目前国内外主要桥梁抗震设计方法PPT课件
合集下载
桥梁工程抗震设计课件
5.5 桥梁抗震加固
• 桥梁加固技术主要可分为两大类,一种是传统的 针对缺陷构件通过加固提高其强度、变形能力的 加固技术;
• 另一种是减隔震技术,是通过整体降低地震对结 构构件的抗震需求使当前构件能够承担给定的地 震需求。
• 对于具体的桥梁加固,宜经过详细分析比较来决 定选取这两种方法的一种或二者结合的加固方法。
桥梁工程抗震设计
桥梁抗震加固参考以下规范 • 《公路桥梁加固设计规范》 • 《公路桥梁加固施工技术规范》
桥梁工程抗震设计
5.5.1 桥梁场地加固
• 危险的场地条件在地震作用下对任何桥梁结构都 会产生很大的力或相对位移。这样的场地条件包 括临近活动断层、不稳定的陡坡和可能液化的砂 土或淤泥砂土。
• 对于这些条件的加固技术措施是很少的,且很少 能够得到现场证实。
9 承台倾覆抗力的提高可通过扩大承台的平面尺寸、增加 抗拉桩(桩数)、直接锚固到地基或基岩等措施实现。
桥梁工程抗震设计
5.5.3 桥台加固
1 当桥台的破坏影响重要桥梁的使用功能时,宜考 虑对桥台进行加固。
• 桥台破坏很少导致桥梁结构倒塌的,除非是发生 液化破坏。桥台挡土的侧向移动可能影响桥梁的 使用功能,这对于特别重要的桥梁可能是不允许 的。
桥梁工程抗震设计
桥梁工程抗震设计
5.5.4 墩柱的加固
既有桥梁的钢筋混凝土桥墩、柱弯曲强度、延性变形能力 和剪切强度的抗震能力的加固可采用钢管外包加固方法、 复合材料加固方法、加大截面方法等一些加固技术进行。 • 钢管外包技术:最初是针对圆柱桥墩提出。采用两块半
圆形的钢管现场沿竖向接缝焊接,钢管内径比桥墩直径 略大,空隙中灌注添加微膨胀剂的水泥沙浆,钢管的下 端与承台顶面有3-5cm 的间隙,防止桥墩在地震作用下 弯曲时因钢管的受压而增加截面的弯曲强度。 • 钢管提供有效的被动约束应力,这种力来自于混凝土受 压而引起的膨胀受到钢管环向强度和刚度的限制。
• 桥梁加固技术主要可分为两大类,一种是传统的 针对缺陷构件通过加固提高其强度、变形能力的 加固技术;
• 另一种是减隔震技术,是通过整体降低地震对结 构构件的抗震需求使当前构件能够承担给定的地 震需求。
• 对于具体的桥梁加固,宜经过详细分析比较来决 定选取这两种方法的一种或二者结合的加固方法。
桥梁工程抗震设计
桥梁抗震加固参考以下规范 • 《公路桥梁加固设计规范》 • 《公路桥梁加固施工技术规范》
桥梁工程抗震设计
5.5.1 桥梁场地加固
• 危险的场地条件在地震作用下对任何桥梁结构都 会产生很大的力或相对位移。这样的场地条件包 括临近活动断层、不稳定的陡坡和可能液化的砂 土或淤泥砂土。
• 对于这些条件的加固技术措施是很少的,且很少 能够得到现场证实。
9 承台倾覆抗力的提高可通过扩大承台的平面尺寸、增加 抗拉桩(桩数)、直接锚固到地基或基岩等措施实现。
桥梁工程抗震设计
5.5.3 桥台加固
1 当桥台的破坏影响重要桥梁的使用功能时,宜考 虑对桥台进行加固。
• 桥台破坏很少导致桥梁结构倒塌的,除非是发生 液化破坏。桥台挡土的侧向移动可能影响桥梁的 使用功能,这对于特别重要的桥梁可能是不允许 的。
桥梁工程抗震设计
桥梁工程抗震设计
5.5.4 墩柱的加固
既有桥梁的钢筋混凝土桥墩、柱弯曲强度、延性变形能力 和剪切强度的抗震能力的加固可采用钢管外包加固方法、 复合材料加固方法、加大截面方法等一些加固技术进行。 • 钢管外包技术:最初是针对圆柱桥墩提出。采用两块半
圆形的钢管现场沿竖向接缝焊接,钢管内径比桥墩直径 略大,空隙中灌注添加微膨胀剂的水泥沙浆,钢管的下 端与承台顶面有3-5cm 的间隙,防止桥墩在地震作用下 弯曲时因钢管的受压而增加截面的弯曲强度。 • 钢管提供有效的被动约束应力,这种力来自于混凝土受 压而引起的膨胀受到钢管环向强度和刚度的限制。
目前国内外主要桥梁抗震设计方法 ppt课件
目前国内外主要桥梁抗震设计 方法
地震反应分析方法的发展
• 第一种划分
1. 静力分析 2. 反应谱 3. 动力分析
• 第二种划分
1. 基于承载力设计方法 2. 基于承载力和构造保证延性的设计方法 3. 基于损伤和能量的设计方法 4. 能力设计方法 5. 基于性能/位移设计方法
一
•静力分析 该理论认为:结构物所受到的地震作用,可以简化 为作用于结构的等效水平静力P,该等效水平静力的 大小与地震动的最大水平加速度有关。其大小等于 结构重力荷载W乘以地震系数k,即:
3. 动力反应分析方法要给出结构反应的全过程,包括变形 和能量损耗的积累;
4. 计算原则要考虑到多种使用状态和安全的概率保证。
5. 由于动力理论在输入、模型、方法和原则等四个方面, 都提出了更具体的要求,更明确的规定、更详细的计算, 从而可以得到更可靠的结构设计。
二
• 基于承载力设计方法
静力法和反应谱法 静力法和早期的反应谱法都是以惯性力的形式反映地震作用,
•按能力谱法确定的需求位移未考虑结构损伤 和滞回耗能的影响。
4. 问题:对于结构性能状态的具体描述和计算,以及设计 标注目前尚不明确。
基于位移设计方法
用力作为单独的指标难以全面描述结构的非 弹性性能和破损状态,而用能量和损伤指标 又难以实际应用,因此目前基于性能设计方 法的研究主要用位移指标对结构的抗震性能 进行控制,称为DBD.
➢能力谱
注:
•能力谱方法用到依据“位移模式或分布力模 式采用推覆分析方法获得结构的基底剪力-顶 点位移关系”方法来确定能力曲线,该计算 方法假定结构弹性位移模式和弹塑性位移模 式一致,对此问题国际上尚有争论。
• 基于性能设计方法
1. 基本思想:使所设计的工程结构在使用期间满足各种预 定的性能目标,而具体性能要求可根据建筑和结构的重 要性来确定。
地震反应分析方法的发展
• 第一种划分
1. 静力分析 2. 反应谱 3. 动力分析
• 第二种划分
1. 基于承载力设计方法 2. 基于承载力和构造保证延性的设计方法 3. 基于损伤和能量的设计方法 4. 能力设计方法 5. 基于性能/位移设计方法
一
•静力分析 该理论认为:结构物所受到的地震作用,可以简化 为作用于结构的等效水平静力P,该等效水平静力的 大小与地震动的最大水平加速度有关。其大小等于 结构重力荷载W乘以地震系数k,即:
3. 动力反应分析方法要给出结构反应的全过程,包括变形 和能量损耗的积累;
4. 计算原则要考虑到多种使用状态和安全的概率保证。
5. 由于动力理论在输入、模型、方法和原则等四个方面, 都提出了更具体的要求,更明确的规定、更详细的计算, 从而可以得到更可靠的结构设计。
二
• 基于承载力设计方法
静力法和反应谱法 静力法和早期的反应谱法都是以惯性力的形式反映地震作用,
•按能力谱法确定的需求位移未考虑结构损伤 和滞回耗能的影响。
4. 问题:对于结构性能状态的具体描述和计算,以及设计 标注目前尚不明确。
基于位移设计方法
用力作为单独的指标难以全面描述结构的非 弹性性能和破损状态,而用能量和损伤指标 又难以实际应用,因此目前基于性能设计方 法的研究主要用位移指标对结构的抗震性能 进行控制,称为DBD.
➢能力谱
注:
•能力谱方法用到依据“位移模式或分布力模 式采用推覆分析方法获得结构的基底剪力-顶 点位移关系”方法来确定能力曲线,该计算 方法假定结构弹性位移模式和弹塑性位移模 式一致,对此问题国际上尚有争论。
• 基于性能设计方法
1. 基本思想:使所设计的工程结构在使用期间满足各种预 定的性能目标,而具体性能要求可根据建筑和结构的重 要性来确定。
桥梁振动与抗震研究热点 ppt课件
0.1
1
5
周期 (秒)
制作人:同济大学桥梁工程系 孙利民
弹塑性动力反应分析
背 景: 规范的变更、性能设计、市场竞争
政府导向: 今后,不掌握弹塑性动力反应计算 技术的咨询公司将面临生存危机
涉及范围: 钢筋混凝土结构 混凝土充填钢结构 土的液化、侧方流动 土与基础(包括地下结构)的相互作用
制作人:同济大学桥梁工程系 孙利民
1999年土尔其、台湾地震
■西部地区特殊地形和地质条件下的桥梁抗震问题 ■中小地震引起的结构损伤积累
制作人:同济大学桥梁工程系 孙利民
本讲座的内容提要
■典型桥梁震害 ■桥梁设计方法与规范 ■弹塑性动力反应分析 ■最新实验设备与技术 ■桥梁加固技术 ■新西兰模式 ■亚太地区其他国家的地震研究
制作人:同济大学桥梁工程系 孙利民
制作人:同济大学桥梁工程系 孙利民
制作人:同济大学桥梁工程系 孙利民
日本运输省港湾技研水中振动台
制作人:同济大学桥梁工程系 孙利民
制作人:同济大学桥梁工程系 孙利民
日本建设省土木研究所混合振动台
制作人:同济大学桥梁工程系 孙利民
制作人:同济大学桥梁工程系 孙利民
日本大林组技研离心机振动台
制作人:同济大学桥梁工程系 孙利民
桥梁抗震新规范的主要特点:
设计地震力提高
明确安全性能要求
强调结构的整体抗震性能
积极采用弹塑性反应方法 (包括静力法和动力法)
向性能设计过渡 提高透明度、明确责任
制作人:同济大学桥梁工程系 孙利民
加速度反应谱(G)
3 2
1
1类场地(硬) 2类场地(中) 3类场地(软) 0.1
RC桥墩的弯剪破坏 制作人:同济大学桥梁工程系 孙利民
桥梁抗震课件
地震灾害对人类社会和经济造成巨大的损失。除了人员伤亡 外,地震还会破坏基础设施、造成交通中断、通讯不畅等, 影响人们的生产和生活。
地震对桥梁的影响
桥梁在地震中的反应
桥梁在地震中会受到不同程度的震动和位移,如果桥梁设计不合理或抗震能力不足,就可能发生损坏或倒塌。
桥梁抗震设计
为了减轻地震对桥梁的影响,需要进行抗震设计。抗震设计需要考虑桥梁的结构形式、材料、基础等因素,采取 有效的抗震措施,如加强桥梁的支撑结构、设置减震装置等。同时,还需要进行抗震性能评估和抗震加固等工作 。
以提高桥梁的整体抗震性能。
新型抗震材料的应用
高性能混凝土
采用高强度、高韧性、高耐久性的混凝土材料, 提高桥梁的承载能力和延性。
复合材料
利用纤维增强复合材料(FRP)的轻质、高强和抗 疲劳性能,对桥梁进行加固和修复。
阻尼器
利用阻尼器的能量吸收和耗散能力,降低地震对 桥梁的冲击。
新型抗震结构的优势与挑战
பைடு நூலகம்地震的分类
根据不同的分类标准,地震可以分为不同的类型。如根据震源深度,地震可分 为浅源地震、中源地震和深源地震;根据成因,地震可分为构造地震、火山地 震、塌陷地震和人工地震等。
地震波的传播
地震波的传播方式
地震波主要通过三种方式传播: 横波、纵波和面波。横波和纵波 是地球内部传播的体波,面波则 是在地表传播的波。
抗震设计的优化策略
加强关键部位
对桥梁的关键部位如桥墩 、支座等采取加强措施, 提高其抗震能力。
设置减震装置
在桥梁结构中设置减震支 座、阻尼器等减震装置, 减小地震对桥梁的冲击。
优化施工方法
采用合理的施工方法和技 术,确保桥梁结构的整体 性和稳定性,提高其抗震 性能。
地震对桥梁的影响
桥梁在地震中的反应
桥梁在地震中会受到不同程度的震动和位移,如果桥梁设计不合理或抗震能力不足,就可能发生损坏或倒塌。
桥梁抗震设计
为了减轻地震对桥梁的影响,需要进行抗震设计。抗震设计需要考虑桥梁的结构形式、材料、基础等因素,采取 有效的抗震措施,如加强桥梁的支撑结构、设置减震装置等。同时,还需要进行抗震性能评估和抗震加固等工作 。
以提高桥梁的整体抗震性能。
新型抗震材料的应用
高性能混凝土
采用高强度、高韧性、高耐久性的混凝土材料, 提高桥梁的承载能力和延性。
复合材料
利用纤维增强复合材料(FRP)的轻质、高强和抗 疲劳性能,对桥梁进行加固和修复。
阻尼器
利用阻尼器的能量吸收和耗散能力,降低地震对 桥梁的冲击。
新型抗震结构的优势与挑战
பைடு நூலகம்地震的分类
根据不同的分类标准,地震可以分为不同的类型。如根据震源深度,地震可分 为浅源地震、中源地震和深源地震;根据成因,地震可分为构造地震、火山地 震、塌陷地震和人工地震等。
地震波的传播
地震波的传播方式
地震波主要通过三种方式传播: 横波、纵波和面波。横波和纵波 是地球内部传播的体波,面波则 是在地表传播的波。
抗震设计的优化策略
加强关键部位
对桥梁的关键部位如桥墩 、支座等采取加强措施, 提高其抗震能力。
设置减震装置
在桥梁结构中设置减震支 座、阻尼器等减震装置, 减小地震对桥梁的冲击。
优化施工方法
采用合理的施工方法和技 术,确保桥梁结构的整体 性和稳定性,提高其抗震 性能。
桥梁抗震ppt课件
3. 计算等效单自由度{系Fe统rr}的等c c效orr 刚度和等效粘滞阻尼比;
4. 利用反应谱方法计算结构特征力效应和特征位移效应-需求分析;
5. 进行需求/能力比计算,评估结构的抗震性能。
精品课件
32
单振型反应谱法
反应谱的概念
根据D’Alembert原理,单自由度振子的振动方程可以表示为:
上述振动方程的m 解(可g 以y 用) 杜cy 哈美k( y0 Duhay m e2 l)积y 分公2y式 来g 表示:
抗震设防标准制定原则
桥梁工程的抗震设防标准,即为如何确定“地震荷载”的 标准。荷载定得越大,即抗震设防标准要求越高,桥梁在 使用寿命期间为抗震设防需要投入的费用也越大。然而, 桥梁在使用寿命期间遭遇抗震设防标准所期望的地震总是 少数。这就是决策的矛盾点:一方面要求保证桥梁抗震安 全,另一方面又要适度投入抗震设防的费用,使投入费用 取得最好的效益 。
精品课件
33
单振型反应谱法
反应谱的概念
由于地震加速度是不规则的函数,上述积分公式难以直接求积, 一般要通过数值积分的办法来求得反应的时程曲线。对不同周期和阻 尼比的单自由度体系,在选定的地震加速度输入下,可以获得一系列
的相对位移y、相对速度 y 和绝对加速度 y 的反应时程曲线,并可从
中找到它们的最大值。以不同单自由度体系的周期Ti为横坐标,以不 同阻尼比C为参数.就能绘出最大相对位移、最大相对速度和最大绝对 加速度的谱曲线,分别称为相对位移反应谱、拟相对速度反应谱和拟 加速度反应谱(分别可简称为位移反应谱、速度反应谐和加速度反应谱), 并用符号记为SD、PSV和PSA,这三条反应谱曲线合起来简称为反应谱。
称为动力放大系数,其值可以直接由标准化反应谱曲线确定。上
4. 利用反应谱方法计算结构特征力效应和特征位移效应-需求分析;
5. 进行需求/能力比计算,评估结构的抗震性能。
精品课件
32
单振型反应谱法
反应谱的概念
根据D’Alembert原理,单自由度振子的振动方程可以表示为:
上述振动方程的m 解(可g 以y 用) 杜cy 哈美k( y0 Duhay m e2 l)积y 分公2y式 来g 表示:
抗震设防标准制定原则
桥梁工程的抗震设防标准,即为如何确定“地震荷载”的 标准。荷载定得越大,即抗震设防标准要求越高,桥梁在 使用寿命期间为抗震设防需要投入的费用也越大。然而, 桥梁在使用寿命期间遭遇抗震设防标准所期望的地震总是 少数。这就是决策的矛盾点:一方面要求保证桥梁抗震安 全,另一方面又要适度投入抗震设防的费用,使投入费用 取得最好的效益 。
精品课件
33
单振型反应谱法
反应谱的概念
由于地震加速度是不规则的函数,上述积分公式难以直接求积, 一般要通过数值积分的办法来求得反应的时程曲线。对不同周期和阻 尼比的单自由度体系,在选定的地震加速度输入下,可以获得一系列
的相对位移y、相对速度 y 和绝对加速度 y 的反应时程曲线,并可从
中找到它们的最大值。以不同单自由度体系的周期Ti为横坐标,以不 同阻尼比C为参数.就能绘出最大相对位移、最大相对速度和最大绝对 加速度的谱曲线,分别称为相对位移反应谱、拟相对速度反应谱和拟 加速度反应谱(分别可简称为位移反应谱、速度反应谐和加速度反应谱), 并用符号记为SD、PSV和PSA,这三条反应谱曲线合起来简称为反应谱。
称为动力放大系数,其值可以直接由标准化反应谱曲线确定。上
桥梁结构抗震设计PPT120页
图中的横坐标为结构自振周期T(以秒为单位)
根据设计反应谱计算的单质点地震作用为:
FE CiCzkhG CiCz1G(5 3)
kh | xg |max / g
G mg
| xg x* |max / | xg |max (5 4)
1 kh
式中,水平地震系数Kh和动力放大系数β的乘积即为 水平地震作用影响系数α1 (无量纲);
i 1
i 1
第i个质点的地震作用Fi为
Fi CiCzkH 11Gi Hi / H (5 10)
5.2
桥桥梁梁按按反反应应谱谱理理论论的的计计算算方方法法
四. 桥梁构件截面抗震验算--按反应谱方法
1、抗震荷载效应组合下截面验算设计表示式:
Sd b Rd
Sd Sd g Gk ; q Qdk ;
H≤12米时 整个结构采用 1 H>12米时 随结构高度而变,底面
1,墩台顶面及顶面以上 2 ;中间任一点处的 I 1 Hi / H0
式中H对于桥墩为墩顶面至基底(即基础底面)的高 度(以米计),对于桥台则自桥台道碴槽顶面至基底 的高度。
Hi为验算截面以上任一质量的重心至墩台底(即基础 底面)的高度(以米计)。
桥梁按反应谱理论的计算方法
表5—2 综合影响系数Cz
桥梁和墩、台类型
桥墩计算高度H (米)
H 10≤H< 20≤H<
<10 20
30
柔性 柱式桥墩、排架桩墩、薄 墩 壁桥墩
梁
实体 墩
天然基础和沉井基础上实 体桥墩
桥
多排桩基础上的桥墩
0.3 0
0.2 0
0.2 5
0.33 0.25 0.30
0.35 0.30 0.35
桥梁地震震害与抗震设计136页PPT
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
55、 为 中 华 之 崛起而 读书。 ——、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
桥梁抗震课件-PPT精品文档
日本帝国饭店
1968年帝国饭店被推到了,原因是 地基太浅而且设立在松散潮湿的土 壤里。莱特先生的设计本意是让建 筑物在泥土里滑行就像船只在海水 里漂浮一样,从而达到抗震的目的 。他的原理科学无误而开始被人采 用。1981年日本使用新的建筑细则 ,在建筑物的地基加上一个抗冲击 垫,当地基随地面移动时,建筑物 本身还可以保持平衡。看图:
赖特的构思
• 基地上表土24m厚度以下是18~21m的软土,这层土壤 似乎是上天的恩赐--它是减弱冲击波的最佳减震器。 • 那么为什么不将房屋浮在它上面呢?为什么不采取象军舰 浮在海面上那样,以软而薄的非常轻的结构来取代以尽可 能增加重量的办法所取得的刚度呢?而且为什么不把房屋 造成象双手相合手心向内手指交叉那样来顺应运动呢,以 便当变形消失后,就可恢复到其原先的位置呢?这是一种 在任何方向都可自由屈伸和反屈伸的弹性体结构。为付么 要与地震去硬拼?为什么不顺着它而以智取胜呢? • 这就是我如何抱着这些想法开始设计这座大厦的。
结构动力方程
• 结构动力方程可以写成:
• 式中,M、K、于地震作 用,,是地面运动加速度时 程;、,分别是结构的位移、 速度和加速度列阵。当结构处 于弹性振动状态,恢复力项Ku 为弹性;而当结构振动进入弹 塑性阶段,则恢复力项Ku也呈 非线性。为设置阻尼器附加阻 尼装置带来的阻尼力列阵;只 要处理正确,它总是会使运动 减小
• 此在地震荷载下,通过变形吸收一定的地 震能量,地震荷载消失后能恢复原状,因 此有极强的抗震性能。现存的比应县木塔 还早的唐代建筑五台山佛光寺大殿历经多 次大地震依然完好无损,傲然屹立至今
• 应县木塔的许多抗震构造其原理与现代建筑抗震理念相通或相同: • 抗震研究证明建筑物的平面形状越规整简单越抗震,应县木塔平面 呈八角形,达到了这个要求。 • 应县木塔底层有一圈外柱廊,每层柱子逐层内移,体形下大上小, 利于稳定,利于抗震。 • 应县木塔每层屋檐和平座下有密集的木作斗拱,皆是榫卯连接,能 起到柔性“减震器”的作用。 • 在木塔的每一暗层中,梁、柱、枋、斗拱、斜撑被牢固的连接成一 个网架圈,起到现代建筑中圈梁的作用。(抗震能力不强的砖石结构 建筑进行抗震加固时,在外墙部位加钢筋混凝土柱和圈梁,是抗震加 固通行作法,能大大提高抗震能力。) • 木塔底层有一周很厚的墙,把柱子包裹住,起到现代建筑中剪力墙的 作用,提高抗震能力。
第八章桥梁抗震(新教材课件)
图8-2 主梁与桥台间的碰撞震害
(a)
(b)
图8-3 汶川地震中百花大桥落梁震害
图8-4 汶川地震中横跨断层的映秀顺河桥倒塌
2、支座部分的破坏
图8-5 支座脱落、移位
图8-6 支座的撕裂破坏
3、桥墩的破坏
图8-7 桥墩的剪切破坏
图8-8 桥墩的弯曲破坏
图8-9 阪神地震中桥墩的弯曲破坏
从大量的震害和试验结构观察发现,钢筋混凝土墩柱的实际抗弯承 载能力要大于其设计承载能力,这种现象称为墩柱抗弯超强现象( overstrength)。
因此,为了确保结构不会发生脆性的破坏模式,在确定能力保护 构件的强度设计值时,需要引入抗弯超强系数来考虑延性构件的超强 现象。
于是,单柱墩塑性铰区截面的超强弯矩M0为:
在影响钢筋混凝土墩柱延性能力的因素中,截面的箍筋配置水平是影 响塑性铰区延性能力的一个重要因素。横向箍筋的作用有:①提供斜截 面的抗剪能力;②约束核心混凝土,大大提高混凝土的极限压应变,从 而大大提高塑性铰区截面的转动能力;③阻止纵向受压钢筋过早屈曲。
Mander本构
图8-15 无约束混凝土和约束混凝土的应力-应变曲线
等位移与等能量准则:
等位移准则(长周期): 对于长周期的单自由度系 统,非线性系统的最大反 应位移与完全弹性系统的 最大反应位移在统计平均 意义上相等。
等能量准则(中等周期): 对于中等周期的单自由度系 统,弹性体系在最大位移时 所储存的变形能与弹塑性体 系达到最大位移时的耗能相 等。
FE
地 震 力
8.3.2桥梁延性抗震设计基本理论
能力保护设计方法
假度个设(链延超接性强破链)坏子为时的是设延0 P计性d 强的度,,为要其求中所Pd有0脆,为性则超链其强子可因的能子设发。计挥为强的保度最证大满整强
桥梁地震震害与抗震设计精品PPT课件
4
桥梁震害启示
1 桥梁震害分析
桥梁震害
直接震害 间接震害
垮塌、移位、落梁、墩身破坏、桥台破坏、 地基破坏、支座破坏、伸缩缝破坏
砸坏、挤压横移
➢ 桥位选择应充分考虑地形和地质条件,尽量远离滑坡、崩塌地段, 对于必须通过不良地质病害的桥位应进行处治。
➢ 桥位要尽量远离断裂带,尤其应避免与断裂带小角度交叉。同时选 择易于修复的桥梁方案,并制定相应的应急预案。
1 桥梁震害分析
桥梁震害——支座失效
支座滑移变形
1 桥梁震害分析
桥梁震害——支座失效
支座脱空
1 桥梁震害分析
桥梁震害——支座失效
支座与钢板错位
桥梁震害分析
桥梁震害——支座失效
支座纵向滑移
1 桥梁震害分析
桥梁震害——支座失效
支座横向移位
1 桥梁震害分析
桥梁震害——支座失效
盆式支座限位块破坏
1 桥梁震害分析
联号 墩编号 墩高(m)
13 30.3
14 29.9
第5联
15 16(固定)
29.7
26.9
17 22.2
18 18.1
第6联
19(固定)
20
7.1
桥台
1 桥梁震害分析
倾斜 19号墩
典型的桥墩底部破坏
1 桥梁震害分析
桥墩 节点破坏
墩底 剪切破坏
桥梁震害分析
1
地震宏观震害
2
典型桥梁震害
1 桥梁震害分析
桥梁震害——支座失效
盆式支座限位块破坏
1 桥梁震害分析
锚 固 螺 栓 剪 断
支 座 位 移 过 大
1 桥梁震害分析
桥梁震害——挡块损坏
桥梁抗震设计
抗震等级是确定结构构件抗震计算和抗震措施 的标准。根据设防烈度、房屋高度、建筑类别、结 构类型及构件在结构中的重要程度确定,共分四个 等级,一级最高。
框架
框架-抗震墙
抗震墙 部分框支抗震墙结
构 筒体结构
板柱—抗震墙
结构类型 高度(m) 框架
设防烈度
6
7
பைடு நூலகம்
8
9
≤30 >30 ≤30 >30 ≤30 >30 ≤25
(2)柱底:常见的震害是在离地面或楼面100mm~ 400mm处有周圈水平裂缝。柱底受力状态虽与柱顶 相似,但由于其箍筋一般较密(处在柱的纵筋搭接 接头加密箍筋段),故震害较轻。(如图示)
(3)柱身:当地震剪力较大而柱抗剪强度不足时, 柱身可能出现斜裂缝。(如图示)
(4)角柱:在地震作用下房屋不可避免地要发生 扭转,角柱所受的附加扭转剪力最大,同时角柱又 受有双向弯矩作用,而其所受的横梁约束又比其它 柱小,所以震害重于内柱。(如图示)
§5-2 抗震设计一般规定
三、抗震结构宜有多道抗震防线
2、框架--抗震墙结构是具有良好性能的多道 防线的抗震结构,其中抗震墙既是主要抗侧力构件 又是第一道抗震防线。因此,抗震墙应有相当数量, 其承受的结构底部地震倾覆力矩不应小于底部总地 震倾覆力矩的50%,否则这种结构的特性不能很好 发挥,框架部分仍应按主要抗侧力构件进行抗震设 计。
§5-2 抗震设计一般规定
二、结构的抗震计算和构造措施应按抗震等级划分
3、房屋越高,地震反应越大,其抗震要求应越高。 因此,综合考虑地震作用(包括区分设防烈度、场 地类别),结构类型(包括区分主、次抗侧力构件)和房 屋高度等主要因素,划分抗震等级进行抗震设计,是比 较经济合理的。这样,可以对同一设防烈度的不同高度 的房屋采用不同抗震等级设计;同一建筑物中不同结构 部分也可以采用不同抗震等级设计。表5-5是规范规定 的丙类建筑抗震等级划分。
框架
框架-抗震墙
抗震墙 部分框支抗震墙结
构 筒体结构
板柱—抗震墙
结构类型 高度(m) 框架
设防烈度
6
7
பைடு நூலகம்
8
9
≤30 >30 ≤30 >30 ≤30 >30 ≤25
(2)柱底:常见的震害是在离地面或楼面100mm~ 400mm处有周圈水平裂缝。柱底受力状态虽与柱顶 相似,但由于其箍筋一般较密(处在柱的纵筋搭接 接头加密箍筋段),故震害较轻。(如图示)
(3)柱身:当地震剪力较大而柱抗剪强度不足时, 柱身可能出现斜裂缝。(如图示)
(4)角柱:在地震作用下房屋不可避免地要发生 扭转,角柱所受的附加扭转剪力最大,同时角柱又 受有双向弯矩作用,而其所受的横梁约束又比其它 柱小,所以震害重于内柱。(如图示)
§5-2 抗震设计一般规定
三、抗震结构宜有多道抗震防线
2、框架--抗震墙结构是具有良好性能的多道 防线的抗震结构,其中抗震墙既是主要抗侧力构件 又是第一道抗震防线。因此,抗震墙应有相当数量, 其承受的结构底部地震倾覆力矩不应小于底部总地 震倾覆力矩的50%,否则这种结构的特性不能很好 发挥,框架部分仍应按主要抗侧力构件进行抗震设 计。
§5-2 抗震设计一般规定
二、结构的抗震计算和构造措施应按抗震等级划分
3、房屋越高,地震反应越大,其抗震要求应越高。 因此,综合考虑地震作用(包括区分设防烈度、场 地类别),结构类型(包括区分主、次抗侧力构件)和房 屋高度等主要因素,划分抗震等级进行抗震设计,是比 较经济合理的。这样,可以对同一设防烈度的不同高度 的房屋采用不同抗震等级设计;同一建筑物中不同结构 部分也可以采用不同抗震等级设计。表5-5是规范规定 的丙类建筑抗震等级划分。
抗震结构设计 桥梁结构的抗震设计PPT课件
桥梁抗震分析可采用的计算方法
地震作用
桥梁分类
E1 E2
B类
规则
非规则
SM/MM SM/MM
MM/TH THC类规则非则SM/MM SM/MM
MM/TH TH
D类
规则 非规则
SM/MM
MM
-
-
注:TH为线性或非线性时程计算方法;SM为单振型反应谱或功率谱方法;MM 为多振型反应谱或功率谱方法。
第18页/共49页
第3页/共49页
4.桥梁基础震害 桥梁基础震害原因主要:地基失效(如地基滑移和地基液化)。 桩基础的震害除了地基失效外,也有上部结构传下来的惯性力而引起的桩基剪切 和弯曲破坏,更有由于桩基设计存在缺陷而导致的,如桩基深入稳定土层的长度不 能满足要求,或桩基顶与承台连接强度不够等。 桩基能越过可液化土层,比无桩基础的抗震能力要强。桩基础的震害具有一定的 隐蔽性,不容易被发现,当发现上部结构被破坏时,可能桩基础的破坏已相当严重 了。
桥梁抗震 设防类别
A类 B类
C类 D类
各设防类别桥梁的抗震设防目标
设防目标
E1地震作用
E2地震作用
可发生局部轻微损伤,不需修复或经简单修复可继续使用
一般不受损 坏或不需修 复可继续使
用
应保证不致倒塌或产生严重结构损伤,经临时加固后可供维持应急 交通使用
应保证不致倒塌或产生严重结构损伤,经临时加固后可供维持应急 交通使用
图8-3 7度及7度以上地区常规桥梁结构构件抗震设计流程
第15页/共49页
结点配筋构造
二、抗震概念设计
根据震害和工程的抗震经验等,总结出来的基本抗震设计思想和原则,并能 够正确适用地解决结构的整体设计方案、细部构造和材料使用,以达到合理的 抗震设计。
桥梁抗震与加固ppt课件
反应谱法基本原理
2.25
Ⅰ:β=2.25(0.2/T) Ⅱ:β=2.25(0.3/T)0.9 Ⅲ:β=2.25(0.45/T)0.95 Ⅳ:β=2.25(0.7/T) 0.9
0.3
1 2 3 4 5T
图1 场地类别与动力放大系数关系曲线
反应谱法基本原理
2、多质点反应谱
➢(1)振型分解法简介 ➢以无阻尼受迫振动为例,简要介绍振型分解法思想。
反应谱法基本原理
反应谱法基本原理
➢(2)多质点体系的地震力计算公式
➢ 用振型分解法求解,即利用振型分的正交特性,将联立微 分方程组一个个地分解为相互独立的振动方程,将多质点的复杂 振动,分解为按各个振型的独立振动的叠加,在求解过程中,引 入第i振型的振型参与系数:
反应谱法基本原理
➢ 由振型分解法可将多自由度现行震动体系分解为多个独立的广义 单自由度振子。广义单自由度振子的最大反应可由谱曲线查出。但一般 情况下,广义单自由度振子的最大反应不同时发生,因此需要以适当的 方式将它们组合起来。
反应谱法基本原理
➢ 不同的地震输入,得 到不同的反应谱曲线 。
➢ 在大量的地震加速度 记录输入后绘制的众多 反应谱曲线的基础上, 经过平均光滑化后,最 终得到得到平均地震反 应谱。
反应谱法基本原理
➢ 不同的体系阻尼比得到相应的反应谱曲线。
反应谱法基本原理
➢★单质点反应谱的地震力计算
➢应根据结构抗震设防的 烈度水准选用。根据我国 铁路工程抗震规范规定: 设计烈度Ⅶ度以上才进行 抗震设防,相应于Ⅶ,Ⅷ 和Ⅸ度,k分别为0.1、0.2 和0.4。
桥梁震害
2、桥台沦陷
桥梁震害
2、桥台沦陷产生的原因
➢当地震加速度作用时,桥梁与桥台之间的冲撞会产生相当 大的被动土压力,造成桥台有向桥跨方向移动的趋势。由 于桥面的支撑作用,桥台将发生以桥台顶端为支点的竖向旋 转,导致基础破坏。如果桥台基础在液化土上,又将引起 桥台垂直沉陷,最终导致桥梁破坏。
《桥梁抗震课件》PPT课件
• 在列车制动和行车移动荷 载作用下,天兴洲大桥主
梁纵向振动响应混合控制
结果。从图中可见,天兴
洲大桥因列车制动和行车
移动荷载所引起的主梁纵
向最大振动位移响应由控 制前的149.2mm下降至 控制后的28.7 mm,控 制效果明显优于液体粘滞
阻尼器的控制效果,且保
证了天兴洲大桥的正常运 行和平安。
• 2000 次循环风荷载下的疲劳往复测试,取最大风荷载下的最大速度。
相比之下
• 列车制动引起的主梁 的纵向振动响应具有 位移大、速度很小的 特点,这就使得在需 要液体粘滞阻尼器产 生较大控制力以抑制 主梁纵向振动位移的 时候它却因纵向振动 速度太小而无法发挥 其应有的作用,从而 无法有效抑制列车制 动引起的主梁的纵向 振动响应。
主梁纵向最大振动位移 响应仅由控制前的149 .2 mm下降至控制后 的129.9 mm。可以 看出,液体粘滞阻尼 器对天兴洲大桥的纵 向列车制动及行车移 动荷载引起的主梁纵 向振动响应的控制作 用是十分有限的。
赖特的构思
• 基地上表土24m厚度以下是18~21m的软土,这层土壤似 乎是上天的恩赐--它是减弱冲击波的最正确减震器。
• 那么为什么不将房屋浮在它上面呢?为什么不采取象军舰
浮在海面上那样,以软而薄的非常轻的构造来取代以尽可
能增加重量的方法所取得的刚度呢?而且为什么不把房屋
造成象双手相合手心向内手指穿插那样来顺应运动呢,以
一。柔性的框架构造:墙倒框架不倒
• 中国的传统木构造,具有框架 构造的种种优越性,如“墙倒 屋不塌〞的成效,但其柔性的 连接,又使得它具有相当的弹 性和一定程度的自我恢复能力。
二。整体浮筏式根底、斗栱、榫卯:隔震消能的关键构件
• 斗栱能起到“减震器〞的作用,而且被各 种水平构件连接起来的斗栱群能够形成一 个整体性很强的“刚盘〞,按照“能者多 劳〞的原那么把地震力传递给有抗震能力 的柱子,大大提高了整个构造的平安性
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 从能量观点看,只要结构的阻尼耗能和体系的塑性变形 耗能和滞回耗能能力大于地震输入能量,结构即可抵御 地震作用
• 能力设计方法
该方法是基于对非弹性性能对于结构抗震能力贡献 的理解和超静定结构在地震作用下实现具有延性 破坏机制的思想提出的,可保证结构抗震设防目 标,同时又使设计经济合理。
➢ 核心:
并按弹性方法来计算结构地震作用效应。 ❖ 局限: 1. 当遭遇超过设计烈度的地震,结构进入弹塑性状态,此
种方法无法应用。 2. 在静力法向反应谱法过度的过程中,短周期结构的加速
度谱值比静力法中的地震系数大一倍以上,这就让以前 通过静力法设计的建筑物如何能够经受住强烈地震作用 无法得到解释。
•基于承载力和构造保证延性的设计方法、
此理论创立时,一般认为结构是刚性的,故结构上 任何一点的振动加速度均等于地震动加速度,结构 上各部位单位质量所受到的地震力是相等的。
• 地震反应谱是一组具有相同阻尼、不同自 振周期的单质点体系在地震动时频反应谱 分析方法的初步研究作用下的最大反应, 并按照周期的大小顺序排列起来按照这种 方法可以对多条地震记录进行计算并且获 得相应的反应谱,对一定数量这样的谱进 行统计分析,给出有统计意义的设计反应 谱。
目前国内外主要桥梁抗震设计 方法
地震反应分析方法的发展
• 第一种划分
1. 静力分析 2. 反应谱 3. 动力分析
• 第二种划分
1. 基于承载力设计方法 2. 基于承载力和构造保证延性的设计方法 3. 基于损伤和能量的设计方法 4. 能力设计方法 5. 基于性能/位移设计方法
一
•静力分析 该理论认为:结构物所受到的地震作用,可以简化 为作用于结构的等效水平静力P,该等效水平静力的 大小与地震动的最大水平加速度有关。其大小等于 结构重力荷载W乘以地震系数k,即:
为了解决静力法向反应谱法过渡的问题,构造延性被引入。
以美国UBC规范为代表,通过地震力降低系数R讲反应谱法得 到的加速度反应值 降低到与静力法水平地震相当的设计 地震加速度 采用反应谱的基于承载力和构造保证延性的设计方法成为各 国抗震设计规范的主要方法。
• 基于损伤和能量的设计方法
1. 在超过设防地震作用下,虽然非弹性变形对防止结构倒 塌有着重要的作用,但结构自身一会因此产生一定的损 伤,当非弹性变形超过结构自身非弹性变形能力时,则 会导致结构倒塌。因此,对结构在地震作用的非弹性变 形以及由此引起的结构损伤就成为抗震研究的一个重要 方面,并由此产生基于损伤的设计方法。人们试图引进 反应结构损伤程度的某种指标来作为设计指标。
1. “强柱弱梁” 2. “强剪弱弯” 3. “强则强,弱则弱”
• 基于性能设计方法
1. 基本思想:使所设计的工程结构在使用期间满足各种预 定的性能目标,而具体性能要求可根据建筑和结构的重 要性来确定。
2. 可明确描述结构性能状态的物理量:力,位移(刚度), 速度,加速度,能量和损伤。
3. 基于性能设计方法要求能够给出结构在不同强度地震作 用下,这些结构性能指标的反应值(需求值),以及结 构自身的能力值。
时反应谱方法就不再适用了。 3. 不能给出结构地震反应的全过程,更不能给出地
震过程巾各构件进入弹塑性变形阶段内力和变形 状态,无法找出结构的薄弱环节
4. 实际状态中的应用于现有研究现状的脱节
•动力分析
动力设计理论是通过计算获得地震过程中结 构反应随时间的变化的过程一时间历程 (time—history),即采用时程分析法。时程 分析方法是通过输入地震波,直接计算结构 的地震反应的分析方法。
3. 动力反应分析方法要给出结构反应的全过程,包括变形 和能量损耗的积累;
4. 计算原则要考虑到多种使用状态和安全的概率保证。
5. 由于动力理论在输入、模型、方法和原则等四个方面, 都提出了更具体的要求,更明确的规定、更详细的计算, 从而可以得到更可靠的结构设计。
二
• 基于承载力设计方法
静力法和反应谱法 静力法和早期的反应谱法都是以惯性力的形式反映地震作用,
动力理论不但考虑了地震动的持时,还更进 一步地考虑了地震动过程中反应谱所不能概 括的其它特性。
• 动力理论其主要具有如下特点:
1. 输入地震动参数需要给出符合场地情况、具有概率含意 的加速度过程X(t),对于复杂结构要求给出地震动二个 分量的时间过程及其空间相关性
2. 结构和构件的动力模型应接近实际情况,要包括结构的 非线性恢复力特性;
•按能力谱法确定的需求位移未考虑结构损伤 和滞回耗能容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
4. 问题:对于结构性能状态的具体描述和计算,以及设计 标注目前尚不明确。
基于位移设计方法
用力作为单独的指标难以全面描述结构的非 弹性性能和破损状态,而用能量和损伤指标 又难以实际应用,因此目前基于性能设计方 法的研究主要用位移指标对结构的抗震性能 进行控制,称为DBD.
➢能力谱
注:
•能力谱方法用到依据“位移模式或分布力模 式采用推覆分析方法获得结构的基底剪力-顶 点位移关系”方法来确定能力曲线,该计算 方法假定结构弹性位移模式和弹塑性位移模 式一致,对此问题国际上尚有争论。
•反应谱分析
反应谱理论考虑了结构动力特性与地震动特 性之间的动力关系,通过反应谱来计算由结 构动力特性(自振周期、振型和阻尼)所产生 的共振效应。地震时结构
所受到的最大水平基底剪力,即总水平地震 作用为:
• 理论的完善 1. 重视结构延性 2. 机振动理论的应用 3. 地条件的考虑
• 局限性
1. 伪动力理论。 2. 强震作用下结构体系反应往往超出弹性范围,此
• 能力设计方法
该方法是基于对非弹性性能对于结构抗震能力贡献 的理解和超静定结构在地震作用下实现具有延性 破坏机制的思想提出的,可保证结构抗震设防目 标,同时又使设计经济合理。
➢ 核心:
并按弹性方法来计算结构地震作用效应。 ❖ 局限: 1. 当遭遇超过设计烈度的地震,结构进入弹塑性状态,此
种方法无法应用。 2. 在静力法向反应谱法过度的过程中,短周期结构的加速
度谱值比静力法中的地震系数大一倍以上,这就让以前 通过静力法设计的建筑物如何能够经受住强烈地震作用 无法得到解释。
•基于承载力和构造保证延性的设计方法、
此理论创立时,一般认为结构是刚性的,故结构上 任何一点的振动加速度均等于地震动加速度,结构 上各部位单位质量所受到的地震力是相等的。
• 地震反应谱是一组具有相同阻尼、不同自 振周期的单质点体系在地震动时频反应谱 分析方法的初步研究作用下的最大反应, 并按照周期的大小顺序排列起来按照这种 方法可以对多条地震记录进行计算并且获 得相应的反应谱,对一定数量这样的谱进 行统计分析,给出有统计意义的设计反应 谱。
目前国内外主要桥梁抗震设计 方法
地震反应分析方法的发展
• 第一种划分
1. 静力分析 2. 反应谱 3. 动力分析
• 第二种划分
1. 基于承载力设计方法 2. 基于承载力和构造保证延性的设计方法 3. 基于损伤和能量的设计方法 4. 能力设计方法 5. 基于性能/位移设计方法
一
•静力分析 该理论认为:结构物所受到的地震作用,可以简化 为作用于结构的等效水平静力P,该等效水平静力的 大小与地震动的最大水平加速度有关。其大小等于 结构重力荷载W乘以地震系数k,即:
为了解决静力法向反应谱法过渡的问题,构造延性被引入。
以美国UBC规范为代表,通过地震力降低系数R讲反应谱法得 到的加速度反应值 降低到与静力法水平地震相当的设计 地震加速度 采用反应谱的基于承载力和构造保证延性的设计方法成为各 国抗震设计规范的主要方法。
• 基于损伤和能量的设计方法
1. 在超过设防地震作用下,虽然非弹性变形对防止结构倒 塌有着重要的作用,但结构自身一会因此产生一定的损 伤,当非弹性变形超过结构自身非弹性变形能力时,则 会导致结构倒塌。因此,对结构在地震作用的非弹性变 形以及由此引起的结构损伤就成为抗震研究的一个重要 方面,并由此产生基于损伤的设计方法。人们试图引进 反应结构损伤程度的某种指标来作为设计指标。
1. “强柱弱梁” 2. “强剪弱弯” 3. “强则强,弱则弱”
• 基于性能设计方法
1. 基本思想:使所设计的工程结构在使用期间满足各种预 定的性能目标,而具体性能要求可根据建筑和结构的重 要性来确定。
2. 可明确描述结构性能状态的物理量:力,位移(刚度), 速度,加速度,能量和损伤。
3. 基于性能设计方法要求能够给出结构在不同强度地震作 用下,这些结构性能指标的反应值(需求值),以及结 构自身的能力值。
时反应谱方法就不再适用了。 3. 不能给出结构地震反应的全过程,更不能给出地
震过程巾各构件进入弹塑性变形阶段内力和变形 状态,无法找出结构的薄弱环节
4. 实际状态中的应用于现有研究现状的脱节
•动力分析
动力设计理论是通过计算获得地震过程中结 构反应随时间的变化的过程一时间历程 (time—history),即采用时程分析法。时程 分析方法是通过输入地震波,直接计算结构 的地震反应的分析方法。
3. 动力反应分析方法要给出结构反应的全过程,包括变形 和能量损耗的积累;
4. 计算原则要考虑到多种使用状态和安全的概率保证。
5. 由于动力理论在输入、模型、方法和原则等四个方面, 都提出了更具体的要求,更明确的规定、更详细的计算, 从而可以得到更可靠的结构设计。
二
• 基于承载力设计方法
静力法和反应谱法 静力法和早期的反应谱法都是以惯性力的形式反映地震作用,
动力理论不但考虑了地震动的持时,还更进 一步地考虑了地震动过程中反应谱所不能概 括的其它特性。
• 动力理论其主要具有如下特点:
1. 输入地震动参数需要给出符合场地情况、具有概率含意 的加速度过程X(t),对于复杂结构要求给出地震动二个 分量的时间过程及其空间相关性
2. 结构和构件的动力模型应接近实际情况,要包括结构的 非线性恢复力特性;
•按能力谱法确定的需求位移未考虑结构损伤 和滞回耗能容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
4. 问题:对于结构性能状态的具体描述和计算,以及设计 标注目前尚不明确。
基于位移设计方法
用力作为单独的指标难以全面描述结构的非 弹性性能和破损状态,而用能量和损伤指标 又难以实际应用,因此目前基于性能设计方 法的研究主要用位移指标对结构的抗震性能 进行控制,称为DBD.
➢能力谱
注:
•能力谱方法用到依据“位移模式或分布力模 式采用推覆分析方法获得结构的基底剪力-顶 点位移关系”方法来确定能力曲线,该计算 方法假定结构弹性位移模式和弹塑性位移模 式一致,对此问题国际上尚有争论。
•反应谱分析
反应谱理论考虑了结构动力特性与地震动特 性之间的动力关系,通过反应谱来计算由结 构动力特性(自振周期、振型和阻尼)所产生 的共振效应。地震时结构
所受到的最大水平基底剪力,即总水平地震 作用为:
• 理论的完善 1. 重视结构延性 2. 机振动理论的应用 3. 地条件的考虑
• 局限性
1. 伪动力理论。 2. 强震作用下结构体系反应往往超出弹性范围,此