直线与圆单元测试卷评讲(大约1课时)
直线和圆的方程单元测试
17.
(1)
(2) , 或
【分析】
(1)根据两条直线垂直的条件列方程,化简求得 .
(2)根据两条直线平行以及距离列方程,化简求得 .
(1)
由于 ,所以 .
(2)
依题意 ,则 ,
此时 ,即 ,故 .
由于两条直线的距离为 ,
所以 或 .
18.
(1) ;
(2) .
【分析】
(1)设出圆的标准方程,根据其过的点的坐标满足圆方程,列出等量关系,求解即可;
【详解】
解:由题知 , ,半径分别为 ,
根据两圆相交,可得圆心距大于两圆的半径之差而小于半径之和,
即 .
又 ,所以有 ,
,
再根据 ,
求得 ,
故选:B.
4.A
【分析】
设出直线的截距式方程,根据题意求出待定系数,可得结论.
【详解】
解:设直线 的方程为 ,则 的面积为 ①.
因为直线 过点 ,所以 ②.
联立①②,解得 , ,
(2)根据过 的圆的切线的斜率是否存在进行分类讨论,结合点到直线的距离公式求得切线方程.
(1)
由题意,设圆 的标准方程为: ,
圆 关于直线 对称,
圆 与 轴相切: …①
点 到 的距离为: ,
圆 被直线 截得的弦长为 , ,
结合①有: , ,
又 , , ,
圆 的标准方程为: .
(2)
当直线 的斜率不存在时, 满足题意
所以切线 的方程为 .
19.
(1)
(2) 或
【分析】
(1)将圆的一般方程化为标准方程,求出圆心,代入直线方程即可求解.
(2)设直线 的方程为: ,利用圆心到直线的距离即可求解.
高二数学下册直线和圆课时同步测试题(含参考答案)
高二数学下册直线和圆课时同步测试题(含参考答案)高二数学同步测试(1)—直线和圆一、选择题(本大题共10小题,每小题5分,共50分)1.如图所示,直线l1,l2,l3,的斜率分别为k1,k2,k3,则()A.k1B.k3C.k3D.k12.点(0,5)到直线y=2x的距离是()A.B.C.D.3.经过点P(3,2),且倾斜角是直线x-4y+3=0的倾斜角的两倍的直线方程是()A.8x-15y+6=0B.x-8y+3=0C.2x-4y+3=0D.8x+15y+6=04.方程|x|+|y|=1所表示的图形在直角坐标系中所围成的面积是()A.2B.1C.4D.5.过点P(2,3),且在两坐标轴上的截距相等的直线方程是()A.x+y-5=0或x-y+1=0B.x-y+1=0C.3x-2y=0或x+y-5=0D.x-y+1=0或3x-2y=06.设a、b、c分别是△ABC中∠A、∠B、∠C所对边的边长,则直线sinA•x+ay+c=0与bx-sinB•y+sinC=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直7.直线x-y+4=0被圆(x+2)2+(y-2)2=2截得的弦长为()A.B.2C.3D.48.直角坐标系内到两坐标轴距离之差等于1的点的轨迹方程是()A.|x|-|y|=1B.x-y=1C.(|x|-|y|)2=1D.|x-y|=19.若集合则a的取值范围是()A.B.C.D.10.在约束条件下,目标函数的最小值和最大值分别是()A.1,3B.1,2C.0,3D.2,3二、填空题(本大题共4小题,每小题6分,共24分)11.如果直线l与直线x+y-1=0关于y轴对称,那么直线l的方程是.12.直线x+y-2=0截圆x2+y2=4,得劣弧所对的圆心角为.13.过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是.14.如果直线l将圆:x2+y2-2x-4y=0平分,且不经过第四象限,则l 的斜率的取值范围是三、解答题(本大题共6小题,共76分)15.求经过两点P1(2,1)和P2(m,2)(m∈R)的直线l的斜率,并且求出l的倾斜角α及其取值范围.(12分)16.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.(12分)17.已知圆的半径为,圆心在直线上,圆被直线截得的弦长为,求圆的方程.(12分)18.已知常数在矩形ABCD中,AB=4,BC=4,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),求P点的轨迹方程.(12分)19.要将甲、乙两种长短不同的钢管截成A、B、C三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示:规格类型A规格B规格C规格甲种钢管214乙种钢管231今需A、B、C三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少.(14分)20.已知圆的参数方程(1)设时对应的点这P,求直线OP的倾斜角;(2)若此圆经过点(m,1),求m的值,其中;(3)求圆上点到直线距离的最值.(14分)参考答案一.选择题(本大题共10小题,每小题5分,共50分)题号12345678910答案DBAACCBCDA二.填空题(本大题共4小题,每小题6分,共24分)11.x-y+1=012.13.y=x14.0,2]三、解答题(本大题共6题,共76分)15.(12分)解析]:(1)当m=2时,x1=x2=2,∴直线l垂直于x轴,因此直线的斜率不存在,倾斜角α=(2)当m≠2时,直线l的斜率k=当m>2时,k>0.∴α=arctan,α∈(0,),当m<2时,k<0∴α=π+arctan,α∈(,π).16.(12分)解法1]:设点M的坐标为(x,y),∵M为线段AB的中点,∴A的坐标为(2x,0),B的坐标为(0,2y),∵l1⊥l2,且l1、l2过点P(2,4),∴PA⊥PB,kPA•kPB=-1.而整理,得x+2y-5=0(x≠1)∵当x=1时,A、B的坐标分别为(2,0)、(0,4).∴线段AB的中点坐标是(1,2),它满足方程x+2y-5=0,综上所述,点M的轨迹方程是x+2y-5=0.解法2]:设M的坐标为(x,y),则A、B两点的坐标分别是(2x,0)、(0,2y),连接PM,∵l1⊥l2,∴2|PM|=|AB|,而|PM|=化简,得x+2y-5=0,为所求轨迹方程.17.(12分)解析]:设圆心坐标为(m,2m),圆的半径为,所以圆心到直线x-y=0的距离为由半径、弦心距、半径的关系得所求圆的方程为18.(12分)解析]:根据题设条件可知,点P(x,y)的轨迹即直线GE与直线OF的交点.据题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)设,由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak).直线OF的方程为:,①直线GE的方程为:.②从①,②消去参数k,得点P(x,y)的轨迹方程是:,19.(14分)解析]:设需截甲种钢管x根,乙种钢管y根,则作出可行域(如图):目标函数为z=x+y,作直线l0:x+y=0,再作一组平行直线l:x+y=t,此直线经过直线4x+y=18和直线x+3y=16的交点A(),此时,直线方程为x+y=.由于和都不是整数,所以可行域内的点()不是最优解.经过可行域内的整点且与原点距离最近的直线是x+y=8,经过的整点是B(4,4),它是最优解.答:要截得所需三种规格的钢管,且使所截两种钢管的根数最少方法是,截甲种钢管、乙种钢管各4根.20.(14分)解析]:(1)因为圆上任一点的坐标为(,),所以当时,对应的点P的坐标为(,),即(-1,-).所以直线OP的斜率为,所以直线OP的倾斜角为60°(2)因为圆经过点(m,1),所以(3)设圆上的点P的坐标为(,),点P到直线的距离为,其中,故最大值为3,最小值为0。
第二章 直线与圆的方程单元测试卷-高二数学人教A版(2019)选择性必修第一册
第二章 直线与圆的方程满分卷-2021-2020人教A (2019)高二(上)选择性必修第一册一.选择题(共8小题)1.如图中的直线1l 、2l 、3l 的斜率分别为1k 、2k 、3k ,则( )A .123k k k <<B .312k k k <<C .321k k k <<D .132k k k <<2.已知直线1:10l ax y -+=,2:420l ax y ++=,则“2a =”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.经过点(0,1)P -的直线l 与连接(1,2)A -,(2,1)B 两点的线段总有公共点,则l 的倾斜角的取值范围是( ) A .[1-,1] B .(-∞,1][1-,)+∞C .3[,]44ππD .3[0,][,)44πππ4.已知圆22:240C x y x y +-+=关于直线32110x ay --=对称,则圆C 中以(,)22a a-为中点的弦长为( ) A .1B .2C .3D .45.两条直线1:20l x y c ++=,2:210l x y -+=的位置关系是( ) A .平行B .垂直C .重合D .不能确定6.已知实数x ,y 满足224x y +=,则函数226825S x y x y =+--+的最大值和最小值分别为( )A .49,9B .7,3C D .77.已知直线l 经过点(1,2)P -,且与直线2310x y +-=垂直,则l 的方程为( ) A .2340x y ++=B .2380x y +-=C .3270x y --=D .3210x y --=8.关于x 、y 的方程210(0)a x ay a --=≠表示的直线(图中实线)可能是( )A .B .C .D .二.多选题(共4小题)9.已知直线:20l kx y k -+=和圆222:O x y r +=,则( ) A .存在k 使得直线l 与直线0:220l x y -+=垂直B .直线l 恒过定点(2,0)C .若4r >,则直线l 与圆O 相交D .若4r =,则直线l 被圆O 截得的弦长的取值范围为 10.下列结论错误的是( )A .若直线1l ,2l 的斜率相等,则12//l lB .若直线的斜率121k k ⋅=,则12l l ⊥C .若直线1l ,2l 的斜率都不存在,则12//l lD .若直线1l ,2l 的斜率不相等,则1l 与2l 不平行11.已知动直线:0m x y λλ-+=和:320n x y λλ+--=,P 是两直线的交点,A 、B 是两直线m 和n 分别过的定点,下列说法正确的是( ) A .B 点的坐标为(3,2)- B .m n ⊥C .P 的轨迹是一条直线D .PA PB ⨯的最大值为1012.已知直线1:40l x y +-=与圆心为(0,1)M 且半径为3的圆相交于A ,B 两点,直线2:22350l mx y m +--=与圆M 交于C ,D 两点,则四边形ACBD 的面积的值可以是()A .B .C .D .1)三.填空题(共4小题)13.在平面直角坐标系中,已知(2,2)A 、(1)B -若过点(1,1)P --的直线l 与线段AB 有公共点,则直线l 斜率的取值范围是 .14.直线210x y -+=和圆222410x y x y +---=的位置关系是 . 15.直线1:3470l x y +-=与直线2:3410l x y ++=之间的距离为 .16.圆222440x y x y +-++=上的点到3490x y -+=的最大距离是 ,最小距离是 . 四.解答题(共6小题)17.已知圆C 的圆心在x 轴上,且经过点(3,0)A -,(1,2)B -. (Ⅰ)求圆C 的标准方程; (Ⅱ)过点(0,2)P 斜率为34的直线l 与圆C 相交于M ,N 两点,求弦MN 的长. 18.(1)求直线y x =被圆22(2)4x y +-=截得的弦长;(2)已知圆22:430C x y x +-+=,求过点(3,2)M 的圆的切线方程.19.在直角坐标系xOy 中,直线:40l x --=交x 轴于M ,以O 为圆心的圆与直线l 相切.(1)求圆O 的方程;(2)设点0(N x ,0)y 为直线3y x =-+上一动点,若在圆O 上存在点P ,使得45ONP ∠=︒,求0x 的取值范围;(3)是否存在定点S ,对于经过点S 的直线L ,当L 与圆O 交于A ,B 时,恒有AMO BMO ∠=∠?若存在,求点S 的坐标;若不存在,说明理由.20.已知直线10l y -+=,圆C 的方程为224210x y x y ++-+=. (Ⅰ)判断直线l 与该圆的位置关系;(Ⅱ)若直线与圆相交,求出弦长;否则,求出圆上的点到直线l 的最短距离. 21.已知圆M 过点(4,0)A ,(2,0)B -,(1,3)C . (Ⅰ)求圆M 的标准方程;(Ⅱ)若过点(2,3)P且斜率为k的直线l与圆M相切,求k的值.22.在平面直角坐标系xOy中,已知直线:20l x y++=和圆22+=,P是直线l上一O x y:1点,过点P作圆C的两条切线,切点分别为A,B.(1)若PA PB⊥,求点P的坐标;(2)求线段PA长的最小值;(3)设线段AB的中点为Q,是否存在点T,使得线段TQ长为定值?若存在,求出点T;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.如图中的直线1l 、2l 、3l 的斜率分别为1k 、2k 、3k ,则( )A .123k k k <<B .312k k k <<C .321k k k <<D .132k k k <<解:由图象知,直线1l 、2l 、3l 的倾斜角分别为1α,2α,3α, 且1(2πα∈,)π,3202παα<<<;所以对应的斜率分别为10k <,320k k <<, 即132k k k <<. 故选:D .2.已知直线1:10l ax y -+=,2:420l ax y ++=,则“2a =”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解:直线1:10l ax y -+=,2:420l ax y ++=,12l l ⊥, (1)40a a ∴⨯+-⨯=,240a ∴-=,2a ∴=±, 2a ∴=是12l l ⊥的充分不必要条件,故选:A .3.经过点(0,1)P -的直线l 与连接(1,2)A -,(2,1)B 两点的线段总有公共点,则l 的倾斜角的取值范围是( ) A .[1-,1]B .(-∞,1][1-,)+∞C .3[,]44ππD .3[0,][,)44πππ解:如图所示,设直线l 的倾斜角为α,[0α∈,)π. 12101PA k -+==--,11102PB k --==-. 直线l 与连接(1,2)A -,(2,1)B 的线段总有公共点,1tan 1α∴-.[0α∴∈,3][44ππ,)π. 故选:D .4.已知圆22:240C x y x y +-+=关于直线32110x ay --=对称,则圆C 中以(,)22a a-为中点的弦长为( ) A .1B .2C .3D .4解:依题意可知直线过圆心(1,2)-,即34110a +-=,2a =.故(,)(1,1)22a a-=-.圆方程配方得22(1)(2)5x y -++=,(1,1)-与圆心距离为1,故弦长为4=. 故选:D .5.两条直线1:20l x y c ++=,2:210l x y -+=的位置关系是( ) A .平行B .垂直C .重合D .不能确定解:直线1l 的斜率是:2-, 直线2l 的斜率是:12, 由1212-⨯=-,得直线垂直, 故选:B .6.已知实数x ,y 满足224x y +=,则函数226825S x y x y =+--+的最大值和最小值分别为( )A .49,9B .7,3CD .7解:22226825(3)(4)S x y x y x y =+--+=-+-, 实数x ,y 满足224x y +=,22(3)(4)S x y ∴=-+-的几何意义为圆224x y +=上的动点与定点(3,4)M 的距离的平方, 如图,||5OM =,2(52)49max S ∴=+=,2(52)9min S =-=.∴函数226825S x y x y =+--+的最大值和最小值分别为49,9.故选:A .7.已知直线l 经过点(1,2)P -,且与直线2310x y +-=垂直,则l 的方程为( ) A .2340x y ++=B .2380x y +-=C .3270x y --=D .3210x y --=解:直线l 与直线2310x y +-=垂直, 所以直线l 的斜率为32, 又直线l 经过点(1,2)P -,所以直线l 的方程为:3(2)(1)2y x --=-,化简得:3270x y --= 故选:C .8.关于x 、y 的方程210(0)a x ay a --=≠表示的直线(图中实线)可能是( )A .B .C .D .解:关于x 、y 的方程210(0)a x ay a --=≠表示的直线,直线的斜率为a ,在y 轴上的截距为1a-,直线的斜率和它在y 轴上的截距的乘积等于1-,图A 中,直线的斜率和它在y 轴上的截距都是正的,这不满足条件,故排除A ;图B 中,直线的斜率小于1,它在y 轴上的截距大于1-小于零,这不满足条件,故排除B ; 图C 中,直线的斜率和它在y 轴上的截距都是负值,这不满足条件,故排除C ;图D 中,直线的斜率小于1-,它在y 轴上的截距大于零小于1,能满足条件,故D 可能成立, 故选:D .二.多选题(共4小题)9.已知直线:20l kx y k -+=和圆222:O x y r +=,则( ) A .存在k 使得直线l 与直线0:220l x y -+=垂直B .直线l 恒过定点(2,0)C .若4r >,则直线l 与圆O 相交D .若4r =,则直线l 被圆O 截得的弦长的取值范围为 解:对于A ,直线0:220l x y -+=的斜率为12,则当2k =-时,满足直线l 与直线0:220l x y -+=垂直,故A 正确;对于B ,由:20l kx y k -+=,得(2)0k x y +-=,令200x y +=⎧⎨-=⎩,解得20x y =-⎧⎨=⎩,∴直线l 恒过定点(2,0)-,故B 错误;对于C ,若4r >,则直线l 所过定点(2,0)-在圆O 内部,则直线l 与圆O 相交,故C 正确;对于D ,若4r =,则直线l 被圆O 截得的弦长的最大值为8,最小值为=即直线l 被圆O 截得的弦长的取值范围为,8],故D 错误. 故选:AC .10.下列结论错误的是( )A .若直线1l ,2l 的斜率相等,则12//l lB .若直线的斜率121k k ⋅=,则12l l ⊥C .若直线1l ,2l 的斜率都不存在,则12//l lD .若直线1l ,2l 的斜率不相等,则1l 与2l 不平行 解:若直线1l ,2l 的斜率相等,则12//l l 或重合,A 错误; 若直线的斜率121k k ⋅=-,则12l l ⊥,B 错误;若直线1l ,2l 的斜率都不存在,则12//l l 或重合,C 错误; 若直线1l ,2l 的斜率不相等,则1l 与2l 一定不平行,D 正确. 故选:ABC .11.已知动直线:0m x y λλ-+=和:320n x y λλ+--=,P 是两直线的交点,A 、B 是两直线m 和n 分别过的定点,下列说法正确的是( ) A .B 点的坐标为(3,2)- B .m n ⊥C .P 的轨迹是一条直线D .PA PB ⨯的最大值为10解:对于A ,直线:(2)30n y x λ-+-=,所以直线n 过点(3,2),故A 错误; 对于B ,1(1)0λλ⨯+-⨯=,所以m n ⊥,故B 正确;对于C ,因为PA PB ⊥,所以P 的轨迹是以AB 为直径的圆,故C 错误; 对于D ,222202PA PB AB PA PB +==⨯,所以D 正确. 故选:BD .12.已知直线1:40l x y +-=与圆心为(0,1)M 且半径为3的圆相交于A ,B 两点,直线2:22350l mx y m +--=与圆M 交于C ,D 两点,则四边形ACBD 的面积的值可以是()A .B .C .D .1)解:根据题意,圆M 的圆心为(0,1)M 且半径为3,则圆M 的方程为22(1)9x y +-=,即22280x y y +--=,直线1:40l x y +-=与圆M 相交于A ,B 两点,则有2228040x y y x y ⎧+--=⎨+-=⎩,解可得:31x y =⎧⎨=⎩或04x y =⎧⎨=⎩,即A 、B 的坐标为(3,1),(0,4),则||AB AB 的中点为3(2,5)2,直线2:22350l mx y m +--=,变形可得(23)250m x y -+-=,直线2l 恒过定点3(2,5)2,设3(2N ,5)2,当CD 与AB 垂直时,四边形ACBD 的面积最大, 此时CD 的方程为5322y x -=-,变形可得1y x =+,经过点(0,1)M , 则此时||6CD =,故ACBD S 四边形的最大值162ACB ADB S S ∆∆=+=⨯⨯=故92ACBD S 四边形, 分析选项:BC 符合题意, 故选:BC .三.填空题(共4小题)13.在平面直角坐标系中,已知(2,2)A 、(1)B -若过点(1,1)P --的直线l 与线段AB 有公共点,则直线l 斜率的取值范围是 . 解:如图,显然点P 在直线AB 下方,直线AP 的斜率为21121AP k +==+,直线BP 的斜率BP k == 所以若过点(1,1)P --的直线l 与线段AB 有公共点, 则直线l 斜率BP k k ,或者AP k k , 所以3k -或者1k ,故答案为:(-∞,[1,)+∞.14.直线210x y -+=和圆222410x y x y +---=的位置关系是 .解:圆222410x y x y +---=化简可得22(1)(2)6x y -+-=,圆心坐标为(1,2),,圆心到直线210x y -+==< ∴直线210x y -+=和圆222410x y x y +---=的位置关系是相交,故答案为:相交.15.直线1:3470l x y +-=与直线2:3410l x y ++=之间的距离为 . 解:直线1:3470l x y +-=与直线2:3410l x y ++=之间的距离85d ==.故答案为:85.16.圆222440x y x y +-++=上的点到3490x y -+=的最大距离是 ,最小距离是 . 解:圆222440x y x y +-++=即22(1)(2)1x y -++=,表示以(1,2)C -为圆心,半径为1的圆.由于圆心(1,2)C -到直线3490x y -+=的距离4d ==,故动点P 到直线3490x y -+=的距离的最小值与最大值分别为3,5, 故答案为:5,3. 四.解答题(共6小题)17.已知圆C 的圆心在x 轴上,且经过点(3,0)A -,(1,2)B -. (Ⅰ)求圆C 的标准方程;(Ⅱ)过点(0,2)P 斜率为34的直线l 与圆C 相交于M ,N 两点,求弦MN 的长. 解:(Ⅰ)设AB 的中点为D ,则(2,1)D -, 由圆的性质得CD AB ⊥, 所以1CD AB k k ⨯=-,得1CD k =-,所以线段AB 的垂直平分线方程是1y x =--,设圆C 的标准方程为222()x a y r -+=,其中(,0)C a ,半径为(0)r r >, 由圆的性质,圆心(,0)C a 在直线CD 上,化简得1a =-,所以圆心(1,0)C -,||2r CA ==,所以圆C 的标准方程为22(1)4x y ++=; (Ⅱ)因为直线l 过点(0,2)P 斜率为34, 则直线l 的方程为324y x =+, 圆心(1,0)C -到直线l的距离为3|2|1d -==,所以MN ==18.(1)求直线y x =被圆22(2)4x y +-=截得的弦长;(2)已知圆22:430C x y x +-+=,求过点(3,2)M 的圆的切线方程. 解:(1)根据题意,圆22(2)4x y +-=的圆心为(0,2),半径2r =, 圆心到直线y x =的距离d =则直线y x =被圆截得的弦长2l == 故直线y x =被圆22(2)4x y +-=截得的弦长为(2)圆22:430C x y x +-+=,即22(2)1x y -+=,其圆心为(2,0),半径1r =, 若切线的斜率不存在,则切线的方程为3x =,符合题意;若切线的斜率存在,则设切线的斜率为k ,则切线的方程为2(3)y k x -=-,即320kx y k --+=,则有1d ==,解可得:34k =,此时切线的方程为3410x y --=.综上可得,圆的切线方程为3x =或3410x y --=.19.在直角坐标系xOy 中,直线:40l x --=交x 轴于M ,以O 为圆心的圆与直线l 相切.(1)求圆O 的方程;(2)设点0(N x ,0)y 为直线3y x =-+上一动点,若在圆O 上存在点P ,使得45ONP ∠=︒,求0x 的取值范围;(3)是否存在定点S ,对于经过点S 的直线L ,当L 与圆O 交于A ,B 时,恒有AMO BMO ∠=∠?若存在,求点S 的坐标;若不存在,说明理由.解:(1)直线:40l x -=交x 轴于(4,0)M ,圆心半径2r ==,所以圆的方程224x y +=.(2)如图,直线NP 与圆相切,设PNO α∠=,则2sin ONα=, 根据图象,N 越靠近O 点,ON 越小,sin α越大,由2sin 452ON ︒==,得ON = 设(,3)N x x -,由距离公式22(3)8x x +-=,解得x =0372x +.(3)AMO BMO ∠=∠,若直线L 的斜率不存在,显然S 点存在; 当斜率存在时,设:L y kx m =+,L 与圆的交点1(A x ,1)y ,2(B x ,2)y , 根据题意只需0AM BM k k +=,即1212044y yx x +=--, 把11y kx m =+,22y kx m =+带人并化简得12122(4)()80kx x m k x x m +-+-=, 把L 与圆联立解方程224y kx m x y =+⎧⎨+=⎩,得12221kmx x k +=-+,212241m x x k -=+, 带入上式222422(2)8011m kmk m k m k k ----=++,化简得0k m +=,即m k =-,所以:(1)L y k x =-,恒过(1,0)点.20.已知直线10l y -+=,圆C 的方程为224210x y x y ++-+=. (Ⅰ)判断直线l 与该圆的位置关系;(Ⅱ)若直线与圆相交,求出弦长;否则,求出圆上的点到直线l 的最短距离. 解:(Ⅰ)圆的方程为224210x y x y ++-+=,即22(2)(1)4x y ++-=,∴圆心为(2,1)-,半径为2r =,则圆心到直线的距离d r =,∴直线与圆相交.(Ⅱ)弦长2l ==. 21.已知圆M 过点(4,0)A ,(2,0)B -,(1,3)C . (Ⅰ)求圆M 的标准方程;(Ⅱ)若过点(2,3)P 且斜率为k 的直线l 与圆M 相切,求k 的值. 解:(Ⅰ)设圆M 的标准方程为222()()x a y b r -+-=,则有222222222(4)(0)(2)(0)(1)(3)a b r a b r a b r ⎧-+-=⎪--+-=⎨⎪-+-=⎩,解得1a =,0b =,3r =,所以圆M 的标准方程为22(1)9x y -+=; (Ⅱ)因为直线l 过点(2,3)P 且斜率为k ,则直线l 的方程为:3(2)y k x -=-,即230kx y k --+=, 因为直线l 与圆M 相切,所以圆心到直线l3=,解得0k =或34-.22.在平面直角坐标系xOy 中,已知直线:20l x y ++=和圆22:1O x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P=P 在直线20x y ++=上,设(,2)P x x --,则||OP =1x =-, 故(1,1)P --;(2)由22||||1PA PO =-,可知当线段PO 长最小时,线段PA 长最小. 线段PO 长的最小值,即点O 到直线l 的距离,故||min PO ==∴||1min PA ==;(3)设0(P x ,02)x --,则以OP 为直径的圆的方程为222200002(2)()()224x x x x x y --+---+-=, 化简得:2200(2)0x x x x y y -+++=,与221x y +=联立, 可得AB 所在直线方程为00(2)1x x x y -+=,联立0022(2)11x x x y x y -+=⎧⎨+=⎩,得22200000(244)2430x x x x x x x ++----=, Q ∴的坐标为002200002(,)244244x x x x x x --++++, 可得Q 点轨迹为22111()()448x y +++=,圆心11(,)44--,半径4R =.故存在点11(,)44T --,使得线段TQ 长为定值.。
浙教新版九年级下册数学《第2章 直线与圆的位置关系》单元测试卷(有答案)
浙教新版九年级下册数学《第2章直线与圆的位置关系》单元测试卷一.选择题(共8小题,满分24分)1.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8B.9C.10D.112.如图,若⊙O的直径为6,点O到某条直线的距离为6,则这条直线可能是()A.l1B.l2C.l3D.l43.如图所示,直线l与半径为5cm的⊙O相交于A、B两点,且与半径OC垂直,垂足为H,AB =8cm,若要使直线l与⊙O相切,则l应沿OC方向向下平移()A.1cm B.2cm C.3cm D.4cm4.如图,△ABC内接于⊙O,BD切⊙O于点B,AB=AC,若∠CBD=40°,则∠ABC等于()A.40°B.50°C.60°D.70°5.如图,四边形ABCD是圆的内接四边形,AB、DC的延长线交于点P,若C是PD的中点,且PD=6,PB=2,那么AB的长为()A.9B.7C.3D.6.如图,PA、PB是圆O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.B.πC.D.7.如图,⊙O的半径为2,弦AB向上平移得到CD(AB与CD位于点O两侧),且CD与⊙O 相切于点E.若的度数为120°,则AD的长为()A.4B.2C.D.38.如图,⊙O内切于△ABC,若∠AOC=110°,则∠B的度数为()A.40°B.60°C.80°D.100°二.填空题(共8小题,满分24分)9.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=.10.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8cm,那么△PDE的周长为.11.已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为.12.如图,已知⊙P的半径是1,圆心P在抛物线y=x2﹣x﹣上运动,当⊙P与x轴相切时,圆心P的坐标为.13.如图,在△ABC中,∠A=60°,BC=6,△ABC的周长为19.若⊙O与BC,AC,AB三边分别相切于点E,F,D,则DF的长为.14.Rt△ABC的斜边为13,其内切圆的半径等于2,则Rt△ABC的周长等于.15.在下图中,AB是⊙O的直径,要使得直线AT是⊙O的切线,需要添加的一个条件是.(写一个条件即可)16.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3,当圆心O与点C重合时,⊙O与直线AB的位置关系为;若⊙O从点C开始沿直线CA移动,当OC=时,⊙O与直线AB相切?三.解答题(共7小题,满分72分)17.已知AB是⊙O的直径,BD为⊙O的切线,切点为B.过⊙O上的点C作CD∥AB,交BD 点D.连接AC,BC.(Ⅰ)如图①,若DC为⊙O的切线,切点为C.求∠BCD和∠DBC的大小;(Ⅱ)如图②,当CD与⊙O交于点E时,连接BE.若∠EBD=30°,求∠BCD和∠DBC的大小.18.如图,AB是⊙O的直径,点M是△ABC的内心,连接BM并延长交AC于点F交⊙O于点E,连接OE与AC相交于点D.(1)求证:OD=BC;(2)求证:EM=EA.19.如图,PA,PB分别与⊙O相切于点A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm.(1)求证:△PAB是等边三角形;(2)求AC的长.20.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若EB⊥BC,ED=3,求BG的长.21.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.22.如图,AB是⊙O的直径,点C、点D在⊙O上,AC=CD,AD与BC相交于点E,点F在BC 的延长线上,且∠FAC=∠D.(1)求证:AF是⊙O的切线;(2)若EF=12,sin D=,求⊙O的半径.23.如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.参考答案与试题解析一.选择题(共8小题,满分24分)1.解:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.2.解:∵若⊙O的直径为6,∴圆O的半径为3,∵点O到某条直线的距离为6,∴这条直线与圆相离,故选:A.3.解:连接OB,∴OB=5cm,∵直线l⊙O相交于A、B两点,且与AB⊥OC,AB=8cm,∴HB=4cm,∴OH=3cm,∴HC=2cm.故选:B.4.解:∵BD切⊙O于点B,∴∠DBC=∠A=40°,∵AB=AC,∴∠ABC=∠C,∴∠ABC=(180°﹣40°)÷2=70°.故选:D.5.解:∵C是PD的中点,PD=6,∴PC=CD=PD=3,由切割线定理得,PC•PD=PB•PA,即3×6=2×PB,解得,PB=9,∴AB=PA﹣PB=7,故选:B.6.解:连接AB,∵PA、PB是圆O的切线,∴OB⊥BP,OA⊥PA,∵∠P=60°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°,∴的长==,故选:C.7.解:∵的度数为120°,∴∠AOB=120°,连接OE,OE的反向延长线交AB于F,连接OA,OB,如图,∵CD与⊙O相切于点E,∴EF⊥CD,由平移的性质得:CD∥AB,CD=AB,∴EF⊥AB,∵OA=OB,∴∠AOF=∠BOF=∠AOB=60°,AF=BF=AB=DE,∴∠OAF=30°,四边形BDEF是矩形,∴OF=OA=×2=1,BD=EF,∴EF=2+1=3,∴BD=3,在Rt△AOF中,OA=2,OF=1,∴AF===,∴AB=2,∴AD===,故选:C.8.解:∵⊙O内切于△ABC,∴AO,CO分别平分∠BAC,∠BCA,∠AOC=110°,∴∠BAC+∠BCA=2(∠OAC+∠OCA)=2(180°﹣∠AOC)=140°,∴∠B=180°﹣(∠BAC+∠BCA)=40°.故选:A.二.填空题(共8小题,满分24分)9.解:如图,∵AP=4,AB=2,PC=CD,∴PB=AP+AB=6,PC=PD.又∵PA•PB=PC•PD,∴4×6=PD2,则PD=4.故答案是:4.10.解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16cm;△PDE∴△PDE的周长为16cm.故答案为16cm.11.解:连接BD,则∠ADB=90°,又∠BCD=130°,故∠DAB=50°,所以∠DBA=40°;又因为PD为切线,故∠PDA=∠ABD=40°,即∠PDA=40°.12.解:设点P(x,y),∵⊙P与x轴相切,∴|y|=1,∴y=±1,当y=1时,1=x2﹣x﹣,解得:x1=3,x2=﹣1,∴点P(3,1),(﹣1,1),当y=﹣1时,﹣1=x2﹣x﹣,解得:x1=x2=1,∴点P(1,﹣1),故答案为:(3,1)或(﹣1,1)或(1,﹣1).13.解:∵⊙O与BC,AC,AB三边分别相切于点E,F,D,∴AD=AF,BD=BE,CE=CF,∵△ABC的周长为19.∴AD+BD+BE+CE+CF+AF=19,即2AD+2BE+2CE=19,∴AD+BC=9.5,而BC=6,∴AD=9.5﹣6=3.5,∵∠A=60°,AD=AF,∴△ADF为等边三角形,∴DF=AD=3.5.故答案为:3.5.14.解:如图,Rt△ABC三边分别切圆O于点D,E,F,得四边形ODBE是正方形,∴BE=BD=OD=OE,∴AF=AD=AB﹣2,CF=CE=BC﹣2,∴AC=AF+CF=AB﹣2+BC﹣2=AB+BC﹣4,∴AB+BC=AC+4=13+4=17,∴AB+BC+AC=17+13=30.∴Rt△ABC的周长等于30.故答案为:30.15.解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,当∠TAC=∠B时,∠TAC+∠BAC=90°,即∠OAT=90°,∵OA是圆O的半径,∴直线AT是⊙O的切线,故答案为:∠TAC=∠B(答案不唯一).16.解:如图1,过O作OD⊥AB于D,由勾股定理得:AB===13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>3,∴⊙O与AB的位置关系是相离.①如图2,过O作OD⊥AB于D,当OD=3时,⊙O与AB相切,∵OD⊥AB,∠C=90°,∴∠ODA=∠C=90°,∵∠A=∠A,∴△ADO∽△ACB,∴=,即=,∴AO=,∴OC=5﹣=,②如图3,过O作OD⊥BA交BA延长线于D,则∠C=∠ODA=90°,∠BAC=∠OAD,∴△BCA∽△ODA,∴,∴,∴OA=,∴OC=5+=,答:若点O沿射线CA移动,当OC等于或时,⊙O与AB相切.故答案为:相离,或.三.解答题(共7小题,满分72分)17.解:(Ⅰ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵DC为⊙O的切线,切点为C,∴DC=DB,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠BCD=∠DBC=45°;(Ⅱ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠DEB=∠EBA,∵∠EBD=30°,∴∠DEB=60°,∴∠EBA=60°,∴∠ACE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCD=30°,∴∠DBC=60°.18.(1)证明:∵点M是△ABC的内心,∴∠ABE=∠CBE,∴,∴CD=DA,又∵OA=OB,∴OD=BC;(2)证明:连接AM,∵M是△ABC的内心,∴∠BAM=∠CAM,∠ABE=∠CBE,∵∠EMA=∠ABE+∠BAM,∠EAM=∠CAE+∠CAM,∠CBE=∠CAE,∴∠EMA=∠EAM.∴EM=EA.19.解:(1)∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,且∠P=60°,∴△PAB是等边三角形;(2)∵△PAB是等边三角形;∴PB=AB=2cm,∠PBA=60°,∵BC是直径,PB是⊙O切线,∴∠CAB=90°,∠PBC=90°,∴∠ABC=30°,∴tan∠ABC==,∴AC=2×=cm.20.解:(1)AC与⊙O相切.理由如下:连接OE,如图,∵AB=BC,D是AC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠OBE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,而OE为⊙O的半径,∴AC为⊙O的切线;(2)过O作OM⊥BD于M,则四边形OBEM是矩形,∴OM=ED=3,BM=BG,∵EB⊥BC,∴∠C+∠CEB=90°,同理∠2+∠CEB=90°,∴∠2=∠C,∵AB=BC,∴∠2=∠A,∴∠1=∠2=∠A=30°,在Rt△OBM中,tan∠OBM=,∴=,∴BM=,∴BG=2BM=2.21.证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.22.(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠CAB=90°,∵∠FAC=∠D.∵∠D=∠B,∴∠FAC=∠B,∴∠FAC+∠CAB=90°∴AF是⊙O的切线;(2)解:∵AC=CD,∴∠D=∠CAD,∴∠FAC=∠CAD,又∵∠ACB=90°,∴FC=CE,∵EF=12,∴CE=6,∴,∴AE=10,AC=8,∵在Rt△ACB中,,∴,∴,∴⊙O的半径长为.23.解:结论是DF=EG.∵∠FCD=∠EAB,∠DFC=∠BEA=90°,∴Rt△FCD∽Rt△EAB,∴=,∴,同理可得,又∵,∴BE•CD=AD•CE,∴DF=EG.。
学年新教材高中数学章末综合测评直线与圆含解析北师大版选择性必修第一册
章末综合测评(一) 直线与圆(总分值:150分 时间:120分钟)一、选择题(本大题共8个小题,每题5分,共40分,在每题给出的四个选项中,只有一个是符合题目要求的)1.假设直线过点()1,2,()4,2+3,那么此直线的倾斜角是( )A .30°B .45°C .60°D .90°A [由k =()2+3-24-1=33得,此直线的倾斜角为30°.] 2.假设两直线ax +2y =0和x +(a -1)y +(a 2-1)=0平行,那么a 的值是( )A .-1或2B .-1C .2D .23C [由a (a -1)-1×2=0得a =-1或2,经检验a =-1时,两直线重合,所以a =2.]3.点P (-1,2)到直线8x -6y +15=0的距离为( )A .2B .12C .1D .72B [由点到直线的距离公式得d =||8×()-1-6×2+1582+(-6)2=12.] 4.点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),那么( )A .m =-3,n =10B .m =3,n =10C .m =-3,n =5D .m =3,n =5D [∵M (4,m )关于点N (n ,-3)的对称点为P (6,-9)∴4+62=n ,m -92=-3, ∴n =5,m =3.应选D .]5.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是( )A .3x -y -8=0B .3x +y +4=0C .3x -y +6=0D .3x +y +2=0 B [∵k AB =1-3-5-1=13,AB 的中点坐标为(-2,2), ∴所求直线方程为y -2=-3(x +2),即3x +y +4=0.应选B .]6.过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( )A .3B .2C .6D .23D [由题意得直线方程为y =3x ,圆的方程为x 2+(y -2)2=4,圆心到直线的距离d =23+1=1,弦长|AB |=24-1=23.] 7.A (1,2),B (-1,4),C (5,2),那么△ABC 的边AB 上的中线所在的直线方程为( )A .x +5y -15=0B .x =3C .x -y +1=0D .y =3A [边AB 的中点D (0,3),由直线方程的两点式得直线CD 的方程为y -32-3=x -05-0,整理得x +5y -15=0.]8.不管a 为何数,直线(a -3)x +2ay +6=0恒过( )A .第一象限B .第二象限C .第三象限D .第四象限D [由(a -3)x +2ay +6=0,得(x +2y )a +(6-3x )=0.令⎩⎪⎨⎪⎧ x +2y =0,6-3x =0,得⎩⎪⎨⎪⎧x =2,y =-1, ∴直线(a -3)x +2ay +6=0恒过定点(2,-1).从而该直线恒过第四象限.]二、选择题(本大题共4小题,每题5分,共20分.在每题给出的四个选项中,有多项符合题目要求,全部选对得5分,局部选对得3分,有选错的得0分)9.以下过点(-1,2)的直线方程是( )A .y -2=k (x +1)B .k = y -2x +1C .x +1=0D .y -2=0ACD [经检验,只有B 不正确.] 10.使得方程16-x 2-x -m =0有实数解,那么实数m 的可能取值是( ) A .m =-4B .m =4C .m =4 2D .m =-42 ABC [设f (x )=16-x 2,g (x )=x +m ,在同一坐标系中画出函数f (x )和g (x )的图形,如下图.那么m 是直线y =x +m 在y 轴上的截距.由图可知-4≤m ≤42,应选ABC .]11.直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为原点,那么实数a 的可能值为( )A .2B .-2C .6D .-6AB [由|OA →+OB →|=|OA →-OB →|,得OA ⊥OB ,又OA =OB ,∴△OAB 是等腰直角三角形,∴圆心到直线x +y =a 即x +y -a =0的距离d =22r ,即||-a 2=22×2,解得a =±2.] 12.ab ≠0,点M (a ,b )是圆x 2+y 2=r 2内一点,直线m 是以点M 为中点的弦所在的直线,。
直线与圆单元测试卷(含答案)-(K12教育文档)
直线与圆单元测试卷(含答案)-(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(直线与圆单元测试卷(含答案)-(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为直线与圆单元测试卷(含答案)-(word版可编辑修改)的全部内容。
班级___________ 姓名_________________一、选择题(每小题5分,共50分)1.在同一直角坐标系中,直线y ax =与y x a =+的图象正确的是……………….( )2. 过点(1,2)且与原点的距离最大的直线方程是………………。
( )A.042=-+y xB. 052=-+y x C 。
073=-+y x D 。
053=-+y x3. 若直线310x y --=的倾斜角为α,则α的值是……………….( )A .6πB . 4πC .3πD .56π 4. 两直线330x y +-=与610x my ++=平行,则它们之间的距离为………………。
( )A .4B .21313C .71020D .513265. 圆221:(1)(2)1C x y -+-=,圆222:(2)(5)9C x y -+-=,则这两圆公切线的条数为…….( )A.1 B 。
2 C 。
3 D 。
46. 经过点()1,3且在两坐标轴上的截距互为相反数的直线方程是………………。
( )A .4x y +=B .2y x =+C . 3y x =或4x y +=D .3y x =或2y x =+7. 直线xsinα+ycosα+1=0与直线xcosα-ysinα+2=0的位置关系是……………….( )A 平行B 相交但不垂直C 垂直D 视α的取值而定8. 若过点(3,1)总可以作两条直线和圆22(2)()(0)x k y k k k -+-=>相切,则k 的取值 范围是.( ).A (0,2) .B (1,2) .C (2,+∞) .D (0,1)∪(2,+∞)9. 圆心为1,32C ⎛⎫- ⎪⎝⎭的圆与直线:230l x y +-=交于P 、Q 两点,O 为坐标原点,且满足0OP OQ ⋅=,则圆C 的方程为………………。
新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(有答案解析)(1)
一、选择题1.下列命题中,正确的是( )A .若直线的倾斜角越大,则直线的斜率就越大B .若直线的倾斜角为α,则直线的斜率为tan αC .若直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率k 的取值范围是(,3][1,)-∞-⋃+∞ D .当直线的倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦时,直线的斜率在这个区间上单调递增. 2.直线()()()230x m x y m -+-+=∈R 过下面哪个定点( ) A .()4,0B .()0,4C .()2,5D .()3,23.如图一所示,在平面内,点P 为圆O 的直径AB 的延长线上一点,2AB BP ==,过动点Q 作圆的切线QR ,满足2PQ QR =,则QAP 的面积的最大值为( )A .83B 83C .163D 1634.若过直线3420x y +-=上一点M 向圆C :()()22234x y +++=作一条切线切于点T ,则MT 的最小值为( )A 10B .4C .22D .235.已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =( ) A .2B .12C .2-或12D .2或12-6.已知圆1C :224470x y x y ++-+=与圆2C :()()222516x y -+-=的位置关系是( ) A .外离B .外切C .相交D .内切7.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=8.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( ) A .32B .32-C .32±D .12±9.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-10.点(2,3)P 到直线:(1)30ax a y +-+=的距离d 最大时,d 与a 的值依次为( )A .3,-3B .5,2C .5,1D .7,111.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点(4,3)A -处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ) A .8B .7C .6D .512.圆心为1,32C ⎛⎫-⎪⎝⎭的圆与直线:230l x y +-=交于P 、Q 两点,O 为坐标原点,且满足0OP OQ ⋅=,则圆C 的方程为( ) A .2215()(3)22x y -+-= B .2215()(3)22x y -++= C .22125()(3)24x y ++-=D .22125()(3)24x y +++=二、填空题13.已知三条直线的方程分别为0y =0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.15.经过点(2,1)M ,并且与圆2268240x y x y +--+=相切的直线方程是________. 16.已知圆C 的方程为2240x x y -+=,直线l :330kx y k -+-=与圆C 交于A ,B 两点,则当ABC 面积最大时,直线l 的斜率k =______.17.过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线一般式方程是___________18.已知直线y x b =+与曲线x =恰有两个交点,则实数b 的取值范围为______. 19.过点(3,5)A 作圆2248800x y x y +---=的最短弦,则这条弦所在直线的方程是__. 20.以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0公共弦为直径的圆的方程为________.三、解答题21.圆224x y +=,点P 为直线:80l x y +-=上一动点,过点P 引圆O 的两条切线,切点分别为A ,B .(1)若点P 的坐标为()2,6,求直线PA 、PB 的方程; (2)求证:直线AB 恒过定点Q ,并求出该定点Q 的坐标. 22.已知直线2:(24)30l a a x ay -+--=.(1)若直线l 过点(1,0)A ,试写出直线l 的一个方向向量; (2)若实数0a ≠,求直线的倾斜角α的取值范围.23.已知圆C 与x 轴相切于点()1,0,且圆心C 在直线3y x =上, (1)求圆C 的方程;(2)若圆C 与直线y x m =+交于不同两点A ,B ,若直角坐标系的原点O ,在以线段AB 为直径的圆上,求实数m 的值.24.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 25.已知动点P 到两个定点(0,0),(3,0)O A 的距离之比为12. (1)求动点P 的轨迹C 的方程;(2)若过点()1,3B 的直线l 与曲线相切,求直线l 的方程;(3)已知圆Q 的圆心为(,)(0)Q t t t >,且圆Q 与x 轴相切,若圆Q 与曲线C 有公共点,求实数t 的取值范围.26.已知圆C :x 2+y 2+Dx +Ey -12=0过点(P -,圆心C 在直线l :x -2y -2=0上. (1)求圆C 的一般方程.(2)若不过原点O 的直线l 与圆C 交于A ,B 两点,且12OA OB ⋅=-,试问直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据直线斜率与倾斜角存在的关系tan k α=对每个选项逐一分析,需要注意直线有倾斜角但不一定有斜率. 【详解】 倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,倾斜角的范围为,2ππ⎛⎫⎪⎝⎭时,直线斜率0k <,故A 错误;直线的倾斜角=2πα时,直线斜率不存在,故B 错误;直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率tan k α=的范围为(,[1,)-∞⋃+∞,故C 正确;斜率tan k α=在,42ππ⎡⎫⎪⎢⎣⎭和2,23ππ⎡⎫⎪⎢⎣⎭上单调递增,故D 错误. 故选:C. 【点睛】关于直线的倾斜角与直线斜率之间的关系需要注意: (1)当直线倾斜角为=2πα时,直线的斜率不存在;(2)倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,直线斜率随着倾斜角增大而增大;倾斜角的范围为,2ππ⎛⎫⎪⎝⎭时,直线斜率0k <,直线斜率随着倾斜角增大而增大; (3)利用倾斜角的范围研究斜率的范围,或者利用斜率的范围研究倾斜角的范围,需要利用函数tan k α=分析定义域与值域的关系.2.C解析:C 【分析】由恒等式的思想得出2030x x y -=⎧⎨-+=⎩,解之可得选项.【详解】由2030x x y -=⎧⎨-+=⎩,解得:25x y =⎧⎨=⎩,故直线过恒过点()2,5,故选:C. 【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.3.B解析:B 【分析】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系,利用两点间距离公式推导出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,由此能求出QAP 的面积的最大值. 【详解】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系, 因为2AB BP ==,所以()3,0P,设(),Q x y因为过动点Q 作圆的切线QR ,满足2PQ QR =,()2224PQ QO OR =-所以()()2222341x y x y -+=+-,整理得:()221613x y ++=, 所以点Q 的轨迹是以()1,0-3所以当点Q 在直线1x =-上时,3y =此时点Q 到AP 距离最大,QAP 的面积的最大,所QAP 的面积最大为11834223333QAPS AP =⨯=⨯==, 故选:B 【点睛】关键点点睛:本题的关键点是建立直角坐标系,设(),Q x y ,利用()222244PQ QR OQ OR ==-,即可求出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,即为三角形高最大,从而QAP 的面积最大.4.D解析:D 【分析】根据题意,求出圆的圆心与半径,由切线长公式可得||MT =||MC 取得最小值时,||MT 的值最小,由点到直线的距离分析||MC 的最小值,进而计算可得答案. 【详解】根据题意,圆22:(2)(3)4C x y +++=,其圆心为(2,3)--,半径2r m =,过点M 向圆C 作一条切线切于点T ,则||MT == 当||MC 取得最小值时,||MT 的值最小,而||MC 的最小值为点C 到直线3420x y +-=的距离,则||4min MC ==,则||MT = 故选:D 【点睛】方法点睛:解析几何中的最值问题,常用的方法有:(1)函数单调性法;(2)导数法;(3)数形结合法;(4)基本不等式法.要结合已知条件灵活选择合适的方法求解.本题利用的是数形结合的方法求最值的.5.C解析:C 【分析】根据勾股定理由切线长最小值求出||PC C 到直线l 的距离为l 的方程,根据点到直线的距离列式可解得结果.【详解】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC ==所以圆心C 到直线l ,所以直线必有斜率,设:(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --===22320k k +-=,解得12k =或2k =-.故选:C 【点睛】关键点点睛:根据勾股定理由切线长的最小值求出||PC 的最小值,也就是圆心C 到直线l的距离是解题关键.6.B解析:B 【分析】分别求得两圆的圆心坐标和半径,结合圆与圆的位置关系的判定方法,即可求解. 【详解】由题意,圆1C :224470x y x y ++-+=,可得圆心坐标为1(2,2)C -,半径为11r =,圆2C :()()222516x y -+-=,可得圆心坐标为1(2,5)C ,半径为14r =,又由125C C ==,且12145r r =+=+,即1212C C r r =+,所以圆12,C C 相外切. 故选:B. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.7.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.8.A解析:A 【分析】先根据半径和周长计算弦长AB =即可.【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC的周长为4+24r AB +=+AB =又直线与圆相交后的弦心距d ==,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.9.D解析:D 【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()1,3d ==,解得m -<<m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.10.C解析:C 【分析】将直线方程整理为()()30a x y y ++-=,可得直线()130ax a y +-+=经过定点()3,3Q -,由此可得当直线()130ax a y +-+=与PQ 垂直时PQ 的长,并且此时点P 到直线的距离达到最大值,从而可得结果. 【详解】直线()130ax a y +-+=, 即()()30a x y y ++-=,∴直线()130ax a y +-+=是过直线0x y +=和30y -=交点的直线系方程,由030x y y +=⎧⎨-=⎩,得33x y =-⎧⎨=⎩,可得直线()130ax a y +-+=经过定点()3,3Q -,∴当直线()130ax a y +-+=与PQ 垂直时,点()2,3P 到直线()130ax a y +-+=的距离最大,d ∴的最大值为5PQ ==,此时//PQ x 轴,可得直线()130ax a y +-+=斜率不存在,即1a =. 故选:C. 【点睛】本题主要考查直线的方程与应用,以及直线过定点问题,属于中档题. 探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元(往往可以化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ,从特殊情况入手,先探求定点,再证明与变量无关.11.C解析:C 【分析】求出A 关于y 4x +=的对称点A ',根据题意,1A C '-为最短距离,求出即可. 【详解】设点A 关于4x y +=的对称点(,)A a b ',设军营所在区域为的圆心为C ,根据题意,1A C '-为最短距离,∴AA '的中点为43,22a b +-⎛⎫⎪⎝⎭,,直线'AA 的斜率为1, ∴434,22,31,4a b b a +-⎧+=⎪⎪⎨+⎪=⎪-⎩解得:7,0a b ==,∴1716A C '-=-=,故选: C. 【点睛】本题考查点关于直线对称,点与圆心的距离,考查运算求解能力,求解时注意对称性的应用.12.C解析:C 【分析】根据题中所给的圆心坐标,设出圆的标准方程,根据题中所给的条件,求得2r 的值,得出结果. 【详解】 因为圆心为1,32C ⎛⎫-⎪⎝⎭, 所以设圆的方程为:2221()(3)2x y r ++-=, 将直线方程代入圆的方程,得到228552004y y r -+-=, 设1122(,),(,)P x y Q x y ,则有21212174,45r y y y y +=⋅=-,因为0OP OQ ⋅=,所以12120x x y y +=, 所以1212(32)(32)0y y y y -⋅-+=,整理得121296()50y y y y -++=,即2179645()045r -⨯+⨯-=,求得2254r =, 所以圆C 的方程为:22125()(3)24x y ++-=, 故选:C. 【点睛】该题考查的是有关圆的方程的求解,涉及到的知识点有圆的标准方程,关于垂直条件的转化,属于简单题目.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离解析:(0,30,(-【分析】先画出图形,求出(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :3(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组03(1)3xy x =⎧⎪⎨=+⎪⎩得交点为3(0,); ACB ∠的外角平分线CE :3(1)y x =-+和ABC ∠的外角平分线BF :3(1)y x =-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y x y x ⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB ∠的外角平分线CG :3(1)y x =-+和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC ∠的外角平分线BH :3(1)y x =-和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2【分析】根据切线的性质可将面积转化为21PACB S PC =-,求出PC 的最小值即()0,1C -到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.15.或【分析】求出圆心和半径判断斜率不存在的直线是否是切线斜率存在时设出直线方程由圆心到切线距离等于半径求得参数值得切线方程【详解】圆标准方程是圆心为半径为1易知直线与圆相切设斜率存在的切线方程为即由解解析:2x =或4350x y --= 【分析】求出圆心和半径,判断斜率不存在的直线是否是切线,斜率存在时设出直线方程,由圆心到切线距离等于半径求得参数值得切线方程. 【详解】圆标准方程是22(3)(4)1x y -+-=,圆心为(3,4),半径为1. 易知直线2x =与圆相切,设斜率存在的切线方程为1(2)y k x -=-,即210kx y k --+=,1=,解得43k =,切线方程为481033x y --+=,即4350x y --=.故答案为:2x =或4350x y --=. 【点睛】本题考查求圆的切线方程,解题方法是由圆心到切线的距离等于半径求解.但解题时要注意过定点斜率不存在的直线是否是切线,否则由方程求不出此直线方程.如果所过的点在圆上,由可由过切点的半径与切线垂直得出切线斜率后得直线方程.16.1或【分析】由三角形面积公式求得面积最大时这样可求得圆心到直线的距离再由点到直线距离公式求得斜率【详解】圆的标准方程为直线可变形为则圆心为半径为2直线过定点由面积公式可得所以当即圆心到直线的距离为时解析:1或7- 【分析】由三角形面积公式求得ABC 面积最大时,2ACB π∠=,这样可求得圆心C 到直线BC的距离,再由点到直线距离公式求得斜率k . 【详解】圆C 的标准方程为()2224x y -+=,直线l 可变形为()33y k x =-+,则圆心C 为()2,0,半径为2,直线l 过定点()3,3, 由面积公式可得21sin 2sin 22ABCS r ACB ACB =∠=∠≤, 所以当2ACB π∠=,即圆心C 到直线l的距离为d =ABC 的面积取得最大值,所以d ==,解得1k =或7-.故答案为:1或7-. 【点睛】易错点睛:直线与圆相交于,A B ,圆心为C ,ABC 面积为21sin 2S r ACB =∠,当ACB ∠的最大值θ不小于2π时,2ABC π∠=时,S 取得最大值212r ,当ACB ∠的最大值2πθ<时,S 取得最大值21sin 2r θ.不是任何时候最大值都是212r . 17.或【分析】当纵截距为时设直线方程为代入点求得的值得解当纵截距不为时设直线的截距式方程代入点求得直线的方程【详解】当轴上的截距时设直线方程为点代入方程得即当时设直线的方程为点代入方程解得即直线方程为即解析:290x y +-=或250x y -= 【分析】当纵截距为0时,设直线方程为y kx =,代入点()5,2求得k 的值得解,.当纵截距不为0时,设直线的截距式方程,代入点()5,2求得直线l 的方程. 【详解】当y 轴上的截距0b =时,设直线方程为y kx =,点()5,2代入方程,得25y x =,即250x y -=.当0b ≠时,设直线的方程为12x y b b +=,点()5,2代入方程,解得92b =,即直线方程为1992x y+=,即290x y +-=.故答案为:250x y -=或290x y +-=【点睛】讨论截距为0或截距不为0是解题关键,否则会漏解,属于基础题.18.【分析】由曲线方程可知其曲线为半圆进而画出曲线来要使直线与曲线恰有两个交点可以通过数形结合分析得解【详解】曲线有即表示一个半圆(单位圆左半部分)如图当直线经过点点时求得;当直线和半圆相切时由圆心到直解析:⎡⎣【分析】由曲线方程可知其曲线为半圆,进而画出曲线来,要使直线与曲线恰有两个交点,可以通过数形结合分析得解. 【详解】曲线x =有即221x y +=(0)x ,表示一个半圆(单位圆左半部分).如图,(0,1)A 、(1,0)B -、(0,1)C -,当直线y x b =+经过点B 、点A 时,01b =-+,求得1b =; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得1=b =b =(舍去),故要求的实数b 的范围为12b <,故答案为:)1,2⎡⎣【点睛】易错点睛:本题在把方程2x 1y =--化简找其对应的曲线时,容易漏掉0x ≤,从而把曲线的范围扩大为整个单位圆,导致结果出错.在把方程转化时,一定要注意变量范围的等价性.19.【分析】利用配方法将圆化成标准方程得其圆心为当垂直这条弦时所得到的弦长最短求出直线的斜率后再根据两条直线垂直的条件和点斜式即可得解【详解】解:将圆化成标准形式为圆心为则点A 在圆内当垂直这条弦时所得到 解析:80x y +-=【分析】利用配方法将圆化成标准方程,得其圆心为M ,当AM 垂直这条弦时,所得到的弦长最短,求出直线AM 的斜率AM k 后,再根据两条直线垂直的条件和点斜式即可得解. 【详解】解:将圆2248800x y x y +---=化成标准形式为22(2)(4)100x y -+-=,圆心为(2,4)M ,则点A 在圆内,当AM 垂直这条弦时,所得到的弦长最短,54132AM k -==-, ∴这条弦所在直线的斜率为1-,其方程为5(3)y x -=--,即80x y +-=.故答案为:80x y +-=. 【点睛】本题考查直线截圆的弦长问题,熟练掌握圆的一般方程与标准方程互化、两条直线垂直的条件等基础知识点是解题的关键,考查学生的数形结合思想、逻辑推理能力和运算能力,属于中档题.20.x2+y2-4x +4y -17=0【解析】试题分析:解法一:先两圆方程相减得到公共弦方程再联立直线和圆的方程求出公共点坐标进而求出圆的半径和圆心写出圆的方程即可;解法二:先两圆方程相减得到公共弦方程再解析:x 2+y 2-4x +4y -17=0【解析】试题分析:解法一:先两圆方程相减,得到公共弦方程,再联立直线和圆的方程求出公共点坐标,进而求出圆的半径和圆心,写出圆的方程即可;解法二:先两圆方程相减,得到公共弦方程,再利用圆系方程进行求解. 试题解法一:联立两圆方程22221221301216250x y x y x y x y ⎧+---=⎨+++-=⎩, 相减得公共弦所在直线方程为4x +3y -2=0. 再由221221304320x y x y x y ⎧+---=⎨+-=⎩,联立得两圆交点坐标(-1,2)、(5,-6). ∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2)5=, ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数). 可求得圆心1212162(,)2(1)2(1)C λλλλ----++.∵圆心C 在公共弦所在直线上, ∴121216243202(1)2(1)λλλλ---⨯+⨯-=++,解得λ=12. ∴圆C 的方程为x 2+y 2-4x +4y -17=0.三、解答题21.(1)43100x y -+=或2x =;(2)证明见解析;11,22Q ⎛⎫ ⎪⎝⎭. 【分析】(1)考虑斜率不存在的直线是切线,然后当切线的斜率存在时设切线方程为()62y k x -=-,由圆心到切线的距离等于半径求出k 即得;(2)设P 点坐标,求出以PO 为直径的圆的方程,与已知圆方程相减可得直线AB 方程,整理成关于参数的恒等式,可得定点坐标. 【详解】解:(1)由题意,当切线的斜率存在时设切线方程为()62y k x -=-,即260kx y k --+=2=,解得43k =,即43100x y -+=. 当切线的斜率不存在时,方程为2x =满足题意. 综上所述,所求的切线的方程为43100x y -+=或2x =. (2)证明:根据题意,点P 为直线80x y +-=上一动点,设()8,P m m -,∵PA ,PB 是圆O 的切线,∴OA PA ⊥,OB PB ⊥. ∴AB 是圆O 与以PO 为直径的两圆的公共弦.由于以PO 为直径的圆的方程为2222442222m m m m x y ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,即()2280x m x y my --+-=,①又圆O 的方程为224x y +=②.①—②,得()840m x my -+-=,即()840m y x x -+-=, 则该直线必过点11,22Q ⎛⎫ ⎪⎝⎭. 【点睛】结论点睛:本题考查圆的切线方程,相交弦所在直线方程.对切线,一般由圆心到切线的距离等于半径去判断求解,而相交两圆方程相减后可得相交弦所在直线方程,如果外切,则得这一条公切线方程.22.(1)直线l 的一个方向向量为(1,3);(2)arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【分析】(1)将A 代入直线l 方程求a ,写出直线方程即可得l 的方向向量; (2)由直线方程得斜率42k a a=+-,讨论a 并利用基本不等式求k 的范围,进而可得倾斜角的范围. 【详解】(1)把(1,0)A 代入直线l 的方程,得2210a a -+=,解得1a =,此时直线l 的方程为330x y --=,故直线l 的一个方向向量为(1,3);(2)因为0a ≠,所以直线l 的斜率22442a a a a k a-+=+-=,∴当0a >时,4222k a a +-≥==当且仅当2a =时等号成立;当0a <时,4)()]22[(6a ak +--≤---=-=当且仅当2a =-时等号成立;综上有(,6][2,)k ∈-∞-+∞,可得倾斜角arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】 结论点睛: 直线0ax by c的方向量为(,)b a -或(,)b a -.倾斜角α与斜率k 的关系:tan k α=或arctan k α=. 23.(1)()()22139x y -+-=;(2)1m =. 【分析】(1)求出圆心坐标和半径可得圆方程;(2)设()11,A x y ,()22,B x y ,直线方程代入圆方程一应用韦达定理得1212,x x x x +,已知条件得OA OB ⊥,即12120x x y y +=,由此可求得m 值. 【详解】解:(1)由题意可得:圆心C 的横坐标为1,且圆心直线3y x =上,可得圆心C 坐标为()1,3,半径3r =, 则圆C 的方程为:()()22139x y -+-=.(2)由()()22139y x m x y =+⎧⎪⎨-+-=⎪⎩可得:()22228610x m x m m +-+-+= 设()11,A x y ,()22,B x y 则:122124612x x mm m x x +=-⎧⎪⎨-+⋅=⎪⎩,且241656m m ∆=-++,由题意可得:OA OB ⊥,0OA OB ⋅=,即12120x x y y +=,且11y x m =+,22y x m =+,代入化简可得:2210m m -+=求得:1m =,此时满足:2416560m m ∆=-++> 综上可知:1m =. 【点睛】关键点点睛:本题考查求圆的方程,考查直线与圆相交问题,直线与圆相交问题的解法是设而不求思想方法:即设交点为1122(,),(,)A x y B x y ,直线方程代入圆方程,消元整理后应用韦达定理得1212,x x x x +,代入题中其他条件OA OB ⊥,即12120x x y y +=可解得m 值.24.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程.【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 25.(1)22(1)4x y ++=;(2)1x =或12530x y-+=;(3)[3-+. 【分析】(1)设(,)P x y ,由||2||AP PO =结合两点间距离公式可求;(2)可得斜率不存在时满足,当斜率存在时,设出直线方程,利用圆心到直线的距离等于半径求出斜率即可;(3)设出圆Q 方程,利用|2|||2t CQ t -+可求出.【详解】解:(1)由题意知:设(,)P x y , 由||2||AP PO =,得22||4||AP PO =, ∴()2222(3)4x y x y-+=+,整理得22(1)4x y ++=.故动点P 的轨迹C 的方程为22(1)4x y ++=;(2)由(1)知道,曲线C 为以(1,0)-为圆心,2为半径的圆, ①若直线l 斜率不存在,则直线l 为 1x =;②若直线l 斜率存在,设为k ,则直线l 方程为3(1)y k x -=-,即3y kx k =-+,此时圆心C 到直线l 的距离2d ==,化简得:125k =.综上,直线l 方程为1x =或12530x y -+=.(3)∵点Q 的坐标为(,)(0)t t t >,且圆Q 与x 轴相切, ∴圆Q 的半径为t ,∴圆Q 的方程为222()()x t y t t -+-=,∴圆Q 与圆C 的两圆心距离为||CQ == ∵圆Q 与圆C 有公共点,∴|2|||2t CQ t -+,即222(2)221(2)t t t t -+++,解得:33t -+,实数t 的取值范围是[3-+. 【点睛】本题考查圆的切线方程的求解,注意需要讨论斜率不存在的情况,考查圆与圆的位置关系,解题的关键是根据圆心距和半径之间的关系判断. 26.(1)x 2+y 2-4x -12=0;(2)直线l 过定点(2,0). 【分析】(1)根据题意,联立方程求解即可(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠0),联立方程,利用韦达定理得到222(2)212121km km m k ---=-+,进而化简求证;而当直线l 的斜率不存在时,直接求解即可证明题中条件成立 【详解】解:(1)由题意可得圆心C 的坐标为(,)22D E --,则2()2022D E--⨯--=,①因为圆C经过点(P -,所以17120D +--=,②联立①②,解得D =-4,E =0.故圆C 的一般方程是x 2+y 2-4x -12=0.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠0),11(,)A x y ,22(,)B x y .联立224120,,x y x y kx m ⎧+--=⎨=+⎩整理得(k 2+1)x 2+2(km-2)x +m 2-12=0,则1222(2)1km x x k -+=-+,2122121m x x k -=+.因为12OA OB ⋅=-,所以121212x x y y +=-,由1212()()y y kx m kx m =++得,222(2)212121km km m k ---=-+,整理得m (m +2k )=0.因为m ≠0,所以m =-2k ,所以直线l 的方程为y =kx -2k =k (x -2).故直线l 过定点(2,0). 当直线l 的斜率不存在时,设直线l 的方程为x =m ,则A (m ,y ),B (m ,-y ),从而2241212OA OB m m ⋅=--=-,解得m =2,m =0(舍去).故直线l 过点(2,0).综上,直线l 过定点(2,0). 【点睛】关键点睛:解题关键是分类讨论直线l 的情况,并联立方程,利用韦达定理化简,根据直线l 的情况,得到12OA OB ⋅=-121212x x y y =+=-和2241212OA OB m m ⋅=--=-,进而求证,难度属于中档题。
重庆巴川中学选修一第二单元《直线和圆的方程》检测卷(含答案解析)
一、选择题1.1m =-是直线(21)10mx m y +-+=和直线390x my ++=垂直的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.设点(1,2),(2,3)A B -,若直线10ax y ++=与线段AB 有交点,则a 的取值范围是( ) A .[3,2]- B .[2,3]-C .(,2][3,)-∞-⋃+∞D .(,3][2,)-∞-⋃+∞3.已知(,0)A a ,(3,0)B a +,直线1x =上存在唯一一点P ,使得||2||PB PA =,则a 的值为( )A .6-B .2-或6C .2或6-D .2-4.若直线1y kx =-与曲线y =有公共点,则k 的取值范围是( ) A .4(0,]3B .14[,]33C .1[0,]2D .[0,1]5.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=6.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±7.设点M 为直线2x =上的动点,若在圆22:3O x y +=上存在点N ,使得30OMN ∠=︒,则M 的纵坐标的取值范围是( )A .[1,1]-B .11,22⎡⎤-⎢⎥⎣⎦C .[-D .22⎡-⎢⎣⎦8.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( )A .5B .5CD9.直线y =x +b 与曲线x =b 的取值范围是( )A .||b =B .-1<b ≤1或b =C .-1≤b <1D .非以上答案10.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=11.已知函数22()()4)()f x x a a a R =-+-∈,若关于x 的不等式()2f x ≤有解,则实数a 的值为( ) A .2-B .2C.D12.已知直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,则k 的值是( ) A .1或0B .5C .0或5D .1或5二、填空题13.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 14.经过点(2,1)M ,并且与圆2268240x y x y +--+=相切的直线方程是________. 15.点P (-3,1)在动直线mx +ny =m +n 上的投影为点M ,若点N (3,3)那么|MN |的最小值为__________.16.与两圆22(2)1x y ++=,22(2)1x y -+=都相切,且半径为3的圆一共有________个17.过点1(,1)2M 的直线l 与圆C :(x ﹣1)2+y 2=4交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为_____.18.已知直线3y ax =+与圆22280x y x ++-=相交于A ,B 两点,点()00,P x y 在直线2y x =上,且PA PB =,则0x 的取值范围为______.19.定义点()00,P x y 到直线()22:00l Ax By C A B ++=+≠的有向距离d =.已知点12,P P 到直线l 的有向距离分别是12,d d ,给出以下命题:①若120-=d d ,则直线12PP 与直线l 平行;②若120d d +=,则直线12PP 与直线l 平行;③若120d d +=,则直线12PP 与直线l 垂直;④若120<d d ,则直线12PP 与直线l 相交.其中正确命题的个数是_______.20.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心在同一条直线上,这条直线称为“欧拉线”.已知ABC 的顶点(2,0),(0,4)A B ,其“欧拉线”的直线方程为20x y -+=,则ABC 的顶点C 的坐标__________.三、解答题21.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.22.如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为,A B .(1)若1t =,求两条切线所在的直线方程;(2)求直线AB 的方程,并写出直线AB 所经过的定点的坐标.23.已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)直线4y kx =-与圆C 交于不同的M ,N 两点,且120MCN ∠=︒,求直线l 的斜率;(3)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.24.根据所给条件求直线的方程:(1)直线过点()3,4-,且在两坐标轴上的截距之和为12;(2)直线m :3260x y --=关于直线l :2310x y -+=的对称直线m '的方程.25.直线21:20l a x y a ++=,2:10l x ay ++=,圆22:650C x y y +-+=.(1)当a 为何值时,直线1l 与2l 垂直;(2)若圆心C 在直线2l 的左上方,当直线2l 与圆C 相交于P ,Q 两点,且22PQ =求直线2l 的方程.26.过圆外一点(0,3)P 作圆()2224x y -+=的两条切线分别与圆交于,A B 两点 (1)求切线,PA PB 的方程; (2)求直线AB 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以0m =或1m =-,再根据充分必要条件的定义判断得解. 【详解】因为直线(21)10mx m y +-+=和直线390x my ++=垂直, 所以23(21)0,220,0m m m m m m ⨯+-⨯=∴+=∴=或1m =-. 当1m =-时,直线(21)10mx m y +-+=和直线390x my ++=垂直; 当直线(21)10mx m y +-+=和直线390x my ++=垂直时,1m =-不一定成立. 所以1m =-是直线()2110mx m y +-+=和直线390x my ++=垂直的充分不必要条件, 故选:A . 【点睛】方法点睛:充分必要条件的常用的判断方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件选择合适的方法求解.2.D解析:D 【分析】求出线段AB 的方程,列方程组求得直线与线段交点坐标(横坐标),由21x -≤≤可求得a 的范围. 【详解】321213AB k -==---,∴AB 方程为12(1)3y x -=--,即370x y +-=,由10370ax y x y ++=⎧⎨+-=⎩,解得1013x a =-,(显然310a -≠),由102113a -≤≤-解得3a ≤-或2a ≥. 故选:D . 【点睛】方法点睛:本题考查直线与线段有公共点问题,解题方法有两种:(1)求出直线AB 方程,由直线AB 方程知直线方程联立方程组求得交点坐标(只要求得横坐标),然后由横坐标在已知两个点的横坐标之间列不等式解之可得;(2)求出直线过定点P ,再求出定点P 与线段两端点连线斜率,结合图形可得直线斜率范围,从而得出参数范围.3.B解析:B 【分析】设(),P x y ,由||2||PB PA =可得()2214x a y -++=,则本题等价于直线1x =与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径即可求解. 【详解】设(),P x y ,由||2||PB PA =可得()()2222344x a y x a y --+=-+,整理可得()2214x a y -++=,则直线1x +=上存在唯一一点P ,使得||2||PB PA =,等价于直线1x =与圆()2214x a y -++=相切,2=,解得2a =-或6.故选:B. 【点睛】关键点睛:解决本题的关键是将题转化为直线1x +=与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径求解.4.D解析:D 【分析】1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出两函数图像,找出两图像有公共点时k 的范围即可. 【详解】解:根据题意可得:1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出函数图像,如图所示: 当直线与曲线相切时:0k =,当()1,0在直线上时,代入可得1k =,所以两函数图像有公共点的k 的范围是[]0,1. 故选:D.【点睛】本题考查直线与圆的位置关系,利用了数形结合的思想,属于中档题. 方法点睛:(1)画出函数图像;(2)根据图像找到有公共点的相切或相交的情况; (3)根据公式计算,得到结果.5.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 6.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意.所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题7.C解析:C 【分析】在OMN=,从而得到M y =ONM ∠的取值范围,求出M y 的取值范围,即可得解; 【详解】解:设()2,M M y ,在OMN 中,由正弦定理得sin sin OM ONONM OMN=∠∠因为30OMN ∠=︒,ON =12==整理得M y =由题意知0150ONM ︒<∠<︒,所以(]sin 0,1ONM ∠∈,所以sin 1ONM ∠=时,M y 取得最值,即直线MN 为圆22:3O x y +=的切线时,My取值最值,所以M y ⎡∈-⎣故选:C【点睛】本题考查直线与圆的综合应用,解答的关键转化到OMN 中利用正弦定理计算,考查转化思想;8.A解析:A 【分析】求得圆的圆心坐标和半径,借助11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,即可求解. 【详解】如图所示,设圆()()22341x y -+-=的圆心坐标为(3,4)M ,半径为1r =, 则22345OM =+=,2512426OA =-==,则11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,可得2465OA MA AB OM ⨯⨯==, 故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的切线方程应用,着重考查了推理与运算能力,属于基础题.9.B解析:B 【分析】作出曲线21x y =-,它是单位圆的右半个圆,作出直线y x b =+,求出直线过半圆直径两端点时的b 值,及直线与半圆相切时的b 值可得结论. 【详解】作出曲线21x y =-,它是单位圆的右半个圆,作出直线y x b =+,如图, 易知(0,1),(1,0)A B -,当直线y x b =+过点A 时,1b =,当直线y x b =+过点B 时,1b =-, 当直线y x b =+与半圆相切时,12b =,2b =±,由图可知2b =-∴b 的取值范围是11b -<≤或2b =-. 故选:B【点睛】本题考查直线与圆的位置关系,解题时要注意曲线是半圆,因此直线过B 点时与半圆有两个交点,直线与半圆相切时,也只有一个公共点,这是易错点.10.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.11.A解析:A 【分析】 令22y x =-,则222(0)x y y +=≥,将问题转化为圆222x y +=与圆22()(4)2x a y a -+--=有交点,利用圆心距与半径的关系可得解.【详解】 令22y x =-,则222(0)x y y +=≥,所以()2f x ≤有解化为22()(4)2x a y a -+--≤有解,则问题转化为半圆222(0)x y y +=≥与圆22()(4)2x a y a -+--=有交点,因为圆22()(4)2x a y a -+--=的圆心在直线4y x =+上,如图:22(4)22a a ++≤,即2440a a ++≤,即2(2)0a +≤,解得2a =-. 故选:A【点睛】 关键点点睛:令22y x =-,将问题转化为半圆222(0)x y y +=≥与圆22()(4)2x a y a -+--=有交点是解题关键.12.C解析:C 【分析】由两直线平行得出()224k k k -=-,解出k 的值,然后代入两直线方程进行验证. 【详解】 解:直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,()224k k k ∴-=-,整理得()50k k -=,解得0k =或5.当0k =时,直线11:4l y =-,23:2l y =,两直线平行;当5k =时,直线1:510l x y -+=,23:502l x y -+=,两直线平行. 因此,0k =或5. 故选:C. 【点睛】方法点睛:本题考查直线的一般方程与平行关系,在求出参数后还应代入两直线方程进行验证.(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A2、B1、B2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②2112210A A l B B l +⇔=⊥;二、填空题13.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++,即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.14.或【分析】求出圆心和半径判断斜率不存在的直线是否是切线斜率存在时设出直线方程由圆心到切线距离等于半径求得参数值得切线方程【详解】圆标准方程是圆心为半径为1易知直线与圆相切设斜率存在的切线方程为即由解解析:2x =或4350x y --= 【分析】求出圆心和半径,判断斜率不存在的直线是否是切线,斜率存在时设出直线方程,由圆心到切线距离等于半径求得参数值得切线方程. 【详解】圆标准方程是22(3)(4)1x y -+-=,圆心为(3,4),半径为1. 易知直线2x =与圆相切,设斜率存在的切线方程为1(2)y k x -=-,即210kx y k --+=,1=,解得43k =,切线方程为481033x y --+=,即4350x y --=.故答案为:2x =或4350x y --=. 【点睛】本题考查求圆的切线方程,解题方法是由圆心到切线的距离等于半径求解.但解题时要注意过定点斜率不存在的直线是否是切线,否则由方程求不出此直线方程.如果所过的点在圆上,由可由过切点的半径与切线垂直得出切线斜率后得直线方程.15.【分析】由动直线方程可得动直线经过定点从而得到的轨迹为以线段为直径的圆然后判断点N 在圆外进而得到所求最小值【详解】解:直线mx +ny =m +n 显然经过定点的轨迹为以线段为直径的圆圆心坐标为半径为2在圆解析:2【分析】由动直线方程可得动直线经过定点()A 1,1,从而得到M 的轨迹为以线段PA 为直径的圆,然后判断点N 在圆外,进而得到所求最小值. 【详解】解:直线mx +ny =m +n 显然经过定点()A 1,1,M ∴的轨迹为以线段PA 为直径的圆,圆心坐标为()1,1C -,半径为2,2CN ==>,N ∴在圆外,2min MN ∴=,故答案为: 2. 【点睛】本题关键要分析出动直线经过定点,从而判定M 的轨迹,然后判定N 在圆的外部是不可缺少的.16.7【分析】根据两圆相离可以判定出与两圆都相切且半径为3的圆有7个【详解】解:因为两圆是相离的所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个是以原点为圆心即;与两圆都外切的有2个设切点解析:7 【分析】根据两圆相离,可以判定出与两圆都相切且半径为3的圆有7个. 【详解】解:因为两圆221:(2)1O x y ++=,222:(2)1O x y -+=是相离的,所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个,是以原点为圆心,即229x y +=;与两圆都外切的有2个,设切点为(0,)b 4b =⇒=±∴22(9x y +±=,同理,利用圆与圆的圆心距和半径的关系可得:与圆1O 外切于圆2O 内切的圆有2个;与圆1O 内切于圆2O 外切的圆有2个;分别为223()(92x y ++±=和223()(92x y -+=,共7个, 故答案为:7. 【点睛】由圆心距判断两圆的位置关系相离,再利用直观想象可得与两圆都相切的情况,包括内切和外切两类.17.2x ﹣4y+3=0【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大此时直线l 与直线垂直即可算出的斜率求得直线l 的方程【详解】由题得当∠ACB 最小时直线l 与直线垂直此时又故又直线l 过点所以即故解析:2x﹣4y+3=0【分析】要∠ACB最小则分析可得圆心C到直线l的距离最大,此时直线l与直线CM垂直,即可算出CM的斜率求得直线l的方程.【详解】由题得,当∠ACB最小时,直线l与直线CM垂直,此时102 112CMk-==-- ,又1CM lk k⋅=-,故12lk=,又直线l过点1(,1)2M,所以11:1()22l y x-=-,即2430x y-+= .故答案为2430x y-+=【点睛】本题主要考查直线与圆的位置关系,过定点的直线与圆相交于两点求最值的问题一般为圆心到定点与直线垂直时取得最值.同时也考查了线线垂直时斜率之积为-1,以及用点斜式写出直线方程的方法.18.(﹣10)∪(02)【分析】由题意可得CP垂直平分AB且y0=2x0由•a=﹣1解得x0把直线y=ax+3代入圆x2+y2+2x﹣8=0化为关于x的一元二次方程由△>0求得a的范围从而可得x0的取值解析:(﹣1,0)∪(0,2)【分析】由题意可得CP垂直平分AB,且y0=2x0.由0201xx-+•a=﹣1,解得x0121a-=+,把直线y =ax+3代入圆x2+y2+2x﹣8=0化为关于x的一元二次方程,由△>0,求得a的范围,从而可得x0的取值范围.【详解】解:圆x2+y2+2x﹣8=0 即(x+1)2+y2=9,表示以C(﹣1,0)为圆心,半径等于3的圆.∵|PA|=|PB|,∴CP垂直平分AB,∵P(x0,y0)在直线y=2x上,∴y0=2x0.又CP的斜率等于0201xx-+,∴201xx-+•a=﹣1,解得x0121a-=+.把直线y =ax +3代入圆x 2+y 2+2x ﹣8=0可得,(a 2+1)x 2+(6a +2)x +1=0. 由△=(6a +2)2﹣4(a 2+1)>0,求得 a >0,或a 34-<. ∴﹣1121a -+<<0,或 0121a -+<<2. 故x 0的取值范围为 (﹣1,0)∪(0,2), 故答案为:(﹣1,0)∪(0,2). 【点睛】本题主要考查直线和圆相交的性质,不等式的性质应用,属于中档题.19.1【分析】设点的坐标分别为求出可知当时命题①②③均不正确当时在直线的两边可以判断命题④正确【详解】设点的坐标分别为则若则即所以若即则点都在直线l 上此时直线与直线l 重合故命题①②③均不正确当时在直线的解析:1 【分析】设点12,P P 的坐标分别为()()1122,,,x y x y ,求出12,d d ,可知当120d d ==时,命题①②③均不正确,当120<d d 时,12,P P 在直线的两边,可以判断命题④正确. 【详解】设点12,P P 的坐标分别为()()1122,,,x y x y ,则1d =,2d =,若120-=d d ,则12d d ==,所以1122Ax By C Ax By C ++=++,若120d d ==,即11220Ax By C Ax By C ++=++=,则点12,P P 都在直线l 上, 此时直线12PP 与直线l 重合,故命题①②③均不正确,当120<d d 时,12,P P 在直线的两边,则直线12PP 与直线l 相交,故命题④正确. 故答案为:1. 【点睛】本题主要考查与直线距离有关的命题的判断,利用条件推出点与直线的位置关系是解决本题的关键,综合性较强.20.【分析】设由题意结合重心的性质可得求得AB 的中垂线方程与欧拉线方程联立可得外心由外心的性质可得解方程即可得解【详解】设由重心坐标公式得的重心为代入欧拉线方程得整理得①因为AB 的中点为所以AB 的中垂线 解析:(4,0)-【分析】设(),C m n ,由题意结合重心的性质可得40m n -+=,求得AB 的中垂线方程,与欧拉=可得解. 【详解】设(),C m n ,由重心坐标公式得ABC 的重心为24,33m n ++⎛⎫⎪⎝⎭, 代入欧拉线方程得242033m n++-+=整理得40m n -+=①, 因为AB 的中点为()1,2,40202AB k -==--,所以AB 的中垂线的斜率为12,所以AB 的中垂线方程为()1212y x -=-即230x y -+=, 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,∴ABC 的外心为()1,1-,=,联立①②得4,0m n =-=或0,4m n ==, 当0,4m n ==时,点B 、C 两点重合,舍去; ∴4,0m n =-=即ABC 的顶点C 的坐标为()4,0-. 故答案为:()4,0-. 【点睛】本题考查了直线方程的求解与应用,考查了两点间距离公式的应用,关键是对题意的正确转化,属于中档题.三、解答题21.(1)22(2)(2)9x y ++-=;(2)11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)由三条直线得到三交点,,A B C 构成直角三角形,联立方程组,求得,A C 点的坐标,得到圆心坐标和半径,进而求得圆的方程;(2)由两圆相交,得到|3|||43||a a -<<+,即可求得a 的取值范围. 【详解】(1)由题意,三条直线123:20,:20,:210l x y l x l x y -=+=+-=, 可得2l 平行于y 轴,1l 与3l 互相垂直,三交点,,A B C 构成直角三角形,经过,,A B C 三点的圆就是以AC 为直径的圆. 由方程组2020x y x -=⎧⎨+=⎩,解得21x y =-⎧⎨=-⎩,所以点A 的坐标是(2,1)--.由方程组20210x x y +=⎧⎨+-=⎩,解得25x y =-⎧⎨=⎩,所以点C 的坐标是(2,5)-.可得线段AC 的中点坐标是(2,2)-,又由||6AC =,所以ABC 外接圆的方程为22(2)(2)9x y ++-=.(2)由圆222:()D x a y a -+=与22(2)(2)9x y ++-=相交,所以|3|||43||a a -<<+,化简得6||146||1a a a -+<<+, 当0a <时,12a <-;当0a >时,110a >. 综上可得,a 的取值范围是11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.22.(1) 切线方程为1y =和3410x y +-=;(2) 直线AB 的方程为350x ty --=,恒过定点5,03⎛⎫ ⎪⎝⎭. 【分析】(1) 设切线方程为()1y t k x -=+,由相切可得圆心到切线的距离等于半径,结合1t =即可求出切线的斜率,从而可求出切线方程.(2)求出以P 为圆心,PA 为半径的圆方程,与圆M 方程联立即可求出直线AB 的方程,进而可求出定点的坐标. 【详解】解:(1)由题意知,切线的斜率一定存在,设切线方程为()1y t k x -=+, 即y kx k t =++,则圆心()2,0到直线的距离1d ===,整理得228610k kt t ++-=.当1t =时,222861860k kt t k k ++-=+=,解得0k =或34-, 则切线方程为1y =和3410x y +-=. (2)由题意知,()()22221209PMt t =--+-=+,所以22228PA PM MA t =-=+,即以P 为圆心,PA 为半径的圆方程为()()22218x y t t ++-=+,与圆M 方程联立得,()()2222218(2)1x y t t x y ⎧++-=+⎪⎨-+=⎪⎩,两式相减整理得350x ty --=,当0y =时,53x =, 所以直线AB 的方程为350x ty --=,恒过定点5,03⎛⎫ ⎪⎝⎭. 【点睛】 方法点睛:直线和圆相切问题的处理方法一般有两种:一是联立直线方程和圆的方程,通过0∆=解决问题;二是结合几何意义,即圆心到直线的距离等于半径求解. 23.(1)224x y +=;(2)k =;(3)(4,0). 【分析】(1)设出圆心(,0)C a ,根据直线与圆C 相切,得到圆心到直线的距离等于4,确定圆心坐标,即可得圆C 的方程.(2)根据垂径定理及勾股定理,由过点(1,1)P 的直线1l 被圆C截得的弦长等于斜率存在与不存在两种情况讨论,即可求出直线1l 的方程.(3)当AB x ⊥轴时,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设出方程与圆的方程联立,结合AN BN k k =-,即可求出点N 的坐标. 【详解】(1)设圆心5(,0)2C a a ⎛⎫>-⎪⎝⎭,则|410|25a , 解得0a =或5a =-(舍). 故圆C 的方程为224x y +=.(2)由题意可知圆心C 到直线1l 的距离为2sin301.1,解得k =.(3)当直线AB x ⊥轴时,对x 轴正半轴上任意一点,N x 轴平分ANB ∠; 当直线AB 的斜率存在时,设直线AB 的方程为()()1122(1)(0),(,0),,,,y k x k N t A x y B x y =-≠, 由224,(1)x y y k x ⎧+=⎨=-⎩得()22221240k x k x k +-+-=, 2212122224,11k k x x x x k k -∴+==++ 若x 轴平分ANB ∠,则AN BN k k =-,即12120y yx t x t+=--,即()()1212110k x k x x tx t--+=--,即()12122(1)20x x t x x t -+++=,即()2222242(1)2011k k t t k k -+-+=++,解得4t =. 综上,当点N 的坐标为(4,0)时,x 轴平分ANB ∠.【点睛】关键点点睛:本题第二问解题的关键是得到圆心到直线的距离为1,第三问解题的关键是由x 轴平分ANB ∠,得AN BN k k =-,进而利用坐标表示斜率求解. 24.(1)4160x y -+=或390x y +-=;(2)9461020x y -+= 【分析】(1)设出截距式方程,由条件列出式子即可求出;(2)在直线m 上取一点,如()2,0M ,求出()2,0M 关于直线l 的对称点M ',求出m 与l 的交点,即可求出直线方程. 【详解】(1)由已知得直线不过原点,设直线方程为1x ya b+=, 则可得34112a ba b -⎧+=⎪⎨⎪+=⎩,解得416a b =-⎧⎨=⎩或93a b =⎧⎨=⎩, 则直线方程为1416x y+=-或193x y +=,整理可得4160x y -+=或390x y +-=; (2)在直线m 上取一点,如()2,0M ,则()2,0M 关于直线l 的对称点M '必在直线m '上,设(),M a b ',则2023*******23a b b a ++⎧⨯-⨯+=⎪⎪⎨-⎪⨯=-⎪-⎩,解得630,1313M '⎛⎫⎪⎝⎭, 设直线m 与l 的交点为N ,则联立方程32602310x y x y --=⎧⎨-+=⎩可解得()4,3N ,则m '的方程为34306341313y x --=--,即9461020x y -+=. 【点睛】方法点睛:关于轴对称问题:(1)点(),A a b 关于直线0Ax By C ++=的对称点(),A m n ',则有1022n b A m a B a m b n A B C ⎧-⎛⎫⨯-=- ⎪⎪⎪-⎝⎭⎨++⎪⋅+⋅+=⎪⎩;(2)直线关于直线的对称可转化为点关于直线的对称问题来解决.25.(1)0a =或1a =-(2)10x y -+=【分析】(1)根据两条直线平行的条件列式解得结果即可得解;(2)设圆心(0,3)C 到直线2l 的距离为d ,利用弦长求出d ,根据圆心到直线的距离求出d ,由此可求出a ,再根据圆心C 在直线2l 的左上方,舍去一个值,从而可得直线2l 的方程. 【详解】(1)由直线1l 与2l 垂直得20a a +=,解得0a =或1a =-; (2)圆22:650C x y y +-+=的圆心(0,3)C ,半径为2,设圆心(0,3)C 到直线2l 的距离为d,则d ==又d ==,所以27610a a +-=,所以17a =或1a =-,当17a =时,21:107l x y ++=,由0x =得73y =-<,此时圆心C 在直线2l 的右上方,不符合题意;当1a =-时,2:10l x y -+=,由0x =得1y =3<,此时圆心C 在直线2l 的左上方; 故直线2l 的方程为:10x y -+= 【点睛】结论点睛:根据两条直线的位置关系求参数的结论:若1111:0l A x B y C ++=,2222:0l A x B y C ++=,11,A B 不同为0,22,A B 不同为0,①若12l l //,则12210A B A B -=且12210AC A C -≠或12210B C B C -≠;②若12l l ⊥,则12120A A B B +=.26.(1)0x =,512360x y +-=;(2)230x y -=. 【分析】(1)分斜率存在和斜率不存在两种情况求解,利用圆心到直线的距离等于半径,求切线方程;(2)首先求以PC 为直径的圆,然后两圆相减即是直线AB 所在直线方程. 【详解】(1)当过点()0,3P ,斜率不存在时,直线0x =与圆相切,满足条件,当斜率存在时,设切线方程3y kx =+,即30kx y -+=,圆心()2,0到直线30kx y -+=的距离2d ==,解得:512k =-, 切线方程:5312y x =-+,即512360x y +-=, 所以切线,PA PB 的方程分别为0x =,512360x y +-=;(2)设圆()2224x y -+=的圆心()2,0C , CP 的中点 31,2⎛⎫ ⎪⎝⎭,PC ==,半径2r =, 以CP 为直径的圆是()22313124x y ⎛⎫-+-= ⎪⎝⎭,直线AB 为两圆公共弦所在直线, 两圆方程相减即是直线AB 的方程,所以()()222224313124x y x y ⎧-+=⎪⎨⎛⎫-+-=⎪ ⎪⎝⎭⎩,相减后得230x y -=. 所以直线AB 的方程是230x y -=.【点睛】易错点睛:涉及直线与圆相切,和直线与圆相交问题求直线方程时,容易忽略斜率不存在情况的讨论,造成丢解情况,需注意这个问题.。
(完整版)高二数学-直线和圆的方程-单元测试(含答案)
高二直线和圆的方程单元测试卷班级:姓名:一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四 个选项中,只有一项是符合题目要求的.1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取 值范围是A.[0, )B.[0, ] [ 3 , ) 44C.[0, ] 4D.[0, ] ( , ) 422. 如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a 的值等于A. 2B.-2C.2,-2D.2,0,-23.已知圆 O 的方程为 x2+y2=r2,点 P(a,b)(ab≠0)是圆 O 内一点,以 P为中点的弦所在的直线为 m,直线 n 的方程为 ax+by=r2,则A.m∥n,且 n 与圆 O 相交 离B.m∥n,且 n 与圆 O 相C.m 与 n 重合,且 n 与圆 O 相离D.m⊥n,且 n 与圆 O 相离4. 若直线 ax 2by 2 0(a,b 0) 始终平分圆 x2 y2 4x 2 y 8 0 的周长,则 1 2 ab的最小值为A.1B.5C.42D. 3 2 25. M (x0 , y0 ) 为 圆 x2 y2 a2 (a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x0 x y0 y a 2 与该圆的位置关系为A.相切B.相交C.相离D.相切或相交6. 已知两点 M(2,-3),N(-3,-2),直线 L 过点 P(1,1)且与线段MN 相交,则直线 L 的斜率 k 的取值范围是A. 3 ≤k≤4 4B.k≥ 3 或 k≤-4 4C. 3 ≤k≤4 4D.-4≤k≤ 3 47. 过直线 y x 上的一点作圆 (x 5)2 ( y 1)2 2 的两条切线 l1,l2 ,当直线 l1,l2 关于 y x 对称时,它们之间的夹角为A. 30B. 45C. 60D. 90x y 1 08.如果实数x、y满足条件 y 1 0x y 1 0,那么 4x (1)y 的最大值为 2A. 2B.1C. 1 2D. 1 49.设直线过点 (0, a), 其斜率为 1,且与圆 x2 y2 2 相切,则 a 的值为15 . 集 合 P (x, y) | x y 5 0 , x N* , y N* } ,Q (x, y) | 2x y m 0,M x, y) | z x y , (x, y) (P Q) , 若 z 取 最 大 值 时 ,M (3,1),则实数 m 的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或 演算步骤.16.(本小题满分 12 分)已知 ABC 的顶点 A 为(3,-1),AB 边上的中线所在直线方程为 6x 10y 59 0 , B 的平分线所在直线方程为 x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分 12 分) 某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元,2 千 元。
《直线与圆的位置关系》评课稿
《直线与圆的位置关系》评课稿一、课堂教学回顾薛老师执教的高三文科复习课:《直线与圆的位置关系》,首先从一个引例出发,让学生尝试作图和验证,得出知识要点,继而在此基础上继续研究直线方程和轨迹等问题。
例题只有一个,但小题很多,题题递进,环环相扣,在此环节上教师以学生训练为主,教师讲授和引导为辅,共同完成本节课的整体教学内容。
二、课堂特色分析我听了薛老师的这节课认为本节课设计高度重视学生的主动参与、亲自操作,让学生从中去体验学习知识的过程,同时,也注重培养学生的自主学习能力和创新意识。
整体看来这节课的优点很多,很值得我去学习。
总结起来,大概有以下几个特点。
(一)注重一个“渗透”——德育渗透在数学教学中,我们常常把德育教育与辩证唯物主义、爱国主义情怀联系在一起,借助古今中外数学史不惜把数学课上成政治课,却成为一堂蹩脚的课。
其实,通过数学问题的发生和解决过程的教学,培养与锻炼学生知难而进的坚强意志,败而不馁的心理素质,一丝不苟的学习品质,勤于思考的良好学风,勇于探索的创新精神,实事求是的科学态度,这也是是德育教育,更是数学本质上的德育教育。
本课薛老师把这种德育教育渗透到教学的每一个环节,力求“润物细无声”。
当学生解题遇到困难时,教师能给予耐心的引导。
但,在课堂上,处理第(3)小题第二问时,有一名男生利用圆的定义很巧妙地给出了轨迹方程,薛老师可能没有很好地把握表扬的机会,而是询问学生有否最后算出答案,显得有些匆促。
(二)坚持两个“原则”1、例题设计注重分层教学,坚持面向全体学生的原则。
题目母体来源于学生现有教辅书《全品》,却在原题基础上进行了分层递进的改编,让不同的学生都有不同的收获。
以学生的.最近发展区为指向,充分尊重了学生现有的认知水平和个性差异,为不同层次的学生采用适合自己个性的方法进行学习创造了条件。
2、教学过程授人以渔,坚持以学生发展为本的原则。
让学生深刻经历:通过作图和求解基本例题回忆知识结构——通过尝试深化知识内容——通过递进扩展知识联系,教会学生研究的方法,而不是结果。
高中数学第二章-直线与圆单元测试(基础卷)(解析版)
第二章直线与圆单元过关检测 基础A 卷解析版学校:___________姓名:___________班级:___________考号:___________一、单选题1.若圆22220x y x y m ++-+=m =( ) A .32-B .-1C .1D .32【答案】B 【分析】将圆的方程化为标准方程,即可求出半径的表达式,从而可求出m 的值. 【详解】由题意,圆的方程可化为()()22112x y m ++-=-,=1m =-. 故选:B. 【点睛】本题考查圆的方程,考查学生的计算求解能力,属于基础题. 2.若直线l 的倾斜角α满足203πα≤<,且2πα≠,则其斜率k 满足( ).A .0k <≤B .k >C .0k ≥,或k <D .0k ≥,或3k <-【答案】C 【分析】由直线的倾斜角的范围,得到斜率的范围,求解即可. 【详解】由02πα≤<,得tan 0α≥,由223ππα<<,tan α<,故0k ≥,或k <所以本题答案为C.【点睛】本题考查直线的倾斜角和斜率的关系,注意倾斜角的范围,正切函数在0,2π⎡⎫⎪⎢⎣⎭和,2ππ⎛⎫⎪⎝⎭上都是单调增函数.3.点(4,2)P -与圆224x y +=上任一点连线的中点的轨迹方程是( ) A .22(2)(1)1x y -++= B .22(2)(1)4x y -++= C .22(4)(2)4x y ++-= D .22(2)(1)1x y ++-= 【答案】A 【解析】试题分析:设圆上任一点为()00,Q x y ,PQ 中点为(),M x y ,根据中点坐标公式得,0024{22x x y y =-=+,因为()00,Q x y 在圆224x y +=上,所以22004x y +=,即()()2224224x y -++=,化为22(2)(1)1x y -++=,故选A.考点:1、圆的标准方程;2、“逆代法”求轨迹方程.【方法点晴】本题主要考查圆的标准方程、“逆代法”求轨迹方程,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标(),x y ,根据题意列出关于,x y 的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把,x y 分别用第三个变量表示,消去参数即可;④逆代法,将()()00{x g x y h x ==代入()00,0=f x y .本题就是利用方法④求M 的轨迹方程的.4.下列直线中,斜率为43-,且经过第一象限的是( ) A .3470x y ++= B .4370x y ++= C .43420x y +-= D .44420x y +-=【答案】C 【分析】 根据条件斜率为43-,且经过第一象限,依次讨论选项,即得解. 【详解】由直线的斜率为43-,故可排除A ,D 又B 中直线4370x y ++=在x,y 轴的截距分别为77,43--,故不经过第一象限,排除B 故选:C 【点睛】本题考查了直线的方程与图像,考查了学生概念理解,综合分析,数学运算的能力,属于基础题. 5.顺次连接点()4,3A -,()2,5B ,()3,2C ,()3,0D -所构成的图形是( ) A .平行四边形 B .直角梯形C .等腰梯形D .以上都不对【答案】A 【分析】由四个点的坐标可求出AB k ,BC k ,CD k ,AD k 根据斜率关系以及线段的长度,即可得结果. 【详解】因为()4,3A -,()2,5B ,()3,2C ,()3,0D -, 所以()531243AB k -==--,52323BC k -==--,()201333CD k -==--,()30343AD k -==----所以AB CD k k =,BC AD k k =, 所以四边形ABCD 是平行四边形. 故选:A 【点睛】本题主要考查了两直线平行的条件,考查了直线的斜率公式,属于基础题.6.经过点(0,1)P -作直线l ,若直线l 与连接(1,2),(2,1)A B -的线段总有公共点,则l 的倾斜角的取值范围是( ) A .0,4⎡⎤⎢⎥⎣⎦π B .3,44ππ⎡⎤⎢⎥⎣⎦ C .3,4ππ⎡⎫⎪⎢⎣⎭D .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭【答案】D 【分析】结合图形利用,PA PB 的斜率得到直线l 的斜率的取值范围,从而可得直线l 的倾斜角的取值范围. 【详解】设直线l 的斜率为k ,倾斜角为α,1(2)101PA k ---==--,11102PB k --==-,由图可知,11k -≤≤,所以04πα≤≤或34παπ≤<. 故选:D 【点睛】关键点点睛:求直线倾斜角的取值范围的关键是求出直线的斜率的取值范围,结合图象,利用,PA PB 的斜率可得所要求的斜率的取值范围. 7.集合(){}22,4M x y x y =+≤,()()(){}222,11,0N x y x y r r =-+-≤>,且MN N =,则r 的取值范围是() A .()21 B .(]0,1C .(0,22-D .(]0,2 【答案】C 【分析】由题意知集合M 与N 中的两个圆内含或内切,由圆心距与半径差的关系可得结果. 【详解】由M N N ⋂=得N M ⊆,∴圆224x y +=与圆()()22211x y r -+-=内切或内含,∴22r -≥022r <≤故选C.【点睛】本题考查了圆与圆的位置关系,考查了集合间关系的转化,属于基础题.8.已知圆221:(2)(3)1C x y -+-=,圆222:(3)(4)9C x y -+-=,,M N 分别为圆12,C C 上的点,P 为x 轴上的动点,则||||PM PN +的最小值为( )A 17B 171C .622-D .524【答案】D 【分析】求出圆1C 关于x 轴的对称圆的圆心坐标A ,以及半径,然后求解圆A 与圆2C 的圆心距减去两个圆的半径和,即可求得||||PM PN +的最小值,得到答案. 【详解】如图所示,圆1C 关于x 轴的对称圆的圆心坐标3(2,)A -,半径为1, 圆2C 的圆心坐标为(3,4),,半径为3,由图象可知,当,,P M N 三点共线时,||||PM PN +取得最小值, 且||||PM PN +的最小值为圆3C 与圆2C 的圆心距减去两个圆的半径之和, 即22231(32)(34)4524AC --=-+---=-, 故选D .【点睛】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.评卷人 得分二、多选题9.过点(4,1)A 且在两坐标轴上截距相等的直线方程是( ) A .5x y += B .5x y -=C .40x y -=D .04=+y x【答案】AC 【分析】分两种情况求解,过原点时和不过原点时,结合所过点的坐标可求. 【详解】当直线过坐标原点时,直线方程为40x y -=;当直线不过坐标原点时,设直线方程为x y a +=,代入点(4,1)A 可得5a =, 即5x y +=.故选:AC. 【点睛】直线在两坐标轴上截距相等时,有两种情况:一是直线经过坐标原点;二是直线斜率为1-.10.(多选)已知直线l 经过点(3,4),且点(2,2),(4,2)A B --到直线l 的距离相等,则直线l 的方程可能为( )A .23180x y +-=B .220x y --=C .220x y ++=D .2360x y -+=【答案】AB 【分析】由题可知直线l 的斜率存在,所以设直线l 的方程为4(3)y k x -=-,然后利用点到直线的距离公式列方程,可求出直线的斜率,从而可得直线方程 【详解】当直线l 的斜率不存在时,显然不满足题意.当直线l 的斜率存在时,设直线l 的方程为4(3)y k x -=-,即430kx y k -+-=.=,所以2k =或23k =-, 所以直线l 的方程为220x y --=或23180x y +-=. 故选:AB 【点睛】此题考查直线方程的求法,考查点到直线的距离公式的应用,属于基础题11.已知圆22:4O x y +=和圆22:4240M x y x y +-+=+相交于A 、B 两点,下列说法正确的为( ) A .两圆有两条公切线 B .直线AB 的方程为22y x =+C .线段AB 的长为65D .圆O 上点E ,圆M 上点F ,EF 3【答案】AD 【分析】由圆与圆相交可判断A ;两圆方程作差可判断B ;利用垂径定理可判断C ;转化为圆心间的距离可判断D. 【详解】对于A ,因为两圆相交,所以两圆有两条公切线,故A 正确;对于B ,因为圆22:4O x y +=,圆22:4240M x y x y +-+=+, 两圆作差得4244x y -+=-即24y x =+, 所以直线AB 的方程为24y x =+,故B 错误; 对于C ,圆22:4O x y +=的圆心为()0,0,半径为2,则圆心到直线AB 的距离d ==, 所以2245452255AB,故C 错误; 对于D ,圆22:4240M x y x y +-+=+的圆心()2,1M -,半径为1,所以max 213EF OM =++=,故D 正确. 故选:AD.12.古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值λ(1λ≠)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,已知()4,2A -,()2,2B ,点P 满足2PA PB=,设点P 的轨迹为圆C ,下列结论正确的是( )A .圆C 的方程是()()224216x y -+-= B .过点A 向圆C 引切线,两条切线的夹角为3πC .过点A 作直线l ,若圆C 上恰有三个点到直线l 距离为2,该直线斜率为5±D .在直线2y =上存在异于A ,B 的两点D ,E ,使得2PDPE= 【答案】ABD 【分析】根据()4,2A -,()2,2B ,点P 满足2PA PB=,设点(),P x y ,求出其轨迹方程,然后再逐项运算验证.【详解】因为()4,2A -,()2,2B ,点P 满足2PA PB=,设点(),P x y ,则2=,化简得:228440x y x y +--+=,即 ()()224216x y -+-=,故A 正确;因为8,4AC R ==,所以1sin22R AC α==,则 26απ=,解得 3πα=,故B 正确;易知直线的斜率存在,设直线:420l kx y k -++=,因为圆C 上恰有三个点到直线l 距离为2,则圆心到直线的距离为:2d ==,解得15k =±,故C 错误; 假设存在异于A ,B 的两点(),2D m ,(),2E n2=,化简得:2222284124033m n n m x y x y --+++-+=,因为点P 的轨迹方程为:228440x y x y +--+=,所以22288341243m nn m -⎧=-⎪⎪⎨-+⎪=⎪⎩解得126m n =⎧⎨=⎩或 42m n =-⎧⎨=⎩(舍去),故存在 ()()12,2,6,2D E ,故D 正确;故选:ABD 【点睛】关键点点睛:本题关键是根据2PA PB=求出点P 的轨迹方程,进而再根据直线与圆的位置关系求解.三、填空题13.已知圆221:1C x y +=,圆222:(4)25C x y -+=,则两圆公切线的方程为________. 【答案】10x += 【分析】首先判断两圆的位置关系,根据位置关系再求两圆公切线方程. 【详解】解析圆221:1C x y +=,圆心为(0,0),半径为1;圆222:(4)25C x y -+=,圆心为(4,0),半径为5. 易知两圆内切,切点为(1,0)-,又两圆圆心都在x 轴上, 所以两圆公切线的方程为1x =-,即10x +=. 故答案为:10x += 【点睛】本题考查两圆的位置关系,公切线方程,属于基础题型.14.已知直线(34)30mx m y +-+=与直线230x my ++=互相垂直,则实数m 的值是______. 【答案】0或23【分析】利用直线垂直的性质得到2(34)0m m m +-=,解方程即得解. 【详解】∵直线(34)30mx m y +-+=和直线230x my ++=垂直,2(34)0m m m ∴+-=解得0m =或23. 故答案为:0或23.15.光线从点(1,4)射向y 轴,经过y 轴反射后过点(3,0),则反射光线所在的直线方程是________. 【答案】30x y +-=(或写成3y x =-+) 【解析】 【分析】光线从点(1,4)射向y 轴,即反射光线反向延长线经过(1,4)关于y 轴的对称点(1,4)-,则反射光线通过(1,4)-和(3,0)两个点,设直线方程求解即可。
成都七中初中学校选修一第二单元《直线和圆的方程》检测(包含答案解析)
一、选择题1.如果直线:5l y kx =-与圆22240x y x my +-+-=交于M 、N 两点,且M 、N 关于直线20x y +=对称,则直线l 被圆截得的弦长为( )A .2B .3C .4D .2.已知圆22:3C x y +=,从点()2,0A -观察点()2,B a ,要使视线不被圆C 挡住,则a 的取值范围是 ( )A .⎛⎫-∞⋃+∞ ⎪⎝⎭B .()(),22,-∞-+∞C .((),23,-∞-+∞D .((),-∞-⋃+∞3.过点()1,0P 作圆22(2)(2)1x y -+-=的切线,则切线方程为( ) A .1x =或3430x y +-= B .1x =或3430x y --= C .1y =或4340x y -+=D .1y =或3430x y --=4.直线1ax by +=与圆221x y +=有两个公共点,那么点(),a b 与圆22+1x y =的位置关系是( ) A .点在圆外B .点在圆内C .点在圆上D .不能确定5.若圆222(3)(5)x y r -+-=上有且只有四个点到直线432x y +=的距离等于1,则半径r 的取值范围是( ) A .(4,6)B .[4,6]C .(,4)-∞D .(6,)+∞6.已知点()1,0A m -,()()1,00B m m +>,若圆C :2288280x y x y +--+=上存在一点P ,使得PA PB ⊥,则实数m 的取值范围是( ) A .3m ≥ B .3m 7≤≤ C .27m -<≤D .46m ≤≤7.点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于( )A .8B .4C .24D .168.一艘海监船上配有雷达,其监测范围是半径为26 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10 km/h 这艘外籍轮船能被海监船监测到且持续时间长约为( ) 小时 A .1 B .2C .3D .49.曲线214y x 与直线(2)4y k x =-+有两个相异交点,则k 的取值范围是( )A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎤⎥⎝⎦C .53,124D .5,12⎛⎫+∞⎪⎝⎭10.过点(0,2)P 的直线l 与以(1,1)A ,(2,3)B -为端点的线段有公共点,则直线l 的斜率k 的取值范围是( )A .5[,3]2- B .5(,][3,)2-∞-⋃+∞ C .3[,1]2-D .1(,1][,)2-∞-⋃-+∞ 11.已知直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,则k 的值是( ) A .1或0 B .5C .0或5D .1或512.圆心为1,32C ⎛⎫-⎪⎝⎭的圆与直线:230l x y +-=交于P 、Q 两点,O 为坐标原点,且满足0OP OQ ⋅=,则圆C 的方程为( )A .2215()(3)22x y -+-=B .2215()(3)22x y -++=C .22125()(3)24x y ++-=D .22125()(3)24x y +++=二、填空题13.直线:20l mx y m --+=与圆22:6O x y +=交于A 、B 两点,O 为坐标原点,则AOB 面积的最大值为__________.14.已知三条直线的方程分别为0y =0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.15.已知圆C :()2234x y -+=,线段MN 在直线211y x =-+上运动,点P 是线段MN 上任意一点,若圆C 上存在两点A ,B ,使得PA PB ⊥,则线段MN 长度的最大值是___________.16.坐标平面内过点(2,1)A -,且在两坐标轴上截距相等的直线l 的方程为___________. 17.以(1,3)N 为圆心,并且与直线3470x y --=相切的圆的方程为__________. 18.过点()5,0P -作直线()()()121430m x m y m m R +-+--=∈的垂线,垂足为M ,已知点()3,11N ,则MN 的取值范围是______.19.曲线1y =与直线()35y k x =-+有两个交点,则实数k 的取值范围是______.20.已知过抛物线2:4C y x =焦点F 的直线交抛物线C 于P ,Q 两点,交圆2220x y x +-=于M ,N 两点,其中P ,M 位于第一象限,则11PM QN+的最小值为_____.参考答案三、解答题21.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆.已知动点M 到点()1,0A -与点()2,0B 的距离之比为2,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点()5,4P -作曲线C 的切线,求切线方程. 22.已知直线2:(24)30l a a x ay -+--=.(1)若直线l 过点(1,0)A ,试写出直线l 的一个方向向量; (2)若实数0a ≠,求直线的倾斜角α的取值范围.23.已知点(1,0)M -,(1,0)N ,曲线E 上任意一点到点M 的距离均是到点N 距离的3倍.(1)求曲线E 的方程:(2)已知0m ≠,设直线1l :10x my --=交曲线E 于A 、C 两点,直线2l :0mx y m +-=交曲线E 于B 、D 两点,C 、D 两点均在x 轴下方.当CD 的斜率为1-时,求线段AB 的长.24.已知圆C 经过点()1,0A -和()3,4B ,且圆心C 在直线3150x y +-=上. (1)求圆C 的标准方程;(2)设点()()1,0Q m m ->在圆C 上,求△QAB 的面积.25.已知正方形的一条边AB 所在直线为310--=x y ,正方形的中心为()0,1R .求:(1)该正方形的面积;(2)该正方形的两条对角线所在直线的一般式方程.26.已知圆C :(x +3)2+(y -4)2=16,直线l :(2m +1)x +(m -2)y -3m -4=0(m ∈R ). (1)若圆C 截直线l 所得弦AB 的长为211m 的值;(2)若圆C 与直线l 相离,设MN 为圆C 的动直径,作MP ⊥l ,NQ ⊥l ,垂足分别为P ,Q ,当m 变化时,求四边形MPQN 面积的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】由题意推出圆心在直线上,求出m ,求出圆的半径与弦心距,利用圆心距、半径、半弦长满足勾股定理,求出弦长. 【详解】因M 、N 关于直线20x y +=对称,故圆心(1,)2m-在直线20x y +=上,4m ∴=. 又因为直线20x y +=与:5l y kx =-垂直,21K ∴-⨯=-,12K ∴=, 设圆心(1,2)-,到直线1502x y --=的距离为d ,d ∴==圆的半径为3r ==.4MN ∴==.故选:C . 【点睛】关键点点睛:本题的关键是利用对称性可知圆心在直线20x y +=上.2.D解析:D 【分析】设过点与圆相切的直线为()2y k x =+,则圆心到直线的距离解得k =,可得切线方程为)2y x =+,由A 点向圆C 引2条切线,只要点B 在切线之外,那么就不会被遮挡,即a 大于B 点在x 轴上方的纵坐标或者小于B 点在x 轴上方的纵坐标即可. 【详解】设过点()2,0A -与圆22:3C x y +=相切的直线为()2y k x =+,则圆心()0,0到直线的=k =∴切线方程为)2y x =+,由A 点向圆C 引2条切线,只要点B 在切线之外,那么就不会被遮挡,B 在2x =的直线上,在)2y x =+中,取2x =,得y =±,从A 点观察B 点,要使视线不被圆C挡住,需a >a <-,∴a 的取值范围是()(),4343,-∞-⋃+∞, 故选:D.【点睛】本题主要考查直线与圆的位置关系,关键点是求过A 点且与圆相切时的直线方程,考查分析问题解决问题的能力.3.B解析:B 【分析】按照过点P 的直线斜率是否存在讨论,结合直线与圆相切的性质及点到直线的距离公式即可得解. 【详解】圆22(2)(2)1x y -+-=的圆心为()2,2,半径为1,点P 在圆外,当直线的斜率不存在时,直线方程为1x =,点()2,2到该直线的距离等于1,符合题意; 当直线的斜率存在时,设直线方程为()1y k x =-即kx y k 0--=, 22211k k k --=+,解得34k =,所以该切线方程为3430x y --=; 所以切线方程为1x =或3430x y --=. 故选:B. 【点睛】方法点睛:求过圆外一点()00,x y 的圆的切线方程的方法几何法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程;代数法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.4.A解析:A 【分析】直线1ax by +=与圆221x y +=1<,即为1>,由此可得点与圆的位置关系.【详解】因为直线1ax by +=与圆221x y +=有两个公共点, ||1<,1>,因为点(,)b a 与221x y += 圆224x y +=的半径为1,所以点P 在圆外. 故选:A. 【点睛】关键点点睛:本题的关键是将直线与圆的位置关系的判断式和点与圆的关系的判断式联系起来.5.D解析:D 【分析】首先求圆心到直线的距离d ,再根据条件,列式1d +和半径r 比较大小,求r 的取值范围. 【详解】圆心()3,5到直线432x y +=的距离5d ==,若圆上有四个点到直线432x y +=的距离等于1,则51r >+,即6r >. 故选:D 【点睛】思路点睛:本题考查直线与圆的位置关系,与直线432x y +=距离为1的两条直线与圆有4个交点,根据点到直线的距离,建立不等式求解.6.B解析:B 【分析】根据题意,分析圆C 的圆心坐标以及半径,设AB 的中点为M ,由AB 的坐标分析M 的坐标以及|AB |的值,可得以AB 为直径的圆;进而分析,原问题可以转化为圆C 与圆M 有公共点,结合圆与圆的位置关系,分析可得答案. 【详解】根据题意,圆2288280C x y x y +--+=:,即()()22444x y -+-=;其圆心为()4,4,半径2r =, 设AB 的中点为M ,又由点()()1,0,1,0,A m B m -+则()1,0,2M AB m =, 以AB 为直径的圆为()2221x y m -+=,若圆2288280C x y x y +--+=:上存在一点P ,使得PA ⊥PB ,则圆C 与圆M 有公共点,又由5MC ==, 即有25m -≤且25m +≥,即37m ≤≤, 又0,37m m >∴≤≤,故选:B. 【点睛】本题考查直线与圆的位置关系,注意将圆问题转化为圆与圆的位置关系,属于基础题.7.A解析:A 【分析】根据题意,得到四边形PAOB 的面积22PAOS S PA ===只需求PO 最小值,进而可求出结果. 【详解】因为圆224x y +=的圆心为()0,0O ,半径为2r,圆心()0,0O 到直线2100x y ++=的距离为2d ==>,所以直线2100x y ++=与圆224x y +=相离,又点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,所以PA PB =,PA OA ⊥,PB OB ⊥,因此四边形PAOB 的面积为12222PAO PBOPAOS SSSPA r PA =+==⨯⨯== 为使四边形面积最小,只需PO 最小,又min PO 为圆心()0,0O 到直线2100x y ++=的距离d =所以四边形PAOB 的面积的最小值为8=. 故选:A. 【点睛】关键点点睛:求解本题的关键在于根据圆的切线的性质,将四边形的面积化为2224PAOS PO =-,求面积最值问题,转化为定点到线上动点的最值问题,即可求解.8.B解析:B 【分析】根据题意建立合适平面直角坐标系,将问题转化为求直线被圆所截得的弦长问题,然后根据弦长对应的距离求解出监测时间. 【详解】根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴, 所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束, 所以:14030AB x y l +=,即:341200AB l x y +-=, 因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时, 故选:B.【点睛】思路点睛:建立平面直角坐标系求解直线与圆的有关问题的思路:(1)选择合适坐标原点(方便求解直线、圆的方程),建立平面直角坐标系; (2)根据题意写出直线与圆的方程;(3)根据直线与圆的位置关系,采用几何法计算相关长度,完成问题的求解.9.C解析:C 【分析】曲线214y x 表示半圆,作出半圆,直线过定点(2,4),由直线与圆的位置关系,通过图形可得结论.【详解】 曲线214y x 是半圆,圆心是(0,1)C ,圆半径为2,直线(2)4y k x =-+过定点(2,4)P ,作出半圆与过P 的点直线,如图,PD 与圆相切,由221421k k --+=+,解得512k =,即512PD k =, (2,1)A -,4132(2)4PA k -==--,∴53,124k ⎛⎤∈⎥⎝⎦. 故选:C .【点睛】本题考查直线与圆的位置关系,数形结合思想是解题关键,由于题中曲线是半圆,因此作出图形,便于观察得出结论.10.D解析:D 【分析】画出图形,设直线l 的斜率为k ,求出PA k 和PB k ,由直线l 与线段AB 有交点,可知PA k k ≤或PB k k ≥,即可得出答案.【详解】直线过定点(0,2)P ,设直线l 的斜率为k , ∵12110PA k -==--,321202PB k -==---, ∴要使直线l 与线段AB 有交点,则k 的取值范围是1k ≤-或12k ≥-,即1(,1][,)2k ∈-∞-⋃-+∞.故选:D. 【点睛】方法点睛:求直线的斜率(或取值范围)的方法:(1)定义法:已知直线的倾斜角为α,且90α︒≠,则斜率tan k α=; (2)公式法:若直线过两点()11,A x y ,()22,B x y ,且12x x ≠,则斜率2121y y k x x -=-; (3)数形结合方法:该法常用于解决下面一种题型:已知线段AB 的两端点及线段外一点P ,求过点P 且与线段AB 有交点的直线l 斜率的取值范围.若直线,PA PB 的斜率都存在,解题步骤如下: ①连接,PA PB ; ②由2121y y k x x -=-,求出PA k 和PB k ; ③结合图形写出满足条件的直线l 斜率的取值范围.11.C解析:C 【分析】由两直线平行得出()224k k k -=-,解出k 的值,然后代入两直线方程进行验证. 【详解】 解:直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,()224k k k ∴-=-,整理得()50k k -=,解得0k =或5.当0k =时,直线11:4l y =-,23:2l y =,两直线平行;当5k =时,直线1:510l x y -+=,23:502l x y -+=,两直线平行. 因此,0k =或5. 故选:C.【点睛】方法点睛:本题考查直线的一般方程与平行关系,在求出参数后还应代入两直线方程进行验证.(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A2、B1、B2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②2112210A A l B B l +⇔=⊥;12.C解析:C 【分析】根据题中所给的圆心坐标,设出圆的标准方程,根据题中所给的条件,求得2r 的值,得出结果. 【详解】 因为圆心为1,32C ⎛⎫-⎪⎝⎭, 所以设圆的方程为:2221()(3)2x y r ++-=, 将直线方程代入圆的方程,得到228552004y y r -+-=, 设1122(,),(,)P x y Q x y ,则有21212174,45r y y y y +=⋅=-,因为0OP OQ ⋅=,所以12120x x y y +=, 所以1212(32)(32)0y y y y -⋅-+=,整理得121296()50y y y y -++=,即2179645()045r -⨯+⨯-=,求得2254r =, 所以圆C 的方程为:22125()(3)24x y ++-=, 故选:C. 【点睛】该题考查的是有关圆的方程的求解,涉及到的知识点有圆的标准方程,关于垂直条件的转化,属于简单题目.二、填空题13.3【分析】设出圆心到直线的距离为利用几何法求出表示出面积再利用二次函数的性质即可求出【详解】可得直线的定点在圆内则设圆心到直线的距离为则当即即时取得最大值为3故答案为:3【点睛】关键点睛:本题考查圆解析:3 【分析】设出圆心O 到直线的距离为d ,利用几何法求出AB ,表示出面积,再利用二次函数的性质即可求出. 【详解】可得直线:20l mx y m --+=的定点()1,2在圆内,则m R ∈ 设圆心O 到直线的距离为d,则d =AB =,∴12AOBSAB d d =⨯⨯=== 当23d =,即()22231m m -=+,即m =时,AOBS 取得最大值为3.故答案为:3. 【点睛】关键点睛:本题考查圆内三角形面积的最值问题,解题的关键是利用几何法求出AB ,表示出三角形面积,利用二次函数性质求解.14.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离 解析:(0,30,3(-【分析】先画出图形,求出(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组01)3x y x =⎧⎪⎨=+⎪⎩得交点为(0,)3;ACB ∠的外角平分线CE :3(1)y x =-+和ABC ∠的外角平分线BF :3(1)y x =-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y x y x ⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB ∠的外角平分线CG :3(1)y x =-+和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC ∠的外角平分线BH :3(1)y x =-和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.15.【分析】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况此时△APC 和△ABC 均为等腰直角三角形先算出进一步求出答案【详解】题目等同于点P 在已知直线上的轨迹长度考虑边界的情况也就是PAPB 分别与圆 解析:3【分析】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,此时△APC 和△ABC 均为等腰直角三角形,先算出2232lPC d =-=. 【详解】题目等同于点P 在已知直线上的轨迹长度,考虑边界的情况,也就是PA ,PB 分别与圆相切的情况,此时△APC 和△ABC 均为等腰直角三角形,由题意知,圆心()3,0C ,半径2r线段PC 的长为22r =圆心到直线的距离22301152+1d -⨯-+==,根据图像的对称性可知2232lPC d =-= 所以线段MN 长度的最大值为3 故答案为: 3 【点睛】本题考查了直线与圆位置关系的应用.本题的难点是分析何时EF 取到最值.根据考虑边界的情况数形结合得出结论.16.或【分析】按照截距是否为0分两种情况讨论可求得结果【详解】当直线在在两坐标轴上截距相等且为0时直线的方程为;当直线在在两坐标轴上截距相等且不为0时设直线的方程为又直线过点则解得所以直线的方程为;所以解析:12y x =-或1y x =--. 【分析】按照截距是否为0分两种情况讨论,可求得结果. 【详解】当直线l 在在两坐标轴上截距相等且为0时,直线l 的方程为12y x =-; 当直线l 在在两坐标轴上截距相等且不为0时,设直线l 的方程为1x ya a+=,又直线l 过点(2,1)A -,则211a a-+=,解得1a =-,所以直线l 的方程为1y x =--; 所以直线l 的方程为12y x =-或1y x =--. 故答案为:12y x =-或1y x =--. 【点睛】易错点睛:本题考查了直线方程的截距式,但要注意:截距式1x ya b+=,只适用于不过原点或不垂直于x 轴、y 轴的直线,表示与x 轴、y 轴相交,且x 轴截距为a ,y 轴截距为b 的直线,考查学生分类讨论思想,属于基础题.17.【解析】试题分析:由题意得圆心到直线的距离即为半径此题只要求出半径即可试题解析:22256(1)(3)25x y -+-=【解析】试题分析:由题意得,圆心到直线的距离即为半径,此题只要求出半径即可. 试题 因为点到直线的距离由题意得圆的半径则所求的圆的方程为考点:1.直线与圆的相切的应用;2.圆的方程;18.【分析】化已知直线为即有且解方程可得定点可得在以为直径的圆上运动求得圆心和半径由圆的性质可得最值【详解】解:由直线化为令解得所以直线过定点因为为垂足所以为直角三角形斜边为所以在以为直径的圆上运动由点解析:1310,1310⎡⎣【分析】化已知直线为()()2430--+--=m x y x y ,即有240x y --=且30x y --=,解方程可得定点Q ,可得M 在以PQ 为直径的圆上运动,求得圆心和半径,由圆的性质可得最值. 【详解】解:由直线()()()121430m x m y m m R +-+--=∈化为()()2430--+--=m x y x y ,令24030x y x y --=⎧⎨--=⎩,解得12x y =⎧⎨=-⎩,所以直线过定点()1,2Q -,因为M 为垂足,所以PQM 为直角三角形,斜边为PQ ,所以M 在以PQ 为直径的圆上运动,由点()5,0P -可知以PQ 为直径的圆圆心为()2,1C --,半径为()()22510210--++==r则MN 的取值范围-≤≤+CN r MN CN r,又因为()()223211113+++==CN ,所以MN 的取值范围是1310,1310⎡⎤-+⎣⎦. 故答案为:1310,1310⎡⎤-+⎣⎦.【点睛】本题考查直线恒过定点,以及圆的方程的运用,圆外一点与圆上的点的距离的最值求法,考查运算能力,属于中档题.19.【分析】化简式子可得作出图形然后求出直线与该半圆相切时的依据图形简单计算和判断可得结果【详解】由题可知:所以如图又直线即过定点当直线与半圆相切时则当直线过点时所以故答案为:【点睛】本题考查直线与圆的解析:72,243⎛⎤⎥⎝⎦【分析】化简式子可得()()22191+-=≥x y y ,作出图形,然后求出直线与该半圆相切时的k ,依据图形,简单计算和判断可得结果. 【详解】由题可知:219y x =+-,所以()()22191+-=≥x y y 如图又直线()35y k x =-+,即350kx y k 过定点()A 3,5213573241--+=⇒=+k k k 当直线过点()3,1B -时,()512333-==--k所以72,243⎛⎤∈⎥⎝⎦k故答案为:72,243⎛⎤⎥⎝⎦【点睛】本题考查直线与圆的应用,数形结合形象直观,考查分析能力以及计算能力,属中档题.20.【分析】设根据题意可设直线的方程为将其与抛物线方程联立可求出结合图形及抛物线的焦半径公式可得再利用基本不等式即可求出的最小值【详解】圆可化为圆心坐标为半径为抛物线的焦点可设直线的方程为设由得所以又所 解析:2【分析】设11(,)P x y ,22(,)Q x y ,根据题意可设直线PQ 的方程为1x my =+,将其与抛物线C 方程联立可求出121=x x ,结合图形及抛物线的焦半径公式可得12||||1PM QN x x ⋅==,再利用基本不等式,即可求出11PM QN+的最小值. 【详解】圆2220x y x +-=可化为22(1)1x y -+=,圆心坐标为(1,0),半径为1,抛物线C 的焦点(1,0)F ,可设直线PQ 的方程为1x my =+,设11(,)P x y ,22(,)Q x y ,由214x my y x=+⎧⎨=⎩,得2440y my --=,所以124y y =-, 又2114y x =,2224y x =,所以222121212()14416y y y y x x =⋅==,因为1212||||(||||)(||||)(11)(11)1PM QN PF MF QF NF x x x x ⋅=--=+-+-==,所以111122PM QN PM QN+≥⋅=,当且仅当||||1PM QN ==时,等号成立. 所以11PM QN+的最小值为2. 故答案为:2本题主要考查抛物线的几何性质,基本不等式求最值,考查基本运算能力,属于中档题.三、解答题21.(1)()2234x y -+=;(2)50x -=或3410x y ++=. 【分析】(1)设动点M 的坐标为(),x y ,由题意得2MA MB==,化简得()2234x y -+=,即为动点M 的轨迹方程;(2)分类讨论过点P 的直线斜率不存在与存在两种情况,再利用圆心到直线的距离等于半径求解,即可得到答案. 【详解】(1)设动点M的坐标为(),x y ,则MA =,MB =由题意得2MA MB==,化简得()2234x y -+=,因此,动点M 的轨迹方程为()2234x y -+=; (2)当过点P 的直线斜率不存在时,直线方程为5x =,圆心()3,0C 到直线5x =的距离等于2,此时直线50x -=与曲线C 相切; 当过点P 的直线斜率存在时,不妨设斜率为k , 则切线方程为()45y kx +=-,即540kx yk ---=,2=,解得34k =-.所以,切线方程为3410x y ++=.综上所述,切线方程为50x -=或3410x y ++=. 【点睛】方法点睛:本题考查求轨迹方程,及直线与圆相切求切线,求圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题,考查学生的转化能力与运算求解能力,属于一般题.22.(1)直线l 的一个方向向量为(1,3);(2)arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【分析】(1)将A 代入直线l 方程求a ,写出直线方程即可得l 的方向向量; (2)由直线方程得斜率42k a a=+-,讨论a 并利用基本不等式求k 的范围,进而可得倾【详解】(1)把(1,0)A 代入直线l 的方程,得2210a a -+=,解得1a =,此时直线l 的方程为330x y --=,故直线l 的一个方向向量为(1,3);(2)因为0a ≠,所以直线l 的斜率22442a a a a k a-+=+-=,∴当0a >时,4222k a a +-≥==当且仅当2a =时等号成立;当0a <时,4)()]22[(6a ak +--≤---=-=当且仅当2a =-时等号成立;综上有(,6][2,)k ∈-∞-+∞,可得倾斜角arctan 2,,arctan 622ππαπ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】 结论点睛: 直线0ax by c的方向量为(,)b a -或(,)b a -.倾斜角α与斜率k 的关系:tan k α=或arctan k α=.23.(1)22(2)3x y -+=;(2) 【分析】(1)设动点坐标为(,)x y ,由两点间距离公式得等式,化简后可得轨迹方程;(2)由题意知12l l ⊥,且两条直线均过定点(1,0)N ,设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线:2EP y x =-,设直线:CD y x t =-+,可得22(,)22t t P +-,利用圆的几何性质得12NP CD ==0t =或3t =,确定直线:CD y x =-,可得,C D 坐标,然后求得,A B 两点坐标,得弦长AB .【详解】解:(1)设曲线E 上任意一点坐标为(,)x y ,=, 整理得22410x y x +-+=,即22(2)3x y -+=. (2)由题意知12l l ⊥,且两条直线均过定点(1,0)N ,设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线:2EP y x =-, 设直线:CD y x t =-+,由2y x y x t =-⎧⎨=-+⎩得点22(,)22t t P +-,由圆的几何性质得12NP CD ==而22222222(1)(),3,22t t NP ED EP +-=-+==, 解得0t =或3t =,又,C D 两点均在x 轴下方,所以直线:CD y x =-,由22410x y x y x ⎧+-+=⎨=-⎩,解得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩或1212x y ⎧=+⎪⎪⎨⎪=--⎪⎩,不失一般性,设(11),(11)C D +, 由22410(1)x y x y u x ⎧+-+=⎨=-⎩,消去y 得2222(1)2(2)10u x u x u +-+++=① 方程①的两根之积为1,所以点A的横坐标2A x = 又因为点C (11)在直线1:10l x my --=上,解得1m ,直线1:1)(1)l y x =-,所以(2A +,同理可得(2B -, 所以线段AB的长为 【点睛】关键点点睛:本题考查求圆的轨迹方程,考查求圆中弦长.本题求弦长方程是求出交点坐标,再得弦长,而解题关键是由直线12l l ⊥,且交点为定点(1,0)N ,设出CD 方程,CD 中点P,由圆的性质得12NP CD ==求得CD 方程,得出,C D 两点坐标,再得,A B 两点坐标,得弦长.24.(1)()()223640x y ++-=;(2)24. 【分析】(1)求出AB 的垂直平分线和直线3150x y +-=的交点可得圆心坐标,再利用两点间距离求半径,即可得答案;(2)求出点()1,12Q -,再利用点到直线距离公式求高,代入面积公式即可得答案; 【详解】(1)依题意知所求圆的圆心C 为AB 的垂直平分线和直线3150x y +-=的交点.AB 的中点为()1,2,直线AB 的斜率为1,AB ∴的垂直平分线的方程为()21y x -=--,即3y x =-+.由33150y x x y =-+⎧⎨+-=⎩,得36x y =-⎧⎨=⎩,即圆心()3,6C -.∴半径r ==.故所求圆C 的标准方程为()()223640x y ++-=.(2)点()()1,0Q m m ->在圆C 上, 12m =∴或0m =(舍去),()1,12Q ∴-,12AQ ==,直线AQ 的方程为:1x =-,点B 到直线AQ 的距离为4,QAB ∴的面积1141242422S AQ =⨯⨯=⨯⨯=. 【点睛】利用圆的几何意义求圆的方程时,注意只要圆过两点A,B ,其圆心必在线段的中垂线上. 25.(1)325;(2)220x y +-=或210x y -+=. 【分析】(1)利用点到直线的距离公式得到d =,再利用2(2)S d =,即可求出结果.(2)设对角线所在直线的方程为(0)(1)0a x b y -+-=,可设两直线的法向量分别为1(,)n a b =,2(1,3)n =-,设两直线夹角为θ,12122cos 2n n n n θ⋅==⋅,代入得到2a b =或20a b +=,即可求出结果.【详解】(1)正方形的一条边AB 所在直线为310--=x y,正方形的中心为()0,1R ,则正方形的中心到AB 所在直线的距离为: d ==, 所以正方形的面积:232(2)5S d ==; (2)设对角线所在直线的方程为(0)(1)0a x b y -+-=, 边AB 所在直线为310--=x y ,两直线的法向量分别为1(,)n a b =,2(1,3)n =-,设两直线夹角为θ,则12122cos 22n n n n θ⋅==⇒=⋅, 222320(2)(2)02a ab b a b a b a b +-=⇒-+=⇒=或20a b +=,两条对角线方程为(0)2(1)0x y -+-=或2(0)(1)0x y ---=,即220x y +-=或210x y -+=.【点睛】关键点睛:设两直线的法向量分别为1(,)n a b =,2(1,3)n =-,利用夹角得到,a b 的关系式是解决本题的关键.26.(1)43m =-;(2). 【分析】(1)先利用弦长和半径求出圆心到直线距离,再由点到直线距离公式建立关系即可求解; (2)求出直线定点D ,作CE l ⊥,垂足为E ,可得四边形MPQN 面积为CE PQ ⋅,当//MN l 且CD l ⊥时面积可得最大.【详解】解:(1)圆C 的圆心()3,4C -,半径4r =,由弦AB的长为,得点C 到直线l 的距离为d === 又d ==,∴=解得:43m =-; (2)把直线l 方程()()212340m x m y m ++---=化为()23240x y m x y +-+--=由230240x y x y +-=⎧⎨--=⎩,解得21x y =⎧⎨=-⎩ ∴直线l 过定点()2,1D -,当m 变化时,l 绕点D 转动,作CE l ⊥,垂足为E ,由已知得,四边形MPQN 为梯形(或矩形),PQ 为高,CE 为中位线, ∴()1884022MPQN S MP NQ PQ CE PQ CE MN CE CD =+⋅=⋅≤⋅=≤= 当且仅当//MN l 且CD l ⊥时等号全部成立, 由CD l ⊥得1l CD k k ⋅=-,即2112m m +=--,解得13m =, ∴当13m =时,四边形MPQN 的面积取得最大值402. 【点睛】关键点睛:本题考查直线与圆的位置关系,涉及四边形面积问题,解题的关键是巧妙表示出四边形面积,转化为点到直线距离的最值问题.。
直线与圆的位置关系评课稿(精选3篇)
直线与圆的位置关系评课稿(精选3篇)直线与圆的位置关系评课稿篇1本节课由蔡**老师执教,主要有三部分组成。
首先前面两个问题通过复习前几课学过的点到直线的距离公式以及两条直线的位置关系的判定,为下面例子中判断直线与圆的位置关系作好铺垫。
紧接着通过回顾直线与圆的三种位置关系引入新课,并结合图形深入探究每种关系中圆心到直线的距离d与圆的半径r的大小关系以及交点个数的情况。
再通过例题的讲解与练习的训练去总结直线和圆的位置关系所反映出来的数量关系。
最后师生对本节课知识点进行共同小结,完成本节课的整体教学内容。
听了这节课之后,我认为本节课的整体思路清晰、流畅,结构合理,重点突出,较好地完成了本节课的教学目标。
在引导学生归纳出直线与圆的位置关系的数量关系后再进行相关的例题讲解和习题训练,确保了学生对本节课重点知识的掌握。
不过,个人认为本节课还是有一些值得探讨的问题:1、例1是对本节课所学知识的应用,是本节课的重点及难点,应该着重分析这块。
学生对带有绝对值符号的C的范围并不能很好地理解,因涉及先前学过的内容,可举个适当小例子帮助学生回顾,如:,则的范围是什么等等。
2、个人觉得练习一中判断直线与圆的位置关系时,圆心到直线的距离计算得d= ,让学生求k 的范围难度太大。
本来学生才刚掌握点到直线的距离公式,还不能很好熟练的运用,现在式子中又有绝对值又有根号求k的范围,学生的积极性很容易被打压,应当换个适当难度的,及时提高学生的积极性,培养他们的兴趣。
3、应让学生多动手、动口回答问题,及时巩固所学知识。
本节课是在直线和直线的基础上进一步学习的内容,也是后面学习直线与圆的方程的应用的基础,起着承上启下的作用,而且三种位置关系的研究方法和思路基本一直,都是从研究位置关系开始进而研究位置关系而发生的数量关系,教师可以用类比的教学方式使学生掌握这种学习方法。
其实,一堂课的教学很大程度上受教学细节的影响,比如:语言的描述是否准确,是否及时对学生进行表扬等。
直线与圆的方程单元测试卷含答案
直线与圆的方程单元测试卷一。
选择题1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B )(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a3.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( B )(A)5 (B) 3 (C)10 (D) 54.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( D )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x 5. 若圆22(1)20x y x y λλλ++-++=的圆心在直线12x =左边区域,则λ的取值范围是( C ) A.(0+)∞,B.()1+∞, C.1(0)(1)5⋃+,,∞D.R6. .对于圆()2211x y +-=上任意一点(,)P x y ,不等式0x y m ++≥恒成立,则m 的取值范围是BA .(21+)-∞,B .)21+⎡-∞⎣, C .(1+)-∞, D .[)1+-∞,7.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是(C )8.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( A )A .4B .5C .321-D .269.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C )A 、6π B 、4π C 、3π D 、2π 10.对任意的a ∈[]-1,1,函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围为( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(-∞,1)D .(3,+∞)解析 y =φ(a )=(x -2)a +(x 2-4x +4), x =2时,y =0,所以x ≠2.只需⎩⎨⎧φ-1>0,φ1>0.答案 B11.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为( )A .8B .4C .1D.14解析 ∵a >0,b >0,3a ·3b =3,∴a +b =1,∴1a +1b =a +b a +a +b b =1+b a +ab +1≥2+2 b a ·ab=4. 答案 B(12)已知实数,x y 满足221x y +=,则()()11xy xy -+有( )(A )最小值21和最大值1 (B )最小值43和最大值1 (C )最小值21和最大值43(D )最小值1,无最大值二、填空题13.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- .14.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --=15.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5)16函数21()x x f x x++=的值域为 .三.解答题17.求与x 轴切于点)0,5(,并且在y 轴上截得弦长为10的圆的方程.17.答案:50)25()5(22=±+-y x .18.已知圆4)4()3(:22=-+-y x C 和直线034:=+--k y kx l (1)求证:不论k 取什么值,直线和圆总相交;(2)求k 取何值时,圆被直线截得的弦最短,并求最短弦的长. 18.解:(1)证明:由直线l 的方程可得,)4(3-=-x k y ,则直线l 恒通过点)3,4(,把)3,4(代入圆C 的方程,得42)43()34(22<=-+-,所以点)3,4( 在圆的内部,又因为直线l 恒过点)3,4(, 所以直线l 与圆C 总相交. (2)设圆心到直线l 的距离为d ,则 5|1|43|3443|22+=++--=k k k d 又设弦长为L ,则222)2(r d L =+,即25)1(4)2(22+-=k L .∴当1-=k 时, 44)2(min min 2=⇒=L L所以圆被直线截得最短的弦长为4.19(本小题满分12分)已知直线l 过点)1,4(C , (Ⅰ)若直线l 过点D ()1,4,求直线l 的方程;(Ⅱ)若直线l 在两坐标轴上截距相等,求直线l 的方程.19 解:(Ⅰ)50.xy(Ⅱ)若直线l 过原点,设其方程为:kx y =,又直线l 过点)1,4(C ,即40x y -=.若直线l 不过原点,设其方程为:, 直线l 过点)1,4(C , 直线l 的方程为05=-+y x ; 综上,l 的方程为04=-y x 或05=-+y x . 20.(本小题满分12分)已知不等式210x x m --+>. (Ⅰ)当3m =时解此不等式;(Ⅱ)若对于任意的实数x ,此不等式210x x m --+>恒成立,求实数m 的取值范围. 20.(Ⅰ)(,1)(2,)-∞-+∞;(Ⅱ) 3(,)4-∞.21.设圆C 满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=C 的方程. 21解.设圆心为(,)a b ,半径为r ,由条件①:221r a =+,由条件②:222r b =,从而有:2221b a -=.|2|15a b =⇒-=,解方程组2221|2|1b a a b ⎧-=⎨-=⎩可得:11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩,所以2222r b ==.故所求圆的方程是22(1)(1)2x y -+-=或22(1)(1)2x y +++=.22.已知过点()3,3M --的直线l 与圆224210x y y ++-=相交于,A B 两点,(1)若弦AB 的长为l 的方程; (2)设弦AB 的中点为P ,求动点P 的轨迹方程.22解:(1)若直线l 的斜率不存在,则l 的方程为3x =-,此时有24120y y +-=,弦()||||268A B AB y y =-=--=,所以不合题意.故设直线l 的方程为()33y k x +=+,即330kx y k -+-=.将圆的方程写成标准式得()22225x y ++=,所以圆心()0,2-,半径5r =. 圆心()0,2-到直线l 的距离d =,因为弦心距、半径、弦长的一半构成直角三角形,所以()22231251k k -+=+,即()230k +=,所以3k =-.所求直线l 的方程为3120x y ++=.(2)设(),P x y ,圆心()10,2O -,连接1O P ,则1O P ⊥AB .当0x ≠且3x ≠-时,11O P ABk k ⋅=-,又(3)(3)AB MP y k k x --==--,则有()()()23103y y x x ----⋅=----,化简得22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭......(1)当0x =或3x =-时,P 点的坐标为()()()()0,2,0,3,3,2,3,3------都是方程(1)的解,所以弦AB 中点P 的轨迹方程为22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭.。
杭州观成中学选修一第二单元《直线和圆的方程》检测卷(含答案解析)
一、选择题1.1m =-是直线(21)10mx m y +-+=和直线390x my ++=垂直的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( )A .0B .1C .2D .与实数k 的取值有关3.如果直线:5l y kx =-与圆22240x y x my +-+-=交于M 、N 两点,且M 、N 关于直线20x y +=对称,则直线l 被圆截得的弦长为( )A .2B .3C .4D .4.已知圆22:3C x y +=,从点()2,0A -观察点()2,B a ,要使视线不被圆C 挡住,则a 的取值范围是 ( )A .⎛⎫-∞⋃+∞ ⎪⎝⎭ B .()(),22,-∞-+∞C .((),23,-∞-+∞D .((),-∞-⋃+∞ 5.直线1ax by +=与圆221x y +=有两个公共点,那么点(),a b 与圆22+1x y =的位置关系是( )A .点在圆外B .点在圆内C .点在圆上D .不能确定 6.若点()1,1P --为圆2260x y x ++=的弦MN 的中点,则弦MN 所在直线的方程为( )A .230x y +-=B .210x y --=C .230x y +-=D .210x y -+= 7.若圆22:60,(0,0)M x y ax by ab a b +++--=>>平分圆22:4240N x y x y +--+=的周长,则2a b +的最小值为( )A .8B .9C .16D .20 8.设有一组圆()()()224*:1k C x y k kk N -+-=∈,给出下列四个命题: ①存在k ,使圆与x 轴相切②存在一条直线与所有的圆均相交③存在一条直线与所有的圆均不相交④所有的圆均不经过原点其中正确的命题序号是( )A .①②③B .②③④C .①②④D .①③④ 9.赵州桥,是一座位于河北省石家庄市赵县城南洨河之上的石拱桥,因赵具古称赵州而得名.赵州桥始建于隋代,是世界上现存年代久远、跨度最大、保存最完整的单孔石拱桥.小明家附近的一座桥是仿赵州桥建造的一座圆拱桥,已知在某个时间段这座桥的水面跨度是20米,拱顶离水面4米;当水面上涨2米后,桥在水面的跨度为( )A .10米B .米C .米D . 10.已知圆C :()()22232++-=x y ,从点()1,3P 发出的光线,经直线1y x =+反射后,光线恰好平分圆C 的周长,则入射光线所在直线的斜率为( )A .2-B .12-C .4-D .14- 11.过点P (1,2)引直线使两点A (2,3)、B (4,-5)到它的距离相等,则直线方程是( ) A .4x +y -6=0B .x +4y -6=0C .2x +3y -7=0或x +4y -6=0D .4x +y -6=0或3x +2y -7=0 12.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( )A .5B .5C D .5二、填空题13.已知圆C 过点(8,1),且与两坐标轴都相切,则面积较小的圆C 的方程为________. 14.已知圆C :224x y +=,直线l :(0)x y m m +=>,圆C 上恰有两个点到直线l 的距离为1.则m 的取值范围是_____________.15.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.16.已知直线l 经过点(1,2)P -,且垂直于直线2310x y ,则直线l 的方程是________.17.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.18.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为_________.19.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为_____________.20.以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0公共弦为直径的圆的方程为________.三、解答题21.在平面直角坐标系中,已知射线OA :0(0)x y x -=≥,OB :20(0)x y x +=≥.过点(1,0)P 作直线分别交射线,OA OB 于点A ,B .(1)当AB 的中点在直线20x y -=上时,求直线AB 的方程;(2)当AOB 的面积取最小值时,求直线AB 的方程;(3)当||||PA PB ⋅取最小值时,求直线AB 的方程.22.已知斜率为k 且过点()0,1M 的直线与圆()222(3)1x y -+-=相交于不同两点,A B (1)求实数k 的取值范围;(2)求证:MA MB ⋅为定值;(3)若O 为坐标原点,且12OA OB ⋅=,求直线l 的方程.23.已知圆222:(2)(2)(0)M x y r r +++=>过点()3,3T --,圆M 关于直线20x y ++=对称的圆为圆C ,设P 点为T 点关于20x y ++=的对称点.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值;(3)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线PA 和直线PB 分别与x 轴的交点分别为E ,F ,若PEF 是以P 为顶点的等腰三角形,O 为坐标原点,试判断直线OP 和AB 是否平行,并说明理由.24.已知圆1C :2246120x y x y +--+=.(1)过点()3,5P 作圆1C 的切线l ,求l 的方程;(2)若圆2C :222440x y x y ++--=与圆1C 相交于A ,B 两点,求AB .25.已知圆C :x 2+y 2+Dx +Ey -12=0过点(P -,圆心C 在直线l :x -2y -2=0上. (1)求圆C 的一般方程.(2)若不过原点O 的直线l 与圆C 交于A ,B 两点,且12OA OB ⋅=-,试问直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.26.已知直线:10l x y +-=与圆22:430C x y x +-+=相交于,A B 两点.(1)求||AB ;(2)若(,)P x y 为圆C 上的动点,求+1y x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以0m =或1m =-,再根据充分必要条件的定义判断得解.【详解】因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以23(21)0,220,0m m m m m m ⨯+-⨯=∴+=∴=或1m =-.当1m =-时,直线(21)10mx m y +-+=和直线390x my ++=垂直;当直线(21)10mx m y +-+=和直线390x my ++=垂直时,1m =-不一定成立. 所以1m =-是直线()2110mx m y +-+=和直线390x my ++=垂直的充分不必要条件,故选:A .【点睛】方法点睛:充分必要条件的常用的判断方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件选择合适的方法求解.2.C解析:C【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数.【详解】设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=,即点P 的轨迹是以()2,0为圆心,2r 为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个.故选:C【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法. 3.C解析:C由题意推出圆心在直线上,求出m ,求出圆的半径与弦心距,利用圆心距、半径、半弦长满足勾股定理,求出弦长.【详解】因M 、N 关于直线20x y +=对称,故圆心(1,)2m -在直线20x y +=上,4m ∴=. 又因为直线20x y +=与:5l y kx =-垂直,21K ∴-⨯=-,12K ∴=, 设圆心(1,2)-,到直线1502x y --=的距离为d ,d ∴==圆的半径为3r ==.4MN ∴==.故选:C .【点睛】关键点点睛:本题的关键是利用对称性可知圆心在直线20x y +=上.4.D解析:D【分析】设过点与圆相切的直线为()2y k x =+,则圆心到直线的距离解得k =,可得切线方程为)2y x =+,由A 点向圆C 引2条切线,只要点B 在切线之外,那么就不会被遮挡,即a 大于B 点在x 轴上方的纵坐标或者小于B 点在x 轴上方的纵坐标即可.【详解】设过点()2,0A -与圆22:3C x y +=相切的直线为()2y k x =+,则圆心()0,0到直线的=k =∴切线方程为)2y x =+,由A 点向圆C 引2条切线,只要点B 在切线之外,那么就不会被遮挡,B 在2x =的直线上,在)2y x =+中,取2x =,得y =±,从A 点观察B 点,要使视线不被圆C挡住,需a >a <-,∴a的取值范围是((),-∞-⋃+∞,故选:D.【点睛】本题主要考查直线与圆的位置关系,关键点是求过A 点且与圆相切时的直线方程,考查分析问题解决问题的能力.5.A解析:A【分析】直线1ax by +=与圆221x y +=||221a b <+,即为221a b +>,由此可得点与圆的位置关系.【详解】因为直线1ax by +=与圆221x y +=有两个公共点, ||221a b <+, 221a b +>,因为点(,)b a 与221x y +=22a b +圆224x y +=的半径为1,所以点P 在圆外.故选:A.【点睛】关键点点睛:本题的关键是将直线与圆的位置关系的判断式和点与圆的关系的判断式联系起来. 6.D解析:D【分析】连接圆心与弦中点,根据垂径定理的逆定理得到直线AP 与弦所在的直线垂直,由圆的标准方程求出圆心A 的坐标,再由弦中点P 的坐标,求出直线AP 的斜率,根据两直线垂直斜率的乘积为1-,求出弦所在直线的斜率,再由弦中点P 的坐标及求出的斜率,写出弦所在直线的方程即可.【详解】解:由题意,知圆的标准方程为()2239x y ++=,圆心为()30A -,. 因为点()1,1P --为弦MN 的中点,所以AP MN ⊥.又AP 的斜率101132k --==--+,所以直线MN 的斜率为2, 所以弦MN 所在直线的方程为()121y x +=+,即210x y -+=.故选:D【点睛】 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,垂径定理,直线斜率的求法,两直线垂直时斜率满足的关系,以及直线的点斜式方程,解题的关键是连接圆心与弦中点,根据垂径定理的逆定理得到直线AP 与弦所在的直线垂直.7.A解析:A【分析】由两圆的相交弦是圆N 的直径得出,a b 的关系,然后由基本不等式求得最小值.【详解】两圆方程相减得,(4)(2)100a x b y ab +++--=,此为相交弦所在直线方程, 圆N 的标准方程是22(2)(1)1x y -+-=,圆心为(2,1)N ,∴2(4)2100a b ab +++--=,121a b +=, ∵0,0a b >>,∴1242(2)()448b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =即2,4a b ==时等号成立.故选:A .【点睛】本题考查圆的方程,考查基本不等式求最值.圆的性质:(1)圆的直径平分圆;(2)相交两圆方程相减所得一次方程是两圆公共弦所在直线方程.8.C解析:C【分析】取特殊值1k =,圆与x 轴相切,①正确;利用圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,可判定②③的正误;利用反证法说明④错误.【详解】选项①中,当1k =时,圆心()1,1,半径1r =,满足与x 轴相切,正确;选项②③中,圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,故②正确,③错误; 选项④中,若()0,0在圆上,则241k k +=,而*k N ∈,若k 是奇数,则左式是偶数,右式是奇数,方程无解,若k 是偶数,则左式是奇数,右式是偶数,方程无解,故所有的圆均不经过原点,正确.故选:C.【点睛】本题解题关键是发现圆心()1,k 恒在直线0kx y 上,确定该线与圆一定相交,再结合特殊值法和反证法逐个击破即可. 9.C解析:C【分析】根据题意,建立圆拱桥模型,设圆O 半径为R , 当水面跨度是20米,拱顶离水面4米,分析可得22100(4)R R =--,求出R ,当水面上涨2米后,可得跨度2CD CN =,计算可得解. 【详解】 根据题意,建立圆拱桥模型,如图所示: 设圆O 半径为R ,当水面跨度是20米,拱顶离水面4米,此时水面为AB ,M 为AB 中点,即20AB =,4OM R =-,利用勾股定理可知,22222AB AM OA OB ==-,即22100(4)R R =--,解得292R =, 当水面上涨2米后,即水面到达CD ,N 为CD 中点,此时2ON R =-,由勾股定理得2222(2)66CD CN R R ==--=.故选:C【点睛】关键点睛:本题考查圆的弦长,解题的关键是利用已知条件建立模型,利用数形结合求解,考查学生的转化能力与运算求解能力,属于基础题.10.C【分析】根据光路可逆,易知圆心()2,3C -关于直线1y x =+的对称点M ,在入射光线上,由此可求得结果.【详解】圆C :()()22232++-=x y ,圆心为()2,3C -, 由已知,反射光线经过()2,3C -,故C 点关于直线1y x =+的对称点M 在入射光线上.设(),M a b ,则31232122b a b a -⎧=-⎪⎪+⎨+-⎪=+⎪⎩,解得21a b =⎧⎨=-⎩,即()2,1M -, 且光源()1,3P ,所以入射光线的斜率13421k --==--, 故选:C.【点睛】关键点点睛:(1)由光线恰好平分圆C 的周长,得出所在直线经过圆心;(2)入(反)射光线关于反射面的对称直线即为反(入)射光线. 11.D解析:D【分析】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为20kx y k --+=,由此利用点到直线的距离公式能求出直线方程.【详解】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为2(1)y k x -=-,即20kx y k --+=,∵直线l 与两点A (2,3), B (4,-5)的距离相等,=解得4k =-或32k =- .:.直线l 的方程为4420x y --++=或332022x y --++= 整理,得:460x y +-=或3270x y +-= 故选:D解决本题要注意设直线方程时,分直线的斜率存在、不存在两种情况讨论,然后根据点到直线的距离相等即可求解.12.A解析:A【分析】 求得圆的圆心坐标和半径,借助11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,即可求解. 【详解】 如图所示,设圆()()22341x y -+-=的圆心坐标为(3,4)M ,半径为1r =,则22345OM =+=,2512426OA =-==, 则11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,可得246OA MA AB OM ⨯⨯==, 故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的切线方程应用,着重考查了推理与运算能力,属于基础题.二、填空题13.【分析】设圆的方程为代入点求得或进而得到圆的方程【详解】由题意圆过点且与两坐标轴都相切设圆的方程为将点代入圆的方程可得整理得解得或当时圆的面积较小所以圆的方程为故答案为:【点睛】求解圆的方程的两种方 解析:()()225525x y -+-=【分析】设圆的方程为222()()(0)x a y a a a -+-=>,代入点(8,1),求得5a =或13a =,进而得到圆的方程.【详解】由题意,圆C 过点(8,1),且与两坐标轴都相切, 设圆的方程为222()()(0)x a y a a a -+-=>, 将点(8,1)代入圆的方程,可得222(8)(1)a a a -+-=, 整理得218650a a -+=,解得5a =或13a =,当5a =时,圆C 的面积较小,所以圆的方程为()()225525x y -+-=. 故答案为:()()225525x y -+-=. 【点睛】求解圆的方程的两种方法:几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; 待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F 的值,代入标准方程或一般方程.14.【分析】根据圆的几何性质结合点到直线距离公式进行求解即可【详解】圆C :的半径为2圆心坐标为:设圆心到直线l :的距离为要想圆C 上恰有两个点到直线l 的距离为1只需即而所以故答案为:【点睛】关键点睛:利用解析:【分析】根据圆的几何性质,结合点到直线距离公式进行求解即可. 【详解】圆C :224x y +=的半径为2,圆心坐标为:(0,0) 设圆心(0,0)到直线l :x y m +=的距离为d ,要想圆C 上恰有两个点到直线l 的距离为1,只需112d <<+,即13m <<⇒<< 0m >m <<.故答案为: 【点睛】关键点睛:利用圆的性质转化为点到直线的距离是解题的关键.15.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2, 所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.16.【分析】根据题意设直线的方程是代入点求得的值即可求解【详解】由题意所求直线垂直于直线设直线的方程是又由直线过点代入可得解得故的方程是【点睛】与直线平行的直线方程可;与直线垂直的直线方程可 解析:3270x y -+=【分析】根据题意,设直线l 的方程是320x y c -+=,代入点(1,2)P -,求得c 的值,即可求解. 【详解】由题意,所求直线l 垂直于直线2310x y , 设直线l 的方程是320x y c -+=,又由直线l 过点(1,2)P -,代入可得340c --+=,解得7c =, 故l 的方程是3270x y -+=. 【点睛】与直线220(0)Ax By C A B ++=+≠平行的直线方程可0()Ax By n n c ++=≠;与直线220(0)Ax By C A B ++=+≠垂直的直线方程可0Bx Ay M -+=。
北京市私立新亚中学选修一第二单元《直线和圆的方程》检测卷(有答案解析)
一、选择题1.下列命题中,正确的是( )A .若直线的倾斜角越大,则直线的斜率就越大B .若直线的倾斜角为α,则直线的斜率为tan αC .若直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率k 的取值范围是(,[1,)-∞⋃+∞ D .当直线的倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦时,直线的斜率在这个区间上单调递增. 2.若圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为k 的值是( )A .2-B .2C .2-或2D .2-或03.若P 是直线l :3490x y +-=上一动点,过P 作圆C :2240x y x ++=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( )A B .CD .4.若P 是直线l :260x y ++=上一动点,过P 作圆C :22230x y x ++-=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( ) A .1B .2C .3D .45.光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( ) A .5270x y -+=B .310x y +-=C .3240x y -+=D .230x y --=6.设有一组圆()()()224*:1k C x y k k k N -+-=∈,给出下列四个命题:①存在k ,使圆与x 轴相切 ②存在一条直线与所有的圆均相交 ③存在一条直线与所有的圆均不相交 ④所有的圆均不经过原点 其中正确的命题序号是( ) A .①②③B .②③④C .①②④D .①③④7.已知圆C :()()22232++-=x y ,从点()1,3P 发出的光线,经直线1y x =+反射后,光线恰好平分圆C 的周长,则入射光线所在直线的斜率为( ) A .2-B .12-C .4-D .14-8.已知圆1C :224470x y x y ++-+=与圆2C :()()222516x y -+-=的位置关系是( ) A .外离B .外切C .相交D .内切9.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( )A BCD 10.直线:210l x my m +--=与圆22:(2)4C x y +-=交于A B 、两点,则当弦AB 最短时直线l 的方程为( ) A .2410x y +-= B .2430x y -+= C .2410x y ++=D .2430x y ++=11.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-12.设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ︒∠=,则0x 的取值范围是( )A .[0,1]B .[1,1]-C .⎡⎢⎣⎦D .⎡⎢⎣⎦二、填空题13.已知点(1,0)P 在直线l 上,且直线l 与圆22:(1)(1)1C xy 相切于点A ,则||AP =________.14.已知圆O :221x y +=,圆M :22()(2)2x a y -+-=.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA PB ⊥,则实数a 的取值范围为______.15.点P (-3,1)在动直线mx +ny =m +n 上的投影为点M ,若点N (3,3)那么|MN |的最小值为__________.16.若实数x ,y 满足关系10x y ++=,则式子S =______.17.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是_______.(写出所有正确命题的编号)① 存在这样的直线,既不与坐标轴平行又不经过任何整点; ② 如果k 与b 都是无理数,则直线y kx b =+不经过任何整点; ③ 如果直线l 经过两个不同的整点,则直线l 必经过无穷多个整点; ④ 直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数.18.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为_________.19.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.20.在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+,曲线2C 的方程为22(1)4x y ++=,若1C 与2C 有且仅有三个公共点,则实数k 的值为_____.三、解答题21.已知圆221:2440C x y x y ++--=.(1)在下列两个条件中任选一个作答.注:如果选择两个条件分别解答,按第一个解答计分.①已知不过原点的直线l 与圆1C 相切,且在x 轴、y 轴上的截距相等,求直线l 的方程; ②从圆外一点(2,1)P 向圆引切线,求切线方程.(2)若圆222:4C x y +=与圆1C 相交与D 、E 两点,求线段DE 的长.22.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆.已知动点M 到点()1,0A -与点()2,0B 的距离之比为2,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点()5,4P -作曲线C 的切线,求切线方程. 23.已知点A ,B 关于坐标原点O 对称,AB 4=,M 过点A ,B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M 的半径;(2)求M 的圆心M 点的轨迹方程.24.已知圆22:6630C x x y y -+-+=,直线:20+-=l x y 是圆E 与圆C 的公共弦AB 所在直线方程,且圆E 的圆心在直线2y x =上. (1)求圆E 的方程;(2)过点(2,0)Q -分别作直线MN 、RS ,交圆E 于M 、N 、R 、S 四点,且MN RS ⊥,求四边形MRNS 面积的取值范围.25.在平面直角坐标系中,圆C 过点()1,0E 和点()0,1F ,圆心C 到直线0x y +=的距.(1)求圆C 的标准方程;(2)若圆心C 在第一象限,M 为圆C 外一点,过点M 作圆C 的两条切线,切点分别为A 、B ,四边形MACB ,求点M 的轨迹方程.26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据直线斜率与倾斜角存在的关系tan k α=对每个选项逐一分析,需要注意直线有倾斜角但不一定有斜率. 【详解】倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,倾斜角的范围为,2ππ⎛⎫ ⎪⎝⎭时,直线斜率0k <,故A 错误;直线的倾斜角=2πα时,直线斜率不存在,故B 错误;直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率tan k α=的范围为(,[1,)-∞⋃+∞,故C 正确;斜率tan k α=在,42ππ⎡⎫⎪⎢⎣⎭和2,23ππ⎡⎫⎪⎢⎣⎭上单调递增,故D 错误. 故选:C. 【点睛】关于直线的倾斜角与直线斜率之间的关系需要注意: (1)当直线倾斜角为=2πα时,直线的斜率不存在;(2)倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,直线斜率随着倾斜角增大而增大;倾斜角的范围为,2ππ⎛⎫⎪⎝⎭时,直线斜率0k <,直线斜率随着倾斜角增大而增大; (3)利用倾斜角的范围研究斜率的范围,或者利用斜率的范围研究倾斜角的范围,需要利用函数tan k α=分析定义域与值域的关系.2.B解析:B 【分析】将圆的方程化成标准方程,求出圆心及半径r ,圆心到直线的距离为d ,则圆上的点到直线的最大距离为d r + 【详解】圆22220x y x y k +---=化成标准形式()()22112x y k -+-=+,圆心()1,1,半径r =2k >-;圆心()1,1到直线100x y +-=的距离11104222+-===d 圆上的点到直线的最大距离为2424222+=++=++-d k k k r ,即222-+=+k k k ,解得:2k =或2k =-(舍去) 故选:B 【点睛】结论点睛:本题考查直线与圆的位置关系,求圆上点到直线的最大距离与最小距离常用的结论:设圆的半径r ,圆心到直线的距离为d , (1)当dr 时,圆上的点到直线的最大距离为d r +,最小距离为d r -;(2)当d r ≤时,圆上的点到直线的最大距离为d r +,最小距离为0; 3.B解析:B 【分析】画出图象,根据对称性可得四边形PACB 面积2PACS S=,利用勾股定理可得22PA PC AC =-,当PC 最小时,PA 最小,面积最小,根据点到直线距离公式,即可求得答案. 【详解】圆C :22(2)4x y ++=,圆心为(-2,0)半径2AC r ==,画出图象,如图所示:因为直线与圆相切,所以90PAC PBC ∠=∠=︒,且PAC PBC ≌ 所以四边形PACB 面积12222PACS S AC PA PA ==⨯⨯⨯=,又2224PA PC AC PC =-=-所以当PC 最小时,PA 最小,四边形PACB 面积的最小值, 由图象可得,PC 最小值即为点C 到直线3490x y +-=的距离,所以min 3PC ==,所以min PA =所以四边形PACB 面积的最小值2S PA == 故选:B 【点睛】解题的关键是画出图象,根据几何关系,得到PC 最小时,面积最小,再求解,将动点问题转化为点到直线距离问题,考查分析理解,计算求值的能力,属中档题.4.B解析:B 【分析】根据题意得要使四边形PACB 面积的最小值,只需PC 取最小即可,再根据几何关系求解即可. 【详解】解:根据题意:要使四边形PACB 面积的最小值,则只需切线长,PA PB 最小, 进而只需PC 取最小即可.由于()2214x y ++=,故圆心为()1,0-,2r,由于P 是直线l :260x y ++=上一动点,所以过圆心作直线l 的垂线,垂足即为P ,此时CP ==此时切线长1PA PB ===,此时四边形PACB 面积为122S =⨯=. 即四边形PACB 面积的最小值为2. 故选:B. 【点睛】本题考查直线与圆的位置关系,考查化归转化思想和运算求解能力,是中档题.解题的关键是将问题转化为求PC 取最小值,再结合点到线的距离即可解答.5.A解析:A 【分析】根据题意做出光线传播路径,求()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于x 轴的对称点()'1,6D ,进而得BC 所在直线的方程即为''A D 直线方程,再根据两点式求方程即可. 【详解】解:根据题意,做出如图的光线路径, 则点()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于y 轴的对称点()'1,6D , 则BC 所在直线的方程即为''A D 直线方程, 由两点是方程得''A D 直线方程为:436413y x ++=++,整理得:5270x y -+= 故选:A.【点睛】本题解题的关键在于做出光线传播路径,将问题转化为求A 关于x 轴的对称点'A 与D 关于y 轴的对称点'D 所在直线''A D 的方程,考查运算求解能力,是中档题.6.C解析:C 【分析】取特殊值1k =,圆与x 轴相切,①正确;利用圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,可判定②③的正误;利用反证法说明④错误. 【详解】选项①中,当1k =时,圆心()1,1,半径1r =,满足与x 轴相切,正确; 选项②③中,圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,故②正确,③错误;选项④中,若()0,0在圆上,则241k k +=,而*k N ∈,若k 是奇数,则左式是偶数,右式是奇数,方程无解,若k 是偶数,则左式是奇数,右式是偶数,方程无解,故所有的圆均不经过原点,正确. 故选:C.【点睛】本题解题关键是发现圆心()1,k 恒在直线0kx y 上,确定该线与圆一定相交,再结合特殊值法和反证法逐个击破即可.7.C解析:C 【分析】根据光路可逆,易知圆心()2,3C -关于直线1y x =+的对称点M ,在入射光线上,由此可求得结果. 【详解】圆C :()()22232++-=x y ,圆心为()2,3C -,由已知,反射光线经过()2,3C -,故C 点关于直线1y x =+的对称点M 在入射光线上.设(),M a b ,则31232122b a b a -⎧=-⎪⎪+⎨+-⎪=+⎪⎩,解得21a b =⎧⎨=-⎩,即()2,1M -,且光源()1,3P ,所以入射光线的斜率13421k --==--, 故选:C. 【点睛】 关键点点睛:(1)由光线恰好平分圆C 的周长,得出所在直线经过圆心; (2)入(反)射光线关于反射面的对称直线即为反(入)射光线.8.B解析:B 【分析】分别求得两圆的圆心坐标和半径,结合圆与圆的位置关系的判定方法,即可求解. 【详解】由题意,圆1C :224470x y x y ++-+=,可得圆心坐标为1(2,2)C -,半径为11r =,圆2C :()()222516x y -+-=,可得圆心坐标为1(2,5)C ,半径为14r =,又由125C C ==,且12145r r =+=+,即1212C C r r =+,所以圆12,C C 相外切. 故选:B. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.9.A解析:A 【分析】求得圆的圆心坐标和半径,借助11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,即可求解. 【详解】如图所示,设圆()()22341x y -+-=的圆心坐标为(3,4)M ,半径为1r =, 则22345OM =+=,2512426OA =-==,则11222AOM AB S OA MA OM ∆=⨯⨯=⨯⨯,可得2465OA MA AB OM ⨯⨯==, 故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的切线方程应用,着重考查了推理与运算能力,属于基础题.10.B解析:B 【分析】先求出直线经过定点1(,1)2P ,圆的圆心为()0,2C ,根据直线与圆的位置关系可知,当CP l ⊥时弦AB 最短,根据1CP l k k ⋅=-求出m 的值,即可求出直线l 的方程.【详解】解:由题得,(21)(1)0x m y -+-=,21010x y -=⎧∴⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩,所以直线l 过定点1(,1)2P ,圆22:(2)4C x y +-=的圆心为()0,2C ,半径为2,当CP l ⊥时,弦AB 最短,此时1CP l k k ⋅=-, 由题得212102CP k -==--,12l k ∴=, 所以212m -=,4m ∴=-, 所以直线l 的方程为:2430x y -+=.故选:B. 【点睛】本题考查直线过定点问题,考查直线方程的求法,以及直线和圆的位置关系,考查分析推理和化简运算能力.11.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-;当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D. 【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.12.B解析:B 【分析】首先根据题中条件,可以判断出直线MN 与圆O 有公共点即可,从而可以断定圆心O 到直线MN 的距离小于等于半径,列出对应的不等关系式,求得结果. 【详解】依题意,直线MN 与圆O 有公共点即可, 即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A , 在Rt OMA ∆中,因为OMA ∠045=, 故02sin 452OA OM OM ==1≤, 所以2OM ≤,则2012x +≤,解得011x -≤≤.故选:B. 【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,解直角三角形,属于简单题目.二、填空题13.2【分析】显然直线l 的斜率存在圆心与之间的距离半径由勾股定理得【详解】显然直线l 的斜率存在如图所示圆圆心半径当时切点当时圆心与之间的距离半径由勾股定理得故答案为:2【点睛】结论点睛:本题考查直线与圆解析:2 【分析】显然直线l 的斜率存在,圆心C 与P 之间的距离3=CP ,半径1r =,由勾股定理得2AP =.【详解】显然直线l 的斜率存在,如图所示圆22:(1)(1)1C xy ,圆心(1,1)C -,半径1r =,当0k =时,切点(1,0)A -,2AP =当0k ≠时,圆心C 与(1,0)P 之间的距离=CP 1r =,由勾股定理得2AP = 故答案为:2 【点睛】结论点睛:本题考查直线与圆的位置关系,直线与圆的位置关系利用圆心到直线的距离d 和圆半径r 的大小关系:d r <⇔相交;d r =⇔相切;d r >⇔相离.14.【分析】将转化为由圆与圆:有公共点可解得结果【详解】因为所以所以所以圆与圆:有公共点所以所以得所以故答案为:【点睛】关键点点睛:转化为圆与圆:有公共点求解是解题关键 解析:22a -≤≤【分析】将PA PB ⊥转化为PO =,由圆222x y +=与圆M :22()(2)2x a y -+-=有公共点可解得结果. 【详解】因为PA PB ⊥,所以4APO BPO π∠=∠=,所以1PA PB ==,PO =,所以圆222x y +=与圆M :22()(2)2x a y -+-=有公共点,所以OM PO PM ≤+==≤24a ≤,所以22a -≤≤. 故答案为:22a -≤≤ 【点睛】关键点点睛:转化为圆222x y +=与圆M :22()(2)2x a y -+-=有公共点求解是解题关键.15.【分析】由动直线方程可得动直线经过定点从而得到的轨迹为以线段为直径的圆然后判断点N 在圆外进而得到所求最小值【详解】解:直线mx +ny =m +n 显然经过定点的轨迹为以线段为直径的圆圆心坐标为半径为2在圆解析:2【分析】由动直线方程可得动直线经过定点()A 1,1,从而得到M 的轨迹为以线段PA 为直径的圆,然后判断点N 在圆外,进而得到所求最小值. 【详解】解:直线mx +ny =m +n 显然经过定点()A 1,1,M ∴的轨迹为以线段PA 为直径的圆,圆心坐标为()1,1C -,半径为2,2CN ==>,N ∴在圆外,2min MN ∴=,故答案为: 2. 【点睛】本题关键要分析出动直线经过定点,从而判定M 的轨迹,然后判定N 在圆的外部是不可缺少的.16.【分析】化简看成是一个动点到一个定点的距离结合点到直线的距离公式即可求解【详解】由题意化简可得所以上式可看成是一个动点到一个定点的距离从而即为点与直线:上任意一点的距离由点到直线的距离公式可得所以的解析:2【分析】=,看成是一个动点(),M x y 到一个定点()1,1N 的距离,结合点到直线的距离公式,即可求解.【详解】=,所以上式可看成是一个动点(),M x y 到一个定点()1,1N 的距离, 从而S 即为点N 与直线l :10x y ++=上任意一点(),M x y 的距离,由点到直线的距离公式,可得2d ==,所以S 的最小值为min S d ==. 【点睛】形如:22()()x a y b -+-的形式的最值问题,可转化为动点到定点的距离的平方的最值问题,结合两点间的距离公式或点到直线的距离公式进行求解.17.①③【分析】给直线分别取不同的方程可得到②和④的反例同时找到符合条件①的直线;通过直线经过两个不同的整点可证得其经过无穷多个整点③正确【详解】①令直线为:则其不与坐标轴平行且不经过任何整点①正确;②解析:①③ 【分析】给直线l 分别取不同的方程,可得到②和④的反例,同时找到符合条件①的直线;通过直线经过两个不同的整点可证得其经过无穷多个整点,③正确. 【详解】①令直线l 为:12y x =+,则其不与坐标轴平行且不经过任何整点,①正确; ②令直线l为:y =-()2,0,②错误;③令直线l 为:y kx b =+,过两个不同的整点()11,x y ,()22,x y ,则1122y kx b y kx b =+⎧⎨=+⎩,两式作差得:()1212y y k x x -=-,即直线l 经过整点()1212(),(),n x x n y y n Z --∈,∴直线l 经过无穷多个整点,③正确;④令直线l 为:1132y x =+,则l 不过整点,④错误. 故答案为:①③. 【点睛】本题考查对于直线方程的理解,关键是能够通过特例来否定命题和验证存在性的问题,对于学生对直线方程特点的掌握有较高的要求.18.x +4y -4=0【分析】设l1与l 的交点为A(a8-2a)求得关于的对称点坐标利用对称点在直线上求得即得点坐标从而得直线方程【详解】设l1与l 的交点为A(a8-2a)则由题意知点A 关于点P 的对称点B解析:x +4y -4=0【分析】设l 1与l 的交点为A (a,8-2a ),求得A 关于P 的对称点坐标,利用对称点在直线2l 上求得a ,即得A 点坐标,从而得直线l 方程.【详解】设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0,解得a =4, 即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 故答案为:x +4y -4=0. 【点睛】本题考查求直线方程,解题方法是根据点关于点的对称点求解,直线l 与已知两直线各有一个交点,P 是这两个交点连线段中点,因此可设其中一点坐标,由对称性表示出另一点坐标,代入第二条直线方程可求得交点坐标,从而得直线方程.19.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B --联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.20.【分析】利用是过点B(02)且关于y 轴对称的两条射线将C1与C2有且仅有三个公共点等价转化为l1与C2只有一个公共点且l2与C2有两个公共点或l2与C2只有一个公共点且l1与C2有两个公共点验证即可解析:43-【分析】利用1C 是过点B (0,2)且关于y 轴对称的两条射线,将C 1与C 2有且仅有三个公共点等价转化为l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点,验证,即可得出答案. 【详解】易知2C 是圆心为A (-1,0),半径为2的圆.由题设知,1C 是过点B (0,2)且关于y 轴对称的两条射线,记y 轴右边的射线为l 1,y 轴左边的射线为l 2,由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,2=,故43k =-或k =0.经检验,当k =0时,l 1与C 2没有公共点; 当43k =-时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点 当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为22=,故k =0或43k =,经检验,当k =0时,l 1与C 2没有公共点,当43k =时,l 2与C 2没有公共点. 故答案为:43- 【点睛】本题考查直线与圆的位置关系,属于中档题.三、解答题21.(1)①1y x =-+±②4350x y --=或2x =;(2)4. 【分析】(1)①由已知得直线l 的斜率为1-,然后利用点到直线的距离等于半径可得直线截距可得答案;②分别讨论当过P 的直线斜率不存在和存在两种情况,不存在时特殊情况可得答案;存在时利用圆心到直线的距离等于半径可得答案;(2)两个圆的方程联立求得交点坐标,再利用两点间的距离公式可得答案. 【详解】(1)①圆C 的方程变形为22(1)(2)9x y ++-=,∴圆心C 的坐标为(1,2)-,半径为3.直线l 在两坐标轴上的截距相等且不为零, 故直线l 的斜率为1-.∴设直线l 的方程y x b =-+,又直线l 与圆22(1)(2)9x y ++-=相切,3=,整理得1b =± ∴所求直线l的方程为1y x =-+±②圆C 的方程变形为22(1)(2)9x y ++-=,∴圆心C 的坐标为(1,2)-,半径为3.当过P 的直线斜率不存在时,直线方程为2x =, 此时圆C 到直线的距离为3,所以直线2x =是圆C 的切线. 当过P 的直线斜率存在时, 设切线方程为1(2)y k x -=-, 即120kx y k -+-=3=,43k ∴=,∴切线方程4412033x y -+-⨯=, 即4350x y --=,综上所述,切线方程为4350x y --=或2x =.(2)联立方程222224404x y x y x y ⎧++--=⎨+=⎩,得115x y ⎧=⎪⎪⎨⎪=⎪⎩,225x y ⎧=-⎪⎪⎨⎪=⎪⎩,||4DE ∴===. 【点睛】直线和圆相切时,可以利用圆与直线联立的方程组有一组实数解,或者利用圆心到直线的距离等于圆的半径求得参数,有时利用后面方法计算运算量比较小些. 22.(1)()2234x y -+=;(2)50x -=或3410x y ++=. 【分析】(1)设动点M 的坐标为(),x y ,由题意得2MA MB==,化简得()2234x y -+=,即为动点M 的轨迹方程;(2)分类讨论过点P 的直线斜率不存在与存在两种情况,再利用圆心到直线的距离等于半径求解,即可得到答案. 【详解】(1)设动点M的坐标为(),x y ,则MA=,MB =由题意得2MA MB==,化简得()2234x y -+=,因此,动点M 的轨迹方程为()2234x y -+=; (2)当过点P 的直线斜率不存在时,直线方程为5x =,圆心()3,0C 到直线5x =的距离等于2,此时直线50x -=与曲线C 相切; 当过点P 的直线斜率存在时,不妨设斜率为k , 则切线方程为()45y kx +=-,即540kx y k ---=,2=,解得34k =-.所以,切线方程为3410x y ++=.综上所述,切线方程为50x -=或3410x y ++=. 【点睛】方法点睛:本题考查求轨迹方程,及直线与圆相切求切线,求圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题,考查学生的转化能力与运算求解能力,属于一般题. 23.(1)2r 或6r =;(2)24y x =.【分析】 (1)M 过点A ,B ,所以圆心M 在AB 的垂直平分线上,设(),M a a ,根据AOM为直角三角形,由勾股定理即可求解.(2)设(), M x y ,由于MO AO ⊥,根据AOM 为直角三角形,由勾股定理即可求解. 【详解】 解:(1)因为M 过点A ,B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线0x y +=上,且A ,B 关于坐标原点O 对称, 所以M 在直线y x =上,故可设(),M a a . 因为M 与直线20x +=相切,所以M 的半径为2r a =+.由已知得2AO =,(),M a a 点到0x y +==又MO AO ⊥,故可得()22242a a +=+,解得0a =或4a =. 故M 的半径2r 或6r =.(2)设(), M x y ,由已知得M 的半径为2r x =+,2AO =,MO =由于MO AO ⊥,所以222MO OA r +=,故可得()22242x y x ++=+,化简得M 的轨迹方程为24y x =.【点睛】思路点睛:直线和圆相交时,通常用半径、半弦、弦心距组成的直角三角形建立等量关系. 24.(1)229x y +=(2) 【分析】(1)设出经过圆C 和直线l 的圆系方程,利用圆心在直线2y x =上可求得结果;(2)当直线MN 的斜率不存在时,可求出四边形的MRNS 面积为MN 的斜率存在时,设直线:(2)MN y k x =+,则直线:20RS x ky ++=,利用几何方法求出||MN 和||RS ,求出四边形MRNS 面积,再换元求出最值可得取值范围.【详解】(1)依题意可设圆E 的方程为22663(2)0x x y y x y λ-+-+++-=,整理得22(6)(6)320x y x y λλλ++-+-+-=, 所以圆心66(,)22E λλ----,因为圆心E 在直线2y x =上,所以66222λλ--⎛⎫-=⨯- ⎪⎝⎭,解得6λ=,所以圆E 的方程为229x y +=.(2)当直线MN 的斜率不存在时,||MN =||6RS =,四边形MRNS 面积为162⨯= 当直线MN 的斜率存在时,设直线:(2)MN y k x =+,即20kx y k -+=,则直线:20RS x ky ++=,圆心E 到直线MN 的距离1d =,圆心E 到直线RS 的距离2d =,所以||MN ===,||RS ==所以四边形MRNS 面积为1||||2MN RS ⨯=, 令211t k =+,则01t <≤, 所以2244(5)(9)(54)(94)11t t k k +-=+-++224516164516()16t t t t =-++=---, 当12t =,即1k =±时,24516()16t t ---取得最大值49,此时四边形的MRNS 面积的最大值为14,当1t =,即0k =时,24516()16t t ---取得最小值45,此时四边形MRNS 面积的最小值为综上所述:四边形MRNS 面积的取值范围为 【点睛】结论点睛:经过直线0Ax By C ++=与圆220x y Dx Ey F ++++=的交点的圆系方程为22()0x y Dx Ey F Ax By C λ+++++++=.25.(1)()()22111x y -+-=或()()22115x y +++=;(2)()()22114x y -+-=. 【分析】(1)由题意可知,圆心C 在线段EF 的垂直平分线y x =,可设圆心(),C a a ,由圆心C 到直线0x y +=的距离等于2可求得实数a 的值,进而可求得圆C 的标准方程; (2)推导出Rt CAM Rt CBM ≅△△,可得出四边形MACB 的面积23CAMS SCA AM ==⋅=,进一步可求出2CM =,可得出点M 的轨迹是以C 为圆心,半径为2的圆,进而可求得点M 的轨迹方程. 【详解】(1)直线EF 的斜率为01110EF k -==--,线段EF 的中点为11,22P ⎛⎫⎪⎝⎭, 所以,线段EF 的垂直平分线的方程为1122y x -=-,即y x =, 因为圆C 过点()1,0E 和点()0,1F ,所以圆心C 在线段EF 的垂直平分线y x =上, 所以可设圆心为(),C a a ,因为圆心C 到直线0x y +=的距离等于2,所以222a =,解得1a =±,当1a =时,圆心为()1,1,半径1r EC ==,圆C 的方程为:()()22111x y -+-=; 当1a =-时,圆心为()1,1--,半径5r EC ==,圆C 的方程为:()()22115x y +++=.所以圆C 的标准方程为()()22111x y -+-=或()()22115x y +++=; (2)由题知CA MA ⊥,CB MB ⊥,CA CB =,CM CM =,90CAM CBM ∠=∠=,所以,Rt CAM Rt CBM ≅△△, 所以四边形MACB 的面积23CAMS SCA AM ==⋅=因为1CA =,所以3AM =2224CMCA AM =+=,所以2CM =,点M 的轨迹是以C 为圆心,半径为2的圆,所以点M 的轨迹方程为:()()22114x y -+-=.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=.【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程.【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=. 所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线l被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k = ∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】 易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆单元测试卷评讲(大约1课时)
学习目标:1、针对选择填空题中出现的错误归类,突出数形结合,充分利用平面几何中图形的性质特征,准确合理地解决问题;
2、通过对T18 T19的粗评讲与对T17的细评讲,培养学生阅读、分析、探究问题的水平,促动学生对数形结合思想的理解与使用。
学习重点:直线与圆的相关的应用。
学习难点:T17的第二问阅读理解及解答。
学习过程: 一、知识回顾:
1、直线的表示方式有几种?特殊位置时如何表示?
2、两条直线平行、相交、垂直如何用数量表示?
3、圆的方程有几种表达方式?相互之间如何转化?
4、直线与圆的位置至少有哪些?一般有几种方式去表达判定? 二、基础评讲:选择题填空题中出现问题较多的是第七题、第九题
1、第七题中“点P (x y )在直线x+2y=3上移动,当2x+4y 取最小值时”,意味着P
点被确定:2242222
x
y
x
y
+=+≥==当且仅当222x+2y=3
x y ⎧=⎨⎩⇒3
2x =
34y =
即33
(,)24
p 其次是切线长概念:P 点到切点之间的线段的长叫切线长。
2、直线L :4x---3y---2=0 已确定, 虽圆心(3,--5)已知,但半径r 未知为动圆, C (3,-5)到L 的的距离d=5,通过图形观察直线与圆的距离为1的点有且仅有两个,半径r 的取值范围显然可知:4<r <6,(学生作出 结论 ) 三、重点分析
1、T18题中动直线l :mx —y+1—m=0通过交点P (1,1),而
P (1,1)在圆o内部,(1)显然成立;当然也能够联立方程组⇒消元得则一元二次△﹥0或圆心C (0,1)到L 的
距离d ,第一问有三种方法;第二问数形结合 ,显然CM ⊥MP ,设m(x,y)由
1CM MP k k =-即可求出。
2、T19问题有三个(1)求证(2)(2)2a a -+=。
2,3两问均可应用1的结论实行解决,即使第一问证不出来或者证错,但只要应用第一问的结论解决了2,3两问即可得分。
3、T17第二问的句子较长,这是一个存有性问题。
里面含有那些条件?有几个条件?
①存有过(,)P a b 点得两条直线12L L ⊥.②1L 与圆1C 和2L 与2C 截得的弦长相等。
③“有无数多对”说明直线1L 绕点P 运动,1L 随着2L 而动得到
详细过程:设存有点(,)P a b ,设1L :()y b k x a -=-即0kx y b ak -+-=,则直线2L :
1
()y b x a k
--=
-即()0x ky a kb +-+=。
因为圆1C 与2C 的半径相等,它们截得的弦长也相等,又1C (3,1)-,2C (4,5)
∴4531k a bk k b ak +--=--+-
∴(4)(5)a b k -+-=1(3)b a k --+或(4)(5)a b k -+-=1(3)b a k --+因为a,b 是定值,
k R ∈上式恒成立 (3)5(3)51414a b a b b a b a -+=--+=-⎧⎧∴⎨⎨-=--=-⎩⎩或解得:3522
131
22
a a
b b -⎧⎧==⎪⎪⎪⎪⎨⎨
-⎪⎪==⎪⎪⎩⎩或 故满足条件的点P 为3135-1
(
)()2222
P P -,或, 4、小结反思;问通过第二问的解决我们要注意什么?(数形结合)
四、试卷整理:要求学生把做错的题目整理好,T17,T19整理在作业本上。