AE =DE =2,在BC 、DE 上分别找一点M 、N , 使△AMN 的周长最小,则△AMN 的最小周长为…( ▲ ) A .2 6 B .27 C .4 2D .5答案:B二、填空题1、(2022年安徽模拟二)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为 .第1题图答案:42.(2022年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上) ①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP .3、(2022年安徽省模拟六)如图,等边三角形ABC 中,D 、E 分别在AB 、BC 边上,且AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G .下列结论:①AE =CD ;②∠AFC =1200;③⊿ADF 是正三角形;④12FG AF =.其中正确的结论是 (填所有正确答案的序号). 答案:①②④4、(2022年福州市初中毕业班质量检查)如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是____ . 1.57.(2022年江苏无锡崇安一模)在直角△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,若CD =4,则点D 到斜边AB 的距离为 ▲ .第1题第3题图 ABCDEF第4题图答案:47.(2022浙江东阳吴宇模拟题)如图,C 、D 、B 的坐标分别为(1, 0)(9, 0)(10, 0),点P (t ,0)是CD 上一个动点,在x 轴上方作等边△OPE 和△BPF ,连EF ,G 为EF 的中点。
中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题
三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
初中数学中考复习专题:找规律专项练习及答案解析(50道)
初中数学中考复习专题:找规律专项练习及答案解析(50道) 初中数学中考复习专题:找规律专项练习及答案解析(50道)一、选择题1、连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.观察上述图形并阅读相关文字,思考回答问题:显然四边形对角线有2条;五边形的对角线有5条;对于六边形的对角线条数,光靠“数”数,也能数出来,但已感到较麻烦!需寻找规律!从一个顶点A出发,显然有3条,同理从B出发也3条,每个顶点出发都是3条,但从C顶点出发,就有重复线段!用此方法算出六边形的对角线条数为a;且能归纳出n边形的对角线条数的计算方法;若一个n边形有35条对角线,则a和n的值分别为()A.12,20 B.12,15C.9,10 D.9,122、寻找规律计算1 - 2+3 - 4+5 - 6+…+2021 - 2021等于 ( ) A.0 B.- 1 C.- 1008 D.10083、观察下列各式并找规律,再猜想填空:,则______ .4、观察一列数:是(),,,,,……根据规律,请你写出第10个数A.C.B. D.共 20 页,第 1 页二、填空题5、观察一下几组勾股数,并寻找规律:① 3, 4, 5;② 5,12,13;③ 7,24,25;④ 9,40,41;……请你写出有以上规律的第⑤组勾股数:6、找规律填空:……7、已知察上面的计算过程,寻找规律并计算:= .…,观8、观察分析下列数据,寻找规律:0,据应是_________.,,3,2,……那么第10个数9、找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。
① 2张桌子拼在一起可坐______人;(1分) 3张桌子拼在一起可坐______人;(1分) n张桌子拼在一起可坐______人。
(3分)②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。
(3分)共 20 页,第 2 页10、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:_________________.11、找规律填上合适的数:-2,4,-8,16,,64,……………12、用火柴棒按以下方式搭“小鱼”.…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为.13、观察分析下列数据,寻找规律:0,么第10个数据应是.,,3,2,,3,……,那14、填空找规律(结果保留四位有效数字). (1)利用计算器分别求:=________;(2)由(1)的结果,我们发现所得的结果与被开方数间的规律是________; (3)运用(2)中的规律,直接写出结果:=________,=________.=________,=________,=________,15、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c的值为.共 20 页,第 3 页16、找规律填上合适的数:﹣2,4,﹣8,16,,64,…17、观察下列数据:0,,,,,……,寻找规律,第9个数据应是 .18、观察烟花燃放图形,找规律:依此规律,第9个图形中共有_________个★.19、观察并分析下列数据,寻找规律: 0,,-,3,-2,,-3,……那么第10个数据是___________ ;第n个数据是_______________ .20、观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;……请你写出有以上规律的第⑤组勾股数:______________________.21、寻找规律,根据规律填空:,,,,,,…,第n个数是 .22、找规律,并按规律填上第五个数:.23、阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x,(1﹣x)(1+x+x)=1﹣x,(1﹣x)(1+x+x+x)=1﹣x….(1)观察上式,并猜想:(1﹣x)(1+x+x+…+x)= .(2)根据你的猜想,计算:1+3+3+3…+3= .(其中n是正整数)23n2n42323共 20 页,第 4 页24、找规律,如图有大小不同的平行四边形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中有个。
中考数学复习专项之三角形全等 (含答案)
30°ABOCl D 第1题图C A P B D三角形全等一、选择题1、(2022年安徽省模拟六)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是…………【 】 A .AC = A ′C ′ B.BC = B ′C ′ C.∠B =∠B ′ D.∠C =∠C ′.答案:B2、(2022年江苏南京一模)如图,直线上有三个正方形a b c ,,,若a c ,的面积分别为3和4,则b 的面积为( ) A .3 B .4 C .5 D .7 答案:D3.(2022郑州外国语预测卷)如图,两个等圆⊙A 、⊙B 分别与直线l 相切于点C 、D ,连接AB 与直线l 相交于点O ,∠AOB =30°,连接AC 、BD ,若AB =4,则这两个等圆的半径为( ) A .21B .1C .3D .2 答案:B4、(2022河南沁阳市九年级第一次质量检测) 如图,把△ABC 绕着点C 顺时针旋转30°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC =90°,则∠A 的度数是【 】A.30°B.50°C.60°D.80°C5、(2022年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36°D6、 (2022年湖北宜昌调研)如图,AC ,BD 交于点E ,AE=CE ,添加以下四个条件中的一个,其中不能使△ABE ≌△CDE 的条件是( ) (A )BE=DE (B )AB ∥CD (C )∠A=∠C (D )AB=CDabclEABCD答案:D7、(2022年唐山市二模)在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ②当∠ABC =60°时,MN ∥BC ③ BN =2AN ④AN︰AB =AM ︰AC ,一定正确的有 ( )A 、1个B 、2个C 、3个D 、4个答案:C8.(2022年上海闵行区二摸)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是 (A )AC = A ′C ′; (B )BC = B ′C ′; (C )∠B =∠B ′; (D )∠C =∠C ′.答案:B二、填空题1、(2022云南勐捧中学二模)如图,AB CD ,相交于点O ,AO=CO ,试添加一个条件使得AOD COB △≌△,你添加的条件是 (只需写一个). 【答案】∠A= ∠C 、∠D= ∠B 、OD=OB (答案不唯一)2.(2022年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上)①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP . 答案:①②③④三、解答题1、(2022年湖北荆州模拟5)(本题满分8分)将两块斜边长度相等的等腰直角三角纸板如图(1)摆放,若把图(1)中的△BCN 逆时针旋转90°,得到图(2),图(2)中除△ABC ≌△CED 、△BCN ≌△ACF 外,你还能找到一对全等的三角形吗?写出你的结论并说明理由.AC BDO第1题答案:解:△FCM ≌△NCM ,理由如下: ∵把图中的△BCN 逆时针旋转90°, ∴∠FCN=90°,CN=CF , ∵∠MCN=45°, ∴∠FCM=90°-45°=45°, 在△FCM 和△NCM 中∵CM=CM ,∠FCM=∠NCM , FC=CN∴△FCM ≌△NCM (SAS ).2、(2022年湖北荆州模拟6)(本题满分8分)如图,正方形ABCD 和BEFG 在直线AB 的同侧,连接AG 、EC ,易证AG=EC ,现在将正方形BEFG 顺时针旋转30°,那么AG=EC 还成立吗?请作出旋转后的图形,并证明你的结论. 答案:解:成立. 理由如下:在ΔABG 与ΔCBE 中,0120AB CB ABG CBE BG BE =⎧⎪∠=∠=⎨⎪=⎩∴ ΔABG ≌ΔCBE ∴ AG=CE3、(2022年江苏南京一模)(7分)如图, AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1) 求证:AD =AE ;(2) 连接BC ,DE ,试判断BC 与DE 的位置关系并说明理由. 答案:(1)证明:在△ACD 与△ABE 中, ∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 2分 ∴ AD=AE . ……………………3分 (2) 互相平行 ……………………4分 在△ADE 与△ABC 中, ∵AD=AE ,AB=AC ,∴ ∠ADE=∠AED ,∠ABC=∠ACB ……………6分 且 ∠ADE =180-∠A =∠ABC.∴ DE ∥BC . ……………7分第1题图第2题图第2题解答CACBB第2题图14.(2022年北京房山区一模)如图,点C、B、E在同一条直线上,AB∥DE,∠ACB=∠CDE,AC=CD.求证:AB=CD .答案:证明:∵AB∥DE∴∠ABC=∠E ------------------------------1分∵∠ACB=∠CDE,AC=CD --------------------- --------3分∴△ABC≌△CED -------------------------4分∴AB=CD--------------------------5分5.(2022年北京房山区一模)(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE = AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.答案:(1)证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CE=CD,∠ACB=∠DCE=60°∴∠BCE=∠ACD∴△BCE≌△ACD(SAS)∴BE=AD--------------1分(2)①②③都正确--------------4分(3)证明:在PE上截取PM=PC,联结CM由(1)可知,△BCE≌△ACD(SAS)EDC BA第1题图ADAB∴∠1=∠2设CD 与BE 交于点G ,,在△CGE 和△PGD 中 ∵∠1=∠2,∠CGE =∠PGD∴∠DPG =∠ECG =60°同理∠CPE =60° ∴△CPM 是等边三角形--------------5分 ∴CP =CM ,∠PMC =60° ∴∠CPD =∠CME =120°∵∠1=∠2,∴△CPD ≌△CME (AAS )---6分 ∴PD =ME∴BE =PB +PM +ME =PB +PC +PD . -------7分即PB+PC+PD=BE .6.(2022年北京龙文教育一模)已知:如图,AB ∥CD ,AB =CD ,点E 、F 在线段AD 上,且AF=DE .求证:BE =CF . 答案:证明: AF=DE , ∴ AF-EF=DE –EF . 即 AE=DF .………………1分AB ∥CD ,∴∠A =∠D .……2分在△ABE 和△DCF 中 , AB =CD , ∠A =∠D , AE=DF .∴△ABE ≌△DCF .……….4分 ∴ BE =CF .…………….5分7. (2022年北京龙文教育一模)阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.FE ACDB第3题图答案:解:(1)22=BD . ……………………………… ………………………1分(2)把△ADC 沿AC 翻折,得△AEC ,连接DE , ∴△ADC ≌△AEC .∴∠DAC =∠EAC ,∠DCA =∠ECA , DC =EC . ∵∠BAD =∠BCA =2∠DAC =30°, ∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形. ……………………2分 ∴DC =DE .在AE 上截取AF =AB ,连接DF , ∴△ABD ≌△AFD . ∴BD =DF .在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF . ∴DF =DE .∴BD =DC =2. …………………………………………………………………3分 作BG ⊥AD 于点G , ∴在Rt △BDG 中, 2=BG . ……………………………………………4分∴在Rt △ABG 中,22=AB . ……………………………………………5分 8.(2022年北京平谷区一模)已知:如图,AB ∥CD ,AB =EC ,BC =CD . 求证:AC =ED .答案:证明:∵ AB //CD ,∴B DCE ∠=∠.………………… ………………………1分在△ABC 和△ECD 中,= =B DCE AB EC BC CD ∠∠⎧⎪=⎨⎪⎩,,, ∴ △ABC ≌△ECD . …………………… ………………4分∴ AC =ED .………………………… ……………………5分9.(2022年北京顺义区一模)已知:如图,CA 平分BCD ∠, 点E 在AC 上,BC EC =,AC DC =.求证:A D ∠=∠.答案:证明:∵CA 平分BCD∠∴ ACB DCE ∠=∠ ……………1分在ABC ∆和DEC ∆中∵BC EC ACB DCE AC DC =⎧⎪∠=∠⎨⎪=⎩……………3分 ∴ABC ∆≌DEC ∆ …………………………………………… 4分 ∴A D ∠=∠ ……………………………………………5分10.(2022年北京平谷区一模)(1)如图(1),△ABC 是等边三角形,D 、E 分别是 AB 、BC 上的点,且BD CE =,连接AE 、CD 相交于点P . 请你补全图形,并直接写出∠APD 的度数;= (2)如图(2),Rt △ABC 中,∠B =90°,M 、N 分别是 AB 、BC 上的点,且,AM BC =BM CN =,连接AN 、CM 相交于点P . 请你猜想∠APM = °,并写出你的推理过程.答案:解:(1)60° (2)45° ………………………………..2分 证明:作AE ⊥AB 且AE CN BM ==. 可证EAM MBC ∆≅∆. ……………………………..3分 ∴ ,.ME MC AME BCM =∠=∠∵ 90,CMB MCB ∠+∠=︒∴ 90.CMB AME ∠+∠=︒∴ 90.EMC ∠=︒∴ EMC ∆是等腰直角三角形,45.MCE ∠=︒ ……………….5分又△AEC ≌△CAN (s , a , s )∴ .ECA NAC ∠=∠ ∴ EC ∥AN.∴ 45.APM ECM ∠=∠=︒…………………………………………………………………..7分EDCBA第6题图第7题图11.(2022浙江东阳吴宇模拟题)(本题12分) 如图,平面直角坐标系中,点A (0,4),B (3,0),D 、E 在x 轴上,F 为平面上一点,且EF ⊥x 轴,直线DF 与直线AB 互相垂直,垂足为H ,△AOB ≌△DEF ,设BD =h 。
初中数学中考复习——实数专题(含答案)
初中数学中考复习——实数专题选择题下列各数中,绝对值最小的是()A. -3B. 2C. 0D. π如果一个实数的相反数是它本身,那么这个数一定是()A. 正数B. 负数C. 零D. 无法确定一个数的平方根是它本身的数有()A. 0B. 1C. -1D. A和B实数-5和7在数轴上对应的点之间的距离是()A. 2B. 12C. 10D. 14利用科学记数法表示的数,下列哪个选项是错误的()A. 350 = 3.5 × 10²B. 0.05 = 5 × 10⁻²C. 500 = 5 × 10²D. 0.0006 = 6 × 10⁻⁴下列哪个数不是无理数()A. πB. √2C. 0.333...(3无限重复)D. 22/7如果a和b是两个实数,且a的绝对值大于b的绝对值,那么|a| - |b|的值()A. 一定为正B. 一定为负C. 可能是正数或负数D. 无法确定对于实数x,以下哪个条件可以保证x² - 4x + 4 = 0()A. x = 2B. x = -2C. x = 0D. x = 4下列哪个表达式的结果不是实数()A. √16B. √(-1)C. -√(-4)D. √9如果一个数的立方根是2,那么这个数是()A. 6B. 8C. -8D. 4正确答案:CCDCBCAABC填空题实数包括有理数和无理数,其中有限小数和无限循环小数属于______。
一个数的相反数是与它符号相反的数,例如,数-7 的相反数是______。
一个数的绝对值是它到原点的距离,因此,|-5| 等于______。
如果一个数的平方根是4,则这个数的算术平方根是______。
立方根的定义是,如果一个数的立方等于a,则这个数叫做 a 的立方根。
例如,3 的立方根是______。
在实数大小比较中,数轴上右边的数总是比左边的数大。
因此,在数轴上,5 大于______。
中考数学总复习《实际问题与反比例函数》专题训练-附答案
中考数学总复习《实际问题与反比例函数》专题训练-附答案 学校:___________班级:___________姓名:___________考号:___________1.已知蓄电池的电压U 为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求此反比例函数的关系式;(2)当6I A =时,求电阻R 的值.2.某蔬菜生产基地用装有恒温系统的大棚栽培一种新品.如图,这是某天恒温系统从开始到关闭及关闭后,大棚里的温度y ()℃随时间()h x ℃变化的函数图象,其中AB 段是恒温阶段,BC 段是双曲线k y x=的一部分,请根据图中信息解答下列问题:(1)求k 的值.(2)求恒温系统在这一天内保持大棚内温度不低于16C 的时间有多长.3.今年以来,新能源汽车产销两旺,成为推动经济运行,且率先实现整体好转的重要发力点.某新能源汽车销售商推出分期付款购车促销活动,交付首付款后,若余款在60个月内结清,则不计算利息.张先生在该销售商手上购买了一辆价值为20万元的新能源汽车,交了首付款后余款由平均每月付款y万元,x个月结清.y与x的函数关系如图所示,根据图象回答下列问题.(1)确定y与x的函数解析式,并求出首付款的数目.(2)若张先生用40个月结清,则平均每月应付多少万元?(3)如果张先生打算每月付款0.3万元,那么他要多少个月才能结清余款?4.已知某蓄电池的电压为定值,使用该蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求出这个反比例函数的解析式;(2)如果以此蓄电池为电源的用电器限制电流不能超过10A,求出用电器可变电阻应控制在什么范围.5.研究发现:初中生在数学课上的注意力指标随上课时间的变化而变化,上课开始时,学生注意力直线上升,中间一段时间,学生的注意力保持平稳状态,随后开始分散,注意力与时间呈反比例关系降回开始时的水平.学生注意力指标y随时间x(分钟)变化的函数图像如图所示.(1)求反比例图数的表达式,并求点A对应的指标值;(2)张老师在一节课上从第10分钟开始讲解一道数学综合题,讲解这道题需要15分钟,当张老师讲完这道题时,学生的注意力指标值达到多少?6.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要18分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.7.某气球充满了一定质量的气体,当气温不变时,气球内气体的气压P(kPa)是气体体积V(3m)的反比例函数,其图像如图所示:(1)写出该函数的表达式;(2)当气体体积为30.8m时,气球内的气压是多少:(3)当气球内的气压大于180kPa时,气球将爆炸,为了安全起见,气球的体积应不小于多少(精确到30.001m)?8.如图,某人对地面的压强p(单位:2N/m)与这个人和地面接触面积S(单位:2m)满足反比例函数关系.10,80,求函数解析式;(1)图象上点A坐标为()(2)如果此人所穿的每只鞋与地面的接触面积大约为2400cm,那么此人双脚站立时对地面的压强有多大?(3)如果某沼泽地面能承受的最大压强为2320N/m,那么此人应站立在面积至少多大的木板上才不至于下陷(木板的质量忽略不计)?9.小明要把一篇文章录入电脑,完成录入的时间y (分钟)与录入文字的速度x (字/分钟)之间的函数关系图象如图所示.(1)求y 与x 之间的反比例函数关系式.(2)小明在8:20开始录入,完成录入的时间为8:40,求小明每分钟录入的字数.10.通过心理专家实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,若规定指标达到或超过25时为认真听讲阶段,学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤≤和1020x ≤≤时,图象是线段,当2045x ≤≤时图象是反比例函数的一部分.(1)求点D对应的指标值;(2)请通过计算说明,距离下课剩余10分钟时,学生是否处于认真听讲阶段?11.罗伯特·波义耳(1627~1691)是英国物理学家和化学家,他确立了科学实验的可重复性原则.1662年,波义耳在大量实验的基础上,得出了著名的波义耳气体定律:温度不变时,密闭容器内气体压强是其体积的反比例函数,已知某气球内充满了一定质量的气体,当温度不变时,气球内的气压p(kPa)与气体体积V(3m)的函数图象如图所示.(1)求p与V之间的函数关系式;(2)若气球内的气压大于150kPa时,气球将爆炸.为了安全起见,气体的体积应不小于多少3m曲线连接起来,得到如图所示的1y关于x的函数图象(如图2).(1)求出1y 关于x 的函数表达式;(2)观察函数图象,并结合表中的数据:①请在图2中作出2y 关于x 的函数图象,并直接写出2y 关于x 的函数表达式;①当060x <≤时,观察2y 的函数图象,并结合2y 解析式,请写出函数2y 的一个性质;(3)若在容器中加入水的质量()2g y 满足21945y ≤≤,求托盘B 与点C 的距离()cm x 的取值范围.13.如图,有一个人站在水平球台EF 上打高尔夫球,球台到x 轴的距离为8米,与y 轴相交于点E ,弯道FA :k y x=与球台交于点F ,且3EF =米,弯道末端AB 垂直x 轴于点B ,且 1.5AB =米,从点E 处飞出的红色高尔夫球沿抛物线L :28y x bx =-++运动,落在弯道FA的点D 处,且点D 到x 轴的距离为4米.(1)k 的值为 ;点D 的坐标为 ;b = ;(2)红色球落在D 处后立即弹起,沿另外一条抛物线G 运动,若抛物线G 的顶点坐标为()10,5P .①求抛物线G 的表达式,并说明小球在D 处弹起后能否落在弯道FA 上?①在x 轴上有托盘2BC =米,若把托盘向上平移,小球恰好能被托盘接住(小球落在托盘边(1)请你认真分析表中数据,从你所学习过的一次函数、反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式;(2)按照这种变化规律,若2023年投入技改资金5万元.①预计生产成本每件比2022年降低多少万元?①若打算在2023年把每件产品的成本降低到3.2万元,则需投入技改资金多少万元?第 11 页 共 13 页15.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如下图所示(其中AB 、BC 分别为线段,CD 为双曲线的一部分):(1)求出y 与x 之间的函数关系;(2)开始上课后第5分钟时与第30分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?说明理由.参考答案:1.(1)此反比例函数的关系式为36I R=(2)当6I A =时,电阻R 的值为6Ω2.(1)240k =(2)恒温系统在一天内保持大棚里温度不低于16C ︒的时间有13.8小时.第12页共13页第 13 页 共 13 页11.(1)96p V= (2)气体的体积应不小于30.64m12.(1)1y 关于x 的函数表达式是1300y x= (2)①作出2y 关于x 的函数图象见解析;23005y x =-;①当060x <≤时,2y 随x 的增大而减小(3)托盘B 与点C 的距离的取值范围是612.5x ≤≤13.(1)24 ()6,4D 163(2)①小球在D 处弹起后不能落在弯道FA 上,见解析①1114d ≤≤(3)m >1414.(1)表中数据是反比例函数关系18y x= (2)①预计成本比2022年降低0.4万元;①需投入技改资金约5.625万元15.(1)()()()220,01040,10251000,25x x y x x x ⎧⎪+≤≤⎪=≤≤⎨⎪⎪≥⎩;(2)第30分钟注意力更集中;(3)能达到。
初中数学七八九年级重点必考中考复习资料模拟解析试卷含答案——三角形压轴综合问题热点专题
初中数学七八九年级重点必考中考复习资料模拟解析试卷含答案——三角形压轴综合问题热点专题专题29三角形压轴综合问题一、解答题1.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若和是顶角相等的等腰三角形,BC,DE分别是底边.求证:;图1(2)解决问题:如图2,若和均为等腰直角三角形,,点A,D,E在同一条直线上,CM为中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.图2【答案】(1)见解析(2);【解析】【分析】(1)先判断出∠BAD=∠CAE,进而利用SAS判断出△BAD≌△CAE,即可得出结论;(2)同(1)的方法判断出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出结论.(1)证明:∵和是顶角相等的等腰三角形,∴,,,∴,∴.在和中,,∴,∴.(2)解:,,理由如下:由(1)的方法得,,∴,,∵是等腰直角三角形,∴,∴,∴,∴.∵,,∴.∵,∴,∴.∴.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD≌△BCE是解本题的关键.2.(2022·辽宁大连·中考真题)综合与实践问题情境:数学活动课上,王老师出示了一个问题:如图1,在中,D是上一点,.求证.独立思考:(1)请解答王老师提出的问题.实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长至点E,使,与的延长线相交于点F,点G,H分别在上,,.在图中找出与相等的线段,并证明.”问题解决:(3)数学活动小组河学时上述问题进行特殊化研究之后发现,当时,若给出中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若,,,求的长.”【答案】(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)利用三角形的内角和定理可得答案;(2)如图,在BC上截取证明再证明证明可得从而可得结论;(3)如图,在BC上截取同理可得:利用勾股定理先求解证明可得可得证明可得而可得再利用勾股定理求解BE,即可得到答案.【详解】证明:(1)而(2)理由如下:如图,在BC上截取,∵∴∴∵∴(3)如图,在BC上截取同理可得:而而【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,作出适当的辅助线构建全等三角形是解本题的关键.3.(2022·山东青岛·中考真题)【图形定义】有一条高线相等的两个三角形称为等高三角形.例如:如图①.在和中,分别是和边上的高线,且,则和是等高三角形.【性质探究】如图①,用,分别表示和的面积.则,∵∴.【性质应用】(1)如图②,D是的边上的一点.若,则__________;(2)如图③,在中,D,E分别是和边上的点.若,,,则__________,_________;(3)如图③,在中,D,E分别是和边上的点,若,,,则__________.【答案】(1)(2);(3)【解析】【分析】(1)由图可知和是等高三角形,然后根据等高三角形的性质即可得到答案;(2)根据,和等高三角形的性质可求得,然后根据和等高三角形的性质可求得;(3)根据,和等高三角形的性质可求得,然后根据,和等高三角形的性质可求得.(1)解:如图,过点A作AE⊥BC,则,∵AE=AE,∴.(2)解:∵和是等高三角形,∴,∴;∵和是等高三角形,∴,∴.(3)解:∵和是等高三角形,∴,∴;∵和是等高三角形,∴,∴.【点睛】本题主要考查了等高三角形的定义、性质以及应用性质解题,熟练掌握等高三角形的性质并能灵活运用是解题的关键.4.(2022·山东烟台·中考真题)(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.①求的值;②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.【答案】(1)见解析(2)(3)①;②【解析】【分析】(1)证明△BAD≌△CAE,从而得出结论;(2)证明△BAD∽△CAE,进而得出结果;(3)①先证明△ABC∽△ADE,再证得△CAE∽△BAD,进而得出结果;②在①的基础上得出∠ACE=∠ABD,进而∠BFC=∠BAC,进一步得出结果.(1)证明:∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD≌△CAE(S A S),∴BD=CE;(2)解:∵△ABC和△ADE都是等腰直角三角形,,∠DAE=∠BAC=45°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD∽△CAE,;(3)解:①,∠ABC=∠ADE=90°,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠CAE=∠BAD,∴△CAE∽△BAD,;②由①得:△CAE∽△BAD,∴∠ACE=∠ABD,∵∠AGC=∠BGF,∴∠BFC=∠BAC,∴sin∠BFC.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型及其变形.5.(2022·广西·中考真题)已知,点A,B分别在射线上运动,.(1)如图①,若,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为,连接.判断OD与有什么数量关系?证明你的结论:(2)如图②,若,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离:(3)如图③,若,当点A,B运动到什么位置时,的面积最大?请说明理由,并求出面积的最大值.【答案】(1),证明见解析(2)(3)当时,的面积最大;理由见解析,面积的最大值为【解析】【分析】(1)根据“直角三角形斜边中线等于斜边一半”可得OD=AB,OD′=A′B′,进而得出结论;(2)作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC 最大,求出CD和等边三角形AO′B上的高O′D,进而求得结果;(3)作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,进一步求得结果.(3)以AB为斜边在其右侧作等腰直角三角形ABC,连接OC交AB于点T,在OT上取点E,使OE=BE,连接BE,由(2)可知,当时,OC最大,当时,此时OT 最大,即的面积最大,由勾股定理等进行求解即可.(1)解:,证明如下:,AB中点为D,,为的中点,,,,;(2)解:如图1,作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,此时△AOB是等边三角形,∴BO′=AB=6,OC最大=CO′=CD+DO′=AB+BO′=3+3;(3)解:如图2,作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,∴AI=AB=3,∠AOB=∠AIB=45°,则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,∵OC=CI+OI=AB+3=3+3,∴S△AOB最大=×6×(3+3)=9+9.【点睛】本题考查了直角三角形性质,等腰三角形性质,确定圆的条件等知识,解决问题的关键是熟练掌握“定弦对定角”的模型.6.(2022·山东潍坊·中考真题)【情境再现】甲、乙两个含角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处,将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接,如图③所示,交于E,交于F,通过证明,可得.请你证明:.【迁移应用】延长分别交所在直线于点P,D,如图④,猜想并证明与的位置..关系.【拓展延伸】小亮将图②中的甲、乙换成含角的直角三角尺如图⑤,按图⑤作出示意图,并连接,如图⑥所示,其他条件不变,请你猜想并证明与的数量..关系.【答案】证明见解析;垂直;【解析】【分析】证明,即可得出结论;通过,可以求出,得出结论;证明,得出,得出结论;【详解】证明:,,,,,,;迁移应用:,证明:,,,,,,,;拓展延伸:,证明:在中,,在中,,,由上一问题可知,,,,.【点睛】本题考查旋转变换,涉及知识点:全等三角形的判定与性质,相似三角形的判定与性质、锐角三角函数、等角的余角相等,解题关键结合图形灵活应用相关的判定与性质.7.(2022·辽宁锦州·中考真题)在中,,点D在线段上,连接并延长至点E,使,过点E作,交直线于点F.(1)如图1,若,请用等式表示与的数量关系:____________.(2)如图2.若,完成以下问题:①当点D,点F位于点A的异侧时,请用等式表示之间的数量关系,并说明理由;②当点D,点F位于点A的同侧时,若,请直接写出的长.【答案】(1)(2)①;②或;【解析】【分析】(1)过点C作CG⊥AB于G,先证明△EDF≌△CDG,得到,然后等腰三角形的性质和含30度直角三角形的性质,即可求出答案;(2)①过点C作CH⊥AB于H,与(1)同理,证明△EDF≌△CDH,然后证明是等腰直角三角形,即可得到结论;②过点C作CG⊥AB于G,与(1)同理,得△EDF≌△CDG,然后得到是等腰直角三角形,利用勾股定理解直角三角形,即可求出答案.(1)解:过点C作CG⊥AB于G,如图,∵,∴,∵,,∴△EDF≌△CDG,∴;∵在中,,,∴,∴,∴;故答案为:;(2)解:①过点C作CH⊥AB于H,如图,与(1)同理,可证△EDF≌△CDH,∴,∴,在中,,,∴是等腰直角三角形,∴,∴是等腰直角三角形,∴,∴;②如图,过点C作CG⊥AB于G,与(1)同理可证,△EDF≌△CDG,∴,∵,当点F在点A、D之间时,有∴,与①同理,可证是等腰直角三角形,∴;当点D在点A、F之间时,如图:∴,与①同理,可证是等腰直角三角形,∴;综合上述,线段的长为或.【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理解直角三角形,三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确的作出辅助线,正确得到三角形全等.8.(2022·北京·中考真题)在中,,D为内一点,连接,,延长到点,使得(1)如图1,延长到点,使得,连接,,若,求证:;(2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.【答案】(1)见解析(2);证明见解析【解析】【分析】(1)先利用已知条件证明,得出,推出,再由即可证明;(2)延长BC到点M,使CM=CB,连接EM,AM,先证,推出,通过等量代换得到,利用平行线的性质得出,利用直角三角形斜边中线等于斜边一半即可得到.(1)证明:在和中,,∴,∴,∴,∵,∴.(2)解:补全后的图形如图所示,,证明如下:延长BC到点M,使CM=CB,连接EM,AM,∵,CM=CB,∴垂直平分BM,∴,在和中,,∴,∴,,∵,∴,∴,∵,∴,∴,即,∵,∴,∴.【点睛】本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明是解题的关键.9.(2022·福建·中考真题)已知,AB=AC,AB>BC.(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若,求∠ADB的度数.【答案】(1)见解析(2),见解析(3)30°【解析】【分析】(1)先证明四边形ABDC是平行四边形,再根据AB=AC得出结论;(2)先证出,再根据三角形内角和,得到,等量代换即可得到结论;(3)在AD上取一点M,使得AM =CB,连接BM,证得,得到,设,,则,得到α+β的关系即可.(1)∵,∴AC=DC,∵AB=AC,∴∠ABC=∠ACB,AB=DC,∵CB平分∠ACD,∴,∴,∴,∴四边形ABDC是平行四边形,又∵AB=AC,∴四边形ABDC是菱形;(2)结论:.证明:∵,∴,∵AB=AC,∴,∴,∵,∴,∵,∴,∴;(3)在AD上取一点M,使得AM=CB,连接BM,∵AB=CD,,∴,∴BM=BD,,∴,∵,∴,设,,则,∵CA=CD,∴,∴,∴,∴,∵,∴,∴,即∠ADB=30°.【点睛】本题考查了菱形的判定定理、全等三角形的判定和性质、三角形内角和定理等,灵活运用知识,利用数形结合思想,做出辅助线是解题的关键.10.(2022·山东威海·中考真题)回顾:用数学的思维思考(1)如图1,在△ABC中,AB=AC.①BD,CE是△ABC的角平分线.求证:BD=CE.②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.(从①②两题中选择一题加以证明)(2)猜想:用数学的眼光观察经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C 重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.(3)探究:用数学的语言表达如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.【答案】(1)见解析(2)添加条件CD=BE,见解析(3)能,0<CF<【解析】【分析】(1)①利用ASA证明△ABD≌△ACE.②利用SAS证明△ABD≌△ACE.(2)添加条件CD=BE,证明AC+CD=AB+BE,从而利用SAS证明△ABD≌△ACE.(3)在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,当BD=BF=BA时,可证△CBF∽△BAF,运用相似性质,求得CF的长即可.(1)①如图1,∵AB=AC,∴∠ABC=∠ACB,∵BD,CE是△ABC的角平分线,∴∠ABD=∠ABC,∠ACE =∠ACB,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ABD≌△ACE,∴BD=CE.②如图1,∵AB=AC,点D,E分别是边AC,AB的中点,∴AE=AD,∵AB=AC,∠A=∠A,∴△ABD≌△ACE,∴BD=CE.(2)添加条件CD=BE,证明如下:∵AB=AC,CD=BE,∴AC+CD=AB+BE,∴AD=AE,∵AB=AC,∠A=∠A,∴△ABD≌△ACE,∴BD=CE.(3)能在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,当BD=BF=BA时,E与A重合,∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∠A=∠BF A=36°,∴∠ABF=∠BCF=108°,∠BFC=∠AFB,∴△CBF∽△BAF,∴,∵AB=AC=2=BF,设CF=x,∴,整理,得,解得x=,x=(舍去),故CF= x=,∴0<CF<.【点睛】本题考查了等腰三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,一元二次方程的解法,熟练掌握等腰三角形的性质,三角形全等的判定,三角形相似的判定性质是解题的关键.11.(2022·贵州铜仁·中考真题)如图,在四边形中,对角线与相交于点O,记的面积为,的面积为.(1)问题解决:如图①,若AB//CD,求证:(2)探索推广:如图②,若与不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.(3)拓展应用:如图③,在上取一点E,使,过点E作交于点F,点H为的中点,交于点G,且,若,求值.【答案】(1)见解析;(2)(1)中的结论成立,理由见解析:(3)【解析】【分析】(1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,求出,然后根据三角形面积公式求解即可;(2)同(1)求解即可;(3)如图所示,过点A作交OB于M,取BM中点N,连接HN,先证明△OEF≌△OCD,得到OD=OF,证明△OEF∽△OAM,得到,设,则,证明△OGF∽△OHN,推出,,则,由(2)结论求解即可.【详解】解:(1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,∴,∴,,∵∠DOE=∠BOF,∴;∴;(2)(1)中的结论成立,理由如下:如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,∴,∴,,∵∠DOE=∠BOF,∴;∴;(3)如图所示,过点A作交OB于M,取BM中点N,连接HN,∵,∴∠ODC=∠OFE,∠OCD=∠OEF,又∵OE=OC,∴△OEF≌△OCD(AAS),∴OD=OF,∵,∴△OEF∽△OAM,∴,设,则,∵H是AB的中点,N是BM的中点,∴HN是△ABM的中位线,∴,∴△OGF∽△OHN,∴,∵OG=2GH,∴,∴,∴,,∴,由(2)可知.【点睛】本题主要考查了解直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,三角形中位线定理,正确作出辅助线是解题的关键.12.(2022·湖北武汉·中考真题)已知是的角平分线,点E,F分别在边,上,,,与的面积之和为S.(1)填空:当,,时,①如图1,若,,则_____________,_____________;②如图2,若,,则_____________,_____________;(2)如图3,当时,探究S与m、n的数量关系,并说明理由:(3)如图4,当,,,时,请直接写出S的大小.【答案】(1)①,25;②4;(2)S=(3)S=【解析】【分析】(1)①先证四边形DECF为正方形,再证△ABC为等腰直角三角形,根据CD平分∠ACB,得出CD⊥AB,且AD=BD=m,然后利用三角函数求出BF=BD cos45°=5,DF=BD sin45°=5,AE=AD cos45°=5即可;②先证四边形DECF为正方形,利用直角三角形两锐角互余求出∠A=90°-∠B=30°,利用30°直角三角形先证求出DE=,利用三角函数求出AE=ADcos30°=6,DF=DE=,BF=DF tan30°=2,BD=DF÷sin60°=4即可;(2)过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,先证四边形DGCH为正方形,再证△DFG≌△DEH(ASA)与△DBG≌△DIH(SAS),然后证明∠IDA=180°-∠A-∠DIH=90°即可;(3)过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR于S,先证明△DQF≌△DPE,△DBQ≌△DRP,再证△DBF≌△DRE,求出∠ADR=∠ADE+∠BDF=180°-∠FDE=60°即可.(1)解:①∵,,,是的角平分线,∴四边形DECF为矩形,DE=DF,∴四边形DECF为正方形,∵,∴∠A=90°-∠B=45°=∠B,∴△ABC为等腰直角三角形,∵CD平分∠ACB,∴CD⊥AB,且AD=BD=m,∵,∴BD=n=,∴BF=BDcos45°=5,DF=BDsin45°=5,AE=ADcos45°=5,ED=DF=5,∴S= ;故答案为,25;②∵,,,是的角平分线,∴四边形DECF为矩形,DE=DF,∴四边形DECF为正方形,∵,∴∠A=90°-∠B=30°,∴DE=,AE=AD cos30°=6,DF=DE=,∵∠BDF=90°-∠B=30°,∴BF=DF tan30°=2,∴BD=DF÷sin60°=4,∴BD=n=4,∴S=,故答案为:4;;(2)解:过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,∴∠DHC=∠DGC=∠GCH=90°,∴四边形DGCH为矩形,∵是的角平分线,DH⊥AC,DG⊥BC,∴DG=DH,∴四边形DGCH为正方形,∴∠GDH=90°,∵,∴∠FDG+∠GDE=∠GDE+∠EDH=90°,∴∠FDG=∠EDH,在△DFG和△DEH中,,∴△DFG≌△DEH(ASA)∴FG=EH,在△DBG和△DIH中,,∴△DBG≌△DIH(SAS),∴∠B=∠DIH,DB=DI=n,∵∠DIH+∠A=∠B+∠A=90°,∴∠IDA=180°-∠A-∠DIH=90°,∴S△ADI=,∴S=;(3)过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR 于S,∵是的角平分线,DP⊥AC,DQ⊥BC,∴DP=DQ,∵∠ACB=60°∴∠QDP=120°,∵,∴∠FDQ+∠FDP=∠FDP+∠EDP=120°,∴∠FDQ=∠EDP,在△DFQ和△DEP中,,∴△DFQ≌△DEP(ASA)∴DF=DE,∠QDF=∠PDE,在△DBQ和△DRP中,,∴△DBQ≌△DRP(SAS),∴∠BDQ=∠RDP,DB=DR,∴∠BDF=∠BDQ+∠FDQ=∠RDP+∠EDP=∠RDE,∵DB=DE,DB=DR,∴△DBF≌△DRE,∴∠ADR=∠ADE+∠BDF=180°-∠FDE=60°,∴S=S△ADR=.【点睛】本题考查等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形,掌握等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形是解题关键.13.(2022·黑龙江·中考真题)和都是等边三角形.(1)将绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有(或)成立;请证明.(2)将绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?并加以证明;(3)将绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析(2)图②结论:,证明见解析(3)图③结论:【解析】【分析】(1)由△ABC是等边三角形,得AB=AC,再因为点P与点A重合,所以PB=AB,PC=AC,P A=0,即可得出结论;(2)在BP上截取,连接AF,证明(SAS),得,再证明(SAS),得,,然后证明是等边三角形,得,即可得出结论;(3)在CP上截取,连接AF,证明(SAS),得,再证明(SAS),得出,,然后证明是等边三角形,得,即可得出结论:.(1)证明:∵△ABC是等边三角形,∴AB=AC,∵点P与点A重合,∴PB=AB,PC=AC,P A=0,∴或;(2)解:图②结论:证明:在BP上截取,连接AF,∵和都是等边三角形,∴,,∴,∴,∴(SAS),∴,∵AC=AB,CP=BF,∴(SAS),∴,,∴,∴,∴是等边三角形,∴,∴;(3)解:图③结论:,理由:在CP上截取,连接AF,∵和都是等边三角形,∴,,∴,∴,∴(SAS),∴,∵AB=AC,BP=CF,∴(SAS),∴,,∴,∴,∴是等边三角形,∴,∴,即.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.14.(2022·陕西·中考真题)问题提出(1)如图1,是等边的中线,点P在的延长线上,且,则的度数为__________.问题探究(2)如图2,在中,.过点A作,且,过点P 作直线,分别交于点O、E,求四边形的面积.问题解决(3)如图3,现有一块型板材,为钝角,.工人师傅想用这块板材裁出一个型部件,并要求.工人师傅在这块板材上的作法如下:①以点C为圆心,以长为半径画弧,交于点D,连接;②作的垂直平分线l,与于点E;③以点A为圆心,以长为半径画弧,交直线l于点P,连接,得.请问,若按上述作法,裁得的型部件是否符合要求?请证明你的结论.【答案】(1)(2)(3)符合要求,理由见解析【解析】【分析】(1)利用等腰三角形的判定及性质,结合三角形内角和,先求出即可;(2)连接.先证明出四边形是菱形.利用菱形的性质得出,由,得出.根据,得,,即可求出,再求出,利用即可求解;(3)由作法,知,根据,得出.以为边,作正方形,连接.得出.根据l是的垂直平分线,证明出为等边三角形,即可得出结论.(1)解:,,,,解得:,,,故答案为:;(2)解:如图2,连接.图2∵,∴四边形是菱形.∴.∵,∴.∵,∴.∴.∵,∴.∴.∴.(3)解:符合要求.由作法,知.∵,∴.如图3,以为边,作正方形,连接.图3∴.∵l是的垂直平分线,∴l是的垂直平分线.∴.∴为等边三角形.∴,∴,∴.∴裁得的型部件符合要求.【点睛】本题考查了等边三角形的性质,等腰三角形的判定及性质、三角形内角和定理、菱形的判定及性质、锐角三角函数、正方形、垂直平分线,解题的关键是要灵活运用以上知识点进行求解,涉及知识点较多,题目较难.15.(2022·湖南岳阳·中考真题)如图,和的顶点重合,,,,.(1)特例发现:如图1,当点,分别在,上时,可以得出结论:______,直线与直线的位置关系是______;(2)探究证明:如图2,将图1中的绕点顺时针旋转,使点恰好落在线段上,连接,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)拓展运用:如图3,将图1中的绕点顺时针旋转,连接、,它们的延长线交于点,当时,求的值.【答案】(1),垂直(2)成立,理由见解析(3)【解析】【分析】(1)解直角三角形求出,,可得结论;(2)结论不变,证明,推出,,可得结论;(3)如图3中,过点作于点,设交于点,过点作于点求出,,可得结论.(1)解:在中,,,,∴,在中,,,∴,∴,,∴,此时,故答案为:,垂直;(2)结论成立.理由:∵,∴,∵,,∴,∴,∴,,∵,∴,∴,∵,∴,∴;(3)如图3中,过点作于点,设交于点,过点作于点.∵,,∴,∴.∵,∴,,当时,四边形是矩形,∴,,设,则,,∵,∴,∴,∴,∴,∴,∴,∴,∴.【点睛】本题属于三角形综合题,考查了解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.16.(2022·湖北十堰·中考真题)已知,在内部作等腰,,.点为射线上任意一点(与点不重合),连接,将线段绕点逆时针旋转得到线段,连接并延长交射线于点.(1)如图1,当时,线段与的数量关系是_________;(2)如图2,当时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若,,,过点作,垂足为,请直接写出的长(用含有的式子表示).【答案】(1)BF=CF(2)成立;理由见解析(3)或PD=0或【解析】【分析】(1)连接AF,先根据“SAS”证明,得出,再证明,即可得出结论;(2)连接AF,先说明,然后根据“SAS”证明,得出,再证明,即可得出结论;(3)先根据,AB=AC,得出△ABC为等边三角形,再按照,,三种情况进行讨论,得出结果即可.(1)解:BF=CF;理由如下:连接AF,如图所示:根据旋转可知,,AE=AD,∵∠BAC=90°,∴,,∴,∵AC=AB,∴(SAS),∴,∴,∵在Rt△ABF与Rt△ACF中,∴(HL),∴BF=CF.故答案为:BF=CF.(2)成立;理由如下:连接AF,如图所示:根据旋转可知,,AE=AD,∵,∴,,∴,∵AC=AB,∴,∴,∴,∵在Rt△ABF与Rt△ACF中,∴(HL),∴BF=CF.∵,AB=AC,∴△ABC为等边三角形,∴,,当时,连接AF,如图所示:根据解析(2)可知,,∴,∵,,即,,根据解析(2)可知,,∴,∴,,,∵,∴,∴,,∴;当时,AD与AC重合,如图所示:∵,,∴△ADE为等边三角形,∴∠ADE=60°,∵,∴,∴此时点P与点D重合,;当时,连接AF,如图所示:根据解析(2)可知,,∴,∵,,即,,根据解析(2)可知,,∴,∴,∵,,∵,∴,∴,,∴;综上分析可知,或PD=0或.17.(2022·湖南湘潭·中考真题)在中,,,直线经过点,过点、分别作的垂线,垂足分别为点、.(1)特例体验:如图①,若直线,,分别求出线段、和的长;(2)规律探究:①如图②,若直线从图①状态开始绕点旋转,请探究线段、和的数量关系并说明理由;②如图③,若直线从图①状态开始绕点A顺时针旋转,与线段相交于点,请再探线段、和的数量关系并说明理由;(3)尝试应用:在图③中,延长线段交线段于点,若,,求.【答案】(1)BD=1;CE=1;DE=2(2)DE=CE+BD;理由见解析;②BD=CE+DE;理由见解析(3)【解析】【分析】(1)先根据得出,根据,得出,,再根据,求出,,即可得出,最后根据三角函数得出,,即可求出;(2)①DE=CE+BD;根据题意,利用“AAS”证明,得出AD=CE,BD=AE,即可得出结论;②BD=CE+DE;根据题意,利用“AAS”证明,得出AD=CE,BD=AE,即可得出结论;(3)在Rt△AEC中,根据勾股定理求出,根据,得出,代入数据求出AF,根据AC=5,算出CF,即可求出三角形的面积.(1)解:∵,,∴,∵,∴,,∵BD⊥AE,CE⊥DE,∴,∴,,∴,∴,,∴.(2)DE=CE+BD;理由如下:∵BD⊥AE,CE⊥DE,∴,∴,∵,∴,∴,∵AB=AC,∴,∴AD=CE,BD=AE,∴DE=AD+AE=CE+BD,即DE=CE+BD;②BD=CE+DE,理由如下:∵BD⊥AE,CE⊥DE,∴,∴,∵,∴,∴,∵AB=AC,∴,∴AD=CE,BD=AE,∴BD=AE=AD+DE=CE+DE,即BD=CE+DE.(3)根据解析(2)可知,AD=CE=3,∴,在Rt△AEC中,根据勾股定理可得:,∵BD⊥AE,CE⊥AE,∴,∴,即,解得:,∴,∵AB=AC=5,∴.【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明,是解题的关键.18.(2022·江苏扬州·中考真题)如图1,在中,,点在边上由点向点运动(不与点重合),过点作,交射线于点.(1)分别探索以下两种特殊情形时线段与的数量关系,并说明理由;①点在线段的延长线上且;②点在线段上且.(2)若.①当时,求的长;②直接写出运动过程中线段长度的最小值.【答案】(1)①②(2)①②4【解析】【分析】(1)①算出各个内角,发现其是等腰三角形即可推出;②算出各内角发现其是30°的直角三角形即可推出;(2)①分别过点A,E作BC的垂线,得到一线三垂直的相似,即,设,,利用30°直角三角形的三边关系,分别表示出,,,,列式求解a即可;②分别过点A,E作BC的垂线,相交于点G,H,证明可得,然后利用完全平方公式变形得出,求出AE的取值范围即可.(1)①如图:∵在中,,∴∵∴,在中,∴∴∴;②如图:∵∴,∴在中,∴∴;(2)①分别过点A,E作BC的垂线,相交于点H,G,则∠EGD=∠DHA=90°,∴∠GED+∠GDE=90°,∵∠HDA+∠GDE=90°,∴∠GED=∠HDA,∴,设,,则,,在中,,AB=6则,在中,,则在中,,∴∴由得,即解得:,(舍)故;②分别过点A,E作BC的垂线,相交于点G,H,则∠EHD=∠AGD=90°,∵∠ADE=90°,∴∠EDH=90°-∠ADG=∠DAG,∵∠EHD=∠AGD=90°,∴,∴,∴,∵∠BAC=90°,∠C=60°,∴∠B=30°,∴,∴,∴=,∵∴,∴,∵,∴,∵,∴,∴,故AE的最小值为4.【点睛】本题考查了直角三角形的性质,三角形相似的判定和性质,等腰三角形的性质,一线三垂直相似模型,垂线段最短,熟练掌握直角三角形的性质,一线三垂直模型,垂线段最短原理是解题的关键.19.(2022·河北·中考真题)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD =3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.(1)求证:△PQM≌△CHD;(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).【答案】(1)见详解(2)①;②;③【解析】【分析】(1)先证明四边形是矩形,再根据算出CD长度,即可证明;(2)①平移扫过部分是平行四边形,旋转扫过部分是扇形,分别算出两块面积相加即可;②运动分两个阶段:平移阶段:;旋转阶段:取刚开始旋转状态,以PM为直径作圆,H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T;设,利用算出,,,利用算出DG,利用算出GT,最后利用算出,发现,从而得到,度数,求出旋转角,最后用旋转角角度计算所用时间即可;③分两种情况:当旋转角<30°时,DE在DH的左侧,当旋转角≥30°时,DE在DH上或右侧,证明,结合勾股定理,可得,即可得CF与d的关系.(1)∵,∴则在四边形中故四边形为矩形,在中,∴,∵。
中考数学复习题及答案
中考数学复习题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 0.33333...C. 1.1010010001...D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 24. 一个多项式P(x) = 2x^3 - 5x^2 + 3x - 1,当x=1时,P(x)的值是多少?A. -1B. 0C. 1D. 25. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 如果一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 07. 一个正比例函数y = kx,当x=2时,y=6,那么k的值是多少?A. 3B. 4C. 6D. 88. 一个二次函数y = ax^2 + bx + c,当x=0时,y=4,当x=1时,y=3,当x=-1时,y=5,那么a的值是多少?A. 1B. -1C. 2D. -29. 下列哪个是二次方程的根?A. x^2 - 5x + 6 = 0B. x^2 + 5x + 6 = 0C. x^2 - 5x - 6 = 0D. x^2 + 5x - 6 = 010. 如果一个数列的前三项是1, 3, 6,那么这个数列是等差数列还是等比数列?A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定二、填空题(每题3分,共15分)11. 一个数的立方根是它本身,这个数可以是________。
12. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是________。
13. 一个函数f(x) = x^2 - 4x + 4,当x=________时,f(x)取得最小值。
14. 一个圆的周长为44π,那么这个圆的半径是________。
初中数学中考计算题复习(最全)-含答案(word文档良心出品)
一. 解答题(共30小题)1. 计算题:①;②解方程: .2. 计算: +(π﹣2013)0.3. 计算: |1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4. 计算: ﹣.5. 计算: .6..7. 计算: .8. 计算: .计算: .10. 计算: .11. 计算: .12..计算: .14. 计算: ﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15. 计算: .16. 计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|. (2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)(1)17. 计算:(2)(﹣1)2013﹣|﹣7|+×0+()﹣1;(3).计算: .解方程: .20. 计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°解方程: = ﹣.(1)计算: .求不等式组的整数解.(1)计算:先化简, 再求值: (﹣)÷, 其中x= +1. (1)计算: tan30°解方程: .25. 计算:(1)先化简, 再求值: ÷+ , 其中x=2 +1. (1)计算: ;解方程: .计算: .计算: .计算: (1+ )2013﹣2(1+ )2012﹣4(1+ )2011.计算: .1. 化简求值: , 选择一个你喜欢且有意义的数代入求值.2.先化简, 再求值, 然后选取一个使原式有意义的x值代入求值.3. 先化简再求值: 选一个使原代数式有意义的数代入中求值.4.先化简, 再求值: , 请选择一个你喜欢的数代入求值.5. (2010•红河州)先化简再求值: . 选一个使原代数式有意义的数代入求值.6. 先化简, 再求值: (1﹣)÷, 选择一个你喜欢的数代入求值.7. 先化简, 再求值:(﹣1)÷, 选择自己喜欢的一个x求值.8.先化简再求值: 化简, 然后在0, 1, 2, 3中选一个你认为合适的值, 代入求值.9. 化简求值(1)先化简, 再求值, 选择你喜欢的一个数代入求值.(2)化简, 其中m=5.10. 化简求值题:(1)先化简, 再求值: , 其中x=3.(4)先化简, 再求值: , 其中x=﹣1.11. (2006•巴中)化简求值: , 其中a= .12. (2010•临沂)先化简, 再求值: ()÷, 其中a=2.13. 先化简: , 再选一个恰当的x值代入求值.14. 化简求值: (﹣1)÷, 其中x=2.15. (2010•綦江县)先化简, 再求值, , 其中x= +1.16. (2009•随州)先化简, 再求值: , 其中x= +1.17. 先化简, 再求值: ÷, 其中x=tan45°.18. (2002•曲靖)化简, 求值: (x+2)÷(x﹣), 其中x=﹣1.19. 先化简, 再求值: (1+ )÷, 其中x=﹣3.20. 先化简, 再求值: , 其中a=2.21. 先化简, 再求值÷(x﹣), 其中x=2.22. 先化简, 再求值: , 其中.23. 先化简, 再求值: (﹣1)÷, 其中x—.24. 先化简代数式再求值, 其中a=﹣2.25. (2011•新疆)先化简, 再求值: (+1)÷, 其中x=2.26. 先化简, 再求值: , 其中x=2.27. (2011•南充)先化简, 再求值: (﹣2), 其中x=2.28. 先化简, 再求值: , 其中a=﹣2.29. (2011•武汉)先化简, 再求值:÷(x﹣), 其中x=3.30.化简并求值:•, 其中x=2. 2。
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。
那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。
初中数学中考复习专题:一元一次方程练习题1(含答案)
一元一次方程测试题一、填一填!1、若3x+6=17,移项得_____, x=____。
2、代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。
3、如果x=5是方程ax+5=10-4a 的解,那么a=______4、在解方程123123x x -+-=时,去分母得 。
5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。
6、当x=___时,单项式5a2x+1b 2 与8a x+3b 2是同类项。
7、方程5x 4x 123-+-=,去分母可变形为______。
8、如果2a+4=a -3,那么代数式2a+1的值是________。
9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。
10、当x 的值为-3时,代数式-3x 2+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。
11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.二、慧眼识真!1. 1、下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =52、方程2-2x 4x 7312--=-去分母得___。
A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7C 、24-4(2x -4)=-(x -7)D 、12-4x +4=-x +73、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。
初中数学中考复习:30全等三角形(含答案)
中考总复习:全等三角形—巩固练习【巩固练习】一、选择题1.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与△ABC全等,这样的三角形最多可画出( ) .A.2个B.4个C.6个D.8个2.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为AC的中点,AE⊥BD交BC于E,若∠BDE=,∠ADB的大小是().A. B. C. D.3.如图,△ABC中,∠C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则∠ACF的大小是().A.45° B.60° C.30° D.不确定4.如图,△ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( ) . A. 45°B. 20°C. 30°D. 15°5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是(). A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等 C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则(). A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC;二、填空题7.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的。
若∠1:∠2:∠3=28:5:3,则的度数为______.8.如图,把△ABC绕C点顺时针旋转35°,得到,交于点,若,则∠A=______.9.如图,已知的周长是20,分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3, △ABC的面积是___________..如图,直线AE∥BD,点则……峰1峰2已知:如图,过△ABC的边BC的中点求证:14.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.15.如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?16. 如图,在中,,,,. (1)求证:,. (2)如图,若是的中点.求证:. (3)如图,若于点,延长交于点.求证:.【答案与解析】一、选择题1.【答案】B.2.【答案】C.【解析】作关于BC的对称图形,作的中点,连接,则容易证明,说明和AE在同一条直线上的线段,根据对称性交于E点,所以与DE在同一条直线上,容易证明.所以.所以.3.【答案】C.【解析】延长CF到D,使CD=2CF,容易证明 △AFC≌△,所以∠D=∠FCA,所以AC∥BD,因为 CF=BE,所以CD=2BE,即AC与BD之间的距离等于CD的一半, 所以∠D=30°.所以内错角∠ACF=30°.4.【答案】D.5.【答案】C.【解析】提示:∵△ABD≌△CDB, ∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD, ∴△ABD和△CDB的周长和面积都分别相等. ∵∠ADB=∠CBD, ∴AD∥BC.6.【答案】D.二、填空题7.【答案】80°.【解析】由三角形内角和是180°知∠1=140°,∠2=25°,∠3=15°, 由翻折知:∠ABE=∠2,∠ACD=∠3,∴.8.【答案】55°.【解析】由旋转知:,, ∵,∴55, ∴55°.9.【答案】30 .【解析】提示:面积法.10.【答案】8.11.【答案】相等或互补.12.【答案】-29 , B .三、解答题13.【答案与解析】证明:延长FM到G,使,连接 ∵M为BC的中点, ∴△BMG≌△CMF ∴∠G=∠2,CF=BG, 又∵平分,ME∥AD, ∴∠3=∠4,∠3=∠E,∠1=∠4, ∴∠1=∠E,即AE=AF, ∵∠1=∠2,∠G=∠2,∠1=∠E, ∴∠G=∠E,即BE=BG=CF, ∴AB+AC=AB+AF+CF=AB+AE+CF=BE+CF=2CF,即14.【答案与解析】猜测AE=BD,AE⊥BD. 证明如下: ∵∠ACD=∠BCE=90°, ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ∵△ACD和△BCE都是等腰直角三角形, ∴AC=CD,CE=CB. ∴△ACE≌△DCB(SAS) ∴AE=BD,∠CAE=∠CDB. ∵∠AFC=∠DFH, ∴∠DHF=∠ACD=90°, ∴AE⊥BD.15.【答案与解析】(1)①∵秒, ∴, ∵,点为的中点, ∴. 又∵, ∴, ∴. 又∵, ∴, ∴. ②∵,∴, 又∵,,则, ∴点,点运动的时间秒, ∴. (2)设经过秒后点与点第一次相遇, 由题意,得, 解得. ∴点共运动了. ∵, ∴点、点在边上相遇, ∴经过秒点与点第一次在边上相遇.16.【答案与解析】(1)提示:证明≌(SAS).(2)提示:延长至,使得,连结,先证≌(SAS), 再证≌(SAS).(3)提示:作于,的延长线于,先证≌(AAS), 同理证明≌,再证≌(AAS).。
初中数学总复习题及答案
初中数学总复习题及答案一、选择题1. 下列哪个选项不是有理数?A. -3B. 0C. πD. √2答案:C2. 如果一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个表达式等于0?A. 3 + 0B. 2 - 2C. 5 × 0D. 4 ÷ 4答案:C二、填空题1. 一个数的立方等于它本身,这个数可以是______。
答案:-1,0,12. 一个直角三角形的两个直角边分别为3和4,斜边的长度是______。
答案:53. 如果一个圆的半径为r,则圆的面积是______。
答案:πr²三、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求长方体的体积。
解:长方体的体积V = a × b × c2. 某工厂生产一批零件,合格率为95%,如果生产了200个零件,求不合格的零件数。
解:不合格的零件数= 200 × (1 - 95%) = 200 × 0.05 = 103. 一个数列的前三项为1,2,3,从第四项开始,每一项都是前三项的和。
求第10项的值。
解:第4项 = 1 + 2 + 3 = 6第5项 = 2 + 3 + 6 = 11以此类推,可以发现这是一个斐波那契数列,但起始值不同。
通过计算可得第10项的值为55。
四、应用题1. 某班级有40名学生,其中男生和女生的比例为3:2。
求班级中男生和女生各有多少人。
解:设男生人数为3x,女生人数为2x,根据题意有 3x + 2x = 40,解得 x = 8。
所以,男生人数为3 × 8 = 24,女生人数为2 × 8 = 16。
2. 某商店购进一批商品,进价为每件50元,标价为每件100元。
商店决定进行促销,顾客购买满200元可以享受8折优惠。
如果一位顾客购买了4件商品,求他需要支付的金额。
解:首先计算4件商品的原价:100 × 4 = 400元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中考总复习数学中考总复习YOUXUEZHONGKAO ZONGFUXI数 学专题训练1三角板与作图1.如图Z1-1,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2= .2.将一副直角三角板按如图Z1-2的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠a= .3.已知a//b,某学生将一直角三角板按如图Z1-3放置,如果∠1=40°,那么∠2= .4.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( ).55°75°50°B5. 已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,以下符合要求的作图痕迹是( ).D6.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( ).C7.如图Z1一4,在△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( ). A.∠DAE=∠B B.∠EAC=∠CC.AE//BCD.∠DAE=∠EACD8.如图Z1一5,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,5连接DE.若BC=10cm,则DE= cm.10.如图Z1-7,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于。
AC长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则AC= .11.如图Z1-8,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2/2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.解:(1)如图Z1-8T,矩形ABCD即为所求;(2)如图Z1一8T,△ABE即为所求,CE=4.12.如图Z1-9,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明);(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4,求出DE的长.数学中考总复习数学中考总复习YOUXUEZHONGKAO ZONGFUXI数 学专题训练2三角形与直角三角形24 1.如图Z2-1,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,直线MN//BA,分别交AC于N、BC于M,则△CMN的周长为 .2.如图Z2-2,△ABC中,CD⊥AB于点D,E是AC的中点.若AD=6,DE=4,则CD的长等 . 3.如图Z2-3,在△ABC中,∠BAC=96°,AD⊥BC于点D,且AB+BD=DC,那么∠C= .4.如图Z2-4,△ABC中,点M是BC的中点,∠ACB=90°,AC=5,BC=12,AN平分∠BAC,AN⊥CN,则MN= .415º20cm 5.如图Z2-5,△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线DE交AC于点D,若CD=10cm,则AD= .6.如图Z2-6,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是 .2<AD<88.如图Z2一7,在△ABC中,∠B=∠C,点D为BC边上(B,C点除外)的动点,∠EDF的两边与AB,AC分别交于点E,F,且BD=CF,BE=CD.(1)求证:DE=DF;(2)若∠EDF=m,用含m的代数式表示∠A的度数;(3)连接EF,求当△DEF为等边三角形时∠A的度数.解:(1)证明:在△BDE与△CFD中,BD=CF,∵ ∠B=∠C, ∴ △BDE ≌ △CFD, ∴ DE=DF;BE=CD.(2)∵△BDE ≌ △CFD,∴ ∠BDE=∠CFD,∵∠BDE+∠EDF+∠CDF=180°, ∴∠EDF+∠CDF+∠CFD=180°, ∵ ∠C+∠CDF+∠CFD=180°, ∴∠EDF=∠C. ∵∠A+∠B+∠C=180°,∠B=∠C, ∴∠A+2∠EDF=180°.∴∠A=180°-2∠EDF,即∠A=180°-2m;(3)∵△DEF为等边三角形,∴m=60°,∴∠A=180°-2×60°=60°.9.如图Z2-8,已知:Rt △ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点.(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是 ;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CFLAP于点F,则CF,BE和EF这三条线段之间的数量关系是 ;(3)如图③,在(2)的条件下,若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明;(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d 1,线段CF的长度为d 2,试求出点P在运动的过程中d 1+d 2的最大值.解:(3)CP=AM,理由如下:证明:∠BAE=∠ACF,∴∠EAM=∠FCP, 在△CFP和△AEM中,∴△CFP ≌ △AEM,∴CP=AM;AP⊥BC CF=BE+EF10.如图Z2一9,在Rt△ABC中,∠ACB=90°,AC=BC,CDLAB于点D,点M是AB边上的点,点N是射线CB上的点,且MC=MN.(1)如图①,直接判断∠MCD和∠BMN的数量关系;(2)如图①,当点M在∠ACD的平分线上时,直接判断线段AM与BN的数量关系;(3)如图②,过点M作ME//BC,交CD与点E.求证:EM=BN.解:(1)∠MCD=∠BMN;(2)AM=BN;数学中考总复习数学中考总复习YOUXUEZHONGKAO ZONGFUXI数 学专题训练3特殊四边形1.如图Z3一1,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为 .2.如图Z3-2,直线 l 过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为 .3.如图Z3-3,正方形ABCD的边长为4,E为BC上任意一点,EF⊥AC于F,EG⊥BD于G,则EF+EG的值为 .4.矩形ABCD与CEFG按如图Z3-4放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH= .(提示:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=0.5PG,再利用勾股定理求得PG=/2)5.如图Z3一5,在口ABCD中,AELBC,AFLCD,垂足分别为E,F,且BE=DF.若AB=5,AC=6,24则口ABCD的面积为 .(提示:连接BD)7.如图Z3一7,点P是矩形ABCD的对角线AC上一点,过点P作EF//BC,分别交AB,CD于E、F,连接PB、PD. 若AE=2,PF=8.求图中阴影部分的面积.解: 作PM⊥AD于M,交BC于N,如图Z3一7T.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形.∴S△ADC=S△ABC, S△AMP=S△AEP, S△PHE=S△PBN,S△PFD=S△PDM, S△PFC=S△PCN,∴S△DFP=S△PBE=0.5×2×8=8,∴S阴=8+8=16.8.如图Z3-8,在△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论;(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.解:(1)∵AF=FG, ∴∠FAG=∠FGA. ∵ AG平分∠CAB, ∴ ∠CAG=∠FGA.∴ ∠CAG=∠FGA, ∴ AC//FG.∴ ∠FHD=∠AED, ∵ DE⊥AC,∠AED=90 º ,∴ ∠FHD=90 º , ∴ FG⊥DE.∵ FG⊥BC, ∴ DE//BC, ∴ AC⊥BC.∴ ∠C=∠DHG=90°,∠CGE=∠GED.∵ F是AD的中点,FG // AE, ∴ H是ED的中点.∴ FG是线段ED的垂直平分线.∴ GE=GD,∠GDE=∠GED. ∴ ∠CGE=∠GDE,∴△ECG ≌ △GHD;(2)证明:过点G作GPLAB于P,∴GC=GP,而AG=AG,∴ △CAG ≌ △PAG, ∴ AC=AP,由(1)可得EG=DG,∴ Rt△ECG ≌ Rt△GPD, ∴ EC=PD, ∴ AD=AP+PD=AC+EC;9.如图Z3一9,正方形ABCD,矩形EFGH均位于第一象限内,它们的边平行于x轴或y轴,其中点A,E在直线OM上,点C,G在直线ON上,O为坐标原点,点A的坐标为(3,3),正方形ABCD的边长为1.若矩形EFGH的周长为10,面积为6,求点F的坐标.数学中考总复习数学中考总复习YOUXUEZHONGKAO ZONGFUXI 数 学专题训练4相似与三角函数1.如图Z4一1,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,且AD=2.5cm,DB=0.9cm,则CD= cm,S △ABC :S △ABC= . 1.53.如图Z4一2,△ABC中,DE //AC,AD:DB=2:1,F为AC上的点,S △DEF =4,则S △ABC= .25:9185.如图Z4一4,平行四边形ABCD中,BC=12cm,P、Q是对角线AC的三等分点,DP延长线交3BC于E,EQ延长线交AD于F,则AF= .解:(1)∵ DE//BC, ∴ ∠D=∠BCF, ∵ ∠EAB=∠BCF, ∴ ∠EAB=∠D, ∴ AB//CD. ∵ DE//BC, ∴ 四边形ABCD为平行四边形;∴ ∠BPE=∠AQB=∠PBN=∠NBQ=90°.又 ∵ ∠PBE+∠ABQ=180°-∠ABE=90°.∴ ∠BEP=∠ABQ. ∴ △PBE ∽ △QAB;数学中考总复习数学中考总复习YOUXUEZHONGKAO ZONGFUXI数 学专题训练5圆的计算与证明2.如图Z5-2,菱形ABOC的边AB,AC分别与⊙O相切于点D,E. 若点D是AB的中点,则∠DOE= .60o3.如图Z5-3,四边形ABCD内接于⊙O,OC //AD,∠DAB=60°,∠ADC=106°,则∠OCB= .4.如图Z5一4,在Rt △ABC中,∠B=90°,∠A=45°,BC=4,以BC为直径的⊙O与AC相交于点D,则图中阴影部分的面积为 .46o5.如图Z5-5,AB、AC是⊙O的两条弦,∠BAC=30°,过点C的切线与OB的延长线交于点D,则tan∠D的值为经 .6.如图Z5一6,AB是半圆O的直径,CB是半圆O的切线,B是切点,AC交半圆O于点D,已知CD=1,AD=4,则tan∠CAB= .7.已知:如图Z5一7,四边形ABCD是⊙O的内接四边形,直径DG交边AB于点E,AB、DC的延长线相交于点F. 连接AC,若∠ACD=∠BAD.(1)求证:DG ⊥AB;(2)若AB=6,tan∠FCB=3,求⊙O半径.解:(1)证明:连接AG,如图Z5一7T.∵ ∠ACD=∠AGD,∠ACD=∠BAD, ∴ ∠BAD=∠AGD7∵ DG为⊙O的直径, ∴ ∠DAG=90°.∴ ∠BAD+∠BAG=90°. ∴ ∠AGD+∠BAG=90°,∴ ∠AEG=90°,∴ DG⊥AB;解: (1) 连接OD, ∵ AB=AC, ∴ ∠ABC=∠C.∵ OD=OB, ∴ ∠ABC=∠ODB, ∴ ∠C=∠ODB,∴ OD// AC, ∵ DE⊥AC, ∴ OD⊥DE,即OD⊥EF,∴ EF是⊙O的切线;数学中考总复习课时1专题训练5数学中考总复习数学中考总复习YOUXUEZHONGKAO ZONGFUXI数 学专题训练6阅读理解及新定义36B6. 若x为实数,则[x]表示不大于x的最大整数,例如 [1.6]=1,[π]=3,[-2.82]=-3 等.[x]+1是大于x的最小整数,对任意的实数 x 都满足不等式 [x]≤x<[x]+1. 利用以上的不等式,求出满足 [x]=2x-1 的所有解。