立体几何证明平行的方法及专题训练

合集下载

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。

专题20立体几何中的平行与垂直问题(解析版)

专题20立体几何中的平行与垂直问题(解析版)

专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。

直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

高中立体几何证明线面平行的常见方法

高中立体几何证明线面平行的常见方法

高中立体几何证明线面平行的常见方法1.通过“平移”再利用平行四边形的性质题目1:四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点。

证明AF∥平面PCE。

证明:将四棱锥P-ABCD平移,使其底面平移到平面PCE上,得到四棱锥P'-A'B'C'D',其中A'B'C'D'与ABCD平行,且P'、E'、F'分别为A'B'、C'D'、A'D'的中点。

因为AF∥PD,所以AF'=PD'=C'F',又因为AD'=C'D'/2=AB'/2=AF'/2,所以AD'∥B'C'。

因此,根据平行四边形的性质,AF'∥B'C',即AF∥CE。

题目3:四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明EB∥平面PAD。

证明:连接PE,因为E为PC的中点,所以PE∥AD。

又因为CD⊥AD,所以CD∥PE。

又因为CD=2AB,所以AB∥PE。

因此,根据平行四边形的性质,EB∥PA,即EB∥平面PAD。

2.利用三角形中位线的性质题目4:四面体ABCD中,E、F、G、M分别是棱AD、CD、BD、BC的中点,证明AM∥平面EFG。

证明:连接EF、EG、FG,因为E、F、G分别为三角形BCD、ACD、ABD的中点,所以EF、EG、FG分别是这三个三角形的中位线。

因此,EF∥AD,EG∥BD,FG∥AC。

又因为M为BC的中点,所以AM∥FG。

因此,AM∥平面EFG。

3.利用平行四边形的性质题目7:正方体ABCD-A' B' C' D'中O为正方形ABCD的中心,M为B'B的中点,求证D'O∥平面A'BC'。

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)

立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。

专题3:立体几何中平行关系的证明基础练习题

专题3:立体几何中平行关系的证明基础练习题
【分析】
(1)连接 ,则 也为 的中点,由 可证 平面 ;
(2)存在, 为 的中点时,平面 平面 ,利用平面与平面平行的判定定理可证结论.
【详解】
(1)连接 ,则 也为 的中点,
因为 为 的中点,所以 为△ 的中位线,
所以 ,又 平面 , 平面 ,
所以 平
∴ 是 的中点,
又 是 的中点,
∴ ,
又 平面 , 平面 ,
∴ 平面 .
4.(1) 见解析;(2) 见解析;(3)见解析.
【分析】
(1)取BB1的中点M,连接HM、MC1,四边则HMC1D1是平行四边形,即可证明BF∥HD1;(2)取B1D1的中点O,易证四边形BEGO为平行四边形,故有OB∥GE,从而证明EG∥平面BB1D1D.(3)由正方体得BD∥B1D1,由四边形HBFD1是平行四边形,可得HD1∥BF,可证平面BDF∥平面B1D1H.
7.证明详见解析.
【解析】
【分析】
利用中位线,分别证明 ,由此证得平面内两条相交直线和另一个平面平行,从而证得两个平面平行.
【详解】
因为EF是△PAB的中位线,所以EF∥PA.
又EF 平面PAC,PA 平面PAC,所以EF∥平面PAC.
同理得EG∥平面PAC.
又EF 平面EFG,EG 平面EFG,EF∩EG=E,
5.(1)证明见解析;(2)
【分析】
(1)连接 ,通过证明 平面 与 平面 ,可得平面 平面 ;
(2)找到 为异面直线 和 所成角,求 即可.
【详解】
证明:(1)由题意可得,点 分别是 和 的中点,连接 ,

又 平面 平面 ,
平面 ,
同理: ,则 平面 ,
又 平面 平面 ,

立体几何平行问题练习题.

立体几何平行问题练习题.

专题:平行问题主要考点:线面平行面面平行线面平行的判定定理:如果一个平面内的一条直线和另平面内的一条直线平行,那么这条直线和这个平面平行。

定理模式:, , ////a b a b a ααα⊄⊂⇒面面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。

定理的模式://////a b a b P a b ββαβαα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭1、如右图所示,已知P 、Q 是正方体的面11A B BA 和面ABCD 的中心.证明:PQ ∥平面11C B BC2、如图,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC.3、如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2, AA 1=2,E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。

证明:直线EE 1//平面FCC 1;4、两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM =FN ,求证:MN ∥平面BCE 。

E E 1 A B 11D _ P5、已知在四棱锥P-ABCD 中,ABCD 为平行四边形,E 为PC 的中点,O 为BD 的中点. 求证:OE //平面ADP6、在四棱锥P-ABCD 中,底面四边形ABCD 是平行四边形,E,F 分别是AB ,PD 的中点. 求证://AF 平面PCE3、如图所示,ABC ∆为正三角形,EC ⊥平面ABC ,//BD CE ,且2CE CA BD ==,F 、M 是CE 、EA 的中点。

求证:(1)//DM 平面ABC ;(2)面//FDM 面ABC .10.P 是△ABC 所在平面外一点,A ′、B ′、C ′分别是△PBC 、△PCA 、△PAB 的重心。

(1)求证:平面A ′B ′C ′∥平面ABC ;(2)S △A′B′C′∶S △ABC 的值。

高中立体几何证明题

高中立体几何证明题

高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。

解析1. 连接AC。

- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。

2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。

- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。

- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。

- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。

题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。

解析1. 连接BC_{1},交B_{1}C于点E。

- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。

2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。

- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。

- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。

二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。

解析1. 连接AC,BD交于点O,连接PO。

- 因为底面ABCD是正方形,所以O为AC,BD中点。

- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。

- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。

- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。

- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。

高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法及考题详细解答

高中立体几何最佳解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。

(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。

(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。

7、夹在两个平行平面之间的平行线段相等。

二、线面平行的证明方法1、定义法:直线和平面没有公共点。

2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。

(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。

4、反证法。

三、面面平行的证明方法1、定义法:两个平面没有公共点。

2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

(面面平行的判定定理)3、平行于同一个平面的两个平面平行。

4、经过平面外一点,有且只有一个平面与已知平面平行。

5、垂直于同一条直线的两个平面平行。

四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。

7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。

(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。

9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。

五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。

(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。

总结证明线面平行的常用方法

总结证明线面平行的常用方法

BC DA 1B 1C 1D 1图2AFE GαabA图1总结证明线面平行的常用方法空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:方法一、反证法【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)已知:,,a b a αα⊄⊂∥b ,如图1.求证:a ∥α.【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.【证明】假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.下面只要说明aA α=不可能即可.∵a ∥b ,∴a ,b 可确定一平面,设为β. 又aA α=, ∴,A a A β∈∈.又b ,A αα⊂∈,∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.方法二、判定定理法【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且12EF CD =又∵G 为11C D 的中点, ∴ 1D G ∥CD 且112D G CD =∴ EF ∥1D G ,且1EF D G =B C DA 1B 1C 1D 1ANME F图3故四边形1EFD G 为平行四边形.∴ 1D F ∥EG又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 【评注】根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.方法三、运用面面平行的性质定理【例3】在正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .【分析】若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.【证明】如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴1CM CPMB PB=. ∵1BD B C =,DN CM =,∴1B M BN =, ∵1CM DN MB NB =,∴DN CPNB PB= ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB【评注】本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。

立体几何平行证明题

立体几何平行证明题

立体证明题(2)1•如图,直二面角D- AB- E中,四边形ABCD是正方形,AE=EB F为CE上的点,且BF丄平面ACE(1) 求证:AE丄平面BCE(2) 求二面角B-AC- E的余弦值.2•等腰△ ABC中, AC=BC= AB=2, E、F分别为AC BC的中点,将△ EFC沿EF折起,使得C 至U P,得至U四棱锥P— ABFE 且AP=BP=(1) 求证:平面EFP!平面ABFE(2) 求二面角B-AP- E的大小.3•如图,在四棱锥P- ABCD中,底面是正方形,侧面PADL底面ABCD且PA=PD= AD,若E、F分别为PC BD的中点.(I)求证:EF//平面PAD(n)求证:EF丄平面PDC4•如图:正△ ABC与Rt△ BCD所在平面互相垂直,且/ BCD=90°,/ CBD=30°(1)求证:AB丄CD(2)求二面角D- AB- C的正切值.5•如图,在四棱锥P- ABCD中,平面PADL平面ABCD^ PAD是等边三角形,四边形ABCD 是平行四边形,/ ADC=120 , AB=2AD(1)求证:平面PADL平面PBD(2)求二面角A- PB- C的余弦值.6•如图,在直三棱柱ABC- A1B1C1 中,/ ACB=90°, AC=CB=CC2, E是AB中点.(I)求证:AB丄平面ACE(H)求直线AG与平面ACE所成角的正弦值.7•如图,在四棱锥P- ABCD中, PA丄平面ABCD / DAB为直角,AB// CD, AD=CD=2AB=2E, F分别为PC, CD的中点.(I)证明:AB丄平面BEF;(H)若PA=求二面角E- BD- C.8•如图,在四棱锥P-ABCD 中,PA丄平面ABCD , PA=AB=AD=2,四边形ABCD 满足AB 丄AD , BC // AD 且BC=4,点M 为PC 中点.(I)求证:DM丄平面PBC;BE(2)若点E为BC边上的动点,且一一,是否存在实数人使得二面角P- DE - B的EC2余弦值为-?若存在,求出实数入的值;若不存在,请说明理由.39•如图,ABED是长方形,平面ABEDL平面ABC AB=AC=5 BC=BE=6且M是BC的中点(I) 求证:AM L平面BEC(H) 求三棱锥B- ACE的体积;(川)若点Q是线段AD上的一点,且平面QECL平面BEC求线段AQ的长.10. 如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB// CD AB丄BC, AB=2CD=2BC EA L EB(1)求证:EA丄平面EBC(2)求二面角C- BE- D的余弦值.11. 如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD// BC, / ADC=90°,平面PADL 底面ABCD O为AD中点,M是棱PC上的点,AD=2BC(1)求证:平面POBL平面PAD12. 如图,三棱柱ABC- A1B1C中,侧棱AA丄平面ABC △ ABC为等腰直角三角形,/BAC=90,且AB=AA, E、F 分别是CC, BC的中点.(1)求证:平面ABF丄平面AEF;(2)求二面角B1- AE- F 的余弦值.13. 如图,在菱形ABCD中,/ ABC=60°, AC与BD相交于点Q AE丄平面ABCD CF/ AE, AB=AE=2.(I )求证:BD丄平面ACFE(II )当直线FO与平面BDE所成的角为45。

立体几何中的平行性的证明.

立体几何中的平行性的证明.

立体几何中的平行性的证明
一、证明两直线平行的方法:
1、定义法:同一平面内无公共点的两条直线(用反证法证明)。

2、判定定理:如果一条直线与一个平面平行,则经过这条直线的平面与这个平
面相交,直线与交线平行。

3、平行与同一直线的两条直线平行。

4、面面平行的性质定理:如果两个平行平面同时和第三个平面相交,则交线平
行。

5、向量法:如果两个直线的方向向量共线,则两直线平行。

6、垂直于同一平面的两直线平行。

二、证明直线和平面平行的方法:
1、定义法:证明直线与平面无公共点(反证法)。

2、判定定理:如果平面外的一条直线和平面内的一条直线平行,则直线和平面
平行。

3、面面平行的性质:如果两个平面平行,那么一个平面内的任何一条直线都平
行于另一个平面。

4、如果平面外的一条直线和平面的一条垂线垂直,那么这条直线和这个平面平
行。

5、如果平面外的一条直线和这个平面都垂直于同一个平面,那么这条直线和这
个平面平行。

三、证明平面与平面平行的方法:
1、定义法:证明两个平面没有公共点(反证法)。

2、判定定理:如果一个平面内的两条相交直线分别和另一个平面平行,那么这
两个平面相互平行。

3、推论:如果一个平面内的两条相交直线分别和另一个平面内的两条直线(相
交)平行,那么这两个平面相互平行。

4、垂直于同一直线的两个平面相互平行。

5、如果两个平面的法向量平行,那么这两个平面平行。

6、。

立体几何中证明线线平行的方法

立体几何中证明线线平行的方法

立体几何中证明线线平行的方法
在立体几何中,证明两条线平行的方法通常有以下几种:
1. 利用平行线的性质:如果可以证明两条线分别与同一条第三条线平行,则可以推断这两条线平行。

这可以通过使用平行线的定理或者平行线的判定条件来证明。

2. 利用等角定理:如果可以证明两条线与另一条线之间形成的对应角度相等,则可以推断这两条线平行。

这可以通过使用等角定理(如同位角、内错角等)来证明。

3. 利用平行四边形的性质:如果可以证明两条线分别是平行四边形的对角线,或者两条线分别平分平行四边形的两个对角线角度,则可以推断这两条线平行。

4.利用向量的性质:如果可以证明两条线的方向向量相等,则可以推断这两条线平行。

这可以通过计算两条线的方向向量并比较它们来证明。

需要注意的是,每种方法都需要根据具体问题的情况选择合适的方法,有时可能需要结合多种方法来证明两条线平行。

在证明过程中,也需要合理运用已知的几何定理和性质,并且注意推理的逻辑性和严密性。

(完整版)立体几何中有关平行、垂直常用的判定方法

(完整版)立体几何中有关平行、垂直常用的判定方法

有关平行、垂直问题常见判定方法一、 线线平行的判定1、 公理4:平行于同一直线的另两直线互相平行. a ∥b ,b ∥c ==> a ∥c2、 三角形中位线平行于底边;平行四边形对边平行;棱柱侧棱互相平行.3、 线面平行的性质:一条直线与一个平面平行,过该直线的平面与已知平面相交,该直线与交线平行.a ∥α,a ⊂β,αβ=b ==> a ∥bβαba4、 面面平行的性质:两个平面平行,同时与第三个平面相交,所得的两条交线互相平行. α∥β,γα=a ,γβ=b ==> a ∥bγβαb a5、 平行于同一平面的两直线互相平行.a ⊥α,b ⊥α ==> a ∥bαba二、 线面平行的判定1、 线面平行的判定定理:若平面外的一条直线与此平面内的一条直线平行,则该直线与此c b a平面平行.a ⊄α,b ⊂α,a ∥b ==> a ∥ααba2、 若两平面平行,则一个平面内的任一直线与另一平面平行.α∥β,a ⊂α ==> a ∥βαβa3、 α⊥β,a ⊥β,a ⊄α ==> a ∥αβαa4、 a ⊥b ,b ⊥α,a ⊄α ==> a ∥ααab三、 面面平行的判定1、 面面平行的判定定理:若一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.a ⊂α,b ⊂α,a b =O ,a ∥β,b ∥β ==> α∥βO αβa b αβa2、 垂直于同一直线的两个平面互相平行.a ⊥α,a ⊥β ==> α∥β (见上图)3、 平行于同一平面的两个平面互相平行.α∥γ,β∥γ ==> α∥βαγβ4、 柱体的上下底面互相平行四、 线线垂直1、线线垂直的定义:a 与b 所成的角为直角.2、线面垂直的定义:若一条直线与一个平面垂直,则该直线与平面内的任一直线都垂直. a ⊥α,b ⊂α ==> a ⊥bαab3、a ⊥α,b ∥α ==> a ⊥bαab4、三垂直定理及其逆定理l ⊥α( H 为垂足),a ⊂α,HM 是斜线PM 在平面α内的射影三垂线定理(垂影则垂斜):a ⊥HM ==> a ⊥PM三垂线定理的逆定理(垂斜则垂影):a ⊥PM ==> a ⊥HMlM H Pαa5、a ⊥α,b ⊥β,α⊥β ==> a ⊥bβαab五、线面垂直的判定1、线面垂直的判定定理:若一直线和平面内的两相交直线都垂直,则该直线与此平面垂直. a ⊂α,b ⊂α,a b =O , l ⊥a ,l ⊥b ==> l ⊥αlO αa b2、a∥b,a⊥α ==> b⊥ααb a3、直棱柱的侧棱与底面垂直4、一条直线垂直于两平行平面中的一个平面,也垂直于另一个平面α∥β,a⊥α ==> a⊥βαβa5、面面垂直性质:两平面垂直,一个平面内垂直于它们交线的直线垂直于另一个平面.α⊥β,αβ=l,a⊂α,a⊥l ==> a⊥βlβαa5、 两相交平面同时垂直于第三个平面,则它们的交线也与第三个平面垂直.αβ=l ,α⊥γ,β⊥γ ==> l ⊥γl γβα六、面面垂直的判定1、定义:两平面相交所成二面角为直二面角.2、判定定理:若一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.a ⊥β,a ⊂α ==> α⊥βl βαa2、a ∥α,a ⊥β ==> α⊥ββαa。

立体几何线面平行-题型全归纳(解析版)

立体几何线面平行-题型全归纳(解析版)

立体几何线面平行-题型全归纳题型一利用三角形中位线例题1、如图所示,在三棱柱ABC-111C B A 中,侧棱⊥1AA 底面ABC ,AB ⊥BC ,D 为AC 的中点。

求证:1AB //平面DBC 1证明:连接C B 1,交1BC 于点O,再连接OD,平面11B BCC 是平行四边形,∴O是1BC 的中点,又D是AC的中点,∴OD是1ACB ∆的中位线,1//AB OD ∴,⊂OD 平面D BC 1,⊄1AB 平面D BC 1,//OD ∴平面D BC 1。

解题步骤(1)把直线通过平移到平面上,得到线线平行的初步形状;(2)连接平行四边形的对角线,再连接两个中点,恰好为平移所得到的线段;(3)通过延长两条线段的端点,构成一个三角形,即可得到三角形的中位线。

变式训练1、如图,在直四棱柱ABCD-1111D C B A 中,底面ABCD 为菱形,E 为1DD 中点。

求证:1BD //平面ACE ;证明:连接BD,交AC于点O,再连接OE,在直四棱柱ABCD-1111D C B A 中,O为BD的中点,且E为1DD 的中点,∴OE是1BDD ∆的中位线,1//BD OE ∴,又OE⊂平面ACE,⊄1BD 平面ACE,∴1BD //平面ACE 。

变式训练2、如图,在斜三棱柱ABC-111C B A 中,CA=CB ,D 、E 分别是AB ,C B 1的中点,求证:DE//平面11A ACC ;证明:连接1BC ,连接1AC ,在斜三棱柱ABC-111C B A 中,∴点E在线段1BC 上,∴点E是1BC 的中点,又点D是AB的中点,∴DE是1ABC ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC 变式训练3、如图所示,正三棱柱ABC-111C B A 的高为2,点D 是B A 1的中点,点E 是11C B 的中点,求证:DE//平面11A ACC证明:连接1AB ,连接1AC ,在正三棱柱ABC-111C B A 中,∴点D在线段1AB 上,∴点D是1AB 的中点,又点E是11C B 的中点,∴DE是11C AB ∆的中位线,∴DE//1AC ,⊄DE 平面11A ACC ,⊂1AC 平面11A ACC ∴DE//平面11A ACC题型二利用平行四边形的对边平行例题2、如图,在多面体ABCDE 中,AEB 为等边三角形,AD//BC ,BC AD 21=,F 为EB 的中点。

《立体几何中的平行与垂直关系》专题训练

《立体几何中的平行与垂直关系》专题训练

一、单选题1.m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α,β平行与同一个平面C.α内有两条相交直线与β内两条相交直线平行D.α,β垂直与同一个平面4.已知l ,m 是两条不同的直线,m //平面α,则().A.若l //m ,则l //αB.若l //α,则l //mC.若l ⊥m ,则l ⊥αD.若l ⊥α,则l ⊥m5.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面6.如果用m ,n 表示不同直线,α,β,γ表示不同平面,下列叙述正确的是().A.若m //α,m //n ,则n //αB.若m //n ,m ⊂α,n ⊂β,则α//βC.若α⊥γ,β⊥γ,则α//βD.若m ⊥α,n ⊥α,则m //n7.如图1,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个结论:图1①三棱锥A -D 1PC 的体积不变;②A 1P //平面ACD 1;③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1.其中正确的结论的个数是().A.1个B.2个C.3个D.4个8.如图2,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则().图2A.BM =EN ,且直线BM ,EN 是相交直线B.BM ≠EN ,且直线BM ,EN 是相交直线C.BM =EN ,且直线BM ,EN 是异面直线D.BM ≠EN ,且直线BM ,EN 是异面直线9.如下图所示的四个正方体中,A ,B 正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB //平面MNP 的图形的序号为().59A.①②B.②③C.③④D.①②③10.如图3,在直角梯形ABCD中,BC⊥CD,AB=BC=2,CD=4,E为CD中点,M,N分别为AD,BC的中点,将△ADE沿AE折起,使点D到D1,M到M1,在翻折过程中,有下列命题:图3①||M1M的最小值为1;②M1N//平面CD1E;③存在某个位置,使M1E⊥DE;④无论M1位于何位置,均有M1N⊥AE.其中正确命题的个数为().A.1B.2C.3D.4二、多选题11.已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是().A.若m//n,m⊥α,则n⊥αB.若m//α,α⋂β=n,则m//nC.若m⊥α,m⊥β,则α//βD.若m⊥α,m//n,n⊥β,则α//β12.已知菱形ABCD中,∠BAD=60°,AC与BD 相交于点O,将△ABD沿BD折起,使顶点A至点M,在折起的过程中,下列结论正确的是().A.BD⊥CMB.存在一个位置,使△CDM为等边三角形C.DM与BC不可能垂直D.直线DM与平面BCD所成的角的最大值为60°13.己知m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是().A.若m//α,n//β且α//β,则m//nB.若m//n,m⊥α,n⊥β,则α//βC.若m//n,n⊂α,α//β,m⊄β,则m//βD.若m//n,n⊥α,α⊥β,则m//β14.如图4,在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则().图4A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形15.已知四棱锥P-ABCD,底面ABCD为矩形,侧面PCD⊥平面ABCD,BC=23,CD=PC=PD=26.若点M为PC的中点,则下列说法正确的为().A.BM⊥平面PCDB.PA//面MBDC.四棱锥M-ABCD外接球的表面积为36πD.四棱锥M-ABCD的体积为6三、填空题16.如图5,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有_______.(把所有正确的序号都填上)图517.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_______.18.已知α,β是两个不同的平面,l,m是两条不同的直线,有如下四个命题:①若l⊥α,l⊥β,则α∥β;②若l⊥α,α⊥β,则l∥β;③若l∥α,l⊥β,则α⊥β;④若l∥α,α⊥β,则l⊥β.其中真命题为______(填所有真命题的序号).19.已知α,β是两个不同的平面,l,m是两条不同60,C⊥平面ABB.图622.如图7,在直三棱柱ABC为BC,AC的中点,AB=BC.(1)求证:A1B1∥平面DEC1;(2)求证:BE⊥C1E.23.如图8,在四棱锥P-ABCDPA,PD的中点.已知侧面PAD⊥是矩形,DA=DP.(1)求证:MN∥平面PBC;图8图9图11P-ABCD中,已知底BC=1,E,F分别是AB,;平面PDE.如图13,取PD中点G。

高三一轮复习 立体几何中的平行问题

高三一轮复习   立体几何中的平行问题
1、 直线和平面位置关系 Nhomakorabeaa
α
a a
A
α
α
直线在平面α 内a α
有无数个交点
直线与平面α相交 a ∩ α= A 有且只有一个交点
直线与平面α 平行
a∥α无交点
2、直线与平面平行定义: 一条直线和一个平面没有公共点, 叫做直线与平面平行.
3、直线和平面平行的判定定理
①定义.
②判定定理
线线平行
线面平行
4.下列说法中正确的有(C E) A.如果一个平面内一条直线和另一个平面 平行,那么这两个平面平行。 B.如果一个平面内无数条直线和另一个平 面平行,那么这两个平面平行。 C.如果一个平面内的任何直线和另一个平 面平行,那么这两个平面平行。 D.如果两个平面平行于同一条直线,那么 这两个平面平行。 E.如果两个平面平行于同一个平面,那么 这两个平面平行。
(2)直线 a∥平面α,平面α内有无数条直线 交于 一点,那
么这无数条直线中与直线 a 平行的( B )
(A)至少有一条
(B)至多有一条
(C)有且只有一条
(D)不可能有
练习:
(3)如果一条直线和一个平面平行,则这条直线( D ) A 只和这个平面内一条直线平行; B 只和这个平面内两条相交直线不相交; C 和这个平面内的任意直线都平行; D 和这个平面内的任意直线都不相交。
(2009广东卷理)给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,
那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个
平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线
不垂直的直线与另一个平面也不垂直.

立体几何证明平行的方法及专题训练

立体几何证明平行的方法及专题训练

立体几何证明平行的方法及专题训练罗虎胜立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。

(2)利用三角形中位线的性质。

(3)利用平行四边形的性质。

(4)利用对应线段成比例。

(5)利用面面平行的性质,等等。

(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P-ABCD的底面是平行四边Array形,点E、F 分别为棱AB、 PD的中点.求证:AF∥平面PCE;分析:取PC的中点G,连EG.,FG,则易证AEGFDBA 1AF是平行四边形2、如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3,过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA1点,M 为BE 的中点, AC⊥BE . 求证:(Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM.E分析:连EA ,易证C 1EAD 是平行四边形,于是MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E FG M AD CD BD BC AM EFG AM EFG ///ABC A B C -90BAC ∠=2,AB AC ==/A B //B C MN //A ACC 1C 求证:AB 11C 明: BC 11C 证:AP ∥GH .分析:连结AC 交BD 于O 点,连结OM ,易证OM ∥PA从而PA ∥平面DBM,再根据直线与平面平行的性质得AP ∥GH .(.3) 利用平行四边形的性质10.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,求证: D 1O 21中点为PD E 求证:AE ∥平面PBC ;分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形12、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.(I )证法一: 因为EF 90ACB ∠=︒90,EGF ABC ∠=︒∆.EFG ∆BC FG 21=ABCD BC AM 21=FA ⊂GM ⊄SM AM ND BN AM DNSM BN=ABC P -E PC M AB FPA 2AF FP = 求证://CM 平面BEF ;分析: 取AF 的中点N ,连CN 、MN ,(1) 易证平面CMN 111ABC A B C -3AC =4BC =5AB =14AA =D AB 1AC BC ⊥11CDB //平面ACNMB 1C 1D 1A 1DCBAP NMB 1C 1D 1A 1DCBA11C CDB -1C 11CDB //平面AC 1111ABCD A B C D -11,2AB BC AA ===M BCN 1AA 求证: //MN 平面1A CD ;(2) 过,,N C D 三点的平面把长方体1111ABCD A B C D -截成两部分几何体, 求所截成的两部分几何体的体积的比值.(1)证法1:设点P 为AD 的中点,连接,MP NP . ∵ 点M 是BC 的中点, ∴ //MP CD .∵ CD ⊂平面1A CD ,MP ⊄平面1A CD ,∴ //MP 平面1A CD . …2分 ∵ 点N 是1AA 的中点, ∴ 1//NP A D .∵ 1A D ⊂平面1A CD ,NP ⊄平面1A CD , ∴//NP 平面1A CD.PNMB 1C 1D 1A 1DCBA…4分∵ MP NP P =,MP ⊂平面MNP ,NP ⊂平面MNP , ∴ 平面//MNP 平面1A CD . ∵ MN ⊂平面MNP , ∴//MN 平面1A CD.…6分证法2: 连接AM 并延长AM 与DC 的延长线交于点P , 连接1A P , ∵ 点M 是BC 的中点, ∴ BM MC =.∵ BMA CMP ∠=∠, 90MBA MCP ︒∠=∠=,∴ Rt MBA ≅Rt MCP . …2分∴ AM MP =.∵ 点N 是1AA 的中点,QNMB 1C 1D 1A 1DCBA∴ 1MN //A P . …4分∵ 1A P ⊂平面1A CD ,MN ⊄平面1A CD ,∴ //MN 平面1A CD . …6分(2) 解: 取1BB 的中点Q , 连接NQ ,CQ , ∵ 点N 是1AA 的中点, ∴ //NQ AB . ∵ //AB CD , ∴ //NQ CD .∴ 过,,N C D 三点的平面NQCD 把长方体1111ABCD A B C D -截成两部分几何体,其中一部分几何体为直三棱柱QBC -NAD , 另一部分几何体为直四棱柱1111B QCC A NDD -. …8分 ∴ 11111222QBC S QB BC ∆==⨯⨯=, ∴直三棱柱QBC -NAD的体积112QBC V S AB ∆==, (10)分∵ 长方体1111ABCD A B C D -的体积112V =⨯⨯2=, ∴直四棱柱1111B QCC A NDD -体积2132V V V =-=. …12分 ∴ 12V V =1232=13.∴ 所截成的两部分几何体的体积的比值为13. …14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何证明平行的方法及专题训练罗虎胜立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1) 通过“平移”。

(2) 利用三角形中位线的性质。

(3) 利用平行四边形的性质。

(4) 利用对应线段成比例。

(5) 利用面面平行的性质,等等。

(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形2、如图,已知直角梯形ABCD 中,AB∥CD,AB⊥BC,AB =1,BC =2,CD =1+3, 过A 作AE⊥CD,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE ; (Ⅱ)求证:FG∥面BCD ; 分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB(第1题图)M 为BE 的中点, AC⊥BE . 求证:(Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM.分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA4、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形(2) 利用三角形中位线的性质5、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。

分析:法一:连MD 交GF 于H ,易证EH 是△AMD 的中位线 法二:证平面EGF ∥平面ABC ,从而AM ∥平面EFG6、如图,直三棱柱///ABC A B C -,90BAC ∠=,2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的中点。

ABCDEF G MA ACC;证明:MN∥平面//分析:连结AC1,,则MN是则△A1BC1的中位线,7.如图,三棱柱ABC—A1B1C1中, D为AC的中点.求证:AB1//面BDC1;分析:连B1C交BC1于点E,易证ED是△B1AC的中位线8、如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.证明: BC1//平面A1CD;分析:此题与上面的是一样的,连结AC1与A1C交F,连结DF,则DF//BC19、如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.分析:连结AC交BD于O点,连结OM,易证OM∥PA从而PA∥平面DBM,再根据直线与平面平行的性质得AP∥GH.(.3)利用平行四边形的性质10.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,求证:D1O//平面A1BC1;分析:连D1B1交A1C1于O1点,易证四边形OBB1O1是平行四边形PEDCBA 11、在四棱锥P-ABCD 中,AB ∥CD ,AB=21DC ,中点为PD E . 求证:AE ∥平面PBC ;分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形12、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.(I )证法一:因为EF//AB ,FG//BC ,EG//AC ,90ACB ∠=︒, 所以90,EGF ABC ∠=︒∆∽.EFG ∆ 由于AB=2EF ,因此,BC=2FC , 连接AF ,由于FG//BC ,BC FG 21=在ABCD 中,M 是线段AD 的中点,则AM//BC ,且BC AM 21=因此FG//AM 且FG=AM ,所以四边形AFGM 为平行四边形,因此GM//FA 。

又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM//平面ABFE 。

(4)利用对应线段成比例13、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别 是SA 、BD 上的点,(1)SM AM =ND BN, 求证:MN ∥平面SDC (2)AM DNSM BN=, 求证:MN ∥平面SBC 分析:法一:过M 作ME//AD ,过N 作NF//AD利用相似比易证MNFE 是平行四边形法二:连接AN 并且延长交CD 或CD 的延长线于E 点,连结SE ,则易证MN ∥SE,于是MN ∥平面SDC ,同理连接AN 并且延长交BC 或BC 的延长线于F ,连结SF ,则易证MN ∥SF,于是MN ∥平面SBC14、如图正方形ABCD 与ABEF 交于AB ,M ,N 分别为AC 和BF 上的点且AM=FN 求证:MN ∥平面BEC分析:过M 作MG//AB ,过N 作NH/AB 利用相似比易证MNHG 是平行四边形(6) 利用面面平行15、如图,三棱锥ABC P -中, E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且2AF FP =. 求证://CM 平面BEF ;分析: 取AF 的中点N ,连CN 、MN ,易证平面CMN//平面EFB16、如图, 在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =,点D 是AB 的中点,(1)求证:1AC BC ⊥;(2)求证:11CDB //平面AC ; (3)求三棱锥11C CDB -的体积。

分析:取A 1B 1的中点E ,连结C 1E 和AE ,易证 C 1E ∥CD,AE ∥DB 1,则平面AC 1E ∥DB 1C,于是11CDB //平面AC17在长方体1111ABCD A B C D -中, 11,2AB BC AA ===,AFEBC DMNP NMB 1C 1D 1A 1DCBANB 1C 1D 1A 1点M 是BC 的中点,点N 是1AA 的中点. (1) 求证: //MN 平面1A CD ;(2) 过,,N C D 三点的平面把长方体1111ABCD A B C D -截成 两部分几何体, 求所截成的两部分几何体的体积的比值.(1)证法1:设点P 为AD 的中点,连接,MP NP .∵ 点M 是BC 的中点, ∴ //MP CD .∵ CD ⊂平面1A CD ,MP ⊄平面1A CD , ∴ //MP 平面1A CD . …2分 ∵ 点N 是1AA 的中点, ∴ 1//NP A D .∵ 1A D ⊂平面1A CD ,NP ⊄平面1A CD , ∴//NP 平面1A CD . …4分∵ MPNP P =,MP ⊂平面MNP ,NP ⊂平面MNP ,∴ 平面//MNP 平面1A CD . ∵ MN ⊂平面MNP , ∴//MN 平面1A CD . …6分证法2: 连接AM 并延长AM 与DC 的延长线交于点P , 连接1A P , ∵ 点M 是BC 的中点, ∴ BM MC =.∵ BMA CMP ∠=∠, 90MBA MCP ︒∠=∠=, ∴ Rt MBA ≅Rt MCP . …2分QN MB 1C 1D 1A 1DCB A∴ AM MP =. ∵ 点N 是1AA 的中点,∴ 1MN //A P . …4分∵ 1A P ⊂平面1A CD ,MN ⊄平面1A CD ,∴ //MN 平面1A CD . …6分(2) 解: 取1BB 的中点Q , 连接NQ ,CQ , ∵ 点N 是1AA 的中点, ∴ //NQ AB . ∵ //AB CD , ∴ //NQ CD .∴ 过,,N C D 三点的平面NQCD 把长方体1111ABCD A B C D -截成两部分几何体, 其中一部分几何体为直三棱柱QBC -NAD , 另一部分几何体为直四棱柱1111B QCC A NDD -. …8分∴ 11111222QBC S QB BC ∆==⨯⨯=, ∴直三棱柱QBC -NAD的体积112QBC V S AB ∆==, …10分 ∵ 长方体1111ABCD A B C D -的体积112V =⨯⨯2=, ∴直四棱柱1111B QCC A NDD -体积2132V V V =-=. …12分∴ 12V V =1232=13.∴所截成的两部分几何体的体积的比值为13. …14分。

相关文档
最新文档