遥感概论_秦其明_第八章定量遥感基础
《遥感概论》课程电子讲义

《遥感概论》课程电子讲义丁建丽新疆大学资源与环境科学学院《遥感概论》课程讲义第一章遥感概述本章从整体上简单介绍了遥感技术的全貌,目的是让同学们对遥感有一个大致的认识。
遥感技术的根本目的在于获取目标地物的信息,为了获取这种信息,遥感采用了与传统技术不同的手段、角度、媒介,由此产生了与传统观察方法不同的效果和特点,从而遥感技术得到了广泛的应用。
本章重点是掌握遥感基本概念与遥感技术系统。
第一节 遥感基本概念1.1.1 遥感概念遥感 (Remote Sensing) 泛指对地表事物的遥远感知。
狭义的遥感特指通过遥感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标地物,获取其反射、辐射或散射的电磁波信息,进行处理、分析与应用的一门科学和技术。
遥感通常是指通过某种遥感器从空中或太空获取地表各类地物信息,并对这些信息进行提取、分析,以此来测量与判定地表目标地物的性质或特性。
1.1.2 观测对象及其特征遥感的观测对象主要是地球表层的各类地物,也包括大气、海洋和地下矿藏中不同成分。
地球表层各类地物都具有两种特征,一是空间几何特征,一是物理、化学、生物的属性特征。
1.1.3 特点与优势遥感技术是 20 世纪 70 年代起迅速发展起来的一门综合性探测技术。
遥感技术发展速度之快与应用广度之宽是始料不及的。
仅经过短短 30 多年的发展,遥感技术已广泛应用于资源与环境调查与监测、军事应用、城市规划等多个领域。
究其原因,在于遥感具有客观性、时效性、宏观性与综合性、经济性的特点。
第二节 遥感技术系统1.2.1 空间信息获取系统地球表面地物目标空间信息获取主要由遥感平台、遥感器等协同完成。
遥感平台 (Platform for Remote Sensing ) 是安放遥感仪器的载体,包括气球、飞机、人造卫星、航天飞机以及遥感铁塔等。
遥感器 ( Remote Sensor) 是接收与记录地表物体辐射、反射与散射信息的仪器。
遥感概论PPT课件

----天为什么是蓝的?日出日落时天空是橙红色?
☆ 米氏散射:当大气中粒子的直径与波长相当时发生的散射;
主要由大气中的烟尘、小水滴和气溶胶引起。散射强度与波长的
二次方成反比, I ∝ λ-2 。米氏散射在光线前进方向比向后方的
散射更强。
第12页/共88页
☆ 非选择性散射:当大气中粒子的直径比波长大得多时发生 的散射;散射强度与波长无关 。
☆ 物体的发射率等于该物体的吸收率: αλ=ελ 一般情况下,物体的发射率: 0< ελ <1
☆ 物体的发射率是温度和波长的函数。物体的发射率与身 的性质、物理状况(如粗糙度、颜色等)有关;物体的表面温 度受自身的比热、热惯量、热导率、热扩散率等影响较大。
☆ 黑体的ελ = ε=1;灰体的ελ =ε=常数<1;选择性辐射体的
1.5 ~ 1.8 μm 和 2.0 ~ 3.5 μm
3.5 ~ 5.5 μm
8 ~ 14 μm
0.8 ~ 2.5 cm
第14页/共88页
7、地球电磁辐射的基本特征
根据课本34页图2.20。自行总结
第15页/共88页
8、地球表面的热辐射特征 ☆ 温度为300K的黑体,其电磁辐射的波长范围是:2.5~50μm。
洋面及陆表温度
6
1.58 ~ 1.64
作物水分及地表温度
7
0.43 ~ 0.48
海洋水色
8
0.48 ~ 0.53
海洋水色
9
☆ 地球表面的发射辐射能量集中于近红外波段和热红外波段; 在热红外波段,地球的发射辐射能量远远大于太阳的电磁辐射能 量,通常称地球的发射辐射为热辐射。
☆ 地球表面的热辐射(能量)与自身的发射率、波长、温度有 关: M(λ,T)= ε( λ,T)× M0( λ,T)
遥感概论课程教学大纲

《遥感概论》课程教学大纲课程名称:Introduction to Remote Sensing课程编号:102077总学时数:48学时学分:3学分课程类别:专业基础必修先修课程:遥感概论教材:《遥感导论》(高等教育出版社、梅安新、彭望琭、秦其明、刘慧平)。
参考书目:1. 彭望琭,白振平等《遥感概论》,高等教育出版社, 2002年2. 赵英时等《遥感应用分析原理与方法》,科学出版社, 2003年3. 日本遥感协会,《遥感精解》,测绘出版社, 1993年4. 孙家柄等《遥感原理、方法和应用》,测绘出版社, 1999年5. 吕国楷等《遥感概论》,高等教育出版社, 1995年6. 张永生等《遥感图像信息系统》,科学出版社, 2000年7. 秦其明,《遥感概论网络教程》,高等教育出版社, 2003年《课程内容简介》:本课程主要讲述遥感基本理论、方法和基础知识。
主要内容有遥感物理基础、地物与电磁波相互作用和遥感成像机理;不同遥感器特性与遥感构像特征;遥感图像处理的方法与技术;遥感图像目视解译原理、方法和解译步骤;遥感数字图像计算机解译;根据未来遥感技术应用需求,课程最后简要介绍了遥感、地理信息系统与全球定位系统综合应用。
一、课程性质、目的和要求遥感概论是地理类本科生专业基础课。
该课程系统介绍了遥感基本理论、方法和应用技术,是现代信息社会中地理学类专业本科生必须具备的专业基础之一。
通过该课程教学与实习,达到以下的教学目标:(1)了解遥感物理基础、遥感成像机理和影像解译原理;(2)了解遥感技术系统,掌握遥感图像处理技术;(3)了解并掌握航空照片、多光谱遥感图像、热红外遥感图像、雷达图像(SAR)和高光谱遥感图像等不同类型遥感图像解译方法,以及运用遥感图像进行地学分析和综合研究方法与技能;(4)了解遥感技术进展和“3S”系统的综合应用。
课程要求:(1)基础理论与应用相结合。
课程既介绍了航空照片、多光谱图像、热红外图像、雷达图像和高光谱图像成像方面的基本理论,也阐述了遥感图像解译基本方法和基本技能,通过遥感技术的应用实践加深对遥感原理的理解。
《遥感概论》课程笔记

《遥感概论》课程笔记第一章:绪论1.1 遥感及其技术系统遥感(Remote Sensing)是指不直接接触对象物体,通过分析从远处感知到的电磁波信息来识别和探测地表及其上方环境的技术。
遥感技术系统是由多个组成部分构成的复杂体系,主要包括以下几部分:- 传感器(Sensor):用于探测和记录目标物体发射或反射的电磁波的设备。
- 遥感平台(Remote Sensing Platform):携带传感器的载体,如卫星、飞机、无人机等。
- 数据传输系统(Data Transmission System):将传感器收集的数据传回地面的设备。
- 数据处理与分析系统(Data Processing and Analysis System):对遥感数据进行处理、分析和解释的软件和硬件。
1.2 遥感门类及技术特点遥感技术根据不同的分类标准可以分为以下几类:- 按照电磁波波长:可见光遥感、红外遥感、微波遥感等。
- 按照传感器工作方式:主动遥感(如激光雷达)和被动遥感(如摄影相机)。
- 按照平台类型:卫星遥感、航空遥感、地面遥感等。
遥感技术的主要特点包括:- 大范围覆盖:遥感技术可以覆盖广阔的地表区域,对于大规模的地理现象监测具有优势。
- 高效快速:遥感平台可以快速穿越监测区域,获取数据的时间周期短。
- 多维信息:遥感可以提供关于地表及其上方环境的多种信息,如形状、纹理、温度等。
- 非侵入性:遥感技术不需要直接接触目标物体,因此对环境的影响较小。
1.3 遥感行业应用概况遥感技术在多个行业中有着广泛的应用,以下是一些主要的应用领域:- 农业领域:通过遥感技术监测作物生长状况、评估产量、监测病虫害、进行土地资源调查等。
- 环境保护:监测森林覆盖变化、湿地保护、沙漠化趋势、大气污染等环境问题。
- 灾害管理:利用遥感技术进行地震、洪水、飓风、火灾等自然灾害的预警、监测和评估。
- 城市规划:通过遥感图像分析城市扩张、交通布局、土地利用效率等,为城市规划提供依据。
遥感概论复习资料总结

遥感概论复习资料总结遥感概论复习资料第⼀章遥感的基本概念(1)⼴义:泛指⼀切⽆接触的远距离探测技术。
包括对电磁场、⼒场、机械波(声波、地震波)等的探测。
(2)狭义:是应⽤探测仪器,不与探测⽬标相接触,从远处把⽬标的电磁波特性记录下来,通过分析,揭⽰出物体的特征性质及其变化的综合性探测技术。
不同于遥测和遥控。
遥感系统包括(1)被测⽬标的信息特征(2)信息的获取(通过传/遥感器、遥感平台)(3)信息的传输与记录(4)信息的处理(5)信息的应⽤遥感的构成(遥感系统)◇⽬标地物的电磁波特性、◇信息的采集与获取、◇信息的传输和接收◇地⾯定标及实况调查、◇信息的处理和加⼯、◇信息的分析与应⽤遥感的类型(1)按遥感平台分类:地⾯遥感、航空遥感、航天遥感、航宇遥感(2)按遥感器的探测波段分类µ之间紫外遥感:探测波段在0.05-0.38mµ之间可见光遥感:探测波段在0.38-0.76mµ之间红外遥感:探测波段在0.76-1000m微波遥感:探测波段在1mm-1m之间多波段遥感:探测波段在可见光和红外波段范围内,再分成若⼲窄波段来探测⽬标。
(3)按⼯作⽅式分类:主动遥感和被动遥感主动遥感,由探测器主动发射⼀定电磁波能量并接受⽬标的后向散射信号;被动遥感,传感器不向⽬标发射电磁波,仅被动接收⽬标物的⾃⾝发射和对⾃然辐射源的反射能量。
(4)按是否成像分类:成像遥感和⾮成像遥感遥感的特点(1)⼤⾯积同步观测传统地⾯调查实施困难,⼯作量⼤,遥感观测可以不受地⾯阻隔等限制。
(2)时效性可以短时间内对同⼀地区进⾏重复探测,发现地球上许多事物的动态变化,传统调查,需要⼤量⼈⼒物⼒,⽤⼏年甚⾄⼏⼗年时间才能获得地球上⼤范围地区动态变化的数据。
因此,遥感⼤⼤提⾼了观测的时效性。
这对天⽓预报、⽕灾、⽔灾等的灾情监测,以及军事⾏动等都⾮常重要。
(3)数据的综合性和可⽐性遥感获得地地物电磁波特性数据综合反映了地球上许多⾃然、⼈⽂信息。
遥感概论总结

遥感概论总结第一章1、遥感的概念 p1遥感( Remote Sensing ),即遥远的感知,是在空间科学、电子科学、地球科学、计算机科学以及其他学科交叉渗透、相互融合的基础上发展起来的一门新兴边缘学科,它利用非接触传感器来获取有关目标的时空信息,不仅着眼于解决传统目标的几何定位,更为重要的是对利用外层空间传感器获取的影像和非影像信息进行语义和非语义解译,提取客观世界中各种目标对象的几何与物理特征信息。
几何:由2维影像重建3维模型。
物理:由光谱特性确定物质类别。
第二章1、黑体辐射的概念以及三大定律p30定义一:黑体发出的地磁辐射,它比同温度下任何其他物体发出的电磁辐射都强 定义二:研究实际物体吸收和发射辐射能量的性能时的一种理想化的比较标准三大定律1)斯忒藩—玻尔兹曼定律对普朗克定律在全波段内积分,得到斯忒潘-玻尔兹曼定律。
辐射通量密度随温度增加而迅速增加,与温度的4次方成正比。
σ: 斯蒂藩-玻尔兹曼常数,5.6697×10-8Wm-2K4T :绝对黑体的绝对温度(K )2)维恩位移定律黑体辐射光谱最强的波长与黑体绝对温度T 成反比:黑体温度越高,曲线的顶峰就越往左移,即往波长短的方向移动。
高温物体发射较短的电磁波,低温物体发射较长的电磁波。
3)基尔霍夫定律给定温度下,黑体向外的辐射出射度和吸收的能量必然相等,任何地物的辐射出射度与吸收率α之比是常数。
基尔霍夫证明下式之比仅与波长和温度有关。
黑体:最大的吸收率 最大的发射率 没有反射实体:吸收本领大、发射本领也大2、太阳常数概念太阳常数:是指不受大气影响,在距离太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接受的太阳辐射能量。
太阳常数可以认为是大气顶端接收的太阳能量,所以没有大气的影响。
太阳常数值基本稳定,即使有变化也不会超过1%。
太阳常数对遥感探测和进一步应用于气象、农业、环境5444523022(1)152hc kT h k c W d e c h T Tλππλσλ+∞===-⎰2452102max 02[5(1)()](1)2897.8ch ch kT kT ch kT b M ch hc e e kT e T b λλλλπλλλλλ∂==∂--+--⇒⋅==等领域也很重要。
遥感概论 绪论

《遥感概论》第一章 绪论
按传感器的工作方式分
➢ 主动遥感:由探测器主动发射一定电磁 波能量并接收目标的后向散射信号
➢ 被动遥感:被动接收目标物的自身发射 和对自然辐射源的反射能量。
《遥感概论》第一章 绪论 第四节 遥感发展概况及其展望
(1)遥感发展阶段 (2)遥感技术主要发展趋势 (3)我国遥感事业的发展
(2.5米)
美国IKONOS Ⅱ 卫星
美 国 华 盛 顿 ( 米 )
1
中 国 北 京 ( 米 )
1
IKONOS 卫 星 多 光 谱 影 像 (4米)(排队参观毛主 席纪念堂的队伍隐约可 见,花坛信息没有,背 景草坪不清晰)
IKONOS 卫 星 融 合 影 像 ( 1 米)(排队参观毛主席纪 念堂的队伍清晰可见,花 坛和背景草坪显示出来, 色调自然逼真,连纪念堂 柱子的阴影都很清楚)
❖ 遥感器接收到地物目标的电磁波信息,被记录在胶片或数 字磁带上。胶片有人或回收舱送至地面回收,数字磁带记 录的信息则通过卫星上的微波天线传输给地面接收站。
❖ 从遥感卫星向地面接收站传输的空间数据中,除了卫星获 取的图像数据以外,还包括卫星轨道参数、遥感器等辅助 数据。这些数据通常用数字信号传送。遥感图像的模拟信 号变换为数字信号时,经常采用二进制脉冲编码的PCM式 (pulse code modulation:脉冲编码调制)。
《遥感概论》第一章 绪论
硬件部分包括:计算机(完成图像数据处理任务)、显示
遥设图备像感(输高图入分输像辨出率处设真备理彩等色。图像显示)、大容量存贮设备、
❖ 遥感图像处理是在计算机系统支持下对遥 感软图件部像分加包工括:的由各数种据输技入术、方图像法校的正统、图称像。变换、
遥感概论_秦其明_第八章定量遥感基础

第八章定量遥感模型是解决问题的工具。
在利用遥感技术解决问题时我们通常需要建立模型,模型是联系遥感可测参数(辐射强度、偏振、相位)与实际应用中所需参数的纽带和桥梁。
本章的学习重点就是建立遥感模型的一般方法。
本章重点是掌握定量遥感建模方法。
第一节定量遥感概述定量遥感是当前遥感发展的前沿。
它利用遥感器获取的地表地物的电磁波信息,在计算机系统支持下,通过数学的或物理的模型将遥感信息与观测地表目标参量联系起来,定量地反演或推算出某些地学、生物学及大气等目标参量或地物定量信息。
8.1.1 可见光、近红外波段定量遥感遥感的基本过程可以看作是电磁波与大气相互作用过程以及电磁波与地表的相互作用过程的叠加。
在这个过程中:电磁波与大气相互作用形成大气效应。
大气效应是电磁辐射在太阳-目标物-传感器系统的传输过程中受到大气分子、水气、气溶胶和尘粒等散射、吸收和折射等影响。
通过大气纠正可以基本消除大气效应对遥感影象的影响。
定量遥感需要考虑地表非朗伯体特性。
大多数情况下的地面物质都不是均一的朗伯体,朗伯体的假设给定量遥感计算带来很大的误差。
可以用地表的二向反射率分布函数(BRDF)来描述地表的非朗伯体特性,减少定量遥感计算造成的误差。
8.1.2 热红外波段的定量遥感热红外波段遥感测量的对象是地表物质的热辐射。
在热学中,温度是物质分子热运动平均动能的量度,描述了物质内部分子热运动的剧烈程度。
物质内部微观粒子的运动导致了物质向外发射电磁波,即热辐射。
地球环境的代表性温度为300K,它对应的接近10μm,正接近热红外大气窗口区,因此,可以利用热红外遥感器获取地表的热辐射状况。
热红外遥感获得的亮度温度。
对于地球表面真实物体(绝大多数为非黑体)而言,由于其辐射亮度受自身比辐射率的影响,所以比辐射率是联系亮温与真实温度的桥梁。
8.1.3 主动微波遥感基础合成孔径雷达(SAR)二维成像过程是通过安装在运动平台上的雷达天线不断地发射脉冲信号,接受它们在地面的回波信号,经信号的成像处理形成二维SAR影像,影像中的每一像素的幅度只与目标的后向散射系数有关。
遥感导论主要内容

• 空间分辨率、波谱(光谱)分辨率、辐 射分辨率、时间分辨率
• 遥感图像的空间分辨率:指像素所代表的 空间分辨率大小。
Rg=Rs f / H Rs为系统分辨率 Rg为地面分辨率
常见遥感图像的空间分辨率
图像类型 TM
SPOT CBERS QuickBird OrbView IKNOS
分辨率 28.5(15) 10(5、2.5)
陆地卫星
• Landsat MSS,TM,ETM+ 重点 • SPOT • 中巴资源卫星CBERS
海洋卫星
• Seasat ,ERS等 • 需要高空和空间的遥感平台,以进行大
面积同步覆盖的观测 • 以微波为主 • 电磁波与激光、声波的结合是扩大海洋
遥感手段的一条新路 • 需要其它海面实测资料的校正
飞机 气球
遥感用汽车
地面运载工具 (地面遥感)
高架平台 遥感用舰船
按传感器的探测波段分
–紫外遥感 –可见光遥感 –红外遥感 –微波遥感 –多波段遥感
按工作方式分
–主动遥感和被动遥感 –成像遥感与非成像遥感
遥感的特点
• 大面积同步观测 • 时效性 • 数据的综合性和可比性 • 经济性 • 局限性
第二章 电磁辐射与地物光谱特征
–
(electromagnetic spectrum)
遥感中常用的电磁波
紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有 0.3~0.38μm波长的光到达地面,对油污染敏感,但探测 高度在2000 m以下。 可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐 的感觉,是遥感技术应用中的重要波段。 红外线:波长范围为0.76~1000μm,根据性质分为近红 外、中红外、远红外和超远红外。 微波:波长范围为1 mm~1 m,穿透性好,不受云雾的影 响。
定量遥感基础

大气校正理论方法
和MODTRAN比较,MODTRAN解决的是正问题,给出反射率, MODTRAN能计算出大气层顶辐射;6S解决的是反问题, 给出大气层顶辐射,计算地表的反射率。MODTRAN可以 计算的波段范围是0.20um到无穷,而6S只能计算太阳反 射光谱波段(0.25-4.0um)的大气传输参数,两者进 行大气纠正的操作也不相同,MODTRAN得到大气传输参 数,需要带入传输公式,得到校正后的反射率;6S输入 表观反射率,直接能得到校正后的地面反射率。
几何光学模型
几何光学模型主要考虑地表的宏观几何结构,把地表假设 为具有已知几何形状和光学性质,按一定方式排列的几何 体,通过分析几何体对光线的截获和遮阴及地表面的反射 来确定植冠的方向反射(赵英时等,2003)。 代表性的有Li-Strahler GOMS 模型
–遥感器实验室定标 –遥感器星上内定标 –遥感器场地外定标
遥感器实验室定标
是指对比分析与研究空中遥感器接收到的电磁波能量信 号与地物光谱仪接收到的电磁波能量信号的定量关系, 以及电磁波能量信号与地物的物理特性的关系,以便对 获取的空中遥感器信号进行纠正。 遥感器实验室定标主要包括光谱定标与辐射定标两大部 分。 -光谱定标是测量遥感器随入射辐射波长变化的响应。 -辐射定标用以确定遥感器入瞳处的准确辐射数值。
–直方图调整(Histogram Matching) 假设清楚目标和模糊目标反射率直方图是一样的,在 图像中找到清楚的目标,用清楚目标的反射率直方 图来调整模糊目标的反射率直方图。常用的图像处 理软PCI,EARDAS等使用了此方法。 优点:简单、实用。 缺点:1)对于由具有不同反射特征的目标物组成的 混合像元,以上假设是不成立的;2)气溶胶空间 分布变化大时,此方法校正结果不正确。
遥感概论教案

遥感概论教案一、学时与学分3学分。
54学时(学期课)。
二、授课对象地理系大学本科三年级学生。
三、教学目的1 教学目的、任务:通过本课学习使学生初步掌握遥感这一高新技术的基础理论及其在资源、环境等领域的应用。
此外,为进一步培养高级人才如报考硕士研究生奠定基础。
2 本课作用及地位:遥感技术是一门集物理学、计算机技术、航天技术等多学科、多领域的高新技术,是地学领域一个新的增长点。
同时其在资源、环境领域的应用又涉及到地学许多学科,因此,学好遥感对相关学科的教学科研也有重要作用。
四、教学环节及学时安排1.课堂教学:50学时2.室内实习、作业:17学时3.金山野外实习:一周(占4学时)4.课外辅导:每周1次5.5.复习考试:4学时五、考核方式1、以作业、课堂讨论的准备情况等,为平时考核的主要内容。
2、期末考试占总成绩的60-80%。
期末考试一般以闭卷考试为主,考试时间由学校统一安排。
遥感概论教案第一章遥感概述1.1遥感概念广义而言,遥感(Remote Sensing)泛指各种非直接接触的,远距离探测目标的技术。
对目标进行采集主要根据物体对电磁波的反射和辐射特性,利用声波,引力波和地震波等,也都包含在广义的遥感之中。
通常人们所认为的遥感的概念是指:从远距离,高空,以至外层空间的平台(Platform)上,利用可见光、红外、微波等遥感器(Remote Sensor),通过摄影、扫描等各种方式,接收来自地球表层各类地物的电磁波信息,并对这些信息进行加工处理,从而识别地面物质的性质和运动状态的综合技术。
远距离感测地物环境反射或辐射电磁波的仪器,叫做遥感器,照相机、扫描仪等即属于此类。
装载遥感器的运载工具,叫做遥感平台,如飞机、飞艇和人造卫星等。
遥感研究的内容,由于应用领域及其所研究的对象的千差万别而显得形形色色,但它们都是通过接收电磁波,来识别和分析地表的目标及现象的。
因此,利用遥感技术,就是利用了物体的电磁波特征,即一切物体,由于其种类及环境条件的不同,因而具有反射或辐射不同波长电磁波的特性。
第八章 定量遥感基础 秦其明-《遥感概论》北京大学-PDF格式

大气校正理论方法
6S描述了大气如何影响辐射在太阳-地表-遥感器之间 的传输。需要输入的参数有:几何参数(遥感器类型、 成像年月日和经纬度;大气中的水和臭氧浓度;气溶胶 浓度;辐射条件、观测波段和海拔高度;地表覆盖类型 和反射率。6S预先设置了50多种波段模型,包括MODIS, AVHRR,TM等常见传感器的可见光近红外波段。
大气校正实验方法
-查找表法LUT(Look Up Table) 是指利用辐射传输模型事先计算不同大气 条件下的气溶胶光学厚度、单次散射反照 率和相函数等,形成查找表,以便在进行 校正时调入使用。
大气校正理论方法
实验方法依赖于某种假设或实测数据,其适用性 受到了限制。对大气-地表-遥感器之间的辐射 传输过程进行模拟,可以模拟出卫星同步的大气 参数和地表的真实反射率,常用的有MODTRAN和 6S。
大气校正实验方法
–黑暗目标法(Dark Object Method) 若图像中存在浓密植被或水体,它们在可见光(浓密 植被)和红外(水体)具有低反射,根据其在此特 征波段的反射率和其他波段反射率之间的相关关系, 进行大气校正。比如,在ETM+/TM7波段(2.1um) 左右水体反射率应该为零,但由于大气效应往往是 非零,确定此差距,用来可以移除其他波段像元中 的大气干扰。 优点:此方法方便,目前在中分辨率成像光谱仪 MODIS、MERIS等数据处理中广泛使用。 缺点:图像中没有大范围分布的浓密植被或水体存在, 比如北半球冬天的图像或沙漠的图像,方法无法使 用。
微波遥感的对地观测基础
合成孔径雷达二维成像过程是通过安装在运动平 台上的雷达天线不断地发射脉冲信号,接受它们在 地面的回波信号,经信号的成像处理形成二维SAR 影像,影像中的每一像素的幅度只与目标的后向散 射系数有关 随着应用的需要,不仅希望得到SAR照射场景的二 维信息,而且希望能得到该区域的高度信息 获取地表形态垂直变化的遥感测量传感器主要有 干涉雷达,即干涉测量合成孔径雷达
学遥感必读的书籍

学遥感必读的十本专业书1.《遥感应用分析原理与方法》,赵英时等著,科学出版社,2003年第一版内容简介本书是一本全面系统地论述遥感原理及其应用分析方法的基础理论著作。
全书共15章.包括三大部分内容。
第一部分:第1至第5章为遥感基础。
重点闻述遥感系统的基本理论、物理概念、遥感数据源的获取、传输机理、成像规律及各类遥感信息的特征;并分别介绍可见光-红外、热红外、微波遥感的特点及其研究进展等。
第二部分:第6至第10章为遥感分析方法。
主要阐述迢感图像的解译、数字图像处理、遥感综合分析方法、数据融合、地理信息系统;并着重介绍遥感定量分析的方法及其模型等。
第三部分:第11至第15章为迢感专题应用。
这一部分以理论、方法、实例相结合,择用国内外典型实例,从土地、植被、水体和海洋、地表能量平衡与土壤水分、地质等方面进行总结,反映遥感信息科学的广阔应用前景。
本书内容丰富,具基础性、前沿性,有广泛的适用性,可作为地学、环境、空间信息等地球系统科学领域的研究生教材,也可作为有关高等学校师生及各专业领域的广大遥感科学工作者的参考书。
/* 该书是中国科学院研究生教学丛书,也是中科院遥感所硕士研究生入学考试“遥感概论”科目的指定参考书,以该书作为硕士考研指定参考书的还有北京师范大学等 */2.《遥感导论》,梅安新、彭望琭、秦其明、刘慧平著,高等教育出版社,2001年第一版内容提要本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是“面向21世纪课程教材”,也是全国高等学校地理类专业公共核心课深教材。
教材注重反映现代遥感技术的最新成果,结合经济建设实际,注重反映遥感应用内容。
全书以较大的篇幅系统介绍了计算机遥感图像处理的内容.并且在诸如地物光谱多光谱成像仪、微波遥感,特别是3S(RS、GIS、GPS)集成等世界领先技术方面,注重适当引入。
主要内容包括:遥感基本概念、电磁辐射和地物波语、遥感成像原理、逐感图像特征、遥感图像分析的原理与方法、图像信息的提取与分类处理、遥感的应用及实例、3S集成,以及新型遥感平台与传感器等。
遥感原理与基础(又名 遥感概论)

自1970年4月24日发射“东方红1号”人造卫星以后, 相继发射了数十颗不同类型的人造地球卫星。太 阳同步的“风云l号”(FY-lA,lE)和地球同步轨道 的“风云2号”(FY-2A,2B)的发射,返回式遥感卫 星的发射与回收,使我国开展宇宙探测、通讯、 科学实验、气象观测等研究有了自己的信息源。 1999年10月14日中国-巴西地球资源遥感卫星 CBERS-1的成功发射,使我国拥有了自己的资源 卫星。 “北斗1,2”定位导航卫星及"清华1号"小卫星的成 功发射,丰富了我国卫星的类型。
4 遥感的特点
(1)遥感范围大,可实施大面积的同步观测 (2)获取信息快,更新周期短,具有动态监 测的特点(时效性) (3)数据的综合性和可比性,具有手段多, 技术先进的特点
(4)经济效益高,用途十分广泛 (5)遥感技术的局限性
多波段性
多时相性
5 遥感的发展简史
(1)无记录的地面遥感阶段(1608-1838年) (2) 有记录的地面遥感阶段(1839-1857) (3)航空摄影遥感阶段(1858-1956年) (4) 航天遥感阶段(1957-)
采集时间
SPOT
3(HRV)
20
2000-11-21
IKNOS
4(多光谱)
4
2004-07-20
中巴地球资源一 号
5(CCD)
19.5
2006-7-21
电磁辐射源
1.
自然辐射源 太阳辐射:是可见光和近红外的主要辐射源;
常用5900K的黑体辐射来模拟;其辐射波长范 围极大;辐射能量集中在中-短波辐射。大气 层对太阳辐射有吸收、反射和散射作用。 地球的电磁辐射:小于3 μm的波长主要是 太阳辐射的能量;大于6 μm的波长,主要是 地物本身的热辐射;3-6 μm之间,太阳和地 球的热辐射都要考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章定量遥感模型是解决问题的工具。
在利用遥感技术解决问题时我们通常需要建立模型,模型是联系遥感可测参数(辐射强度、偏振、相位)与实际应用中所需参数的纽带和桥梁。
本章的学习重点就是建立遥感模型的一般方法。
本章重点是掌握定量遥感建模方法。
第一节定量遥感概述定量遥感是当前遥感发展的前沿。
它利用遥感器获取的地表地物的电磁波信息,在计算机系统支持下,通过数学的或物理的模型将遥感信息与观测地表目标参量联系起来,定量地反演或推算出某些地学、生物学及大气等目标参量或地物定量信息。
8.1.1 可见光、近红外波段定量遥感遥感的基本过程可以看作是电磁波与大气相互作用过程以及电磁波与地表的相互作用过程的叠加。
在这个过程中:电磁波与大气相互作用形成大气效应。
大气效应是电磁辐射在太阳-目标物-传感器系统的传输过程中受到大气分子、水气、气溶胶和尘粒等散射、吸收和折射等影响。
通过大气纠正可以基本消除大气效应对遥感影象的影响。
定量遥感需要考虑地表非朗伯体特性。
大多数情况下的地面物质都不是均一的朗伯体,朗伯体的假设给定量遥感计算带来很大的误差。
可以用地表的二向反射率分布函数(BRDF)来描述地表的非朗伯体特性,减少定量遥感计算造成的误差。
8.1.2 热红外波段的定量遥感热红外波段遥感测量的对象是地表物质的热辐射。
在热学中,温度是物质分子热运动平均动能的量度,描述了物质内部分子热运动的剧烈程度。
物质内部微观粒子的运动导致了物质向外发射电磁波,即热辐射。
地球环境的代表性温度为300K,它对应的接近10μm,正接近热红外大气窗口区,因此,可以利用热红外遥感器获取地表的热辐射状况。
热红外遥感获得的亮度温度。
对于地球表面真实物体(绝大多数为非黑体)而言,由于其辐射亮度受自身比辐射率的影响,所以比辐射率是联系亮温与真实温度的桥梁。
8.1.3 主动微波遥感基础合成孔径雷达(SAR)二维成像过程是通过安装在运动平台上的雷达天线不断地发射脉冲信号,接受它们在地面的回波信号,经信号的成像处理形成二维SAR影像,影像中的每一像素的幅度只与目标的后向散射系数有关。
随着应用的需要,不仅希望得到SAR照射场景的二维信息,而且希望能得到该区域的高度信息。
获取地表形态垂直变化的遥感测量传感器主要有干涉雷达,即干涉测量合成孔径雷达。
第二节定量遥感主要研究内容8.2.1遥感器定标遥感器定标是指建立遥感器每个探测元件所输出信号的数值量化值与该探测器对应像元内的实际地物辐射亮度值之间的定量关系。
由于卫星运行时所获取的遥感信息受到诸多因素影响,如遥感器系统的畸变、大气传播的干扰、地形影响等都会造成遥感器采集到的辐射能量与目标地物实际的辐射能量之间存在较大偏差,因此需要遥感器定标。
遥感器定标是遥感数据定量化处理中的最基本环节,遥感器的定标精度直接影响到遥感数据的可靠性和精度。
遥感器定标包括实验室定标、星上内定标和场地外定标三部分内容。
8.2.1.1 遥感器实验室定标是指对比分析与研究空中遥感器接收到的电磁波能量信号与地物光谱仪接收到的电磁波能量信号的定量关系,以及电磁波能量信号与地物的物理特性的关系,以便对获取的空中遥感器信号进行纠正。
遥感器实验室定标主要包括光谱定标与辐射定标两大部分。
光谱定标是测量遥感器随入射辐射波长变化的响应。
辐射定标用以确定遥感器入瞳处的准确辐射数值。
8.2.1.2 遥感器星上内定标卫星发射后,探测探测器元件老化或者工作温度变化都会影响到遥感器的响应,因此需要遥感器星上内定标。
星上内定标主要是绝对辐射定标,在可见光和反射红外区采用电光源(灯定标)和太阳光(太阳定标)作为高温的标准辐射源,在热红外区采用卫星上的标准黑体(黑体定标)作为高温的标准辐射源,以宇宙空间作为低温标准辐射源。
8.2.1.3 遥感器场地外定标是在遥感器飞越辐射定标场上空时,在定标扬选择若干像元区,测量遥感器对应的各波段地物的光谱反射率和大气光谱参量,并利用大气辐射传输模型给出遥感器入瞳处各光谱带的辐射亮度,最后确定它与遥感器对应输出的数字量化的数量关系,求解定标系数,并进行误差分析。
通过地面辐射场地外定标对于提高辐射定标精度具有重要意义,这因为场地外定标方法可以实现全孔径、全视场、全动态范围的定标,并考虑到大气传输和环境的影响。
该定标方法可以实现在遥感器运行状态下与获取地面图像完全相同条件下的绝对订正。
8.2.2 大气校正大气校正是消除遥感图像在大气传输中所引起质量退化的一种图像处理方法。
由于遥感器在空中获取地表信息过程中,受到大气分子、气溶胶和云粒子等大气成份的吸收与散射的影响,以及大气中水汽和气溶胶含量具有很大的时空变化特性,其结果是目标反射辐射能量被衰减,空间分布被改变,部分和目标物无关的大气散射辐射进入遥感器视场,因此,定量遥感必须考虑大气的影响,对于一个已经经过绝对辐射标定的遥感图像,还必须经过大气校正才可以得到地表目标的正确信息。
大气校正包括实验方法和理论方法两类:8.2.2.1大气校正实验方法直方图调整(Histogram Matching)。
假设清楚目标和模糊目标反射率直方图是一样的,在图像中找到清楚的目标,用清楚目标的反射率直方图来调整模糊目标的反射率直方图。
常用的图像处理软PCI,EARDAS等使用了此方法。
该方法的优点是简单、实用;缺点包括:1)对于由具有不同反射特征的目标物组成的混合像元,以上假设是不成立的;2)气溶胶空间分布变化大时,此方法校正结果不一定正确。
黑暗目标法(Dark Object Method)。
若图像中存在浓密植被或水体,它们在可见光(浓密植被)和红外(水体)具有低反射,根据其在此特征波段的反射率和其他波段反射率之间的相关关系,进行大气校正。
比如,在ETM+/TM7波段(2.1um)左右水体反射率应该为零,但由于大气效应往往是非零,确定此差距,用来可以移除其他波段像元中的大气干扰。
此方法优点是应用方便,目前在中分辨率成像光谱仪MODIS、MERIS等数据处理中广泛使用。
缺点是图像中没有大范围分布的浓密植被或水体存在时,比如北半球冬天的图像或沙漠的图像,该方法无法使用。
固定目标法(Invariant Object)。
假设图像中某像元反射率已知或“固定”,利用这些像元反射率和各波段光谱反射率之间的线性关系,可对整个图像进行校正和均一化。
如果得到卫星同步的地面观测反射率数据,此方法是绝对大气校正方法。
对比减少法(Contrast Reduction)。
地表反射率稳定的区域,若不同时期获取的卫星信号发生变化,说明该区大气光学特征发生了变化。
这样,变化差值可用于反演大气气溶胶厚度。
但由于地表反射率是一般随时间和空间变化的,稳定地表反射率假设限制了其广泛实用性。
查找表法LUT(Look Up Table) 。
是指利用辐射传输模型事先计算不同大气条件下的气溶胶光学厚度、单次散射反照率和相函数等,形成查找表,以便在进行校正时调入使用。
8.2.2.2 大气校正理论方法实验方法依赖于某种假设或实测数据,其适用性受到了限制。
对大气-地表-遥感器之间的辐射传输过程进行模拟,可以模拟出卫星同步的大气参数和地表的真实反射率,常用的有MODTRAN和6S。
MODTARN(Moderate Resolution Transmission)这是由美国空军地球物理实验室(AFGL)开发的计算大气透过率及辐射的软件包。
MODTRAN从LOWTRAN发展而来,它提高了LOWTRAN的光谱分辨率。
MODTRAN的基本算法包括透过率计算,多次散射处理和几何路径计算等。
需要输入的参数有四类:计算模式,大气参数,气溶胶参数和云模式。
MODTRAN有四种计算模式:透过率,热辐射,包括太阳或月亮的单次散射的辐射率,直射太阳辐照度计算。
用MODTRAN进行大气纠正的一般步骤是:首先输入反射率,运行MODTRAN得到大气层顶(TOA)光谱辐射,解得相关参数;然后利用这些参数带入公式进行大气纠正。
6S描述了大气如何影响辐射在太阳-地表-遥感器之间的传输。
需要输入的参数有:几何参数(遥感器类型、成像年月日和经纬度;大气中的水和臭氧浓度;气溶胶浓度;辐射条件、观测波段和海拔高度;地表覆盖类型和反射率。
6S预先设置了50多种波段模型,包括MODIS,AVHRR,TM等常见传感器的可见光近红外波段。
6S和MODTRAN比较:MODTRAN解决的是正问题,给出反射率,MODTRAN能计算出大气层顶辐射;6S解决的是反问题,给出大气层顶辐射,计算地表的反射率。
MODTRAN可以计算的波段范围是0.20um到无穷,而6S只能计算太阳反射光谱波段(0.25-4.0um)的大气传输参数,两者进行大气纠正的操作也不相同,MODTRAN得到大气传输参数,需要带入传输公式,得到校正后的反射率;6S输入表观反射率,直接能得到校正后的地面反射率。
8.2.3 定量遥感模型遥感模型是从抽取遥感专题信息的应用需要出发,对遥感信息形成过程进行模拟、统计、抽象或简化,最后用文字、数学公式或者其他的符号系统表达出来。
定量遥感模型概括起来分为三类:物理模型根据物理学原理建立的模型,模型中参数具有明确的物理意义,模型通常采用数学公式描述。
此类模型通常是非线性的,方程复杂、输入参数多、实用性较差,为了求解通常对多个非主要因素进行忽略或假定。
常见的“物理模型”有植被二向性反射的辐射传输模型、几何光学模型等。
统计模型又称为“经验模型”,其建模思路是对一系列观测数据作经验性的统计描述,或者进行相关分析,建立遥感参数与地面观测数据之间的回归方程。
这类模型优点是简便、适用性强,参数较少。
弱点是理论基础不完备,缺乏对物理机理的足够理解和认识,代表性差,模型应用受到区域实用性的限制。
半经验模型综合统计模型和物理模型的优点产生的混合模型。
“半经验模型”建模思路既考虑模型的定性物理含义,又采用经验参数建模。
例如Rahman的地表二向反射模型等半经验模型。
主要定量遥感模型介绍辐射传输模型辐射传输模型的理论基础是辐射传输理论,描述光辐射和粒子(包括电子、质子、中子等基本粒子)在介质中传播的规律。
其核心为辐射传输方程,即:几何光学模型几何光学模型主要考虑地表的宏观几何结构,把地表假设为具有已知几何形状和光学性质,按一定方式排列的几何体,通过分析几何体对光线的截获和遮阴及地表面的反射来确定植冠的方向反射(赵英时等,2003)。
代表性的有Li-Strahler GOMS 模型ds表示地表或树冠表面的面积元,R(s)是该面积元的的反射率,(i,s)和(r,s)分别代表ds的法矢量与入射及观察的方向矢量夹角的余弦,Ii(s)表示受阳光直照与否的指数,数值为1(受直照)或0,Ir(s)是ds是否直接在观察者视场内的指数,为1(直接可见)或0,A是视场(FOV)在水平地面的投影。