恒定电流的磁场(二)答案
川师大学物理第十一章-恒定电流的磁场习题解
第十一章 恒定电流的磁场11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。
(1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。
(2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。
…解:(1)如图11-2所示,中心O 点到每一边的距离为13OP h =,BC 边上的电流产生的磁场在O 处的磁感应强度的大小为012(cos cos )4πBC I B dμββ=-^IB21图11–2图11–1…B(a )AE(b )0(cos30cos150)4π/3Ih μ︒︒=-=方向垂直于纸面向外。
另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。
因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即3BC B B ===方向垂直于纸面向外。
(2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。
由载流直导线的磁感强度一般公式012(cos cos )4πIB dμββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为01(cos0cos30)4cos60)IB R μ︒=︒-︒π(0(12πI R μ=-031(cos150cos180)4πcos60IB B R μ︒==︒-︒0(12πI R μ=-】方向垂直纸面向里。
半径为R ,圆心角α的载流圆弧在圆心处产生的磁感强度的大小为04πI B Rμα=圆弧bcd 占圆的13,所以它在圆心O 处产生的磁感强度B 2的大小为00022π34π4π6II I B R R Rμμαμ===方向垂直纸面向里。
因此整个导线在O 处产生的总磁感强度大小为000012333(1)(1)0.212π22π26I I I I B B B B R R R Rμμμμ=++=-+-+=方向垂直纸面向里。
第八章恒定电流的磁场答案
第八章 恒定电流的磁场(参考答案)一、选择题1.D 2.A 3.C 4.B 5.D 6.B 7.C 8.C 9.C 10.D 11.C 12.B 13.C 14.B 15.A 16.A 17.A 18.D 19.B 20.C二、填空题 1.x y 33=2.aIB πμ60=, 0=⋅⎰⎰SS d B3.ih R210μπ 4.RIπμ40,垂直向里 5.T B 61067.6-⨯=,2211020.7m A P m ⋅⨯=-6.lIπμ420,垂直向里 7.232220)(2x R IR +μ,λωμ0218. Wb 71054.5-⨯ 9.I 0μ, 0, I 02μ 10.121S S S I+11.T 31014.1-⨯,垂直向里,s 81057.1-⨯ 12.eBmv θπcos 2,eBmv θsin13.图(a ):E m e a a t n ==,0;图(b ):0,)(22=+=t n a E vB mea 14.m2eL P m = 15.4 16.adlI 420μ,垂直l Id向左17.BIR ,垂直向外18.BIR F ab 2=,BIR F acb 2=,0=∑F ,221R I P m π=,221BIR M π=19.B R 441σωπ,竖直向上 20.铁磁质,顺磁质,抗磁质三、计算题:1、解:根据磁场叠加原理,O 点的磁感应强度是图中4段载流导线磁感应强度的叠加。
由公式()210cos cos 4ϑθπμ-=dIB ,可得对导线1和4,有:041==B B 对导线3,有:()R I R IdIB πμπππμϑθπμ243cos 4cos 224cos cos 4002103=⎪⎭⎫ ⎝⎛-=-=方向垂直向里;对导线2,有:R I R R I dl R IR Idl r Idl B l 82444sin 40202020202μππμπμπμθπμ=====⎰⎰⎰方向垂直向里;O 点的磁感应强度:)141(204321πμ+=+++=R I B B B B B ,方向垂直向里。
第七章 恒定电流的磁场 习题 (2)
Bdl 2rB 0 NI
0 NIh R2 R2 0 NI hdr ln 2. B ds R1 2r 2r R1
I
R2 R1
h
6、一半径为 4.0 cm的圆环放在磁场 中,磁场的方向对环而言是对称发散 的,如图所示.圆环所在处的磁感强 度的大小为0.10 T,磁场的方向与环 面法向成60°角.求当圆环中通有电 流I =15.8 A时,圆环所受磁力的大小 和方向.
2
2 R
1
1
0
因为线圈上每一电流元受力方向 相同,所以合力 d F2 I d lB2 sin 90 IB cos 60 d l = 0.34 N, 方向垂直环面向上.
电流元受B2的作用力
d F1 I d lB1 sin 90 IB sin 60 d l
方向指向线圈平面中心. 由于轴对称,dF2对整个线圈的合 力为零,即 . F 0 所以圆环所受合力 F F1 0.34 N, 方向垂直环面向上.
恒稳磁场整理
• 和卓辉 • 20112128 • • • • • 毕奥定理求B 求磁通量 用安培环路定理求B 线圈或导线受力 介质中的环路定理
1、边长为l的正方形线圈中通有电流,此线 圈在A点(见图)产生的磁感应强度B为 2 ( A) 0 I 4l
2 ( B) 0 I 2l 2 ( C) 0 I 2l
⊙
60° B
解:将电流元Idl处的 分解为平行线 圈平面的B1和垂直线圈平面的B2两 分量,则 B1 B sin 60 B2 B cos 60 分别讨论线圈在B1磁场和B2磁场中 所受的合力F1与F2.电流元受B1的 作用力 F d F IB sin 60 d l IB sin 60 2R 方向平行圆环线.
02第十一章 恒定电流的磁场(二)作业答案
第十一章 恒定电流的磁场(二)1. 选择题[ C]1. (基础训练2)三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A,2 A,3 A同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F1、F2和F3,如图所示.则F1与F2的比值是:(A) 7/16. (B) 5/8.(C) 7/8. (D) 5/4.【提示】设导线Ⅰ、Ⅱ、Ⅲ的电流强度分别为,产生的磁感应强度分别为,相邻导线相距为a,则式中,得 .[ D]2. (基础训练6)两个同心圆线圈,大圆半径为R,通有电流I1;小圆半径为r,通有电流I2,方向如图.若r<< R(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A) . (B) .(C) . (D) 0.【提示】大圆电流在圆心处的磁感应强度为;小圆电流的磁矩为所以,小圆电流受到的磁力矩的大小为[ B]3.(自测提高4)一个动量为p的电子,沿图示方向入射并能穿过一个宽度为D、磁感强度为(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) .(B) .(C) . (D) .【提示】电子在磁场中的轨迹为一段圆弧,如图。
所以有[B ]4.(自测提高5)如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是:(A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动. (D) 离开大平板向外运动.【提示】小线框的磁矩和大平板产生的磁场方向如图所示。
小线框受到的磁力矩为,该力矩总是使得小线圈朝着磁矩转向外磁场的方向转动。
故小线框顺时针转动。
2. 填空题图11-331.(基础训练14)如图11-33,在粗糙斜面上放有一长为l的木制圆柱,已知圆柱质量为m,其上绕有N匝导线,圆柱体的轴线位于导线回路平面内,整个装置处于磁感强度大小为B、方向竖直向上的均匀磁场中.如果绕组的平面与斜面平行,则当通过回路的电流I =时,圆柱体可以稳定在斜面上不滚动.【提示】(1)圆柱体所受合力为零:,式中的θ为斜面的倾角。
恒定电流的磁场
5 恒定电流的磁场5.1 填空题5.1.1 一切磁现象,其本质起源于( )。
5.1.2 磁感应线是( )曲线,或从无限远伸向无限远。
5.1.3电流元l Id在坐标原点沿x 轴正方向,则在以原点为圆心,R 为半径的圆周上,与x 轴相交点处的磁感强度的大小为( )。
5.1.4正交的两个等大同心单匝圆线圈(半径为R )中均通有电流I ,则在圆心处的磁感应强度B 的大小为( )。
5.1.5 两个通有同向电流的等大圆形环路平行放置,则二者将会( )。
5.1.6一束质子流发生了侧向偏转,表明该空间内存在着电场或磁场。
若轨迹是圆周曲线,表明是( )场,若轨迹是抛物线,表明是( )场。
5.1.7电子枪射出速度分别为v 和2v 的两个电子,初速度方向为x 方向,进入位于yz 平面的匀强磁场中,则两电子回到出发点的时间( )。
5.1.8 边长为a 的正方形导线回路中载有电流I ,则其中心处的磁感应强度为( )。
5.1.9 把构成回路的导线扭在一起,其周围的磁场为( )。
5.1.10圆形无限长载流螺线管内的磁场强度大小为( )。
正方形无限长载流螺线管内的磁场强度大小为( )。
5.1.11计算有限长的直线电流的磁场( )用毕奥-萨伐尔定律求之,而( )用安培环路定律求得。
(填能或不能)。
5.1.12 静磁场的高斯定理0=⋅⎰s d B 和环路定理I l d B 0μ=⋅⎰说明静磁场是( )场。
5.1.13氢原子的电子以速率v 作半径为R 的圆周运动,则电子在轨道中心的磁感应强度B=( )。
5.1.14 无限长载流直导线产生的磁场对自身任一电流元产生的作用力为( )。
5.1.15电荷在静电场中沿任一闭合曲线移动一周,电场力做功为( )。
电荷在静磁场中沿任一闭合曲线移动一周,磁场力做功( )。
5.1.16一质量为m 、带电为q 的粒子垂直射入匀强磁场B 中作半径为R 的匀速圆周运动,若该粒子的动能为E k ,则B =( )。
恒定电流的磁场
一、选择题1.一根无限长细导线载有电流I,折成图6-1所示的形状,圆弧部分的半径为R,则圆心处磁感应强度B的大小为:A.B.C.D.()2.如图6-2所示:圆形回路L和圆电流I同心共面,则磁感应强度沿L的环流为:A.,因为L上H处处为零;B.,因为L上H处处与d l垂直;C.,因为L包围电流I;D.,因为L包围电流I且绕向与I相反。
()3.对于安培环路定理的理解,正确的是:(所讨论的空间处在稳恒磁场中)A.若,则在回路L上必定是H处处为零;B.若,则回路L必定不包围电流;C.若,则回路L所包围传导电流的代数和为零;D.回路L上各点的H仅与回路L包围的电流有关。
()4.一无限长薄圆筒形导体上均匀分布着电流,圆筒半径为R,厚度可忽略不计,如图6-3所示。
在下面的四个图中,r轴表示沿垂直于薄圆筒轴线的径向,坐标原点与圆筒轴线重合,则这四个图中那一条曲线正确地表示出了载流薄圆筒在空间的磁场分布:r ()5.如图6-4所示,将一均匀分布着电流的无限大载流平面放入均匀磁场中,电流方向与该磁场垂直向内。
现已知载流平面两侧的磁感应强度分别为B1和B2,则该载流平面上的电流密度j为:A.B.C.D.()6.一根半径为R的无限长直铜导线,载有电流I,电流均匀分布在导线的横截面上。
在导线内部通过中心轴作一横切面S(如图6-5所示),则通过横切面S上每单位长度的磁通量Φm 为:A.B.C.D.()7.一线圈载有电流I,处在均匀磁场B中,线圈形状及磁场方向如图6-6所示,线圈受到磁力矩的大小和转动情况为:(转动方向以从O1看向O1′或O2看向O2′为准)A.,绕O1 O1′轴逆时针转动;B.,绕O1O1′轴顺时针转动;C.,绕O2O2′轴顺时针转动;D.,绕O2O2′轴逆时针转动。
()8.如图6-7所示,通有电流I的金属薄片,置于垂直于薄片的均匀磁场B中,则金属片上a、b两端点的电势相比为:A.B.C.D.无法确定。
()9.如图6-8所示,均匀磁场的磁感应强度为B,方向沿y轴正向,要使电量为q的正离子沿x轴正向作匀速直线运动,则必须加一个均匀电场E,其大小和方向为:A.,E沿z轴正向;B.,E沿y轴正向;C.,E沿z轴正向;D.,E沿z轴负向。
《新编基础物理学答案》_第11章
第11章 恒定电流与真空中的恒定磁场11-1 电源中的非静电力与静电力有什么不同答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一定的电位差。
而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。
电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。
把这两种电场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。
非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力,kF E q=。
当然电源种类不同,k F 的起因也不同。
11-2静电场与恒定电场有什么相同处和不同处为什么恒定电场中仍可应用电势概念 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。
但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。
正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。
11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同电流密度是否相同电流强度是否相同为什么 答:此题涉及知识点:电流强度d sI =⋅⎰j s ,电流密度概念,电场强度概念,欧姆定律的微分形式j E σ=。
设铜线材料横截面均匀,银层的材料和厚度也均匀。
由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E 相同。
由于铜线和银层的电导率σ不同,根据j E σ=知,它们中的电流密度j 不相同。
电流强度d sI =⋅⎰j s ,铜线和银层的j 不同但相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。
11-4一束质子发生侧向偏转,造成这个偏转的原因可否是: (1)电场 (2)磁场(3)若是电场或者是磁场在起作用,如何判断是哪一种场答:造成这个偏转的原因可以是电场或磁场。
磁场(二)安培力
磁场(二)磁场对电流的作用一、安培力-------通电导线在磁场中受到的作用力叫做安培力.1.说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.2.安培力的计算公式:F=BILsinθ(θ是I与B的夹角);通电导线与磁场方向垂直时,即θ=900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F=0N;00<B<900时,安培力F介于0和最大值之间.3.安培力公式的适用条件:①公式F=BIL一般适用于匀强磁场中I⊥B的情况②非匀强磁场中极短的导体近似适用(如对电流元)③公式F=BIL中L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端.如图所示,甲中:/l ,乙中:L/=d(直径)=2R(半圆环且半径为R)【例1】如图所示,在光滑的水平桌面上,有两根弯成直角相同金属棒,它们的一端均可绕固定转轴O自由转动,另一端 b互相接触,组成一个正方形线框,正方形边长为 L,匀强磁场的方向垂直桌面向下,磁感强度为 B.当线框中通以图示方向的电流时,两金属棒b点的相互作用力为f此时线框中的电流为多少?I=2f/BL二、左手定则1.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.2.安培力F的方向既与磁场方向垂直,又与通电导线垂直,即F跟BI所在的面垂直.但B与I的方向不一定垂直.3.安培力F、磁感应强度B、电流1三者的关系①已知I,B的方向,可惟一确定F的方向;②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向;③已知F,1的方向时,磁感应强度B的方向不能惟一确定.4.由于B,I,F的方向关系常是在三维的立体空间,所以求解本部分问题时,应具有较好的空间想象力,要善于把立体图画变成易于分析的平面图,即画成俯视图,剖视图,侧视图等.【例2】质量为m的通电细杆ab置于倾角为θ的平行导轨上,导轨宽度为d,杆ab与导轨间的摩擦因数为μ.有电流时aB恰好在导轨上静止,如图所示,如图10—19所示是沿ba方向观察时的四个平面图,标出了四种不同的匀强磁场方向,其中杆与导轨间摩擦力可能为零的是(AB)【例3】在同一平面内有两根平行的通电导线a与b,关于它们相互作用力方向的判断.正确的是()A.通以同向电流时,互相吸引 B.通以同向电流时,互相排斥C.通以反向电流时,互相吸引 D.通以反向电流时,互相排斥【例4】如图所示,一条形磁铁放在水平桌面上在其左上方固定一根与磁铁垂直的长直导线,当导线通以如图所示方向电流时()A.磁铁对桌面的压力减小,且受到向左的摩擦力作用B.磁铁对桌面的压力减小,且受到向右的摩擦力作用C.磁铁对桌面的压力增大,且受到向左的摩擦力作用D.磁铁对桌面的压力增大,且受到向右的摩擦力作用二、安培力的的综合应用1、安培力作用下物体的运动方向的判断(1)电流元法:即把整段电流等效为多段直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断整段电流所受合力方向,最后确定运动方向.(2)特殊位置法:把电流或磁铁转到一个便于分析的特殊位置后再判断安培力方向,从而确定运动方向.(3)等效法:环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可等效成环形电流或通电螺线管,通电螺线管也可以等效成很多匝的环形电流来分析.(4)转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样,定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,再确定磁体所受电流作用力,从而确定磁体所受合力及运动方向.【例5】.如图在条形磁铁N极处悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?右偏转。
第十一章 恒定电流的磁场(二)作业答案
一、 选择题【 C 】1.(基础训练2)三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是:(A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4.【答】设导线Ⅰ、Ⅱ、Ⅲ的电流强度分别为321,,I I I ,产生的磁感应强度分别为321,,B B B ,相邻导线相距为a ,则()()0203011123110301022231227,2224222II F I l B B I l a a a I I F I l B B I l a a aμμμπππμμμπππ⎛⎫=+=+= ⎪⋅⎝⎭⎛⎫=-=-= ⎪⎝⎭式中121231, 1, I 1A, I 2A, I 3A l m l m =====,得 8/7/21=F F .【 D 】2. (基础训练6)两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) Rr I I 22210πμ. (B)Rr I I 22210μ. (C)rR I I 22210πμ. (D) 0.【答】大圆电流在圆心处的磁感应强度为,方向垂直纸面朝内2RI B 101μ=; 小圆电流的磁矩为方向垂直纸面朝内,,222r I p m π=所以,小圆电流受到的磁力矩的大小为2211sin 00m m M p B p B =⨯=︒=[ B ]3.(自测提高2)如图所示,一电子以速度v垂直地进入磁感强度为B的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C)正比于B ,反比于v . (D) 反比于B ,反比于v .【答】 电子在磁场中做匀速率圆周运动,运动平面的法向平行于磁感应强度方向,因此,磁通量为2R B πΦ=,其中半径R 可由式2v evB m R =求得:mv R eB =,所以222mv m v B eB eB ππ⎛⎫Φ== ⎪⎝⎭.F 1F 2F 31 A2 A3 A ⅠⅡⅢOrR I 1 I 2[ B ]4、(自测提高4)一个动量为p 的电子,沿图示方向入射并能穿过一个宽度为D 、磁感强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A)p eBD 1cos-=α.(B)p eBD 1sin -=α. (C)epBD 1sin -=α. (D) ep BD 1cos -=α.【答】电子在磁场中的轨迹为一段圆弧,如图。
大学普通物理学习题答案-第十一章-恒定电流与恒定磁场
第十一章恒定电流与恒定磁场一、选择题1.如图11-1所示,有两根载有相同电流的无限长直导线,分别通过x1=1m、x2=3m的点,且平行于y轴,则磁感应强度B等于零的地方是()。
A.x=2m的直线上B.在x>2m的区域C.在x<1m的区域D.不在x、y平面上图11-11.【答案】A。
解析:根据对称性可得,两条载流导线在x=2m的直线上产生的磁感应强度大小相等;用右手螺旋定则可判断两磁感应强度的方向相反,相互抵消,合磁感应强度为零,故选A。
2.图11-2中6根无限长导线互相绝缘,通过电流均为I,区域Ⅰ、Ⅰ、Ⅰ、Ⅰ均为全等的正方形,哪一个区域指向纸内的磁通量最大()。
A. Ⅰ区域B. Ⅰ区域C. Ⅰ区域D. Ⅰ区域2.【答案】B。
解析:通过Ⅰ区域的磁通量为0,通过Ⅰ区城的磁通量最大且指向纸内,通过Ⅰ区域的磁通量最大但指向纸外,通过IV区域的磁通量为0。
故选B。
3.如图11-3所示,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知()。
A.d 0LB l ⋅=⎰,且环路上任意一点B =0 B.d 0LB l ⋅=⎰,且环路上任意一点B ≠0 C.d 0LB l ⋅≠⎰,且环路上任意一点B ≠0 D.d 0LB l ⋅≠⎰,且环路上任意一点B =常量3.【答案】B 。
解析:根据安培环路定理,闭合回路内没有电流穿过,所以环路积分等于0.但是由于圆形电流的存在,环路上任意一点的磁感应强度都不等于0。
故选B 。
4.无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r>R )的磁感应强度为B e ,则有:()。
A.B i 、B e 均与r 成正比B.B i 、B e 均与r 成反比C.B i 与r 成反比,B e 与r 成正比D.B i 与r 成正比,B e 与r 成反比4.【答案】B 。
解析:导体横截面上的电流密度2πR I J =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=;当r <R ,I r B e ⋅=⋅0π2μ,rIB e π20μ=;所以选D 。
第11章 恒定电流的磁场
第十一章 恒定电流的磁场11.1 选择题(1) 有两条长直导线各载有5A 的电流, 分别沿x 、y 轴正向流动. 在(40, 20, 0)(cm)处的B 是(真空磁导率μ0 = 4π × 10-7N/A 2) [C] (A) 2.5×10-6 T 且沿z 轴负向 (B) 3.5×10-6 T 且沿z 轴负向 (C) 2.5×10-6 T 且沿z 轴正向 (D) 3.5×10-6 T 且沿z 轴正向k y I B πμ2101=,k xI B πμ2202-=k T k x y I k x I k y I B B B 6020*******.211222-⨯=⎪⎪⎭⎫ ⎝⎛-=-=+=πμπμπμ (2) 半径为1a 的圆形载流线圈与边长为2a 的方形载流线圈, 通有相同的电流, 若两线圈中心1O 和2O 的磁感应强度大小相同, 则半径与边长之比21:a a 为[D] (A) 1:1 (B) π212:1 (C) π212:4 (D) π212:81012a IB μ=;()2102cos cos 44θθπμ-⨯=a IB 20202243cos 4cos 2144a I a I πμπππμ=⎪⎭⎫ ⎝⎛-⨯= 21B B =,2010222a I a Iπμμ=, 8221π=a a(3) 无限长空心圆柱导体的内、外半径分别为a 和b , 电流在导体截面上均匀分布, 则在空间各处B 的大小与场点到圆柱中心轴线的距离r 的关系, 定性地分析如图[B](A) (B) (C) (D)解析:∑⎰=⋅内0i LI l d B μ(4) 氢原子处于基态(正常状态)时, 它的电子(e = 1.6×10-19C)可看做是在半径为a = 0.53 × 10-8cm 的轨道做匀速圆周运动, 速率为2.2 × 108cm/s, 那么在轨道中心B 的大小为(真空磁导率μ0 = 4π×10-7N/A 2)[B] (A)8.5×10-8T (B)13T (C)8.5×10-4TRIB 20μ=,a R =,T e I =,v aT π2=,可得204aev B πμ=, 数据带入即可.(6) 载流i 的方形线框, 处在匀强磁场B 中, 如图所示, 线框受到的磁力矩是 (A) 向上 (B) 向下 (C) 由纸面向外 (D) 由纸面向内B p M m ⨯=;n IS p m =m p 的方向与n 的方向相同, n的方向是载流线圈的正法线方向(由右手螺旋法则确定), 正法线方向垂直向外, 磁场的方向水平向右, 那么磁力矩M的方向竖直向上.iB题11.1(6)图a eO题11.1(4)图11.2 填空题(1) 一平面内有互相垂直的导线L 1和L 2, L 1为无限长直导线, L 2为长为2a 的载流直导线, 位置如图所示. 若L 1和L 2同时通以电流I ,那么作用在L 2上的力对于O 点的磁力矩为 .()13ln 220-πμaI建立如图坐标系, 距直导线L 1为x 远处取电流元l Id, 其在产生的磁场中受到的安培力为d d F I l B =⨯,方向向上.2300=d d ln 322aaI I F F I x x xμμππ==⎰⎰ 该力对O 点的磁力矩为d d M r F =⨯()2004d d 4d 1d 22I I a M rIB x a x I x x x x μμππ⎛⎫==-=-⎪⎝⎭2304=d 1d 2a aI a M M x x μπ⎛⎫=-⎪⎝⎭⎰⎰()()222330004=d d 2ln 32ln 312a a a a I II a a x x a a x μμμπππ⎛⎫-=-=- ⎪⎝⎭⎰⎰(2) 矩形截面的螺绕环尺寸见图, 则在截面中点处的磁感应强度为 ; 通过截面S 的磁通量为 .rNI πμ20;210ln 2D D NIh πμ L 2 L 1a2aaI I O题11.2(1)图沿以环心为圆心, 以r 为半径的圆周为积分路径, 应用安培环路定理 NI r B l d B L02μπ=⋅=⋅⎰ ; rNIB πμ20=; 对于截面中点处, ()1214r D D =+通过截面S 的磁通量为⎰⎰⋅=ΦS m S B ⎰⎰⎰⋅==2200121212D D S hdr rNI dS r NIπμπμ2100ln 2ln 212D D NIh r NIh DD πμπμ== (3)每单位长度的质量为0.009kg/m 的导线, 取东西走向放置在赤道的正上方, 如图. 在导线所在的地点的地磁是水平朝北, 大小为5310T -⨯, 问要使磁力正好支撑导线的重量, 导线中的电流应为 .2940A(5)0d LB l I μ⋅=∑⎰内; ∑⎰=⋅insi LI l d H;NI l d H L=⋅⎰; A I 3=;11.4 将一无限长直导线弯成图示的形状, 其上载有电流I , 计算圆心O 点处B 的大小.解:可分为三部分电流, 两侧的半无限长直导线和中间的圆弧, 在O 点产生的磁感应强度均为垂直向里.半无限长导线, 由P53已知结果可知()210cos cos 4θθπμ-=aIB 左侧:3cosπr a =, 01=θ, 62πθ=右侧:3cos πr a =, 651πθ=,πθ=2 圆弧部分导线, 由P54已知结果可知R I B πϕμ40=, 式中r R =, 32πϕ=以上三部分求和, 可得总磁感应强度r Ir I B 623100μπμ+⎪⎪⎭⎫ ⎝⎛-=, 垂直向里.11.9电缆由导体圆柱和一同轴的导体圆筒构成, 使用时电流I 从导体流出, 从另一导体流回, 电流均匀分布在横截面上, 如图所示. 设圆柱体的半径为r 1, 圆筒的内、外半径分别为r 2和r 3, 若场点到轴线的距离为r , 求r 从0→∞范围内各处磁感应强度的大小.解:0d 2LB l rB I πμ⋅==∑⎰内当1r r <时, 2021d 2r B l rB I r ππμπ⋅==⎰,2102r Ir B πμ=当21r r r <<时,0d 2B l rB I πμ⋅==⎰, 02I B rμπ=当32r r r <<时, ()()22202232d 21r r B l rB I r r ππμπ⎡⎤-⎢⎥⋅==--⎢⎥⎣⎦⎰,()()222322302r r r r r I B --=πμ当3r r >时,d 0B l I I ⋅=-=⎰, 0=B11.10如图所示, 一根半无限长的圆柱形导体, 半径为R 1, 其内有一半径为R 2的无限长圆柱形空腔, 它们的轴线相互平行, 距离为a (R 2 < a < R 1-R 2), I 沿导体轴线方向流动, 且均匀地分布在横截面积上. 求: (1) 圆柱体轴线上B 的大小; (2) 空腔部分轴线上B 的大小;(3) 设R 1 = 10mm, R 2 = 0.5mm, a = 5.0mm, I = 20A, 分别计算上述两处B 的大小.()()2122212122211R R R I R R R I I -=-=ππ,()()2222212222212R R R I R R R I I -=-=ππ 21R R o B B B +=()222122022R R a IR B B R o -==πμT 6102-⨯=21o o o B B B '''+=()2221012R R a IaB o -='πμT 4102-⨯=11.13如图所示, 一半径为R 的无限长半圆柱面导体, 其上电流与其轴线上一无限长直导线的电流等值、反向, 电流I 在半圆柱面上均匀分布. 求: (1) 轴线上导线单位长度所受的力;(2) 若将另一无限长直导线(通有方向与半圆柱面相同的电流I )代替圆柱面, 产生同样的作用力, 该导线放在何处?题11.13图(1)R Ii π=, 0000d d d d d 2222I i l iR i B R R R μμμθμθππππ====,0d d cos 22x i B μθπθπ⎛⎫=- ⎪⎝⎭ 00d =d cos 22x x i B B πμθπθπ⎛⎫=- ⎪⎝⎭⎰⎰()000020cos 222i i i I R πμμμμθππππ=-=== 0d d sin 22y i B μθπθπ⎛⎫=- ⎪⎝⎭,00d =d sin 22y y i B B πμθπθπ⎛⎫=- ⎪⎝⎭⎰⎰, 0=y B (由对成性可知)22yx B B B +=R I 20πμ=,BIl F =RI220πμ=(j R I F 220πμ=亦可)(2)dI R I πμπμ220220=; 2R d π=; 2R y π-=11.14载有电流I 1的长直导线, 旁边有一个正三角形线圈, 边长为a , 电流为I 2, 它们共面, 如图所示. 三角形一边与长直导线平行, 三角形中心O 到直导线的距离为b, 求I 1对该三角形的作用力.解:AB 段:⎪⎪⎭⎫ ⎝⎛-=a b I B 632101πμ, ⎪⎪⎭⎫ ⎝⎛-==a b aI I a B I F 632210121πμ, 方向沿x 负向;BC 段:选择电流元dl xI I dl B I dF πμ2210222==;6cos πdxdl =I 1I 1⎰⎰+-==3333210226cos2b b x dx I I dF F ππμ⎪⎪⎪⎪⎭⎫⎝⎛-+=323ln 3210a b a b II πμ ⎪⎪⎪⎪⎭⎫ ⎝⎛-+==323ln 323cos 21022a b a b I I F F x πμπ; ⎪⎪⎪⎪⎭⎫⎝⎛-+==323ln 23sin 21022a b a b I I F F y πμπ 同理可得AC 段受力⎪⎪⎪⎪⎭⎫⎝⎛-+=323ln 32103a b a b I I F πμ ⎪⎪⎪⎪⎭⎫⎝⎛-+==323ln 323cos 21033ab a b I I F F x πμπ; ⎪⎪⎪⎪⎭⎫⎝⎛-+==323ln 23sin 21033a b a b I I F F y πμπ y y F F 23=, 方向相反, 抵消.合力, 方向沿x 正向,x x F F F F 321++-=11.18盘面与均匀磁场B 成φ角的带正电圆盘, 半径为R, 电荷量Q 均匀分布在表面上. 圆盘已角速度ω绕通过盘心, 与盘面垂直的轴转动. 求此带电旋转圆盘在磁场中所受的磁力矩.解:dS dq σ=()rdr πσ2=, 由于圆盘以ω旋转, 故圆环中电流T dq dI =πω2dq =rdr σω=, 式中2RQ πσ= dr r dIS dp m 3σπω==⎰⎰==R m m dr r dp p 03σπω2244141QR R ωσπω==⎪⎭⎫ ⎝⎛-=ϕπ2sin B p M m ϕωcos 412B QR =方向满足B p M m⨯=11.25螺绕环平均周长l =10cm, 环上线圈N=200, 线圈中电流I =100mA. 试求: (1)管内B 和H 的大小;(2)若管内充满相对磁导率μr =4200的磁介质, 管内B 的大小. 解:(1)∑⎰=⋅0I l d H; 02NI r H =πrNI H π20=, 000nI B μ=, 可知H =200A/m, B 0=2.5×10-4T (2)H H B r μμμ0==, 可知B =1.05T常见载流体的磁感应强度无限长载流直导线外距离导线r 处,0=2IB rμπ,圆电流轴上距离圆心x 处,()203222=2R INB xRμ+ (N 是线圈匝数)无限长密绕直螺线管内部,0=B nI μ (n 是单位长度上的线圈匝数)圆电流圆心处,0=2IB Rμ无限大均匀载流平面外,01=2B i μ(i 是流过单位长度的电流)一段载流圆弧导线在圆心处,0=4I B Rμϕ(φ以弧度为单位)OIBI11 / 11安徽信息工程学院 大学物理(2) 韩玉龙 0B =;00=224I I B R R μμππ=⋅;000121211+=+444I I I B R R R R μμμ⎛⎫= ⎪⎝⎭;002=228I I B R R μμππ=⋅OI。
程守洙《普通物理学》(第5版)(上册)章节题库-恒定电流的磁场(圣才出品)
第8章恒定电流的磁场一、选择题1.在某均匀磁场中放置有两个平面线圈,其面积,通有电流,它们所受的最大磁力矩之比为()。
A.1B.2C.4D.【答案】C【解析】由M=BIS得所以故2.一个半径为r的圆线圈置于均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R。
当线圈转过30°时,以下各量中,与线圈转动快慢无关的量是()。
A.线圈中的感应电动势B.线圈中的感应电流C.通过线圈的感应电荷量D.线圈回路上的感应电场【答案】C3.半径为a1的载流圆形线圈与边长为a2的方形载流线圈通有相同的电流,如图8-1所示,若两线圈中心O1和O2的磁感强度大小相同,则半径与边长之比a1:a2为()。
图8-1A.1:1B.C.D.【答案】D4.两个相距不太远的平面圆线圈,一线圈的轴线恰好通过另一线圈的圆心。
怎样放置可使其互感系数近似为零()。
A.两线圈的轴线相互平行B.两线圈的轴线相互垂直C.两线圈的轴线成45°角D.两线圈的轴线成30°角【答案】B5.无限长空心圆柱导体的内、外半径分别为a和b,电流在导体截面上均匀分布,则在空间各处的大小与场点到圆柱中心轴线的距离r的关系,定性地分析如图()。
A.B.C.D.【答案】B二、填空题1.载有恒定电流I的长直导线旁有一半圆环导线cd,半圆环半径为b,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图8-2所示。
当半圆环以速度υ沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是______。
图8-2【答案】2.如图8-3所示,一条无限长载流直导线载有电流I,在一处弯成半径为R的圆弧。
这圆弧的中心O点的磁感强度B的大小为______,方向为______。
图8-3【答案】;3.一等腰直角三角形ACD,直角边长为a,线圈维持恒定电流I,放在磁感应强度为的均匀磁场中,线圈平面与磁场方向平行,如图8-4。
如果AC边固定,D点绕AC边向纸面外旋转π/2,则磁力所做的功为______;如果CD边固定,A点绕CD边向纸面外旋转则磁力所做的功为______;如果AD边固定,C点绕AD边向纸面外旋转则磁力所做的功为______。
专辑12磁场(二)- 2020年全国大市名校高三期末一模物理考试试题全解全析汇编(第10期)(解析
2020年全国大市名校高三期末一模物理试题全解全析汇编(第10期)磁场(二)1、(2020·安徽省五校联盟高三上学期第二次质检)如图所示,在矩形abcd 区域中,分布有垂直纸面向外的匀强磁场,ab 长为L ,在ab 的中点P 处有一电子发射源,发射出的电子速率取一切可能值,所有电子出射的速度方向均与ab 成30°角。
下列说法正确的是( )A. 只要初速度大小取合适的值,电子可以在磁场中做完整的圆周运动B. 从ad 边出射的电子一定比从bc 边出射的电子在磁场中运动的时间长C. 电子入射速度越大,在磁场中运动的时间一定越短D. 当12⎛⎫>+ ⎪ ⎪⎝⎭bc L 时,cd 边可能有电子射出【答案】B 【解析】A .电子在磁场中做圆周运动,电子运动轨迹半径为mvr qB=,粒子速率越小轨道半径越小,转过的最大圆周如图所示,无法做完整的圆周运动,故A 错误;B .电子在磁场中运动的周期都相同,电子在磁场中的运动时间2t T θπ=如图所示,从ad 边出射的电子一定比从bc 出射的粒子转过的圆心角θ大,电子的运动时间t 长,故B 正确; C .电子入射速度越大,运动半径越大,但是能从ab 边射出的所有电子转过的圆心角相同,则运动时间相同,并不一定是入射速度越大在磁场中运动的时间越短,故C 错误;D .当粒子轨迹恰好与bc 边相切时,若不能从cd 边射出,则cd 边无电子射出,由几何关系知sin 302LR R +=o 轨迹半径R=L则粒子距离dc 最远距离为cos302R R L L +=+o若1bc L )时,则粒子不能从cd 边射出,即当1bc L +)时,cd 边无电子射出;故D 错误; 故选B 。
2、(2020·安徽省滁州市天长中学等金三角联盟高三上学期第二次联考)如图所示,半爱心型金属环abc (由直线ac 及曲线abc 构成,不计重力)水平放置在绝缘的水平面上,某时刻通有顺时针方向恒定电流,长直导线MN 固定在水平面上与ac 平行,当其中通有M 到N 的恒定电流时,则下列说法正确的是A.金属环中无感应电流产生B.ac边与长直线相互吸引C.金属环受到的安培力向右D.金属环对水平面有向左的摩擦力【答案】AD【解析】A.由题意,直导线电流恒定,金属环无感应电流,故A正确;B.ac边电流由c指向a,由反向电流相互排斥可知ac边和长直线相互排斥,故B错误;C.弯曲部分所在处的磁感应强度大于直线部分,而电流是相同的,故弯曲部分受到的安培力大于直线部分,弯曲部分受到的是引力,直线部分受到的是斥力,故整体受到的安培力的合力向左,故C错误;D.由于金属环受到的安培力合力向左,故地面对金属环的摩擦力向右,故金属环对地面的摩擦力向左,D 正确;故选AD。
高考物理《恒定电流》真题练习含答案
高考物理《恒定电流》真题练习含答案1.[2024·新课标卷](多选)电动汽车制动时可利用车轮转动将其动能转换成电能储存起来.车轮转动时带动磁极绕固定的线圈旋转,在线圈中产生电流.磁极匀速转动的某瞬间,磁场方向恰与线圈平面垂直,如图所示.将两磁极间的磁场视为匀强磁场,则磁极再转过90°时,线圈中()A.电流最小B.电流最大C.电流方向由P指向QD.电流方向由Q指向P答案:BD解析:磁极顺时针匀速转动相当于线圈逆时针匀速转动,线圈从中性面位置开始转动,磁极转过90°时即线圈逆时针转过90°时,穿过线圈的磁通量为0,磁通量的变化率最大,线圈中电流最大,A错误,B正确;磁极转过90°时相当于题图示中PQ向下切割磁感线,由右手定则可知线圈中电流方向由Q指向P,C错误,D正确.2.[2023·江苏卷]小明通过实验探究电压表内阻对测量结果的影响.所用器材有:干电池(电动势约1.5 V,内阻不计)2节;两量程电压表(量程0~3 V,内阻约3 kΩ;量程0~15 V,内阻约15 kΩ)1个;滑动变阻器(最大阻值50 Ω)1个;定值电阻(阻值50 Ω)21个;开关1个及导线若干.实验电路如图1所示.(1)电压表量程应选用________(选填“3 V”或“15 V”).(2)图2为该实验的实物电路(右侧未拍全).先将滑动变阻器的滑片置于如图所示的位置,然后用导线将电池盒上接线柱A与滑动变阻器的接线柱________(选填“B”“C”或“D”)连接,再闭合开关,开始实验.(3)将滑动变阻器滑片移动到合适位置后保持不变,依次测量电路中O与1,2,…,21之间的电压.某次测量时,电压表指针位置如图3所示,其示数为________ V.根据测量数据作出电压U与被测电阻值R的关系图线,如图4中实线所示.(4)在图1所示的电路中,若电源电动势为E,电压表视为理想电压表,滑动变阻器接入的阻值为R1,定值电阻的总阻值为R2,当被测电阻为R时,其两端的电压U=________(用E、R1、R2、R表示),据此作出UR理论图线如图4中虚线所示.小明发现被测电阻较小或较大时,电压的实测值与理论值相差较小.(5)分析可知,当R较小时,U的实测值与理论值相差较小,是因为电压表的分流小,电压表内阻对测量结果影响较小.小明认为,当R较大时,U的实测值与理论值相差较小,也是因为相同的原因.你是否同意他的观点?请简要说明理由________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________.答案:(1)3 V(2)D(3)1.50(4)ERR1+R2(5)不同意,理由见解析解析:(1)所用电源为两节干电池,电动势为3 V,则所用电表量程为3 V;(2)闭合开关之前,滑动变阻器阻值应该调到最大,则由图可知,电池盒上的接线柱A 应该与滑动变阻器的接线柱D连接;(3)电压表最小刻度为0.1 V,则读数为1.50 V;(4)由闭合电路欧姆定律可得I=ER1+R2当被测电阻阻值为R时电压表读数U=IR=ERR1+R2(5)不同意;当R较大时,则电压表内阻不能忽略,则电路中的电流I=ER1+(R2-R)+RR V R+R V则电压表读数为U=ER1+(R2-R)+RR VR+R V·RR VR+R V=E(R1+R2-R)(R+R V)RR V+1当R较大时,R=R2时R最大,此时U=ER1(R2+R V)R2R V +1=ER1R V+R1R2+1因R V≫R1,则电压表读数接近于U=ER1 R2+1=ER2R1+R23.[2022·全国甲卷]某同学要测量微安表内阻,可利用的实验器材有:电源E(电动势1.5V,内阻很小),电流表(量程10 mA,内阻约10 Ω),微安表(量程100 μA,内阻R g待测,约1 kΩ),滑动变阻器R(最大阻值10 Ω),定值电阻R0(阻值10 Ω),开关S,导线若干.(1)将图中所示的器材符号连线,画出实验电路原理图;(2)某次测量中,微安表的示数为90.0 μA,电流表的示数为9.00 mA,由此计算出微安表内阻R g=________ Ω.答案:(1)如图所示(2)990解析:流过电阻R 0的电流I 0=I -I g =9 mA -0.09 mA =8.91 mA ,由欧姆定律可知,R g=I 0R 0I g =8.91×100.09Ω=990 Ω. 4.[2024·浙江1月,节选]在“观察电容器的充、放电现象”实验中,把电阻箱R(0~9 999 Ω)、一节干电池、微安表(量程0~300 μA ,零刻度在中间位置)、电容器C(2 200 μF 、16 V )、单刀双掷开关组装成如图1所示的实验电路.(1)把开关S 接1,微安表指针迅速向右偏转后示数逐渐减小到零;然后把开关S 接2,微安表指针偏转情况是________.A .迅速向右偏转后示数逐渐减小B .向右偏转示数逐渐增大C .迅速向左偏转后示数逐渐减小D .向左偏转示数逐渐增大(2)再把电压表并联在电容器两端,同时观察电容器充电时电流和电压变化情况.把开关S 接1,微安表指针迅速向右偏转后示数逐渐减小到160 μA 时保持不变;电压表示数由零逐渐增大,指针偏转到如图2所示位置时保持不变,则电压表示数为________V ,电压表的阻值为________kΩ(计算结果保留两位有效数字).答案:(1)C (2)0.50 3.1解析:(1)把开关S 接1,电容器充电,电流从右向左流过微安表,微安表指针迅速向右偏转后示数逐渐减小到零;把开关S 接2,电容器放电,电流从左向右流过微安表,则微安表指针迅速向左偏转后示数逐渐减小.(2)由题意可知电压表应选用0~3 V 量程,由图2可知此时分度值为0.1 V ,需要估读到0.01 V ,则读数为0.50 V .当微安表示数稳定时,电容器中不再有电流通过,此时干电池、电阻箱、微安表和电压表构成回路,根据闭合电路欧姆定律有R +R V =E I = 1.5160×10-6 Ω=9.375 kΩ 根据串联电路规律有R R V =U R U V =1.5-0.50.5=2 联立可得R V≈3.1 kΩ5.[2021·广东卷]某小组研究热敏电阻阻值随温度的变化规律.根据实验需要已选用了规格和量程合适的器材.(1)先用多用电表预判热敏电阻阻值随温度的变化趋势.选择适当倍率的欧姆挡,将两表笔________,调节欧姆调零旋钮,使指针指向右边“0 Ω”处.测量时观察到热敏电阻温度越高,相同倍率下多用电表指针向右偏转角度越大,由此可判断热敏电阻阻值随温度的升高而________.(2)再按下图连接好电路进行测量.①闭合开关S前,将滑动变阻器R1的滑片滑到________端(填“a”或“b”).将温控室的温度设置为T,电阻箱R0调为某一阻值R01.闭合开关S,调节滑动变阻器R1,使电压表和电流表的指针偏转到某一位置.记录此时电压表和电流表的示数、T和R01.断开开关S.再将电压表与热敏电阻C端间的导线改接到D端,闭合开关S.反复调节R0和R1,使电压表和电流表的示数与上述记录的示数相同.记录此时电阻箱的阻值R02.断开开关S.②实验中记录的阻值R01________R02(填“大于”“小于”或“等于”),此时热敏电阻阻值R T=________.(3)改变温控室的温度,测量不同温度时的热敏电阻阻值,可以得到热敏电阻阻值随温度的变化规律.答案:(1)短接减小(2)①b②大于R01-R02解析:(1)使用多用电表的欧姆挡前应先欧姆调零,即将两表笔短接.温度越高,相同倍率下多用电表的指针向右偏转的角度越大,则电阻阻值越小,故热敏电阻的阻值随温度的升高而减小.(2)①闭合开关前,为了保护电路,应该将滑动变阻器的滑片移到b端.②将电压表与热敏电阻C端间的导线改接到D,调节滑动变阻器和电阻箱,使电压表和电流表的示数与改接前一致,则R01=R02+R T,所以R01>R02,R T=R01-R02.。
大学物理电磁感应练习题
9、选择题第四章恒定电流的磁场1 、均匀磁场的磁感应强度B 垂直于半径为R 的圆面,今以圆周为边线,作一半球面S,则通过S 面的磁通量的大小为()2 A、2 R B2B、R BC、0D、无法确定2、答案: B 有一个圆形回路,及一个正方形回路,圆直径和正方形的边长相等,二者载有大小相等的电流,它们各自中心产生的磁感强度的大小之比B1/B2 为()A 、0.90B、1.00C、1.11D、1.22答案:C3、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S,S 边线所在平面的法线方向单位矢量n与B 的夹角为,则通过半4、5、6、7、8、A、球面S 的磁通量为()A、r2B22B、2 r BC、r 2BsinD、r 2Bcos答案:D四条皆垂直于纸面的载流细长直导线,每条中的电流强度皆为如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示,则在图中正方形中心点O 的磁感应强度的大小为()I,这四条线被纸面截得的断面,A、B 2U0 IB、B2U0I2a C、B=0 D 、B U0 I a答案:C边长为L 的一个导体方框上通有电流2A 、与L 无关B、正比于L2I ,则此框中心的磁感应强度(C、与L 成正比D、与L 成反比)E、与I2有关如图所示,电流从a点分两路通过对称的圆环形分路,汇合于 b 点,若ca,bd都沿环的径向,则在环形分路的环心处的磁感应强度() A 、方向垂直环形分路所在平面且指向纸内B、方向垂直环形分路所在平面且指向纸外C、方向在环形分路所在平面内,且指向b在一平面内,有两条垂直交叉但相互绝缘的导线,其方向如图所示,问哪些区域中某些点的磁感应强度A 、仅在象限ⅠD、零答案:I 的大小相等, B 可能为零?()流过每条导线的电流、仅在象限ⅡC、仅在象限Ⅰ、Ⅳ在真空中有一根半径为0I 0I、仅在象限Ⅱ答案:R 的半圆形细导线,流过的电流为I ,则圆心处的磁感应强度为()4RB、2RC、0 D、0I4R电流由长直导线 1 沿半径径向 a 点流入电阻均匀分布的圆环,再由 b 点沿切向从圆流出,经长导线 2 返回电源,(如图),已知直导线上电流强度为I,圆环的半径为R,且a,b 与圆心O 三点在同一直线上,设直线电流1、2 及圆环电流分别在O点产生的磁感应强度为B1,B2及B3。
大学物理第8章《恒定电流的磁场》复习思考题
第8章《恒定电流的磁场》复习思考题一 填空题:1. 一根长直载流导线,通过的电流为2A ,在距离其2mm 处的磁感应强度为 。
(70104-⨯=πμTm/A )答:4102-⨯T2. 一根直载流导线,导线长度为100mm ,通过的电流为5A ,在与导线垂直、距离其中点的50mm 处的磁感应强度为 。
(70104-⨯=πμTm/A ) 答:5102-⨯T3. 一根载流圆弧导线,半径1m ,弧所对圆心角6π,通过的电流为10A ,在圆心处的磁感应强度为 。
(70104-⨯=πμTm/A ) 答:6106-⨯πT4. 两平行载流导线,导线上的电流为I ,方向相反,两导线之间的距离a ,则在与两导线同平面且与两导线距离相等的点上的磁感应强度大小为 。
答:aI πμ02 5. 两平行载流导线,导线上的电流为I ,方向相反,两导线之间的距离a ,则在与两导线同平面且与其中一导线距离为b 的、两导线之间的点上的磁感应强度大小为 。
答:)(2200b a I b I -+πμπμ 6.在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感应强度大小为 。
答案:R I40μ7. 一磁场的磁感应强度为k c j b i a B ++=,则通过一半径为R ,开口向Z 方向的半球壳,表面的磁通量大小为 Wb答案:c R 2π8. 一根很长的圆形螺线管,沿圆周方向的面电流密度为i ,在线圈内部的磁感应强度为 。
答案:i 0μ8. 半径为R 的闭合球面包围一个条形磁铁的一端,此条形磁铁端部的磁感应强度B ,则通过此球面的磁通量 。
答案:09. 一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,以匀角速度ω绕轴转动,在圆筒内的磁感应强度大小为 。
答案: σωμR 010. 一根很长的螺线管,总电阻20欧姆,两端连接在12V 的电源上,线圈半径2cm ,线圈匝数200匝/厘米,在线圈内部距离轴线0.01m 处的磁场强度为 。
第11 章 恒定电流的磁场
第11章 恒定电流的磁场习 题6.1 一条很长的直输电线,载有100A 的电流,在离它0.5m 远的地方,它产生的磁感强度B 有多大?6.2四条平行的载流无限长直导线,垂直地通过一边长为a 的正方形顶点,每根导线中的电流都是I ,方向如附图所示。
(1)求正方形中心的磁感应强度B ; (2)当a =20cm ,I =20A 时,B =?6.3 求图中P 点的磁感应强度B 的大小和方向。
6.4 高压输电线在地面上空25m 处,通过电流为1.8×103A ,求: (1)在地面上由这电流所产生的磁感应强度多大?(2)在上述地区,地磁场为0.6×10-4T,问输电线产生的磁场与地磁场相比如何?6.5 在闪电中电流可高达2×104A ,问距闪电电流1.0m 处的磁感应强度多大?把闪电电流视作长直电流。
6.6 一个塑料圆盘,半径为R ,表面均匀分布电量q 。
试证明:当它绕通过盘心而垂直于盘面的轴以角速度ω转动时,(1)盘心处的磁感应强度为:B =R qπωµ20;(2)圆盘的磁矩为:241R q P m ω=6.7 10A 的电流均匀地流过一根长直铜导线。
在导线内部作一平面S ,一边为轴线,另一边在导线外壁上,长度为1m ,如题6.7图所示。
试计算通过此平面的磁通量(铜材料本身对磁场分布无影响)。
6.8 氢原子处在正常状态(基态)时,它的电子可看作是在半径为a =0.53×10-8cm 的轨道(叫做玻尔轨道)上做匀速圆周运动,速率为v =2.2×108cm/s ,已知电子电荷的大小为e =1.6×10-19C ,求电子的这种运动在轨道中心产生的磁感强度B 的值。
6.9 边长为a 的正方形的两个角上固定有两个电量皆为q (q >0)的点电荷,以该正方形不带电荷的一边为轴,使正方形以角速度ω快速旋转,试求与作为轴的正方形边的中点O 相距x 处的平均磁感应强度,并说明轴线上O 处附近磁场分布的特点。
《大学物理AⅠ》恒定磁场习题、答案及解法 天津理工大学(推荐文档)
《大学物理A Ⅰ》恒定磁场习题、答案及解法一.选择题。
1.边长为a 的一个导体边框上通有电流I ,则此边框中心的磁感应强度【C 】 (A )正比于2a ; (B )与a 成正比; (C )与a 成反比 ; (D )与2I 有关。
参考答案:()210cos cos 4ββπμ-=a I B aIa I B πμπππμ00243c o s 4c o s 44=⎪⎭⎫ ⎝⎛-⨯=2.一弯成直角的载流导线在同一平面内,形状如图1所示,O 到两边无限长导线的距离均为a ,则O 点磁感线强度的大小【B 】(A) 0 (B)aIπ2u )221(0+(C )a I u π20 (D )aIu o π42参考答案:()210cos cos 4ββπμ-=aIB ⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=2212cos 4cos 443cos 0cos 400021a I a I a I B B B πμπππμππμ3.在磁感应强度为B的均匀磁场中,沿半径为R 的圆周做一如图2所示的任意曲面S ,则通过曲面S 的磁通量为(已知圆面的法线n与B 成α角)【D 】(A )B 2r π (B )θπcos r 2B (C )θπsin r -2B (D )θπcos r 2B -参考答案:⎰-=∙=ΦSM B r S d B απcos 2IIaaO4.两根长直导线通有电流I ,如图3所示,有3个回路,则【D 】(A )IB 0a l d μ-=∙⎰(B)I B 0b2l d μ=∙⎰(C) 0l d =∙⎰ c B (D) IB C 02l d μ=∙⎰参考答案: ⎰∑==∙Ln i i I l d B 10μ5.在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的条数不同,但电流的代数和相同,则由安培环路定理可知【B 】(A)B沿闭合回路的线积分相同,回路上各点的磁场分布相同(B)B沿闭合回路的线积分相同,回路上各点的磁场分布不同 (C)B沿闭合回路的线积分相同,回路上各点的磁场分布相同 (D)B沿闭合回路的线积分不同,回路上各点的磁场分布不同参考答案:6.恒定磁场中有一载流圆线圈,若线圈的半径增大一倍,且其中电流减小为原来的一半,磁场强度变为原来的2倍,则该线圈所受的最大磁力矩与原来线圈的最大磁力矩之比为【 C 】(A)1:1 (B)2:1 (C)4:1 (D)8:1参考答案: S I m = B m M ⨯= ()()142420000000000m a x m a x =⎪⎭⎫⎝⎛==B S I B S I B S I I S B M M7.质量为m 的电子以速度v垂直射入磁感应强度大小为B 的均匀磁场中,则该电子的轨道磁矩为【A 】(A)B mv 22 (B)B v m π222 (C)π222v m (A)Bm ππ22IIb cc a参考答案: R v m e v B 2= eBmv R = R ev R v e I ππ22==Bmv eB mv ev R ev R R ev IS m 222222=====ππ 8.下列对稳定磁场的描述正确的是【B 】(A) 由I B L∑=∙⎰0l d μ可知稳定磁场是个无源场(B )由0S d =∙⎰LB 可知磁场为无源场 (C )由I B L ∑=∙⎰0l d μ可知稳定磁场是有源场 (D )由0S d =∙⎰L B 可知稳定磁场为有源场参考答案: ⎰=∙SS d B 0磁场是一个无源场⎰∑==∙Ln i i I l d H 1磁场是一个有旋场9.一运动电荷Q ,质量为m ,垂直进入一匀强磁场中,则【C 】 (A )其动能改变,动量不变; (B )其动能和动量都改变; (C )其动能不变,动量改变; (D )其动能、动量都不变.参考答案:洛沦兹力提供向心力,该力不做功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 选择题[ B ]1. 一个动量为p 的电子,沿图示方向入射并能穿过一个宽度为D 、磁感强度为B (方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A) p eBD 1cos-=α. (B) peBD 1sin -=α.(C) epBD 1sin-=α. (D) ep BD 1cos -=α.[ D ]2. A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则 (A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 1=. (D) R A ∶R B =2,T A ∶T B =1.[ C ]3. 三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是: (A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4. 提示:[ B ]4.如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.提示:,B p M m⨯=F 1F 2F 31 A2 A3 A ⅠⅡⅢI 1I 2[ D ]5. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A)Rr I I 22210πμ. (B)Rr I I 22210μ.(C)rR I I 22210πμ. (D) 0.提示:二. 填空题1. 如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy 平面内,圆心为O .一带正电荷为q 的粒子,以速度v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为___0____,作用在带电粒子上的力为____0___.提示:,回路受力也为零。
根据作用力与反作用力带电粒子受力,0=⨯=B v q F2. 有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体?提示:力的方向判断。
根据载流子所受洛伦兹3. 磁场中某点处的磁感强度为)SI (20.040.0j i B-=,一电子以速度j i 66100.11050.0⨯+⨯=v (SI)通过该点,则作用于该电子上的磁场力F 为__)(10814N k -⨯__.(基本电荷e =1.6×10-19C)提示:)(10814N k B v e F -⨯=⨯-=4. 如图,一个均匀磁场B 只存在于垂直于图面的P 平面右侧,B的方向垂直于图面向里.一质量为m 、电荷为q 的粒子以速度v 射入磁场.v在图面内与界面P 成某一角度.那么粒子在从磁场中射出前是做半径为___qBm v___的圆周运动.如果q > 0时,粒子在磁场中的路径与边界围成的平面区域的面积O r R I 1 I 2是__n____型,__p____型P B为S ,那么q < 0时,其路径与边界围成的平面区域的面积是___S qB mv -⎪⎪⎭⎫ ⎝⎛2π____.5. 如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____RIB 2__,方向___沿y 轴正向(设 电流从a 流向b )____。
B提示:6.电子质量m ,电荷e ,以速度v 飞入磁感强度为B 的匀强磁场中,v与B的夹角为θ ,电子作螺旋运动,螺旋线的螺距h =__)/(cos 2eB mv θπ_,半径R =__)/(sin eB mv θ___.三. 计算题1. 如图所示线框,铜线横截面积S =2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B的方向竖直向上.已知铜的密度ρ = 8.9×103kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:线圈的电流如图所示,才能保持平衡。
此时,对oo ’的合力矩为零。
重力矩:αααsin sin 2sin 2mga amg a mgM mg ++=, 其中m 为一条边的质量:as m ρ=磁力矩:αcos Fa M =磁,其中IBa F = 平衡时:磁M M m g =得:)(103.92B 3T Igstg -⨯==αρ2.一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向. 解:将电流元Idl 处的B分解为平行线圈平面的B 1和垂直平面的B 2两分量:020160cos ,60sin B B B B ==(1)电流元受B 1的作用力:,60sin 90sin 0011dl IB IdlB dF == 方向平行圆环轴线。
因为线圈上每一电流元受力方向相同,所以合力为:⎰⎰=⋅===。
方向指向线圈平面中心),(34.0260sin 60sin 02011N R IB dl IB dF F Rππ (2)电流元受B 2的作用力:方向垂直环面向上。
,60cos 90sin 0022dl IB IdlB dF == 由于对称性,⎰==022F d F(3)所以,圆环所受合力:方向垂直环面向上。
),(34.01N F F ==3. 在一回旋加速器中的氘核,当它刚从盒中射出时,其运动半径是R=32.0cm ,加在D 盒上的交变电压的频率是γ=10MHz 。
试求:(1)磁感应强度的大小;(2)氘核射出时的能量和速率(已知氘核质量m=3.35×10-27kg)解:(1))(3.1106.1101035.322,2119727T q m B mqBT =⨯⨯⨯⨯====--πγππγ (2))(107.621),/(1001.2221327J mv E s m R TRv -⨯==⨯===γππ4.在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )解:m e Lp mvRv m R L evR R vR e S T e S I p m m2,222=∴=⨯==⨯===ππ的方向相反。
的方向与成右手螺旋关系,的方向与电子绕行方向L p L m5.一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功. 解:34ln2223ln 2-22ln 2-2B ),(2101032102102101101122πμπμπμπμπμπμa I I A a I r dra I a I r dr a I adrrIS d I A aam aam m m m =∴==Φ==Φ∴=⋅=ΦΦ-Φ=⎰⎰⎰⎰⎰⎰选做题1. 两个电子以相同的速度v平行同向飞行,求两个电子相距r 时,其间相互作用的洛仑兹力的大小f B 和库仑力的大小f e 之比。
解:洛伦兹力22202022214,4,r v e f r ev B evB B v e f B B πμπμ=∴==⨯-=库仑力22041re f e πε= 200v f f eBμε=∴2.如图所示,两根相互绝缘的无限直导线1和2绞接于O 点,两导线间夹角为Q ,通有相同的电流I ,试求单位长度导线所受磁力对O 点的力矩。
解:如图,在导线1上距离o 点l 处取电流元l Id,导线2在该处产生的磁场:Ql Ir I B sin 22002πμπμ==,方向垂直纸面朝外;方向如图。
其大小所受安培力为:,sin 2,202Ql dl I IdlB dF B l Id F d l Id πμ==⨯=∴II 2方向垂直纸面朝内。
其大小为点的力矩为:对,sin 2,o 20Qdl I l dF dM F d l M d F d πμ=⋅=⨯= 因为导线1上每一电流元所受力矩方向相同,所以单位长度导线所所受合力矩为:⎰+==120,sin 2L LQI dM M 方向垂直纸面朝内。
πμ。