新课标教案2_数怎么又不够用了
北师大版数学八年级上册1《数怎么又不够用了》教案3
北师大版数学八年级上册1《数怎么又不够用了》教案3一. 教材分析《数怎么又不够用了》这一节主要是让学生了解有理数的乘方运算。
通过这一节的学习,学生能够掌握有理数乘方的概念,理解有理数乘方的运算规则,并能够运用有理数乘方解决实际问题。
二. 学情分析八年级的学生已经掌握了有理数的基本运算,对数学概念有一定的理解能力。
但是,对于有理数的乘方运算,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解有理数乘方的概念和运算规则,并通过大量的练习让学生熟练掌握。
三. 教学目标1.让学生了解有理数的乘方概念,理解有理数乘方的运算规则。
2.培养学生运用有理数乘方解决实际问题的能力。
3.培养学生合作学习、积极思考的学习习惯。
四. 教学重难点1.有理数乘方的概念。
2.有理数乘方的运算规则。
五. 教学方法采用问题驱动法、案例教学法、合作学习法。
六. 教学准备1.PPT课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数乘方的概念:小明有一块长为2米,宽为3米的长方形土地,他想将这块土地划分成若干个1平方米的小块,问小明最少需要划分多少块?2.呈现(10分钟)通过PPT展示有理数乘方的定义和运算规则,引导学生理解有理数乘方的概念。
3.操练(10分钟)让学生进行有理数乘方的运算练习,教师及时给予指导和反馈。
4.巩固(10分钟)通过一些具体的例子,让学生运用有理数乘方解决实际问题,巩固所学知识。
5.拓展(5分钟)引导学生思考:有理数乘方在实际生活中有哪些应用?6.小结(5分钟)对本节课的主要内容进行总结,强调有理数乘方的概念和运算规则。
7.家庭作业(5分钟)布置一些有关有理数乘方的练习题,让学生课后巩固所学知识。
8.板书(5分钟)板书本节课的主要知识点,方便学生复习。
通过本节课的教学,发现部分学生在理解有理数乘方概念时还存在一定的困难,需要在今后的教学中加强引导和解释。
另外,在运用有理数乘方解决实际问题时,学生的运算能力还有待提高。
八年级数学上册 数怎么又不够用了教案2 北师大版
如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a 2=2,故a 应比1.4大且比1.5小,可以写成1.4<a <1.5,所以a 是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.请一位同学把自己的探索过程整理一下,用表格的形式反映出来.
[生]我的探索过程如下.
边长a 面积S
1<a <2
1<S <4 1.4<a <1.5
1.96<S <
2.25 1.41<a <1.42
1.9881<S <
2.0164 1.414<a <1.415
1.999396<S <
2.002225 1.4142<a <1.4143 1.99996164<S <2.00024449
[师]还可以继续下去吗?
[生]可以
[师]请大家继续探索,并判断a 是有限小数吗?
[生]a = 1.41421356…,还可以再继续进行,且a 是一个无限不循环小数.
[师]请大家用上面的方法估计面积为5的正方形的边长b 的值.边长b 会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答(约4分钟)
[生]b = 2.236067978…,还可以再继续进行,b 也是一个无限不循环小数
2.无理数的定义
请大家把下列各数表示成小数
3,112,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.
[生]3 = 3.0,54= 0.8,95=∙
5.0,
∙=71.0458,∙∙=818.1112
[生]3,54是有限小数,112,458,95是无限循环小数.。
数不够用了数学教案
数不够用了数学教案一、教学目标1. 让学生理解并掌握数不够用的情况,能够正确地表示和解决实际问题。
2. 培养学生的逻辑思维能力和解决问题的能力。
3. 提高学生对数学的兴趣,培养学生的创新意识和合作精神。
二、教学内容1. 数不够用的概念和原因。
2. 数的借一当十和借十当百的规则。
3. 数的进位和退位的原理。
4. 解决实际问题,如购物时找零、存款利息计算等。
三、教学重点与难点1. 教学重点:数不够用的概念、借一当十和借十当百的规则、数的进位和退位原理。
2. 教学难点:数的借一当十和借十当百的规则的应用,解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究和发现规律。
2. 运用实例分析和讨论,培养学生的实际应用能力。
3. 采用小组合作学习,培养学生的团队合作精神。
五、教学准备1. 教学课件或黑板。
2. 实例材料和道具。
3. 练习题和答案。
教案的具体内容和详细的教学步骤将在后续的章节中提供。
六、教学过程1. 引入:通过生活实例,如购物时找零,引导学生思考数不够用的情况。
2. 讲解:讲解数不够用的概念,解释数的借一当十和借十当百的规则,以及数的进位和退位的原理。
3. 示范:通过示例,演示数的借一当十和借十当百的规则的应用,以及数的进位和退位的计算过程。
4. 练习:学生独立完成练习题,巩固数的借一当十和借十当百的规则,以及数的进位和退位的应用。
七、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性。
2. 练习题的正确率:检查学生完成练习题的正确率,评估学生对数的借一当十和借十当百的规则,以及数的进位和退位的理解和掌握程度。
3. 小组合作表现:评估学生在小组合作学习中的表现,包括合作态度、沟通能力和解决问题的能力。
八、教学拓展1. 引导学生思考数的借一当十和借十当百的规则在实际生活中的应用,如存款利息计算、购物打折等。
2. 组织学生进行数学游戏,如数独、接龙等,提高学生的逻辑思维能力和解决问题的能力。
2.1数怎么不够用了(教案)
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
另外,我觉得在课堂总结环节,可以让学生们来总结今天学到的知识点,这样既能检验他们的学习效果,也能提高他们的表达能力。同时,针对学生们在课堂中提出的疑问,我需要在课后进行总结,为下一节课做好准备,确保他们能够真正掌握正负数的知识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解正负数的基本概念。正负数是表示具有相反意义的量的数,它是数系扩展的重要部分,广泛应用于生活各个领域。
2.案例分析:接下来,我们来看一个具体的案例。例如,温度计上0℃以上为正,以下为负,这样表示既简洁又明确。
3.重点难点解析:在讲授过程中,我会特别强调正负数的概念和加减运算规则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
-数系扩展的意义:让学生理解数系扩展的必要性,认识到数学知识的发展过程。
2.教学难点
-正负数的概念理解:学生可能难以理解负数的实际意义,需要通过生动的实例和实际操作来加强理解。
-突破方法:借助数轴、温度计等教具,让学生直观地感受正负数。
-正负数的加减运算:学生可能对正数与负数的加减运算感到困惑,需要通过逐步引导和练习来突破。
3.介绍正数与负数的表示方法,以及它们在数轴上的表示。
4.探索正数与负数的加减运算规则,并通过实例进行解释和练习。
5.引导学生思考数系扩展的必要性,激发他们对数学知识的探索兴趣。
《数不够用了》数学教案
《数不够用了》数学教案第一章:数的认识1.1 学习目标:让学生了解自然数的意义,理解数的不够用的情况。
1.2 教学内容:介绍自然数的概念,让学生通过实际操作体会数的不够用的情况。
1.3 教学方法:采用直观教具和实际操作的方式,让学生通过观察和实践来理解数的意义。
1.4 教学步骤:(1) 引导学生观察日常生活中的一些数量,如玩具、书籍等,让他们认识到自然数的概念。
(2) 通过实际操作,让学生体会到数的不够用的情况,例如分配有限的物品给学生们,让他们感受到数量不足的问题。
(3) 讲解自然数的定义和性质,让学生理解自然数的概念。
(4) 进行小组讨论,让学生分享他们对数的认识和体会。
第二章:加法的概念2.1 学习目标:让学生理解加法的意义,学会进行简单的加法运算。
2.2 教学内容:介绍加法的概念,让学生通过实际操作学会加法运算。
2.3 教学方法:采用直观教具和实际操作的方式,让学生通过观察和实践来理解加法的意义。
2.4 教学步骤:(1) 引导学生回顾日常生活中的一些数量,如玩具、书籍等,让他们认识到自然数的概念。
(2) 通过实际操作,让学生体会到加法的意义,例如分配有限的物品给学生们,让他们感受到数量不足的问题,并引导他们思考如何通过加法来解决。
(3) 讲解加法的定义和性质,让学生理解加法的概念。
(4) 进行小组讨论,让学生分享他们对加法的认识和体会。
(5) 进行简单的加法运算练习,让学生巩固加法运算的方法。
第三章:减法的概念3.1 学习目标:让学生理解减法的意义,学会进行简单的减法运算。
3.2 教学内容:介绍减法的概念,让学生通过实际操作学会减法运算。
3.3 教学方法:采用直观教具和实际操作的方式,让学生通过观察和实践来理解减法的意义。
3.4 教学步骤:(1) 引导学生回顾日常生活中的一些数量,如玩具、书籍等,让他们认识到自然数的概念。
(2) 通过实际操作,让学生体会到减法的意义,例如分配有限的物品给学生们,让他们感受到数量不足的问题,并引导他们思考如何通过减法来解决。
北师大版八年级数学上册2.1数怎么又不够用了教案2
2.1 数怎么又不够用了(二) 教案教学目标:(一)教学知识点1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.3.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.教学重点:1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点:1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学过程:一、创设问题情境,引入新课我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二、讲授新课1.导入请看图(1)如图1—2,3个正方形的边长之间有怎样的大小关系?说说你的理由。
(2)大家能不能判断一下面积为2的正方形的边长a的大致范围呢?因为a2大于1且a2小于4,所以a大致为1点几.(3)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索。
a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如 1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.请一位同学把自己的探索过程整理一下,用表格的形式反映出来.还可以继续算下去吗? a 可能是有限小数吗? 事实上,a=1.41421356…,它是一个无限不循环小数。
做一做(1)估计面积为5的正方形的边长b 的值(结果精确到十分位),并用计算器验证你的估计。
答案:精确到十分位是2.2.(2)如果精确到百分位呢?事实上,b=2.236067978…,它是一个无限不循环小数。
数怎么不够用了教学设计2北师大版(优秀教案)
数怎么不够用了(第课时)一、学生起点剖析学生在小学阶段已经学习了非负数,七年级又学习了有理数. 本章第一课时的学习,学生感觉到了生活中的确存在着不是有理数的数,让学生认识到所学的数又不够用了,进而激发他们学习的好奇心,能踊跃主动地参加到学习中,充足认识到学习无理数引入的必需性,发展学生的合情推理能力.二、教课任务剖析《数怎么不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节,第一课时让学生感觉数的发展,感知生活中的确存在着不一样于有理数的数 . 本课时为第二课时,内容是成立无理数的基本观点,借助计算器,感觉无理数是无穷不循环小数,会判断一个数是无理数,并能联合实质鉴别有理数和无理数 . 在活动中进一步发展学生独立思虑的意识和合作沟通的能力,在学习中意会数学知识根源于生活,领会数学知识与现实世界的联系,并且对此后学习数学也有侧重要意义 . 为此,本节课的教课目的是 :.借助计算器研究无理数是无穷不循环小数,借助计算器进行估量,培育学生的估量能力,发展学生的抽象归纳能力,并从中领会无穷迫近的思想..研究无理数的定义,比较无理数与有理数的差别,并能鉴别出一个数是无理数仍是有理数,训练学生的思想判断能力 ..能够正确地将当前所学习的数按不一样角度进行分类,并说明原因,进一步领会分类思想,培育学生解决问题的能力 ..充足调换学生参加数学识题的踊跃性,培育学生的合作精神,提高他们的辨识能力 .三、教课过程设计本六个教课:第一:新引入;第二:活与研究;第三:知分整理;第四:知运用与稳固;第五:堂小;第六:作部署.第一环节:新课引入内容 :想想:. 有理数是怎样分的?整数(如1,,,,⋯ )有理数分数(如1,2,9,,⋯) 3511. 除上边的数之外,我学哪些不一样的数?如周率,⋯上又了解到一些数,如 a2 2 ,b2 5 中的,不是整数,能不可以化成分数呢?那么它终究是什么数呢?本我就来揭露它的真面目.意:通些学生有理数不用了,存在既不是整数,也不是分数的数,激学生的求知欲,去揭露它的真面目.成效:激学生的好奇心和求知欲,引出本“数不用了()”.第二个环节:活动与研究. 研究无理数的小数表示内容:借助算器以小的形式面的正方形的和面的正方形的行估 .看,判断下边个正方形的之有怎的大小关系?的取范大概是多少 ?怎样估量的?能否存在一个小数的平方等于?你的原因 .面<<<<<<<<<<<<<<<<<<<<是介于和之的一个数,既不是整数,也不是分数,必定不是有理数 .假如写成小数形式,它是无穷不循小数.大家用上边的方法估面的正方形的的.目的:学生有充足的行思虑和沟通,逐地小范,借助算器研究出⋯,⋯,是无穷不循小数的程,领会无穷迫近的思想.成效:学生感觉到无理数确是无穷不循的,后定无理数打下基.. 研究有理数的小数表示,明确无理数的观点内容:同学以学小的形式活:一起学出随意一分数,另一起学将此分数表示成小数,并此小数的形式 .一:分数化成小数,最此小数的形式有哪几种状况?研究:分数只好化成有限小数或无穷循小数.即任何有限小数或无穷循小数都是有理数.:像⋯,⋯,-⋯等些数的小数位数都是无穷的,并且不是循的,它都是无穷不循小数 .我把无穷不循小数叫做无理数 .(周率⋯也是一个无穷不循小数,故是无理数 ).目的:通学生的活与研究,得出无理数的观点.成效:通生互的教课活,既培育学生独立思虑与小合作的能力,又感觉到无理数存在的必定性,成立了无理数的观点 .第三个环节:知识分类整理内容:到当前止我所学的数能够分几?(按小数的形式来分 ).整数有理数:有限小数或无穷循小数数分数无理数:无穷不循小数“无穷不循小数”与“无穷循小数”的系和区.无理数能够行怎的分 ?目的:培育学生的能力,把新学知入已有的知系统,一步展学生的思判断能力,加学生分思想的理解.成效:通生的共同研究,形成中学段数的系,提高了能力 .第四个环节:知识运用与稳固内容:一个数是无理数是有理数.例填空 :, 4.96 ,2,,,-⋯,,⋯ (由相的正整数成 ). 33⋯⋯有理数会合无理数会合例判断以下法能否正确()有限小数是有理数 ;()()无穷小数都是无理数 ;()()无理数都是无穷小数 ;()()有理数是有限数 .()例以下各正方形的是无理数的是()()面的正方形;()面 4 的正方形;25()面的正方形;()面的正方形 .例一个直角三角形两条直角的分是和,斜是有理数?解 :由勾股定理得 : a23252,即 a2 =34 .因不是完好平方数,所以不是有理数 .:.无理数是无穷不循小数,有理数是有限小数或无穷循小数..任何一个有理数都能够化成分数p形式(≠,,整数且互),而无理数q不可以 .一:.本随堂..已知:在数3,5, 1.42 ,,3.1416,2, 0 , 42,( 1)2n,43-⋯中,()写出全部有理数;()写出全部无理数;()把些数按由小到大的序摆列起来,并用符号“<” 接 .目的:通例的解、,学生充足理解无理数、有理数的观点、区,感觉数的分 .成效:通学生,更为明确了有理数、无理数的观点,及它之的区与系,激学生学趣,稳固了观点的理解.第五个环节:讲堂小结内容:本你有哪些收?.无理数的定 ..你是怎判断一个数是无理数是有理数的?.把已学的数怎分?目的:学生学会及知点、数学方法行,并整理成,形成知系统,培育学生优秀的学,提高其能力.成效:生共同充,形成完好的知系统.第六个环节:部署作业习题 1.2.3.四、教课反省本节课借助找寻正方形边长这一“现实生活中的实例” ,让学生经过预计、借助计算器进行研究、议论等门路,领会数学学习的乐趣,领会无穷迫近的数学思想,获得无理数的观点;可能在教课实行过程中,对基础较单薄的学生和班级,这一研究过程所需时间较长,会影响后边环节的进行,但感知过程是学生理解无理数这一抽象观点所必需的,所以绝对不可以淡化 .让学生在数学学习中能将抽象的知识形象详细化,复杂知识系统化 .同时指引学生回首旧知、研究新知,形成必定的数学研究能力,进一步培育学生的分类和归纳的思想,为此后的数学学习打下坚固基础 .但对观点的理解掌握一些同学还不很到位,只好在此后的教课过程中不停的加深 .此外,因为学生对有理数和无理数的观点详细感知还不够,所以在第三环节:知识分类整理环节,学生自主整理和接受会有必定困难,若学生学习例后再进行知识分类整理可能会更好 .附:板书设计.数怎么不够用了()一、导入二、新课.有理数的定义:有限小数或无穷循环小数..无理数的定义:无穷不循环小数..数分类:整数有理数:有限小数或无穷循环小数数分数无理数:无穷不循环小数三、例题叙述四、小结学习是一件增加知识的工作,在茫茫的学海中,也许我们困苦过,在困难的竞争中,也许我们疲惫过,在失败的暗影中,也许我们绝望过。
北师大八年级上册数怎么又不够了优秀教案
教案设计(一)组织教案(二)创设问题情境,导入新课同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目。
(三)实施目标1、请看图(幻灯投影)探究1:面积为2a⑴、如图3⑵、边长a呢?。
⑶、启发学生运用计算器进行探索,并以直观的方式表现出来,例如下面的表格形式:(幻⑷、继续探索,边长a 可能是怎样的数,你能得出什么结论?(明确提出:这是一个无限不循环小数)。
⑸、用上面的方法分组合作,探索估计面积为5的正方形的边长b 的值?同样得到一个无限不循环小数 探究2无理数的定义:⑴、分组计算把下列各数表示成小数112,458,95,54,你发现了什么? ⑵、它们是有限小数还是无限小数,是循环小数还是不循环小数。
⑶、有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数。
⑷、像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数.无限不循环小数叫无理数。
除上面的a ,b 外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数。
(变式教案)3、有理数与无理数的主要区别(1)、无理数是无限不循环小数,有理数是有限小数或无限循环小数。
(2)、任何一个有理数都可以化为分数的形式,而无理数则不能。
(四)典型例题下列各数中,哪些是有理数?哪些是无理数?3.14,-34,∙∙75.0,0.1010010001…(相邻两个1之间0的个数逐次加1).(五)当堂练习下列各数中,哪些是有理数?哪些是无理数? 0.4583,∙7.3,-π,-71,18。
(六)课堂小结1.用计算器进行无理数的估算。
2.无理数的定义。
3.判断一个数是无理数还是有理数。
(七)课堂预案(幻灯投影)1、判断题(1)有理数与无理数的差是有理数。
北师大版数学八年级上册1《数怎么又不够用了》教案2
北师大版数学八年级上册1《数怎么又不够用了》教案2一. 教材分析《数怎么又不够用了》这一节主要是让学生掌握有理数的概念,理解有理数在数轴上的表示方法,以及掌握有理数的加减法运算。
本节内容是八年级数学的重要内容,为学生以后学习更高级的数学知识奠定基础。
二. 学情分析八年级的学生已经掌握了整数和分数的知识,对数的运算也有一定的了解。
但他们对有理数的概念以及有理数在数轴上的表示可能会感到陌生,因此需要通过实例让学生直观地理解有理数的概念,并通过数轴帮助学生理解有理数的大小关系。
三. 教学目标1.让学生理解有理数的概念,掌握有理数的加减法运算。
2.培养学生运用数轴分析问题、解决问题的能力。
3.提高学生对数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重难点:有理数的概念,有理数的加减法运算。
2.难点:有理数在数轴上的表示方法,有理数的加减法运算。
五. 教学方法采用问题驱动法、实例教学法、数形结合法,以学生为主体,教师为主导,通过提问、讨论、演示等形式,激发学生的学习兴趣,引导学生主动探索、积极思考。
六. 教学准备1.准备数轴、有理数的加减法运算示例。
2.准备与本节内容相关的问题,用于引导学生思考。
七. 教学过程1.导入(5分钟)利用数轴引导学生回顾整数和分数的知识,提问:我们已经学习了整数和分数,那么有没有比分数更小的数呢?引导学生思考,引出有理数的概念。
2.呈现(10分钟)呈现有理数的定义,通过实例让学生理解有理数的概念。
同时,介绍有理数在数轴上的表示方法,让学生掌握有理数的大小关系。
3.操练(10分钟)让学生在数轴上表示给定的有理数,并找出它们的大小关系。
教师引导学生动手操作,并及时给予反馈。
4.巩固(10分钟)讲解有理数的加减法运算规则,让学生通过实例进行练习。
教师引导学生总结加减法运算的规律,并加以巩固。
5.拓展(10分钟)提出与本节内容相关的问题,让学生进行思考和讨论。
教师引导学生运用数轴分析问题,解决问题。
2[1].1数怎么又不够用了第二稿
§2.1 《数怎么又不够用了》教案第二稿一、教材的地位和作用:《数怎么又不够用了》是义务教育课程标准北师大版实验教材八年级(上)第二章《实数》的第一节.在本节课之前,学生已经完成了有理数域的扩充、学习了勾股定理等知识,本节内容主要通过具体情境让学生感受数域的发展,建立无理数的概念,将认识的数域扩充到实数范围内,借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.学生将在具体的背景中,通过操作、估算、分析等活动,感受无理数的产生的实际背景和引入的必要性,并能判断一个数是无理数,能说出理由.本节课是学生对于数域的又一次非常重要的扩充,对于学生认识数学发展史及培养学生学习数学的兴趣起着非常重要的作用。
二、学情分析:八年级的学生的抽象思维能力、逻辑思维能力、估算能力有限,对于数形结合思想的理解也比较浅显,但是学生思维比较活跃,乐于动手,乐于探究,乐于思考,因此,教学中应重点通过具体的情景,让学生主动感受从有理数域向实数域扩充的必要性,借助计算器应用无限逼近法来体验无理数是无限不循环的小数这一本质属性。
说明:以上内容属于说课内容,不必在教案中展示,因此删掉。
一、教学目标:素质教育要求数学教学应以学生的发展为本,以学生的能力培养为重,《全日制义务教育数学课程标准(2011版)》中对学生的培养目标在具体表述上做了修改,提出了“四基”:基础知识、基本技能、基本思想和基本活动经验;提出了“四能”:发现问题和提出问题的能力、分析问题和解决问题的能力。
根据以上指导思想,确定本节课的教学目标如下:说明:以上内容属于说课内容,不必在教案中展示,因此删掉。
知识与技能1.了解义务教育阶段三次数域扩充的背景,理解数域扩充的必要性.2.借助计算器,掌握用逼近法探索无理数近似值.3.掌握判断一个数是否为无理数的方法.过程与方法1.通过设置“预习导案”,让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力、发现问题和提出问题的能力. 2.通过设置“问题串”,引导学生正确地进行推理和判断某些数是否为无理数,培养学生分析问题和解决问题的能力。
数怎么又不够用了(二)教案
第二章实数2.数怎么又不够用了〔二〕通过第一课时的学习,让学生先感受到了生活中确实存在着不是有理数的数,我们所学的数又不够用了,从而激发学生学习的好奇心、积极主动地参与到学习中,充分感受到无理数引入的必要,开展学生的合情推理能力.三、教学目标分析〔一〕教学目标知识与技能目标1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.3.探索无理数与有理数的区别,并能区分出一个数是无理数还是有理数.过程与方法目标1.通过学生活动准确认识到有理数都可以划成有限小数和无限循环小数,开展学生的抽象概括能力.2.通过对有理数的相关知识的归纳和总结,能够准确地将目前所学习的数按不同角度进行分类.3.进一步让学生将有理数和无理数结合实际问题进行分析推理,培养学生解决问题的能力.情感与态度目标1.让学生理解估算的意义,掌握估算的方法,同时开展学生的估算能力,在数学活动发挥学生的积极作用.2.充分调动学生参与数学问题的积极性,培养学生的合作精神.〔二〕教学重点:1.无理数概念的建立过程.2.了解无理数与有理数的区别,并能正确判断.〔三〕教学难点1.无理数概念的建立及估算.2.会判断一个数是无理数还是有理数,有理数与无理数的区别.四、教学方法1. 教学方法:引导、探究、发现与合作交流相结合.2. 课前准备:多媒体、计算器.五、教学过程本节课设计六个教学环节;第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与稳固;第五环节:课时小结;第六环节:作业布置 第一环节:新课引入想一想:1. 有理数如何分类的 整数〔如-1,0,2,3,…):都可看成有限小数有理数分数(如-31,52,119,… ):可不可能都化成有限小数或无限小数 2.上节课了解到一些数,如a 2=2,b 2=5中的a ,b 既不是整数,也不是分数,那么它们究竟是什么数呢意图:通过这些问题让学生发现有理数不够用了,这些数既不是整数,也不是分数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数怎么又不够用了〞.第二个环节:活动与探究〔一〕探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.归纳总结:a ,b 既不是整数,也不是分数,那么a ,b 一定不是有理数.如果写成小数形式,它们是无限不循环小数.效果:学生感受到无理数确实是无限不循环的,为后续以无限部循环小数定义无理数打下根底.〔二〕探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式。
七年级数学上册2.1数怎么不够用了教案人教新课标版【教案】
一、课题§2.1 数怎么不够用了( 1)二、教课目的1.使学生认识正数与负数是从实质需要中产生的;2.使学生理解正数与负数的看法,并会判断一个数是正数仍是负数;3.初步会用正负数表示拥有相反意义的量;4.在负数看法的形成过程中,培育学生的察看、归纳与归纳的能力.三、教课要点和难点要点难点负数的意义.负数的意义.四、教课手段现代讲堂教课手段五、教课方法启迪式教课六、教课过程(一)、从学生原有的认知构造提出问题大家知道,数学与数是分不开的,它是一门研究数的学识.此刻我们一同往返想一下,小学里已经学过哪些种类的数?学生答后,教师指出:小学里学过的数能够分为三类:自然数( 正整数 ) 、分数和零 ( 小数包含在分数之中 ) ,它们都是因为实质需要而产生的.为了表示一个人、两只手、,我们用到整数1, 2,4.87 、为了表示“没有人”、“没有羊”、,我们要用到0.但在实质生活中,还有很多量不可以用上述所说的自然数,零或分数、小数表示.(二)、师生共同研究形成正负数看法某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,假如只用小学学过的数,都记作5℃,就不可以把它们差别清楚.它们是拥有相反意义的两个量.现实生活中,像这样的相反意义的量还有好多.比如,珠穆朗玛峰高于海平面8848 米,吐鲁番盆地低于海平面155 米,“高于” 和“低于”其意义是相反的.和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:如何差别相反意义的量才好呢?待学生思虑后,请学生回答、评论、增补.教师小结:同学们成了发明家.甲同学说,用不一样颜色来划分,比方,红色5℃表示零下 5℃,黑色 5℃表示零上5℃;乙同学说,在数字前方加不一样符号来划分,比方,△5℃表示零上 5℃,× 5℃表示零下5℃ .其实,中国古代数学家就以前采纳不一样的颜色来划分,古时叫做“正算黑,负算赤”.此刻这类方法在记账的时候还使用.所谓“赤字”,就是这样来的.此刻,数学中采纳符号来划分,规定零上5℃记作 +5℃ ( 读作正 5℃) 或 5℃,把零下 5℃记作 -5 ℃ ( 读作负 5℃ ) .这样,只需在小学里学过的数前方加上“ +”或“ - ”号,就把两个相反意义的量简洁地表示出来了.让学生用相同的方法表示出前方例子中拥有相反意义的量:高于海平面8848 米,记作 +8848 米;低于海平面155 米,记作 -155 米;教师解说:什么叫做正数?什么叫做负数?重申,数0既不是正数,也不是负数,它是正、负数的界线,表示“基准” 的数,零不是表示“没有” ,它表示一个实质存在的数目.并指出,正数,负数的“+”“ - ”的符号是表示性质相反的量,符号写在数字前方,这类符号叫做性质符号.三、运用举例变式练习例全部的正数构成正数会合,全部的负数构成负数会合.把以下各数中的正数和负数分别填在表示正数会合和负数会合的圈里:此例由学生口答,教师板书,注意加上省略号,说明这是因为正( 负 ) 数会合中包含全部正( 负 ) 数,而我们这里只填了此中一部分.而后,指出不单能够用圈表示会合,也能够用大括号表示会合.讲堂练习随意写出 6 个正数与 6 个负数,并分别把它们填入相应的大括号里:正数会合:{},负数会合:{}.(四)、小结的数,负数就是在正数前方加上“ -”号的数.0既不是正数,也不是负数,0能够表示没有,也能够表示一个实质存在的数目,如0℃.七、练习设计1.北京一月份的日均匀气温大概是零下3℃,用负数表示这个温度.2.在小学地理图册的世界地形图上,能够看到亚洲西部地中海旁有一个死海湖,图中标着 -392 ,这表示死海的湖面与海平面对比的高度是如何的?3.在以下各数中,哪些是正数?哪些是负数?-3.6 ,-4 , 9651, -0.1 .4.假如 -50 元表示支出50 元,那么 +200 元表示什么?5.河流中的水位比正常水位低0.2 米记作 -0.2米,那么比正常水位高0.1 米记作什么?6.假如自行车车条的长度比标准长度长 2 毫米记作 +2 毫米,那么比标准长度短 3 毫米记作什么?7.一物体能够左右挪动,设向右为正,问:(1) 向左挪动12 米应记作什么?(2) “记作 8 米”表示什么?八、板书设计2. 1 数怎么不够用了(1)(一)知识回首(四)例题分析(六)讲堂小结(二)察看发现例1、例2(三)解方程(五)讲堂练习练习设计九、教课后记这节课是在小学里学过的数的基础上,从表示拥有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.所以学生经过这节课只好对负数看法有初步的理解,使学生掌握正负数的记法和它的描绘性定义,要求不可以过高.对有理数的深入理解将在此后的学习中逐渐增强.在教课方法和教课语言的选择上,尽可能注意中小学的连接,既不违犯科学性,又切合可接受性原则,教师在讲堂上要起好主导作用,并让学生有充足的活动时机,使得讲堂氛围有新鲜感.所以这节课采纳了在教师的启迪指引下,师生共同研究解决的门路,以讲话法为主.同时,教师的语言要尽量小孩化一、课题§2.1 数怎么不够用了(2)二、教课目的1.使学生理解有理数的意义,并能将给出的有理数进行分类;2.培育学生建立分类议论的思想.三、教课要点和难点要点难点有理数包含哪些数.有理数的分类及其分类的标准.四、教课手段现代讲堂教课手段五、教课方法启迪式教课六、教课过程(一)、从学生原有的认知构造提出问题1.什么是正、负数?2.如何用正、负数表示拥有相反意义的量?数0 表示量的意义是什么?举例说明.3.任何一个正数都比0 大吗?任何一个负数都比0 小吗?4.什么是整数?什么是分数?依据学生的回答引出新课.(二)、解说新课1.给出新的整数、分数看法引进负数后,数的范围扩大了.过去我们说整数只包含自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因此整数包含正整数(自然数)、负整数和零,相同分数包含正分数、负分数,即2.给出有理数看法整数和分数统称为有理数,即有理数是英语“Rational number”的译名,更切实的译名应译作“比3.有理数的分类为了便于研究某些问题,经常需要将有理数进行分类,需要不一样,分类的方法也经常不同依占有理数的定义可将有理数分红两类:整数和分数.有理数还有没有其余的分类方法?待学生思虑后,请学生回答、评论、增补.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即并指出,在有理数范围内,正数和零统称为非负数.并向学生重申:分类能够依据不一样需要,用不一样的分类标准,但一定对议论对象不重不漏地分类.(三)、运用举例变式练习例 1将以下数按上述两种标准分类:例 2以下各数是正数仍是负数,是整数仍是分数:讲堂练习25, -100 按两种标准分类.2.以下各数是正数仍是负数,是整数仍是分数?(四)、小结教师指引学生回答以下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?七、练习设计1.把以下各数填在相应的括号里( 将各数用逗号分开) :正整数会合:{};负整数会合:{};正分数会合:{};负分数会合:{}.2.填空题:的数是 ______ ,在分数会合里的数是______;(2)整数和分数合起来叫做 ______,正分数和负分数合起来叫做 ______ .3.选择题(1)-100不是[]A.有理数 B .自然数 C .整数 D .负有理数(2) 在以下说法中,正确的选项是[]B.零表示没有,不是有理数C.正整数和负整数统称为整数D.整数和分数统称为有理数八、板书设计(一)知识回首(三)例题分析(五)讲堂小结(二)察看发现例1、例2(四)讲堂练习练习设计九、教课后记在教授知识的同时,必定要重视数学基本思想方法的教课.对于这一点,布鲁纳有过精彩的阐述.他指出,掌握数学思想和方法能够使数学更简单理解和更简单记忆,更重要的是领悟数学思想和方法是通向迁徙大道的“光明之路”,假如把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾御数学知识,就能培育学生的数学能力.不只使数学学习变得简单,并且会使得其余学科简单学习.明显,依据布鲁纳的看法,数学教课就不可以就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄详细知识,具体解决问题的方法,逐渐形成和发展数学能力.为了使学生掌握必需的数学思想和方法,需要在教课中联合内容逐渐浸透,而不可以离开内容形式地教授.本课中,我们存心识地突出“分类议论”这一数学思想方法,并在教课中注意浸透两点:1.分类的标准不一样,分类的结果也不相同;2.分类的结果应是无遗漏、无重复,即每一个数一定属于某一类,又不可以同时属于不同的两类.。
数不够用了数学教案
数不够用了数学教案第一章:引入数不够用的概念1.1 学习目标:让学生理解数不够用的含义,能够识别数不够用的情况。
1.2 教学内容:解释数不够用的概念举例说明数不够用的情况引导学生思考数不够用时的解决方法1.3 教学活动:通过日常生活实例引入数不够用的概念,如购物时发现钱不够支付商品总价让学生分享自己经历过的数不够用的情况讨论解决数不够用的方法,如借钱、放弃购买等1.4 作业:让学生思考并记录一个自己遇到的数不够用的情况,以及解决方法第二章:数不够用的解决方法2.1 学习目标:让学生掌握几种常见的解决数不够用问题的方法。
2.2 教学内容:介绍几种解决数不够用问题的方法,如增加数值、减少需求、优化资源分配等通过实例讲解每种方法的适用情况和操作步骤2.3 教学活动:引导学生思考并讨论其他解决数不够用问题的方法通过小组合作,让学生尝试解决一些数不够用的问题,如资源分配、预算管理等2.4 作业:让学生选择一个自己感兴趣的领域,思考并记录一个解决数不够用问题的方法,以及其实施步骤和效果评估第三章:简单的数不够用问题解决策略3.1 学习目标:让学生能够运用简单的策略解决数不够用的问题。
3.2 教学内容:介绍一些简单的策略,如优先级排序、寻求帮助、创新思维等通过实例讲解每种策略的适用情况和操作步骤3.3 教学活动:引导学生思考并讨论其他解决数不够用问题的简单策略通过小组合作,让学生尝试解决一些简单的数不够用的问题,如时间管理、资源分配等3.4 作业:让学生选择一个自己感兴趣的领域,思考并记录一个解决数不够用问题的简单策略,以及其实施步骤和效果评估第四章:数不够用在实际生活中的应用4.1 学习目标:让学生了解数不够用在实际生活中的应用,能够运用数不够用的思维解决问题。
4.2 教学内容:介绍数不够用在实际生活中的应用,如经济学、管理学、工程学等通过实例讲解数不够用在不同领域的具体应用和方法4.3 教学活动:引导学生思考并讨论数不够用在实际生活中的应用场景通过小组合作,让学生尝试解决一些实际生活中的数不够用问题,如资源分配、预算管理等4.4 作业:让学生选择一个自己感兴趣的领域,思考并记录一个数不够用在实际生活中的应用,以及其实施步骤和效果评估第五章:总结与反思5.1 学习目标:让学生总结数不够用数学教案的学习内容,反思自己的学习过程和成果。
数怎么又不够用了(一)教学设计
数怎么又不够用了(一)教学设计第一篇:数怎么又不够用了(一)教学设计第二章实数1.数怎么不够用了三、教学目标1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为无理数,并能说出理由.(二)教学重点1.让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数,是否不是有理数.3.用计算器进行无理数的估算.(三)教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.无理数概念的建立及估算.3.判断一个数是否为有理数.五、教学过程:第一环节:章节引入a.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:(1)两个数 3.252525……与3.252252225……一样吗?它们有什么不同?(2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?b.你能求出面积为2的正方形的边长吗?你知道圆周率 的精确值吗?它们能用整数或分数(即有理数)来表示吗?第二环节:活动探究(一)发现新数将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形.在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:(1)设大正方形的边长为a,a应满足什么条件?(2)满足:a=2的数a是一个什么样的数?a可能是整数吗?说明你的理由?(3)a可能是分数吗?说说你的理由?引出课题《数怎么又不够用了》(二)感受新数的广泛性面积为5的正方形,它的边长b可能是有理数吗?说说你的理由。
2 1(三)巩固验证,应用拓展a. B,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的长可能是整数吗?可能是分数吗?说明理由.b.如图(1)是由16个边长为1的小正方形拼成的,试从连接这些小正方形的两个顶点所得的线段中,分别找出两条长度是有理数的线段,两条长度不是有理数的线段.第五环节:课时小结a.谈谈本节课你有什么收获与体会?有哪些困难需要别人帮你解决?b.感受数不够用了,会确定一个数是有理数或不是有理数.第六环节:布置作业习题2.1第二篇:教学中设计和使用了哪些教学活动我们认为,教学活动就是老师基于对教育教学规律和新课程教学理念的认知,总结教学实践经验,分析各种不同的教学要素及相互关系,运用直觉创造,确立教学的基本思路,并根据未来教学中可能发生的不同情况,从宏观的角度确定阶段性教学方案,有针对性地选择和组合相关的教学内容,确定组织形式,合理选择、组合设计教学的具体方法与实施步骤,使个人对教学的独到见解及相关才艺在教学方案中得到体现,教学从而具有前瞻性、创造性、灵活性、艺术性和可塑性。
数怎么又不够用了(一)教案
第二章实数1.数怎么不够用了一、学生起点分析八年级学生已经在学习《有理数》的过程中体会到数不够用了,刚刚学完《勾股定理》,再次感受到需要研究新的数了.在此基础上,学生能在“需要—探究—发现—论证”式的课堂中积极参与讨论问题,大胆发表自己的见解和看法,从非常直观的操作中发现问题,实现数的发展.[来源:学+科+网Z+X+X+K]二、教材任务分析[来源:学+科+网Z+X+X+K]《数怎么不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受数的发展,建立无理数的概念,第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.这是第1课时,学生将在具体的背景中,通过操作、估算、分析等活动,感受无理数的产生的实际背景和引入的必要性,并能判断一个数是无理数,并能说出理由.[来源:Z|xx|k.]三、教学目标分析(一)教学目标[来源:学,科,网]知识与技能目标[来源:ZXXK]1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为无理数,并能说出理由.过程与方法目标1.学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力.3.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.情感与态度目标1.激励学生积极参与教学活动,提高大家学习数学的热情.[来源:学.科.网Z.X.X.K]2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神. (二)教学重点1.让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数,是否不是有理数.3.用计算器进行无理数的估算.(三)教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.无理数概念的建立及估算.3.判断一个数是否为有理数.四、教学学法1.教学方法:引导、探究、发现与合作交流相结合.2.课前准备:多媒体,两个边长为1的正方形,剪刀,短绳.五、教学过程:本节课设计六个教学环节;第一环节:章节引入;第二环节:本节引入;第三环节:活动探究;第四环节:献身科学,执着追求;第五环节:课时小结;第六环节:作业布置.第一环节:章节引入内容:a .小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?(2)一个边长为6cm 的正方形木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?b .你能求出面积为2的正方形的边长吗?你知道圆周率π的精确值吗?它们能用整数或分数(即有理数)来表示吗?意图:通过这些问题,学生将发现,现实生活中存在不同于有理数的数,从而感受到需要学习新的数,激发学生的求知识欲望.效果:通过对实际问题的了解、解决,感受实际生活中需解决的问题,激发学生的好奇心和求知欲,引出本章课题《第二章 实数》.[来源:学_科_网Z_X_X_K]第二环节:复习引入内容:a .阅读下面的资料,在数学中,有理数的定义为:形如p q 的数(p 、q 为互质的整数,且p ≠0)叫做有理数,当p =1,q 为任意整数时,有理数p q 就是指所有的整数,如:12-=-2等,当p ≠1时,由p 、q 互质可知,有理数p q 就是指所有的分数,如711,-71,-235等,综上所述,有理数就是整数和分数的统称. 请用上述材料中所涉及的知识证明下面的问题:a .直角边长分别为3和1的直角三角形的斜边长是不是有理数?b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢?意图:回顾前面学过的数和范围,为数的扩充和发展做好铺垫,也可由问题a直接进入本课的学习.效果:学生通过知识回顾,再次感受数的扩充和发展的必要,为学习本节课在知识上、情感上作好准备.第三环节:活动探究(一)发现新数[来源:学,科,网]内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形.在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:(1)设大正方形的边长为a,a应满足什么条件?(2)满足:a2=2的数a是一个什么样的数?a可能是整数吗?说明你的理由?(3)a可能是分数吗?说说你的理由?引出课题《数怎么又不够用了》意图:让学生通过分析,探索发现问题,感受数不够用了,感受无理数的产生的现实背景和必然性,培养学生严密的逻辑性推理能力.效果:学生拿出课前准备好的两个边长为1的小正方形,通过师生互动、生生互动,调动学生学习的自主意识,在此基础上进行分组讨论,a2=2中的a既不是整数,也不是分数,本环节通过独立思考和小组讨论,培养学生的动手能力、合作能力、推理能力,初步感受a既不是整数也不是分数.(二)感受新数的广泛性内容:面积为5的正方形,它的边长b可能是有理数吗?说说你的理由。
2.1数怎么又不够用了(一)
3.1数怎么又不够用了一、教学目标:1、知识与技能目标:(1)、通过拼图活动,让学生感受无理数产生的实际背景和学习它的必要性。
(2)通过“做一做”的过程进上步丰富无理数的背景,同时体会无理数在现实生活中是大量存在的。
2、过程与方法目标:经历无理数发现的过程,感知生活中确实存在不同于有理数的数,提高学生动手能力和创新意识,渗透通过例证,数形结合等方式说理方法。
3、情感态度与价值观:通过获得成功的体验和克服困难的经历,增进数学学习的信心。
通过丰富有趣拼图活动增强对数学学习的兴趣。
二、教学重难点重点:对无理数的感知难点:对形如等式“a2=2”中的a不是有理数的分析说理过程。
三、教学过程1、剪一剪,拼一拼让学生把准备好的两块边长为1的正方形,通过剪一剪,拼一拼,拼成一个大的正方形学生活动:独立思考,动手操作。
再小组合作交流,并全班展示各种拼图。
2、议一议:教师出示一种拼图,要求学生思考下列问题问题1:若设大正方形的边长为a,满足什么条件?问题2:a 可能是整数吗?说说你的理由。
问题3:a 若不是整数,可能是哪一个分数?有可能是以分母为2的分数吗?或是以分母为3或4的分数吗?说说你的理由通过这两个问题2、3,你发现了什么?教师讲解:在等式a 2=2中a 既不是整数也不是分数,所以不是有理数。
引出课题:数怎么又不够用了3、做一做:(1)、为了加固一个高为2米,宽为1米的大门,需要在对角线位置加固一条木板,高木板长为b 米,则由勾股定理得12222b =+,猜测b 的值大约是多少?b 有可能是分数吗?(2)第27页的练习第1小题4、说一说:现实生活中大量存在不是有理数的数,你们能不能举出类似的例子。
5、试一试:右图是由16个小正方形拼成的,任意连接这些小正方形的两个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和两条不是有理数的线段。
6、课堂小结:惑?四、作业:第27页习题2。
1的第1小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学时间
第二课时
课题
§2.1.2 数怎么又不够用了(二)
一.教学目标
(一)教学知识点
1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.
2.会判断一个数是有理数还是无理数.
(二)能力训练要求
1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.
2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.
(三)情感与价值观要求
1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.
2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.
二.教学重、难点
重点:
1.无理数概念的探索过程.
2.用计算器进行无理数的估算.
3.了解无理数与有理数的区别,并能正确地进行判断.
难点:
1.无理数概念的建立及估算.
2.用所学定义正确判断所给数的属性.
三.教学方法
老师指导学生探索法
四.教具准备
计算器.
投影片三张:
第一张:补充练习(记作§2.1.2 A);
第二张:补充练习(记作§2.1.2 B);
第三张:补充练习(记作§2.1.2 C).
五.教学过程
Ⅰ.创设问题情境,引入新课
[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.
Ⅱ.讲授新课
1.导入
[师]请看图
大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.
[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.
[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?
[生]因为a2大于1且a2小于4,所以a大致为1点几.
[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.
[生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.
[生]因为 1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.
[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.
[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.
[师]还可以继续下去吗?
[生]可以.
[师]请大家继续探索,并判断a是有限小数吗?
[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.
[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会
算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)
[生]b =2.236067978…,还可以再继续进行,b 也是一个无限不循环小数. [生]边长b 不会算到某一位时,它的平方恰好等于5,但我不知道为什么. [师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b 算到某一位时,它的平方恰好等于5,即b 是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b 不可能是有限小数.
2.无理数的定义
请大家把下列各数表示成小数.
3,11
2,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.
[生]3=3.0,54=0.8,9
5=∙5.0, ∙=71.045
8,∙∙=818.1112 [生]3,54是有限小数,11
2,458,95是无限循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.
像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数.
无限不循环小数叫无理数(irrational number).
除上面的a ,b 外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.
3.有理数与无理数的主要区别
(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.
(2)任何一个有理数都可以化为分数的形式,而无理数则不能.
4.例题讲解
下列各数中,哪些是有理数?哪些是无理数?
3.14,-3
4,∙∙75.0,0.1010010001…(相邻两个1之间0的个数逐次加1). 解:有理数有3.14,-3
4,∙∙75.0. 无理数有0.1010010001….
Ⅲ.课堂练习
(一)随堂练习
下列各数中,哪些是有理数?哪些是无理数?
0.4583,∙7.3,-π,-7
1,18.
解:有理数有0.4583,∙7.3,-
7
1,18. 无理数有-π.
(二)补充练习
解:(1)错.例π-1是无理数.
(2)错.例∙5.1是有理数. (3)对.因为无理数就是无限不循环小数,所以是无限小数.
(4)对.因为两个符号相反的无理数之和是有理数.例π-π=0.
解:有理数有0.351,-∙∙69.4,3
2,3.14159, 无理数有-5.2323332…,123456789101112….
[生]有理数集合填0,
115,-3. 无理数集合填-π,-2
3π,0.323323332…. Ⅳ.课时小结
本节课我们学习了以下内容.
1.用计算器进行无理数的估算.
2.无理数的定义.
3.判断一个数是无理数或有理数.
Ⅴ.课后作业
1.P30习题
2.2.
2.预习内容:平方根.
Ⅵ.探究与活动
设面积为5π的圆的半径为a.
(1)a是有理数吗?说说你的理由.
(2)估计a的值(精确到十分位,并利用计算器验证你的估计).
(3)如果精确到百分位呢?
解:∵πa2=5π
∴a2=5
(1)a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.
(2)估计a≈2.2.
(3)a≈2.24.。