北师大版九年级上册数学第四章视图与投影练习题及答案全套

合集下载

北师大版九年级上册数学 5.1投影 同步习题(含解析)

北师大版九年级上册数学 5.1投影 同步习题(含解析)

5.1投影同步习题一.选择题1.下列哪种影子不是中心投影()A.阳光下林荫道上的树影B.晚上在墙上的手影C.舞厅中霓虹灯形成的影子D.皮影戏中的影子2.矩形木框在阳光照射下,在地面上的影子不可能是()A.B.C.D.3.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米4.如图所示,夜晚路灯下同样高的旗杆,离路灯越近,它的影子()A.越长B.越短C.一样长D.无法确定5.在同一时刻,两根长度不等的木杆置于阳光下,但它们的影长相等,则它们的相对位置是()A.两根都垂直于地面B.两根都平行斜插在地面上C.两根木杆不平行D.一根倒在地上6.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午12时B.上午10时C.上午9时30分D.上午8时7.灯光下的两根小木棒A和B,它们竖立放置时的影子长分别为l A和l B,若l A>l B.则它们的高度为h A和h B满足()A.h A>h B B.h A<h B C.h A≥h B D.不能确定8.如图所示“属于物体在太阳光下形成的影子”的图形是()A.B.C.D.9.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是()A.(3)(1)(4)(2)B.(3)(2)(1)(4)C.(3)(4)(1)(2)D.(2)(4)(1)(3)10.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是()A.A⇒B⇒C⇒D B.D⇒B⇒C⇒A C.C⇒D⇒A⇒B D.A⇒C⇒B⇒D 二.填空题11.投影线垂直于投影面产生的投影叫做.12.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.13.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=.14.投影可分为和;一个立体图形,共有种视图.15.如图,在A时测得某树的影长为4米,B时又测得该树的影长为9米,若两次日照的光线互相垂直,则树的高度为米.三.解答题16.画图说明,当阳光倾斜地照射到地面时,如何放置一张矩形纸片,才能使其在地面上的影子面积最大?17.下面两幅图中,哪一幅是太阳光下树的投影?哪一幅是路灯下树的投影?参考答案1.解:∵晚上在房间内墙上的手影、舞厅中霓红灯形成的影子、皮影戏中的影子,它们的光源都是灯光,故它们都是中心投影,太阳光下林荫道上的树影的光源是太阳光,这是平行投影,故选项A符合题意,故选:A.2.解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故C不可能,即不会是梯形.故选:C.3.解:设旗杆的高为x,有,可得x=4.8米.故选:B.4.解:由图易得AB<CD,那么离路灯越近,它的影子越短,故选:B.5.解:在同一时刻,两根竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的顶部到地面的垂直距离相等;而竿子长度不等,故两根竿子不平行.故选:C.6.解:根据从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选:D.7.解:∵两根小木棒距离点光源的位置不同,∴影长的大小不能确定物体的高低.8.解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B、D的影子方向相反,都错误;C中物体的物高和影长不成比例,也错误.故选:A.9.解:西为(3),西北为(4),东北为(1),东为(2),∴将它们按时间先后顺序排列为(3)(4)(1)(2).故选:C.10.解:根据平行投影的特点和规律可知,C,D是上午,A,B是下午,根据影子的长度可知先后为C→D→A→B.故选:C.11.解:投影线垂直于投影面产生的投影叫做正投影.故答案为:正投影.12.解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.13.解:如图:根据题意得:BG=AF=AE=1.6m,AB=1m∵BG∥AF∥CD∴△EAF∽△ECD,△ABG∽△ACD∴AE:EC=AF:CD,AB:AC=BG:CD设BC=xm,CD=ym,则CE=(x+2.6)m,AC=(x+1)m,则即=,解得:x=,把x=代入=,解得:y=,∴CD=m.故答案为:m.14.解:投影可分为平行投影和中心投影;一个立体图形,共有三种视图,故答案为:平行投影,中心投影,三.15.解:根据题意,作△EFC;树高为CD,且∠ECF=90°,ED=4,FD=9;易得:Rt△EDC∽Rt△FDC,∴=;即DC2=ED•FD,代入数据可得DC2=36,DC=6;故答案为6.16.解:如图,当阳光倾斜地照射到地面时,矩形纸片与太阳光线垂直时,才能使其在地面上的影子面积最大.17.解:因为路灯的投影是中心投影,太阳光下的投影是平行投影;所以第(1)幅是路灯灯光形成的影子,第(2)幅是太阳光形成的影子;。

初中数学北师大版九年级上册第五章投影与视图练习题

初中数学北师大版九年级上册第五章投影与视图练习题

初中数学北师大版九年级上册第四章投影与视图练习题一、选择题1.如图,路灯灯柱OP的长为8米,身高米的小明从距离灯的底部点米的点A处,沿AO所在的直线行走14米到达点B处,人影的长度A. 变长了米B. 变短了米C. 变长了米D. 变短了米2.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是A. B.C. D.3.如图,在直角坐标系中,点是一个光源.木杆AB两端的坐标分别为,则木杆AB在x轴上的投影长为A. 3B. 5C. 6D. 74.在相同时刻的物高与影长成比例,如果高为m的测杆的影长为m,那么影长为30m的旗杆的高是A. 20mB. 16mC. 18mD. 15m5.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是A. B.C. D.6.在相同时刻的物高与影长成比例,如果高为的测杆的影长为3m,那么影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m7.相同时刻太阳光下,若高为的测杆的影长为3m,则影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m8.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿,它的影子,木竿PQ的影子有一部分落在了墙上,它的影子,,木竿PQ的长度为A. 3mB.C.D.9.如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是A. B.C. D.10.如图,该几何体的俯视图是A. B. C. D.11.如图所示,该几何体的俯视图是A. B. C. D.12.如图所示的几何体的主视图为A. B. C. D.13.观察如图所示的三种视图,与之对应的物体是A.B.C.D.14.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为A. 3,B. 2,C. 3,2D. 2,315.下列四个几何体中,主视图与俯视图不同的共有.A. 1个B. 2个C. 3个D. 4个二、填空题16.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为______17.如图,AB和DE是直立在地面上的两根立柱,米,某一时刻AB在阳光下的投影米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_________.18.一个长方体的主视图和左视图如图所示单位:,则这个长方体的体积是______.19.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要_________个立方块.20.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是______.三、解答题21.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.22.如图,灯杆AB与墙MN的距离为18米,小丽在离灯杆底部米的D处测得其影长DF为3m,设小丽身高为.求灯杆AB的高度;小丽再向墙走7米,她的影子能否完全落在地面上?若能,求此时的影长;若不能,求落在墙上的影长.23.一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC 方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得,已知标杆直立时的高为,求路灯的高CD的长.24.一个几何体从三个方向看到的图形如图所示单位:.写出这个几何体的名称:_____;若其从上面看为正方形,根据图中数据计算这个几何体的表面积.答案和解析1.【答案】D【解析】【分析】此题考查中心投影及相似三角形的应用,应注意题中三角形的变化.小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x米,B处时影长为y米.则米,米,,,∽,∽,,,则,;,,,故变短了米.故选D.2.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.【答案】C【解析】【分析】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大即位似变换的关系.利用中心投影,延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,证明∽,然后利用相似比可求出的长.【解答】解:延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,,,.,,,,∽,,即,,故选C.4.【答案】C【解析】【分析】本题考查的是中心投影,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比列式计算即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为,,解得.故选C.5.【答案】B【解析】【分析】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:当等边三角形木框与阳光平行时,投影是A;当等边三角形木框与阳光垂直时,投影是C;当等边三角形木框与阳光有一定角度时,投影是D;投影不可能是B.故选B.6.【答案】A【解析】【分析】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为3m,,.故选A.7.【答案】A【解析】【分析】此题考查了物高与影长的关系,解题的关键是将实际问题转化为数学问题,根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.【解答】解:,,解得:旗杆的高度米.故选A.8.【答案】B【解析】【分析】此题主要考查了平行投影以及相似三角形的应用有关知识,直接利用同一时刻物体影子与实际高度成比例,进而得出答案.【解答】解:连接AC,过点M作,同一时刻物体影子与实际高度成比例,,解得:,,故选B.9.【答案】B【解析】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.根据从正面看是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【答案】A【解析】解:从几何体的上面看可得,故选:A.找到从几何体的上面所看到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.【答案】D【解析】解:从上边看是三个矩形,故选:D.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.【答案】D【解析】解:从几何体的正面看,是一个矩形,矩形的中间有一条纵向的实线.故选:D.利用主视图的定义,即从几何体的正面观察得出视图即可.此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.13.【答案】D【解析】【分析】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大,首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.【解答】解:结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰选项ABC,选D.故选:D.14.【答案】C【解析】【分析】本题考查简单几何体的三视图,由俯视图和主视图知道棱柱顶的正方形对角线长是,根据勾股定理列出方程求解.【解答】解:设底面边长为x,则,解得,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2 ,故选C.15.【答案】B【解析】【分析】本题考查了几何体的三种视图,掌握定义及各几何体的特点是关键.主视图是从正面看到的图形,俯视图是从物体的上面看到的图形,可根据各几何体的特点进行判断即可.【解答】解:圆柱的主视图是矩形,俯视图是圆,它的主视图与俯视图不同;圆锥的主视图是等腰三角形,俯视图是圆,它的主视图与俯视图不同;球体的三视图均为圆,故它的主视图和俯视图相同;正方体的三视图均为正方形,故它的主视图和俯视图也相同;所以主视图与俯视图不同的是圆柱和圆锥,故选B.16.【答案】24【解析】解:设这栋建筑物的高度为xm,由题意得,,解得,即这栋建筑物的高度为24m.故答案为:24.根据同时同地的物高与影长成正比列式计算即可得解.本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.17.【答案】10米【解析】【分析】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.根据平行的性质可知∽,利用相似三角形对应边成比例即可求出DE的长.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,由题意得,∽,,,,,,米.故答案为10米.18.【答案】24【解析】解:由主视图可知,这个长方体的长和高分别为3和4,由左视图可知,这个长方体的宽和高分别为2和4,因此这个长方体的长、宽、高分别为3、2、4,因此这个长方体的体积为.故答案为:24.由所给的视图判断出长方体的长、宽、高,根据体积公式计算即可.本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.19.【答案】10,14【解析】【分析】本题主要考查了三视图判断几何体,要分成最多,最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”算出个数.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”解答即可.【解答】解:根据主视图和俯视图可知,正方体的分布的情况如下图所示:最多的正方体需要14个;正方体的分布最少的情况如下图所示:最少需要10个.故答案为10,14.20.【答案】7【解析】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.考查简单几何体的三视图的画法,画三视图时还要注意“长对正、宽相等、高平齐”.21.【答案】解:如图所示:【解析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,1;从上面看有3行,每行小正方形数目分别为2,2,2,依此画出图形即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.【答案】解:,,∽,,.灯杆AB的高度为米.将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,如图所示.,,∽,,即,.同理,可得出∽,,即,.小丽的影子不能完全落在地面上,小丽落在墙上的影长为1米.【解析】由、可得出∽,根据相似三角形的性质可求出AB的长度,此题得解;将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,由、可得出∽,根据相似三角形的性质可求出的长度,同理可得出∽,再利用相似三角形的性质可求出PN的长度,此题得解.本题考查了相似三角形的应用以及中心投影,解题的关键是:由∽利用相似三角形的性质求出AB的长度;由∽利用相似三角形的性质求出PN的长度.23.【答案】解:设CD长为x米,,,,,,米,∽,,即,解得:.经检验,是原方程的解,路灯高CD为米.【解析】根据,,,得到,从而得到∽,利用相似三角形对应边的比相等列出比例式求解即可.本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.24.【答案】解:长方体;由三视图知,几何体是一个长方体,长方体的底面是边长为3的正方形,高是4,则这个几何体的表面积是答:这个几何体的表面积是.【解析】【分析】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.由2个视图是长方形,那么这个几何体为棱柱,另一个视图是正方形,那么可得该几何体是长方体;由三视图知,长方体的底面是边长为3的正方形,高是4,根据长方体表面积公式列式计算即可.【解答】解:根据三视图可得这个几何体是长方体.故答案为长方体;见答案.。

中考数学考点大串讲(北师大版):专题05 投影与视图(基础30题2种题型)(解析版)

中考数学考点大串讲(北师大版):专题05 投影与视图(基础30题2种题型)(解析版)

专题05投影与视图(基础30题2种题型)一、投影1.(2023秋·陕西西安·九年级高新一中校考阶段练习)正方形纸板在太阳光下的投影不可能是()A.平行四边形B.一条线段C.矩形D.梯形【答案】D【分析】根据平行投影的性质,进行判断即可.【详解】解:一张正方形纸板在太阳光线的照射下,形成影子不可能是梯形,故选:D.【点睛】本题考查平行投影.熟练掌握平行投影的性质,是解题的关键.2.(2023秋·七年级课时练习)下图中各投影是平行投影的是()A.B.C.D.【答案】C【分析】根据平行投影定义即可判断.【详解】解:只有C中的投影线是平行的,且影子长度与原物体长度比一致.故选:C.【点睛】本题考查了平行投影的知识,牢记平行投影的定义是解题的关键.3.(2023秋·七年级课时练习)中心投影的光线是()A.平行的B.从一点发出的C.不平行的D.向四面发散的【答案】B【分析】根据中心投影的定义即可解答.【详解】解:中心投影的光线是从一点发出的,故选:B.【点睛】本题主要考查了中心投影的定义,解题的关键是掌握中心投影的光线是从一点发出的.4.(2023秋·全国·九年级专题练习)正午时我们在太阳下的影子长度比下午时我们在太阳底下的影子的长度要.(长,短)【答案】短【分析】根据太阳光不同时刻照射时的角度,以及平行投影的性质判断即可.【详解】解:太阳光可理解为平行光线,正午时刻太阳光照射的角度更大,因此我们于地面形成的影子更短,而下午的时候,照射时的角度变小,在地面形成的影子就更长.故答案为:短.【点睛】本题考查投影,注意理解太阳光是平行光线,并且理解入射角度越大,形成的投影越短,角度越小,形成的投影越长.5.(2022秋·九年级单元测试)某学校操场上立着高度不同的甲、乙两种篮球架,那么在某一时刻的太阳光的照射下,甲种篮球架的高度与其影长的比(填“大于”“小于”或“等于”)乙种篮球架的高度与其影长的比.【答案】等于【分析】根据平行投影的性质进行求解即可.【详解】解:由平行投影的性质可知,在同一时刻物高和影长成正比,即在同一时刻的物高于影长的比值一定,∴甲种篮球架的高度与其影长的比等于乙种篮球架的高度与其影长的比,故答案为:等于.【点睛】本题主要考查了平行投影,熟知平行投影的性质是解题的关键.6.(2023秋·全国·九年级专题练习)由阳光形成的影子是投影,由灯光形成的影子是投影(选题“平行”或“中心”)【答案】平行中心【分析】由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线所形成的投影是中心投影.【详解】由阳光形成的影子是平行投影,由灯光形成的影子是中心投影,故答案为:平行;中心【点睛】本题考查了中心投影和平行投影的概念,熟记概念是解题关键.7.(2023秋·九年级单元测试)把下列物体与它们的投影连接起来.【答案】见解析【分析】根据投影的定义解答即可.【详解】解:如图:【点睛】本题主要考查了投影,理解投影的定义成为解答本题的关键.8.(2022秋·陕西西安·九年级统考期末)如图,在路灯O(O为灯泡的位置)的同侧有两根高度相同的木棒AB与CD,请分别画出这两根木棒的影子.【答案】作图见解析【分析】根据中心投影的定义:由同一点(点光源)发出的光线形成的投影叫做中心投影,物体在灯光的照射下形成的影子就是中心投影,结合光沿直线传播,根据光源和木棒的高度作图即可得到答案.【详解】解:作图如下:影子BE与DF即为所求.【点睛】本题考查中心投影的特点与应用,解决本题的关键是根据光源和两根木棒的物高得影子长.9.(2022秋·陕西咸阳·九年级校考阶段练习)如图,小明和小丽分别站在路灯OA的两侧点B和点C的位置,已知BD为小明在路灯下的影子,请你画出小丽在路灯下的影子CE.【答案】图见解析【分析】作射线OF交直线BA于E,则线段CE即为所求作.【详解】解:如图,CE即为小丽在路灯下的影子.【点睛】本题考查作图-应用与设计作图,中心投影等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、视图10.(2022·安徽合肥·校考三模)下图是由6个相同的小正方体搭成的几何体,其左视图为()A.B.C.D.【答案】A【分析】根据三视图可进行求解.【详解】解:由图可知该几何体的左视图为;故选A.【点睛】本题主要考查三视图,解题的关键是熟知几何体的特征.11.(2023·浙江湖州·统考中考真题)已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.【答案】D【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.【详解】解:∵主视图和左视图是矩形,∴几何体是柱体,∵俯视图是圆,∴该几何体是圆柱,故D正确.故选:D.【点睛】本题主要考查了由三视图确定几何体的形状,主要考查学生空间想象能力.12.(2022秋·陕西·九年级校考期中)下图是一个拱形积木玩具,其主视图是()A.B.C.D.【答案】C【分析】根据从前面看到的图形是主视图,即可求解.【详解】解:根据题意得,其主视图是:故选C.【点睛】本题主要考查了简单几何体的三视图,掌握从前面看到的图形是主视图是解题的关键.13.(2022秋·广东深圳·九年级深圳市福田区石厦学校校考阶段练习)沿正方体相邻的三条棱的中点截掉一个角,得到如图所示的几何体,则它的左视图是()A.B.C.D.【答案】C【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,是一个正方形,正方形的右上角有一条虚线.故选:C.【点睛】本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.14.(2022·福建泉州·校考模拟预测)如图为某零件支架放置在水平面上,其中支架的两个台阶的高度和宽度相等,则其俯视图是()A.B.C.D.【答案】D【分析】根据从上面看得到的图形是俯视图,可得答案.【详解】解:从上面看,是一行两个相邻的矩形.故选:D.【点睛】本题考查了简单组合体的三视图,明确从上面看得到的图形是俯视图是解题的关键.15.(2021秋·黑龙江哈尔滨·九年级校考期中)如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A.B.C.D.【答案】B【分析】从左边看几何体,所看到的是左视图,按左视图的定义进行判断即可.【详解】解:如图,左视图为故选:B.【点睛】本题考查了三视图的定义,理解定义会看出几何体的三视图是解题的关键.16.(2023·海南儋州·海南华侨中学校联考模拟预测)如图是由5个相同的小正方体搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】B【分析】根据主视图的意义,从正面看该组合体所得到的图形即可.【详解】主视图为从正面看到的图形,从正面看,第一列有1个小正方形,第二列有2个小正方形,第三列有1个小正方形,故选:B.【点睛】此题考查了简单组合体的三视图-主视图,掌握主视图的含义是解题关键.17.(2022秋·甘肃平凉·七年级统考期末)如图,是某立体图形的三视图,则该立体图形是.【答案】圆锥【分析】由正视图和左视图确定是锥体,再由俯视图确定具体形状.【详解】解:根据正视图和左视图为三角形判断出是锥体,根据俯视图是圆可判断出这个几何体应该是圆锥.故答案为:圆锥.【点睛】本题考查由三视图判断几何体,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.熟练掌握简单几何体的三视图是解题的关键.18.(2023秋·江苏徐州·七年级校考阶段练习)写出一个三视图中主视图、左视图、俯视图完全相同的几何体名称:【答案】球(答案不唯一)【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形解答即可.【详解】解:∵球体的主视图、左视图、俯视图都是圆形,∴这个几何体可以是球体.故答案为:球(答案不唯一).【点睛】本题考查了几何体的三视图,从前面看到的图形是主视图,从上面看到的图形是俯视图,从左边看到的图形是左视图.19.(2023秋·七年级课时练习)若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有桶.【答案】6【分析】根据三视图的知识,底层应有4桶方便面,第二层应有2桶,第三层有1桶.【详解】解:综合三视图,这堆方便面底层应该有314桶,第二层应该有2桶,因此共有426桶.故答案为:6.【点睛】本题考查由三视图判断几何体,能够综合三视图进行判断是解题的关键.20.(2022秋·广东茂名·七年级校考期中)从正面、左面、上面看一个几何体,看到形状图完全相同的几何体是(写两个几何体名称)【答案】正方体、球体【分析】根据简单几何体的三视图可得答案.【详解】解:从正面、左面、上面看一个几何体,看到形状图完全相同的几何体是:正方体、球体.【点睛】本题考查的是简单几何体的三视图,掌握柱体,球体,锥体的三视图是解本题的关键.21.(2023秋·全国·九年级专题练习)某圆柱体的实物图和它的主视图如图所示.若6,4AB BC ,则该圆柱体的侧面积等于.【答案】24【分析】首先求出圆柱底面圆的半径,然后利用圆柱的侧面积公式求解即可.【详解】∵4BC ,∴圆柱底面圆的半径为2,∴该圆柱体的侧面积等于22624 .故答案为:24 .【点睛】此题考查了圆柱的侧面积,解题的关键是熟练掌握圆柱的侧面积公式.22.(2023春·九年级单元测试)下图是某个几何体的三视图,则该几何体的名称是.【答案】三棱柱【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形可得该几何体是柱体,再根据俯视图是三角形可得该几何体是三棱柱.故答案为:三棱柱.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.掌握三视图的相关概念是解题的关键.23.(2023秋·黑龙江大庆·九年级校联考期中)如图所示是由一些相同的小立方体搭成的几何体从正面、左面和上面看到的图形,则所搭这个几何体的小方体有个.【答案】5【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:从主视图和俯视图看第一列2个小立方体,第二列2个小立方体,第三列1个小立方体,则此几何体共有2215个小立方体.故答案为:5.【点睛】本题考查由三视图判断几何体.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.24.(2022秋·山西太原·七年级校考阶段练习)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请画出从正面和左面看到的几何体的形状图.【答案】见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【详解】解:主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,3,作图如下:.【点睛】本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.25.(2022秋·广东深圳·七年级统考期中)请你在答题卷相应的位置上画出下面几何体的三视图.【答案】见解析【分析】主视图从左到右列正方形个数依次为2,1,1;左视图从左到右列正方形个数依次为2,1;俯视图从左到右列正方形个数依次为2,1,1.【详解】解:作图如下:【点睛】本题主要考查了三视图的画法,掌握三视图分别是从物体正面、左面、上面看到的平面图形.26.(2023秋·江西吉安·七年级校考期末)如图,这是由4个完全相同的小正方体组成的几何体.请分别在网格中画出从正面、左面和上面看到的形状图.【答案】见解析【分析】三视图的具体画法及步骤为:①确定主视图位置,画出主视图;②在主视图的正下方画出俯视图,注意与主视图“长对正”;③在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.【详解】解:如图所示:【点睛】本题主要考查了画三视图,画立体图形的三视图要循序渐进,不妨从熟悉的图形出发,对于一般的立体图要通过仔细观察和想象,再画它的三视图.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.27.(2022秋·山东威海·九年级校联考期中)如图,一个零件形如一个圆柱体削去底面圆的四分之一部分的柱体,请画出该零件的三视图【答案】见解析.【分析】根据立体图形的三视图的特点,正视图:从正面观察立体图形,正视图的宽、高与立体图形的宽、高相等;左视图:从左面看立体图形,左视图的长、高与立体图形的长、高相等;俯视图:从上往下看立体图形,俯视图的宽、长与立体图形的宽、长相等;由此即可求解.【详解】解:如图所示:【点睛】本题主要考查立体图形的三视图,理解并掌握三视图的概念,及绘图方法是解题的关键.28.(2023秋·陕西西安·七年级西安市第三中学校考阶段练习)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【答案】见解析【分析】观察图形可知,从正面看到的图形是4列,分别为1,4,1,1个正方形;从左面看到的图形是3列,分别为3,1,1个正方形;从上面看到的图形是4列,分别为1,3,1,1个正方形;据此画图即可.【详解】解:由题意得,从正面看,从左面看,从上面看,【点睛】此题考查了从不同方向看几何体,并画出图形,准确画图是解题的关键.29.(2022春·九年级单元测试)填空:如图,A是一组立方块,请说出B,C各是其什么视图.【答案】B主视图,C俯视图【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【详解】解:从正面看左排三层,右排一层,B是主视图;从上面看,左一个,又一个,C是俯视图,故答案为:B主视图,C俯视图.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图.30.(2023春·九年级单元测试)一个几何体的三视图如图所示,请你画出这个几何体的立体图形.【答案】作图见解析【分析】观察三视图可知,该几何体为两个圆柱组合而成,进而可得立体图形.【详解】解:由题意知,画几何体的立体图形如下:【点睛】本题考查了由三视图还原几何体.解题的关键在于根据三视图确定几何体的形状.。

2019—2020年新北师大版九年级数学上册《投影与视图》单元检测及答案.docx

2019—2020年新北师大版九年级数学上册《投影与视图》单元检测及答案.docx

第五章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.将一包卷筒卫生纸按如图所示的方式摆放在桌面上,它的俯视图是( D )2.如图是由4个相同的正方体组成的几何体,则这个几何体的俯视图是( A )3.如图是一个几何体的实物图,则其主视图是( C )4.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( A )5.如图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( A )6.如图所示,夜晚路灯下同样高的旗杆,离路灯越近,它的影子( B )A.越长B.越短C.一样长D.无法确定7.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( A )8.小琳过14周岁生日,父母为她预定的生日蛋糕如图所示,当投影线由生日蛋糕的前方射到后方时,它的正投影应该是( B )9.如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6.其中可看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是( C )A.41 B.40 C.39 D.38,第9题图) ,第10题图) 10.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现他身后影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现他身前影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯这间的距离是( D )A.24 m B.25 m C.28 m D.30 m二、填空题(每小题3分,共18分)11.太阳光形成的投影是__平行投影__,电动车灯所发出的光线形成的投影是__中心投影__.12.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有__①②③__.(填编号)13.人走在路灯下的影子的变化是:①长→短→长;②短→长→短;③长→长→短;④短→短→长中的__①__.(填序号即可)14.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由__6或7或8__个小正方体搭成的.,第14题图) ,第15题图) ,第16题图)15.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为__24__.16.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=23米,窗户的下檐到教室地面的距离BC=1米(点M,N,C在同一直线上),则窗户的高AB为__2米__.三、解答题(共72分)17.(10分)根据下列主视图和俯视图,连出对应的物体.解:a—D,b—A,c—B,d—C18.(10分)画出下面立体图的三视图.解:19.(10分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.解:(1)如图所示,连接AC ,过点D 作DF ∥AC ,交地面于点F ,线段EF 即为DE 的投影(2)∵AC ∥DF ,∴∠ACB =∠DFE.又∵∠ABC =∠DEF =90°,∴△ABC ∽△DEF ,∴ABDE =BCEF ,∴5DE =36.∴DE =10 m .即DE 的长为10 m 20.(10分)在长、宽都为4 m ,高为3 m 的房间的正中央的天花板上悬挂一只白炽灯泡,为了集中光线,加上了灯罩,如图所示,已知灯罩深8 cm ,灯泡离地面2 m ,为了使光线恰好照在墙脚,问灯罩的直径应为多少?(结果精确到0.01米)解:过点A 作AM ⊥DE 交DE 于点M ,交BC 于点N.∵DE ∥BC ,∴△ABC ∽△ADE ,∴AN AM=BC DE.∵AN =0.08,AM =2,DE =42,∴BC =42×0.082≈0.23 m21.(10分)如图,某居民小区内A ,B 两楼之间的距离MN =30 m ,两楼的高度都是20 m ,A 楼在B 楼正南,B 楼窗户朝南.B 楼内一楼住户的窗台离小区地面的距离DN =2 m ,窗户高CD=1.8 m.当正午时刻太阳光线与地面成30°角时,A楼的影子是否影响B楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(参考数据:2=1.414,3=1.732,5=2.236)解:设光线FE影响到B楼的E处,作GE⊥FM于点G,EG=MN=30,∠FEG=30°,FG=103,MG=FM-GF=20-103≈2.68.又DN=2,CD=1.8,∴DE=2.68-2=0.68<1.8.∴A楼的影子影响到B楼一楼采光,挡住该户窗户0.68 m22.(10分)如图是某几何体的三视图,该几何体是由小正方体组成,求小正方体的个数.解:6个23.(12分)用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小立方体的个数,请解答下列问题:(1)a=__3__,b=__1__,c=__1__;(2)这个几何体最少由__9__个小立方体搭成,最多由__11__个小立方体搭成;(3)当d=1,e=1,f=2时,画出这个几何体的左视图.解:(3)左视图为。

北师大版初中九年级数学上册单元测试题含答案全册

北师大版初中九年级数学上册单元测试题含答案全册

北师大版初中九年级数学上册单元测试题第一章 证明〔Ⅱ〕 班级 姓名 学号 成果一、推断题〔每题2分,共10分〕以下各题正确的在括号内画“√〞,错误的在括号内画“×〞.1、两个全等三角形的对应边的比值为1 . 〔 〕2、两个等腰三角形确定是全等的三角形. 〔 〕3、等腰三角形的两条中线确定相等. 〔 〕4、两个三角形假设两角相等,那么两角所对的边也相等. 〔 〕5、在一个直角三角形中,假设一边等于另一边的一半,那么,一个锐角确定等于30°.〔 〕二、选择题〔每题3分,共30分〕每题只有一个正确答案,请将正确答 案的番号填在括号内.1、在△和△中,,,要使△≌△,还须要的条件是〔 〕A 、∠∠DB 、∠∠FC 、∠∠ED 、∠∠D2、以下命题中是假命题的是〔 〕A 、两条中线相等的三角形是等腰三角形B 、两条高相等的三角形是等腰三角形C 、两个内角不相等的三角形不是等腰三角形D 、三角形的一个外角的平分线平行于这个三角形的一边,那么这个三角形是等腰三角形3、如图(一),,,D 是上的一点,那么以下结论不确定成立的是〔 〕A 、∠1=∠2B 、C 、D 、∠∠4、如图〔二〕,和相交于O 点,∥,,过O 〔一〕任作一条直线分别交、于点E 、F ,那么以下结论:①② ③ ④,其中成立的个数是〔 〕A 、1B 、2C 、3D 、45、假设等腰三角形的周长是18,一条边的长是5,那么其他两边的长是〔 〕 〔二〕6、以下长度的线段中,能构成直角三角形的一组是〔 〕A 、543,, ;B 、6, 7, 8;C 、12, 25, 27;D 、245232,,7、如图〔三〕, ,那么以下结果正确的选项是〔 〕 〔三〕A 、∠∠B 、C 、∠∠D 、⊥8、如图〔四〕,△中,∠30°,∠90°的垂直平分线交于D 点,交于E 点,那么以下结论错误的选项是〔 〕A 、B 、C 、D 、 〔四〕9、如图〔五〕,在梯形中,∠90°,M 是的中点,平分∠,∠35°,那么∠是〔 〕A 、35°B 、55°C 、70°D 、20°10、如图〔六〕,在△中,平分∠,, 〔五〕 ∠∠,那么,DCAC 的值为〔 〕A B A 、112∶)(- B 、()112∶+ C 、12∶ D 、 12∶ 〔六〕三、填空题,〔每空2分,共20分〕1、如图〔七〕,, 及相交于O 点,那么图中全等三角形共有 对. 〔七〕2、如图〔八〕,在△和△中,∠∠D ,,假设依据“〞说明△≌△,那么应添加条件 = . 〔八〕或 ∥ .3、一个等腰三角形的底角为15°,腰长为4,那么,该三角形的面积等于 .4、等腰三角形一腰上的高及底边的夹角等于45°,那么这个三角形的顶角等于 .5、命题“假如三角形的一个内角是钝角,那么其余两个内角确定是锐角〞的逆命题是 .6、用反证法证明:“随意三角形中不能有两个内角是钝角〞的第一步:假设 .7、如图〔九〕,一个正方体的棱长为2,一只蚂蚁欲从A 点处沿正方体侧面到B 点处吃食物,那么它须要爬行的最短途径的长是 .8、在△中,∠90°,8, 的垂直平分线交 (九)于D ,那么 .9、如图〔十〕的(1)中,是一张正方形纸片,E ,F 分别为,的中点,沿过点D 的折痕将A 角翻折,使得点A 落在〔2〕中上,折痕交于点G ,那么∠ .四、作图题〔保存作图的痕迹,写出作法〕〔共6分〕 〔十〕如图〔十一〕,在∠内,求作点P ,使P 点到,的 间隔 相等,并且P 点到M ,N 的间隔 也相等.〔十一〕五、解答题〔5分〕如图〔十二〕,一根旗杆的升旗的绳垂直落地后还剩余1米,假设将绳子拉直, 那么绳端离旗杆底端的间隔 ()有5米.求旗杆的高度.〔十二〕六、证明题〔第1,第2两小题各6分,第3小题8分,第4小题9分〕1、:如图〔十三〕,AB ∥CD ,F 是AC 的中点,求证:F 是DE 中点.〔十三〕2、:如图〔十四〕,, ,E ,F 分别是,的中点.求证: .〔十四〕3、如图〔十五〕,△中,是∠的平分线,⊥于E ,⊥于F.求证:〔1〕⊥ ;〔2〕当有一点G 从点D 向A 运动时,⊥于E ,⊥于F ,此时上面结论是否成立?〔十五〕4、如图〔十六〕,△、△均为等边三角形,点M 为线段的中点,点N 为线段的中点,求证:△为等边三角形.〔十六〕九年级 数学 第二章 一元二次方程班级 姓名 学号 成果一、填空题(每题2分,共36分)1.一元二次方程)3(532-=x x 的二次项系数是 ,一次项系数是 , 常数项是 .2.当m 时, 012)1(2=+++-m mx x m 是一元二次方程.3.方程022=-x x 的根是 ,方程036)5(2=--x 的根是 . 4.方程)32(5)32(2-=-x x 的两根为==21,x x .5.a 是实数,且0|82|42=--+-a a a ,那么a 的值是 .6.322--x x 及7+x 的值相等,那么x 的值是 . 7.〔1〕22___)(96+=++x x x ,〔2〕222)2(4___p x p x -=+-. 8.假如-1是方程0422=-+bx x 的一个根,那么方程的另一个根是 ,b 是 .9.假设1x 、2x 为方程0652=-+x x 的两根,那么21x x +的值是,21x x 的值是.10.用22长的铁丝,折成一个面积为228cm 的矩形,这个矩形的长是 .11.甲、乙两人同时从A 地动身,骑自行车去B 地,甲比乙每小时多走3千米,结果比乙早到0.5小时,假设A 、B 两地相距30千米,那么乙每小时 千米. 二、选择题〔每题3分,共18分〕每题只有一个正确答案,请将正确答案的番号填在括号内.1、关于的方程,〔1〕20;〔2〕x 2-482;〔3〕1+(1)(1)=0;〔4〕〔k 2+1〕x 2 + + 1= 0中,一元二次方程的个数为〔 〕个A 、1B 、2C 、3D 、42、假如01)3(2=+-+mx x m 是一元二次方程,那么 ( )A 、3-≠mB 、3≠mC 、0≠mD 、 03≠-≠m m 且3、方程()031222=+--m x m x 的两个根是互为相反数,那么m 的值是 〔 〕A 、1±=mB 、1-=mC 、1=mD 、0=m4、将方程0982=++x x 左边变成完全平方式后,方程是〔 〕A 、7)4(2=+xB 、25)4(2=+xC 、9)4(2-=+xD 、7)4(2-=+x5、假如022=--m x x 有两个相等的实数根,那么022=--mx x 的两根和是 〔 〕A 、 -2B 、 1C 、 -1D 、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 〔 〕A 、 5%B 、 10%C 、15%D 、 20% 三、按指定的方法解方程〔每题3分,共12分〕1.02522=-+)(x 〔干脆开平方法〕 2. 0542=-+x x 〔配方法〕 3.025)2(10)2(2=++-+x x 〔因式分解法〕 4. 03722=+-x x 〔公式法〕 四、适当的方法解方程〔每题4分,共8分〕1.036252=-x 2. 0)4()52(22=+--x x 五、完成以下各题〔每题5分,共15分〕1、函数222a ax x y --=,当1=x 时,0=y , 求a 的值. 2、假设分式1|3|432----x x x 的值为零,求x 的值. 3、关于x 的方程021)1(2)21(2=-+--k x k x k 有实根. (1)假设方程只有一个实根,求出这个根; (2)假设方程有两个不相等的实根1x ,2x ,且61121-=+x x ,求k 的值. 六、应用问题(第1小题5分,第2小题6分,共11分)1、恳求解我国古算经?九章算术?中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少?〔1丈=10尺〕2、某科技公司研制胜利一种新产品,确定向银行贷款200万元资金用于消费这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;假设该公司在消费期间每年比上一年资金增长的百分数一样,试求这个百分数.九年级 数学 第三章 证明〔Ⅲ〕班级 姓名 学号 成果一、选择题〔每题4分,共40案的番号填在括号内. 1、如图1那么图中共有相等的角〔 〕A 、4对B 、5对C 、6对D 、8对 2、如图2,E 、F 分别为 连接、所形成的四边形的面 〕A 、1:1B 、1:2C 、1:3D 、1:43、过四边形的顶点A 、B 、C 、D 作、的平行线围成四边形,假设 是菱形,那么四边形确定是( ) A 、平行四边形 B 、菱形C 、矩形D 、对角线相等的四边形4、在菱形中,,,CD AF BC AE ⊥⊥ 且E 、F 分别是、的中点,那么=∠EAF 〔 〕A 、075B 、055C 、450D 、0605、矩形的一条长边的中点及另一条长边构成等腰直角三角形,矩形的周长是36,那么矩形一条对角线长是〔 〕A 、56B 、55C 、54D 、356、矩形的内角平分线可以组成一个〔 〕A 、矩形B 、菱形C 、正方形D 、平行四边形7、以正方形的一组邻边、向形外作等边三角形、,那么以下结论中错误的选项是〔 〕A 、平分EBF ∠B 、030=∠DEFC 、EF ⊥D 、045=∠BFD8、正方形的边长是10,APQ ∆是等边三角形,点P 在上,点Q 在上,那么的边长是〔 〕A 、55B 、3320 C 、)31020(- D 、)31020(+ 9、假设两个三角形的两条中位线对应相等且两条中位线及一对应边的夹角相等,那么这两个三角形的关系是〔 〕A 、全等B 、周长相等C 、不全等D 、不确定10、正方形具有而菱形不具有的性质是〔 〕A 、四个角都是直角B 、两组对边分别相等C 、内角和为0360 D 、对角线平分对角 二、填空题〔每空1分,共11分〕1、平行四边形两邻边上的高分别为32和33,这两条高的夹角为060,此平行四边形的周长为 ,面积为 .2、等腰梯形的腰及上底相等且等于下底的一半,那么该梯形的腰及下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,那么原三角形的周长为 .4、在ABC ∆中,D 为的中点,E 为上一点,AC CE 31=,、交于点O ,cm BE 5=,那么=OE .5、顺次连接随意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片沿对角线对折后,及交于点E ,那么的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,那么矩形的两条对角线夹角为 .8、菱形两条对角线长度比为1:3,那么菱形较小的内角的度数为 .9、正方形的一条对角线和一边所成的角是 度.10、四边形是菱形,AEF ∆是正三角形,E 、F 分别在、上,且CD EF =,那么=∠BAD .三、解答题〔第1、2小题各10分,第3、4小题各5分,共30分〕1、如图3,,090=∠ACB ,E 是的中点, ,和相交于点F.求证:〔1〕AC DE ⊥; 〔2〕ACE ACD ∠=∠.2、如图4,为平行四边形,和为正方形.求证: 34四、〔第1、2小题各6分,第3小题7分,共1、如图5,正方形纸片的边上有一点E ,8么纸片折痕的长是多少?2、如图6,在矩形中,E 是上一点且,又DF ⊥3、如图7,P 是矩形的内的一点.求证:2PC PA +九年级 数学 半期检测题〔总分120分,100分钟完卷〕 班级 姓名 学号 成果一、选择题〔每题3分,共36番号填在括号内.1、以下数据为长度的三条线段可以构成直角三角形的是〔〔A 〕3、5、6 〔B 〕2、3、4〔C 〕 6、7、9 〔D 〕9、12、15 2、如图(一):,D 、E 、F 分别是三边中点,那么图中全等三角形共有〔 〕〔A 〕 5对 〔B 〕 6对 〔C 〕 7对 〔D 〕 8对 3、△中,∠150º,10,18,那么△的面积是〔 〕〔A 〕45 〔B 〕90 〔C 〕180 〔D 〕不能确定4、△中,∠90º,∠30º,平分∠B 交于点D ,那么点D 〔 〕〔A 〕是的中点 〔B 〕在的垂直平分线上〔C 〕在的中点 〔D 〕不能确定5、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,那么a 的值是〔 〕〔A 〕1 〔B 〕 -1 〔C 〕 1或-1 〔D 〕21 6、方程x x 52=的根是〔 〕〔A 〕5=x 〔B 〕0=x 〔C 〕 5,021==x x 〔D 〕 0,521=-=x x7、用配方法将二次三项式9642-+x x 变形,结果为〔 〕〔A 〕100)2(2++x 〔B 〕100)2(2--x 〔C 〕100)2(2-+x 〔D 〕 100)2(2+-x8、两个连续奇数的乘积是483,那么这两个奇数分别是〔 〕〔A 〕 19和21 〔B 〕 21和23 〔C 〕 23和25 〔D 〕 20和229、依据以下条件,能断定一个四边形是平行四边形的是〔 〕〔A 〕两条对角线相等 〔B 〕一组对边平行,另一组对边相等 〔C 〕一组对角相等,一组邻角互补 〔D 〕一组对角互补,一组对边相等10、能断定一个四边形是矩形的条件是〔 〕〔A 〕对角线相等 〔B 〕对角线相互平分且相等〔C 〕一组对边平行且对角线相等 〔D 〕一组对边相等且有一个角是直角11、假如一个四边形要成为一个正方形,那么要增加的条件是〔 〕 〔A 〕对角线相互垂直且平分 〔B 〕对角互补〔C 〕对角线相互垂直、平分且相等 〔D 〕对角线相等12、矩形的四个内角平分线围成的四边形〔 〕〔A 〕确定是正方形 〔B 〕是矩形 〔C 〕菱形 〔D 〕只能是平行四边形 二、填空题〔每空2分,共38分〕1、直角三角形两直角边分别是5和12,那么斜边长是 ,斜边上的高 是 .2、命题“对顶角相等〞的逆命题是 ,这个逆命题是 命题.3、有一个角是304、如图( 二),△中,,∠120º, ⊥,8,那么 .5、:如图(三),△中,,∠40º,A BC D 的中垂线交于点D ,交于点E ,那么∠ ,∠ . 〔二〕6、假设关于x 的方程42322-=+x x kx 是一元二次方程,那么k 的取值范围是 . 〔三〕7、关于x 的方程124322+-=-a ax x x ,假设常数项为0,那么a = .8、假如m x x ++32是一个完全平方式,那么m = .9、9)2(222=++y x ,那么=+22y x .10、方程012=--x x 的根是 .11、04322=--y xy x ,那么yx 的值是 . 12、如图(四),平行四边形中,6 9,平分∠,那么 . (四)13、矩形的周长是24 ,点M 是中点,∠90°,那么 ,.14、菱形周长为52,一条对角线长是24,那么这个菱形的面积是 .15、等腰梯形上底长及腰长相等,而一条对角线及一腰垂直,那么梯形上底角的度数是 .三、解方程〔每题4分,共16分〕1、0862=--x x 〔用配方法〕.2、23142-=--x x x 〔用公式法〕.3、04)5(=+-x x x 〔用因式分解法〕.4、02)12(2=++-x x .四、解答题〔每题5分,共15分〕1、为响应国家“退耕还林〞的号召,变更我省水土流失严峻的状况,2002年我省退耕还林1600亩,方案2004年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少?2、学校打算在图书管后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建较相宜?3、如图(五),Δ中,20,12,是中线,且8,求的长.〔五〕 五、证明〔计算〕〔每题5分,共15分〕1、:如图〔六〕,点C 、D 在上,,∥,∥.求证:.(六) 2、如图〔七〕,正方形中,E 为上一点,F 为延长线上一点,. 〔1〕求证:△≌△;〔2〕假设∠600,求∠的度数.〔七〕3、:如图〔八〕,在直角梯形中,∥,⊥, 又⊥于E.求证:.A B C D E F〔八〕九年级数学第四章视图及投影一、选择题〔每题4分,共32分〕以下每题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题的括号内.1、一个几何体的主视图和左视图都是一样的长方形,府视图为圆,那么这个几何体为〔〕A、圆柱B、圆锥C、圆台D、球2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变更规律是〔〕A、先变长,后变短B、先变短,后变长C、方向变更,长短不变D、以上都不正确.5米人测竿的影长为米,那么影长为30米的旗杆的高是〔〕A、20米B、16米C、18米D、15米4、以下说法正确的选项是〔〕A、物体在阳光下的投影只及物体的高度有关B、小明的个子比小亮高,我们可以确定,不管什么状况,小明的影子确定比小亮的影子长.C、物体在阳光照耀下,不同时刻,影长可能发生变更,方向也可能发生变更.D、物体在阳光照耀下,影子的长度和方向都是固定不变的.5、关于盲区的说法正确的有〔〕〔1〕我们把视线看不到的地方称为盲区〔2〕我们上山及下山时视野盲区是一样的〔3〕我们坐车向前行驶,有时会发觉一些高大的建筑物会被比矮的建筑物拦住〔4〕人们常说“站得高,看得远〞,说明在高处视野盲区要小,视野范围大A、1 个B、2个C、3个D、4个6、如图1是空心圆柱体在指定方向上的视图,正确的选项是〔〕图17、如图2所示,这是圆桌正上方的灯泡〔看作一个点〕发出的光线照耀桌面后,在地面上形成阴影〔圆形〕的示意图.桌面的直径为,桌面间隔地面1m,假设灯泡间隔地面3m,那么地面上阴影部分的面积为〔〕图 2A、πm2B、πm2C、2πm2D、πm28、如图〔三〕是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后依次进展排列正确的选项是〔〕〔三〕A、〔1〕〔2〕〔3〕〔4〕B、〔4〕〔3〕〔1〕〔2〕C、〔4〕〔3〕〔2〕〔1〕D、〔2〕〔3〕〔4〕〔1〕二、填空题〔每题3分,共21分〕1、主视图、左视图、府视图都一样的几何体为〔写出两个〕.2、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .3、我们把大型会场、体育看台、电影院建为阶梯形态,是为了 .4、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为米,那么电线杆的高为米.5、假如一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .6、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .7、身高一样的小明和小华站在灯光下的不同位置,假如小明离灯较远,那么小明的投影比小华的投影 .三、解答题〔此题7个小题,共47分〕1、某糖果厂为儿童设计一种新型的装糖果的不倒翁〔如图4所示〕请你为包装厂设计出它的主视图、左视图和府视图.图 42、画出图5中三棱柱的主视图、左视图、俯视图.图 53、画出图6中空心圆柱的主视图、左视图、俯视图.图 64、如图7所示,屋顶上有一只小猫,院子里有一只小老鼠,假设小猫看见了小老鼠,那么小老鼠就会有危急,试画出小老鼠在墙的左端的平安区.图 75、如图8为住宅区内的两幢楼,它们的高30m,两楼间的间隔 30m,现需理解甲楼对乙楼的采光的影响状况,〔1〕当太阳光及程度线的夹角为30°角时,求甲楼的影子在乙楼3〕;〔2〕假设要甲楼的影子刚好不落在乙楼的墙上,此时太阳及上有多高〔精确到,程度线的夹角为多少度?图 86、阳光通过窗口照到教室内,竖直窗框在地面上留下长的影子[如图〔9〕所示],窗框的影子到窗下墙脚的间隔,窗口底边离地面的间隔,试求窗口的高度〔即的值〕图 97、一位同学想利用有关学问测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为,但当他立刻测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子,又测地面部分的影长,你能依据上述数据帮他测出旗杆的高度吗?图 10九年级 数学 第五章 反比例函数一、填空题〔每题3分,共30分〕1、近视眼镜的度数y 〔度〕及镜片焦距x 米,那么眼镜度数y 及镜片焦距x 之间的函数关系式是 .2、假如反比例函数xk y =的图象过点〔2,-3〕,那么k = . 3、y 及x 成反比例,并且当2时,1,那么当3时,x 的值是 .4、y 及〔21〕成反比例,且当1时,2,那么当0,y 的值是 .5、假设点A 〔6,y 1〕和B 〔5,y 2〕在反比例函数xy 4-=的图象上,那么y 1及y 2的大小关系是 . 6、函数xy 3=,当x <0时,函数图象在第 象限,y 随x 的增大而 . 7、假设函数12)1(---=m m x m y 是反比例函数,那么m 的值是 .8、直线5及双曲线x y 2-=相交于 点P 〔-2,m 〕,那么 .9、如图1,点A 在反比例函数图象上,过点A 作垂直于x 轴,垂足为B ,假设S △2,那么这个反比例函数的解析式为. 图 110、如图2,函数(k≠0)及xy 4-=的图 象交于点A 、B ,过点A 作垂直于y 轴,垂足为C ,那么△的面积为 . 图 2二、选择题〔每题3分,共30分〕以下每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、假如反比例函数的图象经过点P 〔-2,-1〕,那么这个反比例函数的表达式为〔 〕A 、x y 21=B 、x y 21-=C 、x y 2=D 、xy 2-= 2、y 及x 成反比例,当3时,4,那么当3时,x 的值等于〔 〕A 、4B 、-4C 、3D 、-33、假设点A 〔-1,y 1〕(22),C 〔3,y 3〕都在反比例函数xy 5=的图象上,那么以下关系式正确的选项是〔 〕A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 2<y 1D 、y 1<y 3<y 24、反比例函数xm y 5-=的图象的两个分支分别在第二、四象限内,那么m 的取值范围是〔 〕A 、m <0B 、m >0C 、m <5D 、m >55、反比例函数的图象经过点〔1,2〕,那么它的图象也确定经过〔 〕A 、〔-1,-2〕B 、〔-1,2〕C 、〔1,-2〕D 、〔-2,1〕6、假设一次函数b kx y +=及反比例函数x k y =的图象都经过点〔-2,1〕,那么b 的值是〔 〕A 、3B 、-3C 、5D 、-57、假设直线1x(k 1≠0)和双曲线xk y 2=〔k 2≠0〕在同一坐标系内的图象无交点,那么k 1、k 2的关系是〔 〕A 、k 1及k 2异号B 、k 1及k 2同号C 、k 1及k 2互为倒数D 、k 1及k 2的值相等8、点A 是反比例函数图象上一点,它到原点的间隔 为5,到x 轴的间隔 为3,假设点A 在第二象限内,那么这个反比例函数的表达式为〔 〕A 、x y 12=B 、x y 12-=C 、x y 121=D 、xy 121-= 9、假如点P 为反比例函数x y 6=的图像上的一点,垂直于x 轴,垂足为Q ,那么 △的面积为〔 〕A 、12B 、6C 、3D 、1.510、反比例函数xk y =(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数的图象经过〔 〕A 、第一、第二、三象限B 、第一、二、三象限C 、第一、三、四象限D 、第二、三、四象限三、解答题〔此题6个小题,共40分〕1、〔6分〕矩形的面积为6,求它的长y 及宽x 之间的函数关系式,并在直角坐标系中作出这个函数的图象.2、〔6分〕确定质量的氧气,它的密度ρ〔3〕是它的体积v (m 3)的反比例函数,当v =10m3时,ρ3. 〔1〕求ρ及v 的函数关系式;〔2〕求当v =2m 3时,氧气的密度ρ.3、〔7分〕某蓄水池的排水管每时排水8m 3,6小时〔h 〕可将满水池全部排空.〔1〕蓄水池的容积是多少?〔2〕假如增加排水管,使每时的排水量到达Q 〔m 3〕,那么将满池水排空所需的时间t(h)将如何变更?〔3〕写出t 及Q之间的关系式〔4〕假如打算在5h 内将满池水排空,那么每时的排水量至少为多少?〔5〕排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?4、〔7分〕某商场出售一批进价为2元的贺卡,在市场营销中发觉此商品的日销售单价x 〔元〕及日销售量y 〔个〕之间有如下关系:日销售单价x 〔元〕3 4 5 6 日销售量y(个) 20 15 12 10〔1〕依据表中数据,在直角坐标系中描出实数对〔x ,y 〕的对应点;〔2〕猜测并确定y 及x 之间的函数关系式,并画出图象;〔3〕设经营此贺卡的销售利润为W元,求出W及x 之间的函数关系式.假设物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?5、〔7分〕如图3,点A是双曲线xk y =及直线(1)在第二象限内的交点,AB⊥x 轴于B ,且S△=23. 〔1〕求这两个函数的解析式;〔2〕求直线及双曲线的两个交点A、C的坐标和△的面积.图 36、〔7分〕反比例函数xk y 2 和一次函数21,其中一次函数的图象经过〔〕,〔1,〕两点.〔1〕求反比例函数的解析式;〔2〕如图4,点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;〔3〕利用〔2〕的结果,请问:在x 轴上是否存在点P ,使△为等腰三角形?假设存在,把符合条件的P 点坐标都求出来;假设不存在,请说明理由.图 4九年级 数学 第六章 频率及概率一、选择题〔每题4分,共40分〕以下每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内.1、一个事务发生的概率不行能是〔 〕A 、0B 、1C 、21D 、23 2、以下说法正确的选项是〔 〕 A 、投掷一枚图钉,钉尖朝上、朝下的概率一样 B 、统一发票有“中奖〞和“不中奖〞两种情形,所以中奖的概率是21 C 、投掷一枚匀称的硬币,正面朝上的概率是21 D 、投掷一枚匀称的骰子,每一种点数出现的概率都是61,所以每投6次,确定会出现一次“1点〞.3、关于频率和概率的关系,以下说法正确的选项是〔 〕A 、频率等于概率B 、当试验次数很大时,频率稳定在概率旁边C 、当试验次数很大时,概率稳定在频率旁边D 、试验得到的频率及概率不行能相等4、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是〔 〕A 、38%B 、60%C 、约63%D 、无法确定5、随机掷一枚匀称的硬币两次,两次都是正面的概率是〔 〕A 、21B 、31C 、41 D 、无法确定 6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,口袋中有黑球10个和假设干个白球.由此估计口袋中大约有多少个白球〔 〕A 、10个B 、20个C 、30个D 、无法确定7、某商场举办有奖销售活动,方法如下:凡购物满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是〔 〕A 、100001B 、1000050C 、10000100D 、10000151 8、柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是〔 〕A 、21B 、31C 、41D 、61 9、某校九年级一班共有学生50人,如今对他们的生日〔可以不同年〕进展统计,那么正确的说法是〔 〕A 、至少有两名学生生日一样B 、不行能有两名学生生日一样C 、可能有两名学生生日一样,但可能性不大D 、可能有两名学生生日一样,且可能性很大10、某城市有10000辆自行车,其牌照编号为00001到10000,那么某人偶尔遇到一辆自行车,其牌照编号大于9000的概率是〔 〕A 、101 B 、109 C 、1001 D 、1009 二、填空题〔每题3分,共24分〕 1、在装有6个红球、4个白球的袋中摸出一个球,是红球的概率是 .“幸运观众〞10名,张华同学打通了一次热线 ,那么他成为“幸运观众〞的概率是 .3、袋中装有一个红球和一个黄球,它们除了颜色外都一样.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是 .4、小明和小华在玩纸牌嬉戏,有两组牌,每组各有2张,分别都是1、2,每人每次从每组牌中抽出一张,两张牌的和为3的概率为 .5、一个口袋中有15个黑球和假设干个白球,从口袋中一次摸出10个球,求出黑球数及10的比值,不断重复上述过程,总共摸了10次,黑球数及10的比值的平均数为1/5,因此可估计口袋中大约有 个白球.6、转盘甲被分成完全相等的三个扇形,颜色分别是红、蓝、绿,转盘乙被分成完全相等的两个扇形,颜色分别是红、蓝,随意转动这两个转盘,一个转盘转出蓝色,一个转盘转出红色〔即配成紫色〕的概率是 .7、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字及所设定的密码一样时,才能将锁翻开.小亮忘了密码的前面两个数字,他随意按下前两个数字,那么他一次就能翻开锁的概率是 .8、某市民政部门今年元宵节期间实行了“即开式社会福利彩票〞销售活动,设置彩票3000是 .三、解答题〔此题有5个小题,共36分〕1、〔7分〕有30张牌,牌面朝下,每次抽出一张登记花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张?2、〔7分〕一那么广告称:本次抽奖活动的中奖率为50%,其中一等奖的中奖率为10%,小明看到这那么广告后,想:“5021,那么我抽二张就会有一张中奖,抽10张就会有1张中一等奖〞.你认为小明的想法对吗?请说明理由.3、〔7分〕桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做嬉戏,嬉戏规那么是:随机取2张牌并把它们翻开,假设2张牌中没有老K,那么红方胜,否那么蓝方胜.你情愿充当红方还是蓝方?请说明理由.4、〔7分〕为了估计鱼塘中有多少条鱼,先从鱼塘捕捞100条鱼做上标记,然后放回。

2021年北师大版九上第四章视图与投影习题及答案

2021年北师大版九上第四章视图与投影习题及答案

一、精心选一选!(30分)1.图1所示的物体的左视图(从左面看得到的视图)是( D)图1 A . B . C . D . 2.如图所示的是某几何体的三视图,则该几何体的形状是( B )左视图俯视图主视图 (A)长方体 (B)三棱柱 (C)圆锥 (D)正方体3.在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是( C )A 、20米B 、16米C 、18米D 、15米 4.如图3,箭头表示投影的方向,则图中圆柱体的投影是( B ) A .圆 B .矩形 C .梯形 D .圆柱 5.在一个晴朗的上午,皮皮拿着一块正方形术板在阳光下做投影实验,正方形木板在地面上形成的投影不可能是( A )6.如图5,晚上小亮在路灯下散步,在小亮由A 处径直走到B 处这一过程中,他在地上的影子( B ) A .逐渐变短 B .先变短后变长 C .先变长后变短 D .逐渐变长7.关于盲区的说法正确的有( C ) (1)我们把视线看不到的地方称为盲区 (2)我们上山与下山时视野盲区是相同的 (3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比它矮的建筑物挡住 (4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大 A 、1 个 B 、2个 C 、3个 D 、4个8.一个长方体的左视图、俯视图及相关数据如图6所示,则其主视图的面积为( B ) A .6 B .8 C .12 D .249.一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是( D )A .AB=CDB .AB ≤CDC .CD AB 图332左视图4俯视图图6 图5D .AB ≥CD10.图7-(1)表示一个正五棱柱形状的高大建筑物,7-图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图7-(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN 的度数为( B )A .30ºB .36ºC .45ºD .72º二、细心填一填!(30分)11.如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形).12.如图8中物体的一个视图(a )的名称为_▲_.13. 一个几何体的三视图如图9所示(其中标注的a,b,c 为相应的边长),则这个几何体的体积是 .14.我们把大型会场、体育看台、电影院建为阶梯形状,是为了 .15.如图10,为了测量学校旗杆的高度,小东用长为3.2的竹竿做测量工具。

北师大版九年级数学上《投影与视图》单元测试3(含答案)

北师大版九年级数学上《投影与视图》单元测试3(含答案)

第五章 投影与视图单元测试班级: 姓名: 总分:一、细心选一选(每题3分,共36分)1.小明从正面观察下图所示的两个物体,看到的是( )2.某物体三视图如图,则该物体形状可能是( )(A) 长方体 (B) 圆锥体 (C) 立方体 (D) 圆柱体3.下图是由一些相同的小正方形构成的几何体的三视图,这些相同的小正方形的个数是( )(A) 4个(B) 5个 (C) 6个 (D) 7个4.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( )(A)相交(B)平行(C)垂直 (D)无法确定5.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )(B) (A)(C)(D)(D)(C)(B)(A)6.圆形的物体在太阳光的投影下是 ( ) (A)圆形(B)椭圆形 (C)线段(D)以上都不可能7. 一个几何体的主视图和左视图都是相同的长方形,俯视图为圆,则这个几何体为( )(A)圆柱 (B)圆锥 (C)圆台 (D)球8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) (A)小明的影子比小强的影子长(B)小明的影子比小强的影子短 (C)小明的影子和小强的影子一样长(D)无法判断谁的影子长9.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )(A)A→B→C→D (B)D→B→C→A (C)C→D→A→B (D)A→C→B→D 10.下图中几何体的主视图是( )11. 如图所示的空心几何体的俯视图是图中的( )12. 陈强和王亮在路灯下走,本来很高的陈强的影长却比矮的王亮的影子短,因为( ) (A)陈强离路灯近(B) 王亮离路灯近 (C) 陈强和王亮分别在路灯的两旁(D)路灯比陈强高第17题二、开心填一填(每小题3分,共24分)13.主视图、左视图、俯视图都相同的几何体为 (写出两个)。

14.在画三视图时应遵循 ; ; 原则。

北师大版九年级数学上册 第4章 投影与视图 章末检测卷(含答案)

北师大版九年级数学上册 第4章 投影与视图 章末检测卷(含答案)

北师大版九年级数学上册第4章投影与视图章末检测卷一、选择题(每小题3分,共24分)1.下例哪种光线形成的投影不是中心投影( ).A. 手电筒B.蜡烛C. 探照灯D.路灯2.桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()3. 下列三视图所对应的直观图是A.B.C.D.4.下面图示的四个物体中,主视图如右图的有()A.1个B.2个C.3个D.4个5.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( ).6.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是( ).7. 如图是一个立体图形的正视图、左视图和俯视图,那么这个立体图形是()A.圆锥B.三棱锥C.四棱锥D.五棱锥8. 如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.36πm2B.0.81πm2C.2πm2D.3.24πm2二、填空题(每小题3分,共24分)9.如下图,一几何体的三视图如下,那么这个几何体是_____。

10.在①长方体、②球、③圆锥、④圆柱、⑤正方体、⑥三棱柱这六种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).11.如果一个几何体的主视图是等腰三角形,那么这个几何体可以是.(填上满足条件的一个几何体即可)12.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有桶.13.如图①是一个正三棱柱毛坯,将其截去一部分,得到一个工件如图②.对于这个工件.俯视图、主视图依次是 .14.图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图, P、Q、M、N表示小明在地面上的活动区域.小明想同时看到该建筑物的三个侧面,他应在区域.(填写区域代号)15.如图(甲)为某物体的三视图:在三视图中,AB=BC=CD=DA=EI=IG=NZ=MZ=KY=YL,θ=60°,EF=GH=KN=LM=YZ,现搬运工人人小明要搬运此物块边长为acm物块ABCD在地面上由起始位置沿直线l不滑行地翻滚,翻滚一周后,原来与地面接触的面ABCD又落回到地面,则此时点B起始位置翻滚一周后所经过的长度是 .cm.16.如图所示是某种型号的正六角螺母毛坯的三视图,则它的表面积为2三、解答题(共52分)17.(本题10分)画出下面立体图形的三视图.18.(本题10分)如图是两棵树在同一时刻被同一点光源照射留下的影子,请在图中画出形成树影的光线,并确定光源所在的位置.19.(本题10分)如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的阴影是什么形状?(2)若把白炽灯向上移时,阴影的大小会怎样变化?(3)若白炽灯到球心距离1米,到地面的距离是3米,球的半径是0.2米,求球在地面上阴影的面积是多少?20.(本题10分)如图,是一块长、宽、高分别是6cm,4cm 和3cm 的长方形木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径是多少?21.(本题12分) 如图,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC 为30°,窗户的一部分在教室地面所形成的影长PE 为3.5米,窗户的高度AF 为2.5米.求窗外遮阳蓬外端一点D 到窗户上椽的距离AD 的长. (结果精确到0.1米)附加题(本题20分,不计入总分)22. 学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m 的小明()AB 的影子BC 长是3m ,而小颖()EH 刚好在路灯灯泡的正下方H 点,并测得6m HB . (1)请在图中画出形成影子的光线,交确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 中点1B 处时,求其影子11B C的长;当小明继续走剩下路程的13到2B处时,求其影子22B C的长;当小明继续走剩下路程的14到3B处,…按此规律继续走下去,当小明走剩下路程的11n+到nB处时,其影子n nB C的长为 m(直接用n的代数式表示).参考答案:一、1.C 2. C 3.C 4.C 5.D 6.A 7.C 8.B二、9.三棱柱 10.②⑤ 11.圆锥或正三棱锥或正四棱锥 12.6 13.a b 14.Q 15.231aπ+16. (12336)+ .三、17.解:18.解:如图所示:19.解:(1)球在地面上的投影是圆;(2)当把白炽灯向上移时,阴影会逐渐变小;(3)由相似三角形的性质得13=0.2R阴.∴R阴=0.6.S阴=πR阴2=0.36π米2.20.解:可画三种平面展开图(只给出一部分):主视图左视图俯视图346AB334B4BAB436图(1)中,AB=62+72= 85cm,图(2)中,AB=102+32=109cm,图(3)中,AB=92+42=97cm,所以最短距离为85cm.21.解:过点E 作EG ∥AC 交BP 于点G.∵EF ∥DP,∴四边形BFEG 是平行四边形.在Rt △PEG 中,∠P=30°,则PG=2EG,由勾股定理得,PG 2-EG 2=PE 2,即3EG 2=3.52,解得73EG =.又∵四边形BFEG 是平行四边形,∴73BF EG ==,∴732.50.48AB AF BF =-=-≈(米).在Rt △DAB 中,∵AD ∥PE ,∴∠BDA=∠P=30°,易得BD=2AB ,由勾股定理得, 222BD AB AD -=,∴222330.48AD AB ==⨯,解得0.8AD ≈(米). 22.(1)(2)由题意得:ABC GHC △∽△,AB BC GH HC ∴=, 1.6363GH ∴=+, 4.8GH ∴=(m ). (3)1111A B C GHC △∽△,11111A B B C GH HC ∴=, 设11B C 长为m x ,则1.64.83x x =+,解得:32x =(m ),即1132B C =(m ). 同理22221.64.82B C B C =+,解得221B C =(m ),31n n B C n =+.GCBA1C1B 2B H E2A1A2C。

推荐-北师大版九年级数学上册第四章 视图与投影单元测

推荐-北师大版九年级数学上册第四章 视图与投影单元测

九年级上册第四章 视图与投影 测试题一、填空题:1.在平行投影中,两人的高度和他们的影子 ;2.小华晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人 ”;3.圆柱的左视图是 ,俯视图是 ; 4.一个四棱锥的俯视图是 ;5.如图,一几何体的三视图如右:那么这个几何体是 。

二、选择题:1、两个物体的主视图都是圆,则这两个物体可能是( )A 、圆柱体、圆锥体B 、圆柱体、正方体C 、圆柱体、球D 、圆锥体、球 2、平行投影中的光线是( )A 、平行的B 、聚成一点的C 、不平行的D 、向四面八方发散的 3、在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A 、两根都垂直于地面B 、两根平行斜插在地上C 、两根竿子不平行D 、一根倒在地上4、两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( ) A 、相等 B 、长的较长 C 、短的较长 D 、不能确定5、下列命题正确的是 ( ) A 、三视图是中心投影 B 、小华观察牡丹花,牡丹花就是视点 C 、球的三视图均是半径相等的圆D 、阳光从矩形窗子里照射到地面上得到的光区仍是矩形 6、同一灯光下两个物体的影子可以是( )A 、同一方向B 、不同方向C 、相反方向D 、以上都是可能 7、棱长是1㎝的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )A 、362cm B 、332cm C 、302cm D 、272cm8、一个人离开灯光的过程中人的影长()A、不变B、变短C、变长D、不确定9、人离窗子越远,向外眺望时此人的盲区是( )A、变小B、变大C、不变D、以上都有可能10、圆形的物体在太阳光的投影下是()A、圆形B、椭圆形C、以上都有可能D、以上都不可能11、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A、相交 B. 平行 C. 垂直 D. 无法确定12、一个几何体的三种视图如下图所示,则这个几何体是()A、圆柱B、圆锥C、长方体D、正方体13、下列图中是太阳光下形成的影子是()A、B、C、D、14、有一实物如图,那么它的主视图()A B C D15、当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了。

北师大版九年级数学上册第四章 视图与投影单元测试题【精 3套】

北师大版九年级数学上册第四章 视图与投影单元测试题【精 3套】

九年级上册第四章 视图与投影 测试题一、填空题:1.在平行投影中,两人的高度和他们的影子 ;2.小华晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人 ”;3.圆柱的左视图是 ,俯视图是 ; 4.一个四棱锥的俯视图是 ;5.如图,一几何体的三视图如右:那么这个几何体是 。

二、选择题:1、两个物体的主视图都是圆,则这两个物体可能是( )A 、圆柱体、圆锥体B 、圆柱体、正方体C 、圆柱体、球D 、圆锥体、球 2、平行投影中的光线是( )A 、平行的B 、聚成一点的C 、不平行的D 、向四面八方发散的 3、在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A 、两根都垂直于地面B 、两根平行斜插在地上C 、两根竿子不平行D 、一根倒在地上4、两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( ) A 、相等 B 、长的较长 C 、短的较长 D 、不能确定5、下列命题正确的是 ( ) A 、三视图是中心投影 B 、小华观察牡丹花,牡丹花就是视点 C 、球的三视图均是半径相等的圆D 、阳光从矩形窗子里照射到地面上得到的光区仍是矩形 6、同一灯光下两个物体的影子可以是( )A 、同一方向B 、不同方向C 、相反方向D 、以上都是可能 7、棱长是1㎝的小立方体组成如图所示的几何体,那么这个几何体的表面积是( )A 、362cm B 、332cm C 、302cm D 、272cm8、一个人离开灯光的过程中人的影长()A、不变B、变短C、变长D、不确定9、人离窗子越远,向外眺望时此人的盲区是( )A、变小B、变大C、不变D、以上都有可能10、圆形的物体在太阳光的投影下是()A、圆形B、椭圆形C、以上都有可能D、以上都不可能11、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子()A、相交 B. 平行 C. 垂直 D. 无法确定12、一个几何体的三种视图如下图所示,则这个几何体是()A、圆柱B、圆锥C、长方体D、正方体13、下列图中是太阳光下形成的影子是()A、B、C、D、14、有一实物如图,那么它的主视图()A B C D15、当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了。

北师大版九年级数学上《投影与视图》单元测试1(含答案)

北师大版九年级数学上《投影与视图》单元测试1(含答案)

俯视图主(正)视图左视图第五章 投影与视图单元测试一、精心选一选(每小题3分,共24分)1、小明从正面观察下图所示的两个物体,看到的是( )2、在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( )A.上午B.中午C.下午D.无法确定3、对左下方的几何体变换位置或视角,则可以得到的几何体是( )4、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )5、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( ) A. 5个B.6个C. 7个D. 8个6、一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( )224113AB CD7、有一实物如图,那么它的主视图是( )8、在阳光下,身高1.6m 的小强的影长是0.8m ,同一时刻,一棵 在树的影长为4.8m ,则树的高度为( ) A. 4.8m B. 6.4m C. 9.6m D.10m 二、耐心填一填(每小题3分,共30分)9、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是 10、如图是某个几何体的展开图,这个几何体是11、春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为 小时.12、如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 BC=3.2m ,CA=0.8m, 则树的高度为13、直角坐标系内,身高为1.5米的小强面向y 轴站在x 轴上的点A(-10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是 (一个单位长度表示1米). 14、如图是一个几何体的三视图,那么这个几何体是 .15、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮5cm ,此刻小明的影长是________m.16、如图所示,一条线段AB 在平面P 上的正投影为A ’B cm ,则AB 与平面P 的夹角为第10题图第12题图 第14题图17、如图,正方形ABCD的边长为2cm,以直线AB为轴,将正方形旋转一周,所得圆柱的主视图的周长是___________cm.CD18、圆柱的轴截面平行于投影面P,它的正投影是边长为4cm的正方形,则这个圆柱的表面积是___________.三、用心想一想(共66分)19、(12分)中午,一根1.5米长的木杆影长1.0米,一座高21米的住宅楼的影子是否会落在相距18米远的商业楼上?傍晚,该木杆的影子长为2.0米,这时住宅楼的影子是否会落在商业楼上?为什么?20、(12分)画出下列几何体的三视图:21、(14分)如图,在一间黑屋里用一白炽灯照射一个球,(1)球在地面上的阴影是什么形状?(2)当把白炽灯向上移时,阴影的大小会怎样变化?(3)若白炽灯到球心距离为1米,到地面的距离是3米,球的半径是0.2米,求球在地面上阴影的面积是多少?第16题图第17题图22、(14分)如图是某工件的三视图,求此工件的全面积和体积.23、 (14分)某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时. (1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米? (结果保留整数,参考数据:32sin °≈10053,32cos °≈125106,32tan °≈85)参考答案一、精心选一选(每小题3分,共24分)1、C2、A3、B4、C5、D6、C7、B8、C二、耐心填一填(每小题3分,共30分)9、成正比例10、三棱柱11、612、8米13、0—2.514、圆锥15、72 3516、30o17、1218、24πcm2三、用心想一想(共66分)19、先不会,傍晚会20、略21、(1)圆形(2)阴影会逐渐变小(3)S阴影=0.36π m222、S=(100+)cm2V=3100cmπ23、(1)11﹥6采光受影响(2)32米。

5.1 投影 北师大版数学九年级上册堂堂练及答案

5.1 投影 北师大版数学九年级上册堂堂练及答案

5.1投影—2023-2024学年北师大版数学九年级上册堂堂练1.三根相同的木棍竖直立在水平地面上,其俯视图如图所示,在某一时刻三根木棍在太阳光(平行光)下的影子可能是( )A. B.C. D.2.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形可能是( )A. B.C. D.3.在同一时刻,身高1.6 m的小强的影长是1.2 m,旗杆的影长是15 m,则旗杆高为( )A.16 mB.18mC.20mD.22m4.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图所示.则在字母的投影中,与字母N属于同一种投影的有( )A.L,KB.CC.KD.L,K,C5.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是( )A. B. C. D.6.小明和他的同学在太阳下行走,小明身高1.4米,他的影长为1.75米,他同学的身高为1.6米,则此时他的同学的影长为__________米.7.乐乐绕着广场的一盏照明灯走了一周,他发现自己的影子长度始终没有改变,那么乐乐在地面上走的路线所形成的图形是___________.8.如图是两根木杆及其影子的图形.(1)这个图形反映的是中心投影还是平行投影?答:__________.(2)请你在图中画出表示小树影长的线段AB.答案以及解析1.答案:C解析:因为三根相同的木棍竖直立在水平地面上,所以在某一时刻,三根木棍在太阳光下的影长相同,且互相平行,再结合题中俯视图可知C正确.2.答案:D解析:选项A,B中,两棵小树的影子的方向相反,不可能为同时刻阳光下的影子,所以A,B选项错误;在同一时刻,树高与影子成正比,所以C选项错误,D选项正确.故选D.3.答案:C解析:根据同一时刻物高与影长成正比例可得,解得旗杆高为20 m.4.答案:A解析:根据平行投影和中心投影的特点和规律,知“C”属于平行投影,“L”“K”与“N”属于中心投影.故选A.5.答案:B解析:当等边三角形木框与光线平行时,投影是A;当等边三角形木框与光线有一定角度时,投影是C,D;投影不可能是B.故选B.6.答案:2解析:解:设他的同学的影长为x m,同一时刻物高与影长成比例,,解得,,经检验,是原方程的解,他的同学的影长为2m,故答案为:2.7.答案:圆解析:因为在这一过程中,点光的高度没有变,乐乐的身高和影子的长度都没有变,所以乐乐与灯的距离没有改变,故乐乐走的路线在地面上形成的是圆.8.答案:(1)中心投影(2)解:线段AB如图所示解析:(1)平行投影与中心投影之间的区别是:平行投影与原物体所对应点的连线都相互平行,而中心投影与原物体所对应点的连线都相交于一点.结合两个木杆及其影子的图形即可判断.(2)利用中心投影的性质画图,连接投影中心和小树顶点的连线,得出顶端投影点,将其和树的底端连接起来即可.。

新北师大版九年级数学上册第五章《投影与视图》章末复习题含答案解析 (1)

新北师大版九年级数学上册第五章《投影与视图》章末复习题含答案解析 (1)

一、选择题1.下列几何体中,主视图是三角形的是( )A.B.C.D.2.如图所示,该圆柱体的左视图是( )A.B.C.D.3.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有( )A.4个B.8个C.12个D.17个4.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,若该几何体所用小立方块的个数为n,则n的所有可能值有( )A.8种B.7种C.6种D.5种5.某几何体的主视图和左视图如图所示,则该几何体可能是( )A.长方体B.圆锥C.圆柱D.球6.一个几何体由大小相同的小正方体组成,从上面看几何体的俯视图如图,其中小正方形中的数字表示在该位置的小正方体的个数,则该几何体的正视图是( )A.B.C.D.7.如图是一个有底无盖的笔筒,它的三视图为A.B.C.D.8.如图所示几何体的俯视图是( )A.B.C.D.9.一个几何体的三视图如图所示,则这个几何体是( )A.B.C.D.10.从不同方向看一只茶壶,你认为是俯视图的是( )A.B.C.D.二、填空题11.如图是由若干个小正方体组成的立体图形,阴影部分是空缺的通道,一直通到对面,这个立体图形是由个小正方体组成.12.图(1)是一个正三棱柱,若正三棱柱看不见的一个侧面与投影面平行,则这个正三棱柱的正投影是图(2)中的(填序号).13.如图所示,一长方体木板上有两个空洞,一个是正方形形状的,一个是圆形形状的,对于图中的4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住正方形空洞?(填序号).14.几个完全相同的小正方体搭成如图的几何体,从上面拿掉一个或者几个小正方体(不能直接拿掉被压在下面的小正方体)而不改变几何体的三视图的方法有种.15.下图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中数据计算这个几何体的侧面积是.16.如图,是由几个相同的小正方体搭成的几何体从左面、上面看到的形状图,则搭成这个几何体的小正方体最多是个.17.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为 1.8m,1.5m,已知小军、小珠的身髙分别为1.8m,1.5m,则路灯的高为m.三、解答题18.立体几何的三视图:若干个棱长为2cm的正方体摆放成如图所示的形状,回答下列问题:(1) 画出该图形的三视图;(2) 它的表面积是多少?19.如图是由一些棱长都为1的小正方体组合成的简单几何体.(1) 在下图中画出该几何体的主视图、左视图和俯视图;(2) 如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.20.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体.(1) 图中有块小正方体;(2) 从正面看到该几何体的形状图如图所示,请在下面方格纸中分别画出从左面,上面看到的该几何体的形状图.21.把边长为1的10个相同正方体摆成如图的形式.(1) 画出该几何体的主视图、左视图、俯视图.(2) 试求出其表面积(包括向下的面).(3) 如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.22.如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1) 这个几何体由个小正方体组成.(2) 在下面网格中画出左视图和俯视图.(3) 如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.23.如图是一个由几个小正方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小正方体的个数,请在右边的方格中画出这个几何体从正面和左面看到的形状图.24.根据下面的三视图,写出它表示的物体的名称.25.如图所示,已知由一些大小相同的小正方体搭成的几何体从上面看到的图形,其中正方形中的数字表示该位置上的小正方体的个数,请画出该几何体从正面与左面看到的图形.答案一、选择题1. 【答案】C【解析】A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选C.【知识点】由立体图形到视图2. 【答案】C【解析】从左边看时,圆柱是一个圆,故选C.【知识点】由立体图形到视图3. 【答案】C【解析】易得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子.【知识点】由视图到立体图形4. 【答案】D【解析】由题意,解:由主视图和左视图可确定所需正方体个数最少和最多时俯视图为:则组成这个几何体的小正方体最少有9个最多有13个,∴该几何体所用小立方块的个数为n,则n的所有可能值有5种.【知识点】由视图到立体图形、从不同方向看物体5. 【答案】C【知识点】由视图到立体图形6. 【答案】D【解析】由俯视图可知,该几何体的主视图分3列,第一列和第三列均有3个小正方形,第二列有2个小正方形.故该几何体的主视图如下:【知识点】由视图到立体图形、从不同方向看物体7. 【答案】B【知识点】由立体图形到视图8. 【答案】D【解析】从上往下看,得一个长方形,由3个小正方形组成.【知识点】由立体图形到视图9. 【答案】C【知识点】由视图到立体图形10. 【答案】A【知识点】由立体图形到视图二、填空题11. 【答案】38【解析】从前往后分层数,如图所示:共有13+6+6+13=38个.∴这个立体图形由38个小正方体组成.【知识点】由立体图形到视图12. 【答案】②【解析】根据题意知,正三棱柱后侧面与投影面平行,则该正三棱柱的正投影即主视图.故答案为②.【知识点】平行投影的性质13. 【答案】②【解析】图②中圆柱的俯视图是圆,可以堵住圆形空洞,它的主视图和左视图是正方形,可以堵住正方形空洞.【知识点】由立体图形到视图14. 【答案】4【解析】第一种可以把第二层前面这两个的左边这个拿掉,第二种可以把第二层前面这两个的右边这个拿掉,第三种可以把第二层后面这三个的中间这个拿掉,第四种可以把第二层前面这两个的左边这个拿掉和第二层后面这三个的中间这个拿掉.【知识点】由立体图形到视图15. 【答案】185πcm2【解析】由题图可知,这个几何体的侧面积是12×2π×102×√(102)2+122+2π×102×12=185πcm2.【知识点】由视图到立体图形16. 【答案】5【解析】在俯视图上盖楼,∴最多5个.【知识点】由视图到立体图形17. 【答案】3【解析】依题意,得BC=1.8,FH=1.5,CD=1.8,EF=1.5.∴∠H=∠B=45∘.∴BO=HO=AO=12BH.又CF=2.7,∴BH=6.∴AO=3.【知识点】等腰直角三角形、投影三、解答题18. 【答案】(1) 三视图如图所示:(2) 它的表面积为:(7+5+2+1)×2×(2×2)=120cm2.【知识点】由立体图形到视图、由三视图计算表面积、体积19. 【答案】(1) 如图所示.(2) 3【知识点】由立体图形到视图、作图--三视图20. 【答案】(1) 11(2) 略.【知识点】由立体图形到视图21. 【答案】(1) 这个几何体三个视图如图所示:(2) (6+6+6)×2+2=38.(3) 4【解析】(3) 这个几何体的左视图和俯视图不变,在俯视图上,标上该位置放小立方体的个数,(+后面的数是可以增加的数)因此最多可以增加4个,故答案为:4.【知识点】由立体图形到视图、由三视图计算表面积、体积22. 【答案】(1) 10(2) 作图略.(3) 该几何体的表面积是102×(6×2+6×2+6)+2×102=3200(cm2).【解析】(1) 由图可知,正视图是从前往后看到的图形,有三行三列,左边第一列3层,中间1层,右边2层.左视图是从左往右看到的有三行三列,左边第一列有三层,中间列有2层,最右侧有1层;俯视图是从上往下看到的图,是三行三列,最上面一行有三个正方形,最下面一行有1个正方形,中间一行有2个正方形.【知识点】由立体图形到视图、由三视图计算表面积、体积、从不同方向看物体23. 【答案】如图所示:【知识点】由立体图形到视图24. 【答案】物体的形状是六棱柱,形状如图所示.【知识点】由视图到立体图形25. 【答案】如图所示:【知识点】由立体图形到视图。

北师大版九年级数学上册第四章视图与投影(同步+复习)串讲精品课件

北师大版九年级数学上册第四章视图与投影(同步+复习)串讲精品课件

第二单元:投影
太阳光
定义:
因为太阳离我们非常遥远,所以太阳光线可以看成平 行光线,像这样的光线所形成的投影称为平行投影.
观察这四幅图片,它们有什么共同特点吗?
观察
一.投影与平行投影
1. 投影现象;物体在阳光的照射下,会在地面 或墙壁上留下它的影子,这就是投影现象。 平行投影:太阳光线可以看成是平行光线, 象这样的平行光线形成的投影称平行投影。 投影的分类
【例2】
1、一天下午,秦老师先参加了校运会200m比赛,然后又参加 400m比赛,摄影师在同一位置拍摄了她参加这两场比赛的照片 (如下图).你认为秦老师参加400m比赛的照片是哪一张?为 什么?
(1) 答案:图(1)
(2)
随堂练 习
1.(2010·珠海中考)一天,小青在校园内发现,旁边一 颗树在阳光下的影子和她本人的影子在同一直线上,树顶 的影子和她头顶的影子恰好落在地面的同一点,同时还发
几何体 主视图 左视图 俯视图
【例2】画出图中各物体的主视图、左视图和俯 视图:
第一幅
第二幅 第三幅
【练习】根据下列主视图和俯视图,找出对应 的物体。
主 视 图 俯 视 图
1
2
3
4
小结
拓展
回味无穷
• 三视图 • 主视图——从正面看到的图 • 左视图——从左面看到的图 • 俯视图——从上面看到的图 • 画物体的三视图时,要符合如下原则: • 位置:主视图 左视图 • 俯视图 • 大小:长对正,高平齐,宽相等. • 挑战“自我”,提高画三视图的能力.
① ② ③ ④ 能较完整地表达物体的结构(用平面图形)。 主视图反映了物体的长和高;(看不到宽) 俯视图反映了物体的长和宽;(看不到高) 左视图反映了物体的宽和高。(看不到长)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、回忆主视图、左视图、俯视图的概念.
二、下列各物体从不同的角度观看,它们的形状可能各不相同,请试着从不同的角度想像它们的形状
.
三、试从下列各图中找出第二题中各物体的主视图(不考虑大小)
.
四、从下列各图中找出第二题中各物体的左视图(不考虑大小)
.
五、试从下列各图中找出第二题中各物体的俯视图(不考虑大小)
.
六、试在教室中观察找到3个物体,并想像它们的三种视图各是什么样子.
§4.1.1
视图与投影
一、请说出画物体的视图对,看得见的轮廓线通常画成什么线,看不见的轮廓线通常画成什么线.
二、观察以下各物体:
(1)右图为小刚画出的图(a )的主视图,你认为他画的对吗?如果不同意,请指出错误之处,并将其他各图中物体的主视图画出来.
(2)左下图是小亮画出的图(b )的左视图,你同意吗?如果不同意请指出错误并画出图(a )至图(f )的左视图
.
(3)右上图是小敏画出的图(e )的俯视图,你同意吗,如果不同意,请指出错在哪里,并将图(a )至图(f )的俯视图画出来.
三、指出下列各物体的主视图、左视图、右视图的错误,并修改.
四、画出下图中的物体的三种视图.
§4.1.2
视图与投影
一、下图中,是木杆和旗杆竖在操场上,其中木杆在阳光下的影子已画出
.
(1)用线段表示这一时刻旗杆在阳光下的影子. (2)比较旗杆与木杆影子的长短. (3)图中是否出现了相似三角形?
(4)为了出现这样的相似三角形,木杆不可以放在图中的哪些位置?
二、下图是我国北方某地一棵树在一天不同时刻拍下的五张图片,仔细观察后回答下列问题
.
(1)说出这五张图片所对应时间的先后顺序.
(2)根据生活经验,谈谈由早到晚该地物体影子的长短变化规律.
三、三角板在阳光下的影子一定是三角形吗?根据物体的影子来判断其形状可以吗?
四、以下是我国北方某地一物体在阳光下,分上、中、下午不同时刻产生的影子
.
(1)观察到以上各图片的人是站在物体的南侧还是北侧? (2)分别说出三张图片对应的时间是上午、中午,还是下午.
(3)为防止阳光照射,你在上、中、下午分别应站在A 、B 、C 哪个区域?
视图与投影
一、画出下图中各木杆在灯光下的影子.
二、(1)下左图是两人站在灯光下,请用线段将图中的影子补充完整.
(2)上右图是两人在阳光下,请将他们的影子补充完整.
(3)当物体的影子落在一个平面上时,两物体在灯光下产生的影子与在阳光下产生的影子有何区别?
三、下图中是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会如何变化?
四、灯光与太阳光都可以产生影子,但太阳光线是平行的,为此其产生的影子方向一致,而灯光产生的影子大多数情况下方向不同,即使在方向相同时,产生的影子也有差别,如下图
(1)在图(1)、(2)中光线AE 、C F 平行吗?
(2)在图(1)中△AEB 与△C F D 有可能相似吗?在什么情况下相似? (3)在图(2)中△AEB 与△C F D 相似吗?为什么?
视图与投影。

相关文档
最新文档