第六章 格林函数法
格林函数方法
格林函数方法
1、格林函数
格林函数(Green's function)是指由著名数学家.格林(Green)提出的数学方法,它是一种可以求解各种微分方程的技术。
格林函数的定义是对于任意给定的初值问题,在区间上的解的和等于给定的数值13。
其用法主要有两种:一种是用于求解某些有定型的初值问题;另一种是求解某些微分方程的积分解。
格林函数的结果可以用来解决复杂的初值问题和理解复杂的微分方程以及系统的时间变化。
2、格林函数的原理
格林函数可以用来解决一类有特定初值条件的常微分方程组。
它的原理是基于一种叫做拉普拉斯变换(Laplacetransform)的数学变换理论,它是一种将微分方程组变换成求积分方程组的方法,从而可以使原本困难的初值问题变得容易解决,其在解决物理学中不变解中特别有用。
3、格林函数的计算
对于特定的初值条件,可以使用格林函数计算出拉普拉斯变换得到的积分方程的结果,从而计算得到解析解。
计算过程比较复杂,需要用到积分变换和methods。
总之,格林函数是一种可以求解复杂常微分方程的有效数学方法,它基于拉普拉斯变换的原理,对于特定的初值问题,运用格林函数,可以计算出相应的解析解。
格林函数及其应用课件
有限差分法
01
有限差分法是将微分方程或积分 方程转化为差分方程,然后求解 差分方程得到格林函数的数值解 。
02
有限差分法适用于求解偏微分方 程,特别是对于具有周期性或对 称性的问题,有限差分法可以大 大简化计算过程。
有限元法
有限元法是将微分方程或积分方程转化为有限元方程,然后求解有限元方程得到 格林函数的数值解。
对于某些领域,需要高精度的格林函数来保证计 算的准确性。
未来格林函数研究的方向与展望
算法优化
寻求更高效、稳定的算法来计算格林函数。
多领域交叉
加强与其他领域的合作,拓展格林函数的应用范围。
数值稳定性
研究如何提高格林函数计算的数值稳定性。
感谢观看
THANKS
量子力学散射问题的格林函数计算
总结词
介绍了量子力学散射问题中格林函数的 计算方法,以及其在散射理论中的应用 。
VS
详细描述
在量子力学中,格林函数用于描述粒子在 相互作用下的运动行为。通过计算格林函 数,可以研究粒子在散射过程中的能量和 动量变化,进一步理解物质的微观结构和 相互作用机制。
流体动力学波动问题的格林函数计算
工程学
在电路分析、控制理论和信号 处理等领域有广泛应用。
生物学
用于研究神经网络的传播和扩 散过程。
金融学
用于描述资产价格波动和风险 评估。
当前格林函数计算中存在的问题与挑战
高维问题
随着问题维度的增加,格林函数的计算变得极为 复杂。
不适定性
在实际应用中,格林函数的求解可能存在数值不 稳定性。
精度要求
有限元法适用于求解复杂的偏微分方程,特别是对于具有复杂边界条件的问题, 有限元法可以更好地处理边界条件。
第六讲格林函数法刘
M
0
1
4
u M
n
1 rM0M
1 rM0M
u M
n dS
能不能直接提供狄利克雷问题和牛曼问
题的解 ?
为得到狄利克雷问题的解, 必须消去 这需要引入格林函数的概念.
un, |
设 u, v 为 内的调和函数并且在 上
G n
|z0
G z
|z0
{ } 1
4
z z0
3
z z0
3
(
x
x0
)2
y
y0
2
z
z0
2
2
[ x x0 2 y y0 2 z z0 2]2
|z0
1
2
z0
(x
x0
)2
y
y0
2
z02
u |z0 f x, y
首先找格林函数 GM , M. 在0 半空间 z的 0
点放M 0 置x0 ,单y0 ,位z0 正电荷, 关于边界 M 0 的对称
点为z 0 ,
M1x0 , y0 ,z0
在M1放置单位负电荷,则它与 M 0处的单位
正电荷所产生的正电位在平面 z 0上互相
u n
dS
4
u
4
u n
0
令 0 , 则 lim0 u uM0 ,
lim
0
4
格林函数法详解
V
q (r r') /0
解 u f (r')d ' G 1 V q
4 | r r'|
4 | r r'|
40 | r r'|
基本思路
原问题 点源问题
关系
u f (r ) u | 0
G (r r ' )
G | 0
f (r) f (r') (r r')d '
A JGdV
V
Am J mGdV V
3、格林函数的一般概念
• 定义:纯点源产生的场
– (不计初始条件和边界条件的影响)。
– 例子:
• ΔG = δ(r-r’),G|Γ=0 • (t – a2Δ) G = δ(r-r’)δ(t-t’), G|Γ= G|t=0=0
– 一般形式
• L G(xi) = δ(xi-xi’) • G|边界= G|初始=0
林函数
• 性质:
– 设数学物理方程为 L u(x) = f (x) – 而格林函数方程为 L G(x) =δ(x-x’) – 在相同的齐次定解条件下 – 因为: f(x) =∫f (x’)δ(x-x’) dx’ – 所以: u(x) =∫f (x’) G(x-x’) dx’
• 应用(求解数学物理方程的格林函数法)
格林函数法
• 有源电磁场问题要求解非齐次波动方程,格林函数法 是其中一种重要的求解方法。
• 格林函数表示单位强度的点源的产生的场,是非齐次 波动方程的基本解。
• 在此基础上,可利用叠加原理求得任意分布的源所产 生的场。确定论问题
• 如果源的分布是未知的,也可借助格林函数建立积分 方程,将求解非齐次波动方程转换为求解积分方程, 从而有利于用数值方法对问题进行求解. 边值问题
第六章 格林函数法
M* 2
M0
又因为v(x0,y0,z0)=M0,说明v(x,y,z)必在V内取最大值。 但一方面,v(x,y,z)在V内取最大值时,其海色矩阵:
vxx vyx
vxy vyy
vxz vyz
V
V
9
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
2、第二格林公式
设u(x,y,z),V(x,y,z)在SŲSV上有一阶连续偏导数,它们在 V中有二阶偏导,则:
uv vu dS uv vudV
S
V
证明:由第一格林公式得:
uv dS u vdV uvdV (1)
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
数理方程与特殊函数
任课教师:杨春 Email: yc517922@
数学科学学院
1
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
第六章 格林函数法
本章主要介绍利用格林函数法求解拉普拉斯方程与泊 松方程的三类边值问题。
作函数
v(x,
y,
z)
u(x,
y,
z)
M0 M 8R2
*
[( x
x0 )2
(
y
y0
)2
(z
z0 )2
]
其中P(x,y,z)是V中点,R是包含V的球体半径。
26
1
0.5 n 0
0.5
格林函数法 数学物理方程
格林函数法
若L 一个带平滑系数的线性微分算子,当求解形如()L u f =的微分方程时,若对于任意的向量y 都存在广义函数()G x,y ,使得
[]()()L G δ=x x,y x-y
(此处下标x 表示L 作用于()G x,y 时将其当做以x 为自变量的广义函数,而y 为参数) 若再令
()()()d u G f =⎰x x,y y y
将上式代入()L u f =则有
[]()()d ()()d ()()d ()L G f L G f f f δ⎡⎤===⎣⎦
⎰⎰⎰x x,y y y x,y y y x -y y y x 故此时()u x 是微分方程()L u f =的解。
采用上述方法求解微分方程的方法称为格林函数法,广义函数()G x,y 也称为格林函数。
数学物理方法知识体系
数学物理方法所要解决的问题:求解(偏)微分方程
本学期学过的求解方法:变量分离法、积分变换法、格林函数法
变量分离法涉及知识点:傅里叶级数、函数的正交系、贝塞尔函数(Chap.2~Chap.5) 积分变换法涉及知识点:傅里叶变换、拉普拉斯变换、广义函数(Chap.7~Chap.9) 格林函数法涉及知识点:格林函数(Chap.10)
例题数量统计。
《格林函数方法》课件
04
格林函数在工程问题中的应用
流体动力学问题
流体力学中的波动和散射问题
格林函数方法可以用于求解流体力学中的波动和散射问题, 例如声波在流体中的传播、波动在管道中的传播等。
流体动力学中的边界层问题
格林函数方法可以用于求解流体力学中的边界层问题,例如 流体在固体表面流动时的速度分布、温度分布等问题。
格林函数方法的优点
精确度高
格林函数方法基于严格的数学推导,能够精 确地描述物理系统的响应。
适用范围广
该方法不仅适用于线性系统,也适用于非线 性系统,具有较强的通用性。
易于实现
格林函数具有明确的物理意义,计算过程相 对简单,易于编程实现。
可扩展性强
通过引入更多的格林函数,可以处理更复杂 的物理问题。
弹性力学问题
总结词
格林函数在弹性力学问题中也有着重要的应用,它可以帮助我们求解弹性波的传播和散射问题。
详细描述
在弹性力学问题中,格林函数可以用于描述弹性波的传播和散射过程。通过求解格林函数,我们可以得到弹性波 在各种不同介质中的传播规律和散射特性,这对于地震探测、声波传播、振动控制等领域有着重要的应用价值。
格林函数方法的缺点
计算量大
对于大规模系统,需要计算的格林函数数量较多,计算量较大。
对初值敏感
某些情况下,初值的选择对计算结果影响较大,需要仔细选择。
对噪声敏感
在数据中存在噪声时,格林函数方法可能会受到影响,导致结果失真。
对边界条件敏感
边界条件的设定对格林函数的计算结果有较大影响,需要谨慎处理。
格林函数方法的未来发展前景
03
格林函数在物理问题中的应用
电磁场问题
总结词
格林函数在电磁场问题中有着广泛的应用,它可以帮助我们求解电磁场中的散射 和辐射问题。
常微分方程格林函数
常微分方程格林函数格林函数(Green's function)是常微分方程理论中的一个重要概念。
格林函数是指线性常微分方程解的特定形式,用于将非齐次方程的解表示为齐次方程的解与一个特定的函数的线性组合。
格林函数的理论有广泛的应用,包括电磁学、量子力学、流体力学等领域。
我们考虑一个形如L[u]=f(某)的一维线性常微分方程,其中L是一个线性微分算子,u是未知函数,f(某)是已知函数。
我们想要找到方程的解u(某)。
为此,我们引入格林函数G(某,t),满足以下两个条件:1. 对于每个固定的t,在某>t的区域内,格林函数满足L[G(某,t)]=δ(某-t),其中δ(某-t)是Diracδ函数。
2.对于边界条件G(a,t)=G(b,t)=0,其中a和b是方程所涉及的区域的边界。
为了求解方程L[u]=f(某),将解表示为u(某)=∫G(某,t)f(t)dt,其中积分是对整个区间进行的。
然后,我们可以利用格林函数的性质来计算系数函数G(某,t)与未知函数u(某)之间的关系,从而得到方程L[u]=f(某)的解u(某)。
对于常微分方程来说,我们可以通过求解格林函数来求解对应的非齐次方程。
具体的求解步骤如下:1.首先,求解齐次方程L[u]=0,并找到其解u_h(某)。
2.接下来,我们需要求解L[G(某,t)]=δ(某-t)的齐次方程,即L[G(某,t)]=0。
3.根据格林函数的边界条件,我们可以得到G(a,t)和G(b,t)的表达式,并利用这些条件分析求解。
4.最后,将方程的非齐次项f(某)代入到格林函数的表达式中,得到方程的解u(某)。
格林函数的概念和求解方法在物理和工程领域中广泛应用。
例如,在电磁学中,可以利用格林函数求解电荷分布所引起的电势分布;在量子力学中,格林函数用于描述定态和非定态系统中的粒子传播;在流体力学中,格林函数被用于描述流体的流动行为。
总之,格林函数是常微分方程理论中的重要工具,它可以将非齐次方程的解表示为齐次方程的解与一个特定的函数的线性组合。
第六章 格林函数法
第六章 格林函数法本章利用高等数学中的格林(Green)公式导出调和函数的积分表达式,引进格林函数(又叫点源函数),它是一种广义函数.利用格林函数求解稳态的边值问题,这种方法叫格林函数法,它是解数学物理问题时常用的方法之一.§2.6.1 格林(Green )公式 调和函数的积分表达式2.6.1.1 格林公式设D 是以分片光滑的曲面S 为其边界的有界区域,函数P (x ,y ,z ), Q (x ,y ,z ), R (x ,y ,z )是在D 上连续,在区域D 内有连续偏导数的任意函数,则成立奥一高公式 V z R y Q x P D d (∂∂+∂∂+∂∂∫∫∫=∫∫++SS z n R y n Q x n P d )],cos(),cos(),cos([,这里d V 是体积元,n 是曲面S 的外法线方向,d S 为S 上的面积元.由此可以导出格林第二公式或格林公式:S nu v n v uV u v v u D S d d )()(∫∫∫∫∫∂∂−∂∂=Δ−Δ. 事实上,设函数u (x ,y ,z ), v (x ,y ,z )以及它们的所有的一阶偏导数在闭区域S D D U =上是连续的,u 、v 在D 内具有连续的二阶偏导数.令 P =x v u ∂∂, Q =yv u ∂∂, R =z v u ∂∂, 代入奥一高公式得到格林第一公式:V z v z u y v y u n v x u S n v uV v u DD S d d d )()(∂∂∂∂+∂∂∂∂+∂∂∂∂−∂∂=Δ∫∫∫∫∫∫∫∫ 这里是三维拉普拉斯(Laplace)算子,Δn∂∂表示曲面S 的外法线方向导数.如果引进梯度算子=∇k j v v v z yi x ∂∂+∂∂+∂∂ ,那么格林第一公式缩写成 ∫∫∫∫∫∫∫∫∇⋅∇−∂∂=ΔDS D V v u s n v uv v u d d d )()(,类似地,如果令 P =x u v ∂∂, Q =y u v ∂∂, R =zu v ∂∂,就有 ∫∫∫∫∫∫∫∫∇⋅∇−∂∂=ΔD D SV u v S n u v V u v d d )()(d 注意到向量的数性积的可交换性,上两式相减,得格林第二公式(又叫格林公式):S nu v n v u V u v v u D S d d )()∂∂−∂∂=Δ−Δ∫∫∫∫∫( . 2.6.1.2拉普拉斯方程的基本解在三维空间内,记),()()()(222N M r z y x r =−+−+−=ςηξ表示点M (x ,y ,z )、)(ςηξ,,N 之间的距离,利用复合函数求导的链式法则,对空间中任意固定的一点N ,函数r1除点N 外关于变量(x , y , z )处处满足拉普拉斯方程0=Δu ;注意到函数r1的特征,同样对于任意固定的一点M (x , y , z ),函数r1除点M 外,关于变量),,(ςηξ处处满足拉普拉斯方程,即0)1(=Δr, (N M ≠). 函数r1在求解拉普拉斯方程和泊松(Poisson)方程时有极重要的作用,通常把函数r1称为三维拉普拉斯方程或者泊松方程的基本解.同样,对于二维空间,函数),(1ln )()(1ln 1ln 22N M r y x r =−+−=ηξ 叫做二维拉普拉斯方程或泊松方程的基本解.2.6.1.3 调和函数的积分表达式仍以三维空间为例,利用格林公式不难得到三维空间调和函数的积分表达式.定理:(调和函数的积分表达式)设函数u (x , y , z )在闭区域D 上有连续的一阶偏导数,且u (x , y , z )在区域D 内调和(即0=Δu 在D 内成立),那么对于D 内任意固定的一点就有),,(0000z y x M ,])1(1[41)(0S nr u n u r M u S d ∂∂−∂∂=∫∫π D M ∈0 ,这里M 为点(x , y , z ),并有2020200)()()(),(z z y y x x M M r r −+−+−== .事实上,设为区域D 内任意固定的一点,M (x ,y ,z )为),,(0000z y x M D 上的一个动点,动点M 到定点M 0的距离2020200)()()(),(z z y y x x M M r r −+−+−== .注意到函数r 1除点M 0外,处处调和,M 0挖去.以M 0点为球心,充分小的正数(ρ>0),用表示这个小球的球面.记区域D 0M K ρ0M S ρ0M K ρ1=D \ (通常称区域D 内挖去点M 0M K ρ0).这时区域D 1的表面为.U S 0M S ρ于是函数u , v =r1在闭区域011M S S D D ρU U =上可用格林公式,就有∫∫∫∫∫∫∫∂∂−∂∂+∂∂−∂∂=Δ−ΔS S n u r n r u D S n u r n r u V u r r u M S 01)1)1((1)1((]1)1([ρd d d 因为在区域D 1内0)1(,0=Δ=Δru ,上式左边等于零,由此得 01)1()1)1((00=∂∂−∂∂+∂∂−∂∂∫∫∫∫∫∫S S n u r S S n r u S n u r n r u M M S ρρd d d 现在讨论上式左边的后两项积分.注意到,对区域D 1而言,小球面0M S ρ的外法线方向应指向球心M 0 , 与半径r 的方向刚好相反,因此在球面上有0M S ρ2211)1(1(ρ==∂∂−=∂∂rr r n r ,这样上式第二项积分有 )(44)(1)1(1212200M u M u s S u S S n r u M M ππρρρρρ===∂∂∫∫∫∫d d , 这里用到积分中值定理,M 1为球面上的某一点.0M S ρ对于上式第三项积分,用积分中值定理有||22044112M n u M n u S n u r M S ∂∂⋅=∂∂⋅⋅=∂∂∫∫πρπρρρd 这里M 2为上的某一点.0M S ρ 因为nu ∂∂在M 0点的邻域内是有界的,让0→ρ,则M 1、M 2趋于球心M 0 ,所以第三项积分趋于零,由此得0)(4)1)1((0=+∂∂−∂∂∫∫M u S n u r n r u Sπd . 从而得到有界区域D 内调和函数u 的积分表达式:S nr u n u r M u S d )1(1(41)(0∂∂−∂∂=∫∫π, D M ∈0. 这个公式说明,调和函数u 在区域D 内任意一点M 0处的值可以由它的边界S 上的值和它在边界S 上的法向导数nu ∂∂的值来确定,这对解边值问题提供了方便.推论:若u 在有界区域D 内是二阶连续的可微函数,则有积分表达式∫∫∫∫∫Δ−∂∂−∂∂=DS V r u S n r u v u r M u d d ππ41))1(1(41)(0,. D M ∈0这是因为在闭区域1D 上用格林公式,有 S n u r S n r u S n u r n r u V u D r S M d d d )11(()1)1((101∂∂−∂∂+∂∂−∂∂=Δ−∫∫∫∫∫∫∫ρ 类似上述的讨论,上式右端当0→ρ时,区域,其余都一样.D D →1对于二维情形,由于基本解为r1ln ,所以不难得到在二维有界区域D 内调和的函数u 的积分表达式:S nr u n u r M u C d )1(ln )1[ln(21)(0∂∂−∂∂=∫π, D M ∈0. 这里C 为区域D 的边界.对一般的在区域D 内有二阶连续可微函数u ,则积分表达式为S u r l n r u n u r M u DC d d Δ−∂∂−∂∂=∫∫∫)1(ln 21])1(ln )1[ln(21)(0ππ, .D M ∈0这两个公式的证明作为习题留给读者自己去证明.§2.6.2 拉普拉斯(Laplace )方程的狄里克雷问题2.6.2.1 边值问题的提法数学物理的不少问题都会归结为求拉普拉斯方程的解,根据边界条件的不同提法,可以把它的定解问题分为三类:第一边值问题,又称狄里克雷(Dirichlet)问题.求区域D 内调和,而在D 的边界S 上取已知值f 的函数u ,即狄里克雷问题的提法为:0=Δu , 在D 内,|u s =f 1(M ) , 在S 上.第二边值问题,又称诺伊曼(Neumann)问题,它的提法为: 0=Δu , 在D 内,),(|2M f nu S =∂∂ S M ∈. 第三边值问题,又称洛平(Robin)问题,它的提法为:, 在D 内,0=Δu ),(3M f u n u S=⎥⎦⎤⎢⎣⎡+∂∂βα S M ∈. 这里α、β为已知常数,且不同时为零;f 、f 、f 为已知函数.)(1M )(2M )(3M 如果以上的提法,针对求有界区域D 内的解,称为内问题,如果求区域的外部的解,称为外问题.对于狄里克雷问题、诺伊曼问题解的存在性,要用到积分方程的理论,由于已超出本书的范围,这里不再赘述,感兴趣的读者可以查阅相关的书籍,例如由沈乃录主编的《积分方程》一书,将会给你一个满意的解答.2.6.2.2 狄里克雷问题的格林函数 格林函数法我们重点来解狄里克雷问题.从调和函数u 的积分表达式出发,在区域D 内的调和函数u 的积分表达式为:S n r u nu r M u S d ∫∫∂−∂∂=)/1(1(41)(0π, D M ∈0. 这里由于狄里克雷问题0=Δu , 在D 内,|u s =f (M ) , 在∈M S 上.所以,积分表达式中的第二项u 在边界面S 上的值已知,用f (M )代替,就有S n r M f nu r M u S d ∫∫∂−∂∂=))/1()(1(41)(0π, D M ∈0, 这样求解的关键是如何从上式中消去带nu ∂∂(未知的)这一项. 由格林公式出发,要在区域D 内求一个函数g ,它在区域D 内调和(即0=Δg ),则格林公式为:S n u g ng uS d ∫∫∂∂−∂∂=)(0 用π41乘以上式,再和积分表达式相加,就有 S n g r M f n u g r M u S d ∫∫−∂−∂∂−=])/1()()1[(41)(0π, D M ∈0如果上式中在边界面S 上有g r −1=0,即=S g |r1,那末狄里克雷问题的解就是:S ng r M f M u S d ∫∫−∂−=])/1()([41)(0π, D M ∈0. 综上所述,欲解狄里克雷问题:0=Δu , 在D 内,|u s =f(M) , 在∈M S 上就转化为解另一个狄里克雷问题:0=Δg , 在D 内,=S g |r1 , ∈M S, 这里,);(0M M r r =);(0M M g g =,∈M S ,D M ∈0一般说来,函数也不是好求的,它与边界曲面S 的形状有关,但是不管怎么讲,给出了一个解狄里克雷问题的思路,并且对于一些特殊的区域D ,例如球体、半空间、圆域、半平面等可以用初等的方法求出函数g (M ; M );(0M M g 0)来.为了更清楚,我们令函数 );();(1);(000M M g M M r M M G −= 注意到基本解的特征,);(10M M r g (M ;M 0)的要求,对于函数G (M ;M 0)有两个基本性质:(1)除点D M ∈0外,函数G (M ;M 0)在区域D 内调和,即 0);(0=ΔM M G , M , M 0D ∈ 且0M M ≠ ;(2)在边界面S 上, ,0);(0=M M G ∈M ,S D M ∈0 . 通常把函数G (M ;M 0)称为拉普拉斯方程0=Δu 关于区域D 的狄里克雷问题的格林函数.用求格林函数G (M ;M 0)的方法解狄里克雷问题称为格林函数法.如果格林函数G (M ;M 0)求得,那么狄里克雷问题的解也就有了,并且为S M M G nM f M u S d );()(41)(00∫∫∂∂−=π , D M ∈0.对于二维的情形,完全类似地,可以得到 S nG M f M u C d ∫∂∂−=)(21)(0π , D M ∈0 为狄里克雷问题 C D M M f u D M u C=∂∈=∈=Δ),(,0| 的解,这里格林函数 );(1ln );(00M M g rM M G −=,作为习题留给读者自己去证明.例1. 球的狄里克雷问题和球的格林函数 球内狄里克雷问题的提法: , 在球内 0=Δu 2222R z y x <++ u=f (M ) , 在球面 上 2222R z y x =++这里 M =(x , y , z ).解: 先求球 的格林函数 2222R z y x <++ 设球内任一点,由此求满足另一个球狄里克雷问题:),(00,00z y x M );(0M M g 0);(0=ΔM M g , 在球内);(1);(00M M r M M g = , 在球面上 对于球而 2222R z y x <++M 1言,函数可以用初等的方 );(0M M g 法求得.记202020z y x ++=ρ,点 M 0的对称点为M 0R S 1,显然点M 1在球外,并在OM 0的延长线上(如图),由对称点的定义知:21R =ρρ⋅其中1ρ为OM 1的长,即 2121211z y x ++=ρ ,),,(1111z y x M =,由调和函数的基本解,这个应该是);(0M M g 1r A这种形式,这里 2121211)()()(z z y y x x r −+−+−= ,A 为待定常数.显然函数1r A在球内是调和的.问题是怎样确定常数A .由的第二个条件在球面上应为);(0M M g r 1.为区别起见,球面上的点记为),,(z y x M ′′′′.由于,所以在21R =⋅ρρM OM ′Δ0与中,是公共角,且夹这角的两边成比例1M M O ′ΔO ∠10OM M O M O OM ′=′,因此M OM ′Δ0与1M M O ′Δ相似,从而有M O OM M M M M ′=′′010,亦即R r r ρ=1,这样在球面上有OR S rr R 111=⋅ρ , 可见常数202020z y x RRA ++==ρ,所求的101);(r R M M g ⋅=ρ,因此球的格林函数为2121212020202020201100)()()(1)()()(1);(1);(1);(z z y y x x z y x Rz z y y x x M M r R M M r M M G −+−+−⋅++−−+−+−=⋅−=ρ得球内狄里克雷问题的解为S nG M f M u RS d ∂∂′−=∫∫)(41)(00π,().球∈0M 2222R z y x <++为了计算,还须将这公式化成便于积分的形式.采用球面坐标系.设点M ′的球坐标为),,(ϕθ′′R ,点M 0的球坐标为),,(00ϕθρ,将记为O∠α,于是在球面上,ORS nr nr ∂∂∂∂1(,)1(1有 02022)(1grad 11)1()1(n n ⋅∂∂+∂∂+∂∂−=⋅−=∂∂−=∂∂⋅∂∂=∂∂k zr j y r i x r r r r n r r n r r r n r 其中n 0是球面的外法线单位向量.O R S 在球面上, OR S M ′点的坐标为),,(z y x ′′′,由此r x x x r 0−′=∂∂ , r y y y r 0−′=∂∂ , rz z z r 0−′=∂∂ , 设r 0是r 方向上的单位向量,由此),cos(1)(1)1(200002n r r k r z z j r y y i r x x r n r −=⋅−′+−′+−′−=∂∂n , 同理 ),cos(1)1(1211n r r nr −=∂∂,这样),cos(),cos(1)1()1(12121n r r Rn r rn r n r R n G ρρ−=∂∂−∂∂=∂∂−为了简化上式,在与M OM ′Δ01M M O ′Δ中用余弦定理得Rr r R n r 2),cos(222ρ−+=, 12121212),cos(Rr r R n r ρ−+= , 注意到在球面上有OR S rr R 11=ρ,并且,于是有 21R =⋅ρρ3221212),cos(),cos(1Rr R n r r R n r rn G ρρ−=−=∂∂−, 从而球内狄里克雷问题的解化简为ϕθθραρρϕθπρπππ′′′+−−′′=−′=∫∫∫∫d d d sin ]cos 2[),(4)(41)(2322222003220R R R f RS rR M f R M u O RS这也叫球的泊松积分.利用M 0的对称点M 1构造格林函数的方法,叫做镜像法,物理学中又叫静电源象法.例 2. 半空间的狄里克雷问题.半空间的狄里克雷问题就是求一个在上半空间内的调和函数u (x , y, z ),且在边界面z =0上满足u (x , y , 0)=f (x , y ),即0>z⎪⎩⎪⎨⎧=>=Δ=),(0,0|0y x f u z u z解:设在半空间在z >0内任意一点,这里z ),(00,00z y x M 0>0,那么M 0关于平面的对称点M 0=z 1就是 ),(00,0z y x −.所以函 数2020201)()()(11z z y y x x r ++−+−=是半空间内的调和函数,并且在边界面z =0上,显然有0>z rr 111=,因此半空间z >0内的格林函数为20202020202010)()()(1)()()(111);(z z y y x x z z y y x x r r M M G ++−+−−−+−+−=−=对于半空间z >0,边界面z =0的外法线方向与z 轴的正向相反,于是z G nG ∂∂−=∂∂,这个半空间z >0的狄里克雷问题的解为S n G y x f z y x u z d ∫∫=∂∂−=0000),(41),,(π =S zG y x f z d ∫∫=∂∂0),(41π=y x z y y x x y x f z d d ∫∫+∞∞−+∞∞−+−+−232020200])()[(),(2π.§2.6.3 泊松方程的狄里克雷问题在研究有外力作用下的薄膜平衡和有热流的热平衡以及稳定电场的静电势等问题时,都会导出称谓泊松方程的数学物理方程.泊松方程的一般形式是),,(z y x F u u u u zz yy xx =++≡Δ,其中F (x , y , z )为已知函数.泊松方程的狄里克雷问题的提法是),,(z y x F u =Δ (x , y , z )D ∈, )(|M f u S= M 在D 的边界面S 上.对于在有界区域D 内有二阶连续的可微函数u (M ),有积分表达式V r uS n r u n u r M u DSd d ∫∫∫∫∫Δ−∂∂−∂∂=ππ41))1(1(41)(0, . D M ∈0设是区域);(0M M G D 的格林函数,就有);();(1);(000M M g M M r M M G −=这里函数为区域);(0M M g D 内的调和函数,在边界面S 上有r g S1|=,对格林公式S n u v n v u V u v v u D Sd d ()(∂∂−∂∂=Δ−Δ∫∫∫∫∫中用函数替代v ,再两边乘以);(0M M g π41得∫∫∫∫∫Δ+∂∂−∂∂=DSV u g S n u r n g ud d ππ41)1(410将以上两等式相加,消去S n ur Sd ∂∂∫∫141π项就得泊松方程狄里克雷问题的解为∫∫∫∫∫+∂∂−=DSV FG S n G fM u d d ππ4141)(0显然,上式第一项是定解问题0=Δu 在D 内,的解;第二项是定解问题的解f u S=|0,|==ΔSu F u 对于二维泊松方程的狄里克雷问题可以类似地求解.。
数学物理方程学习指导书第6章拉普拉斯方程的格林函数法
第6章 拉普拉斯方程的格林函数法在第4、5两章,我们较系统地介绍了求解数学物理方程的三种常用方法——分离变量法、行波法与积分变换法.本章我们来介绍拉普拉斯方程的格林函数法.先讨论此方程解的一些重要性质,再建立格林函数的概念,然后通过格林函数建立拉普拉斯方程第一边值问题解的积分表达式.6.1 拉普拉斯方程边值问题的提法在第3章,我们已从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维拉普拉斯方程22222220.u u uu x y z∂∂∂∇≡++=∂∂∂作为描述稳定和平衡等物理现象的拉普拉斯方程,它不能提初始条件.至于边界条件,如第一章所述有三种类型,应用得较多的是如下两种边值问题.(1)第一边值问题 在空间(,,)x y z 中某一区域Ω的边界Γ上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它在闭域Ω+Γ (或记作Ω)上连续,在Ω内存在二阶偏导数且满足拉普拉斯方程,在Γ上与已知函数f 相重合,即.u f Γ= (6.1)第一边值问题也称为狄利克莱(Dirichlet)问题,或简称狄氏问题.4.3中所讨论过的问题就是圆域内的狄氏问题.拉普拉斯方程的连续解称为调和函数.所以,狄氏问题也可以换一种说法:在区域Ω内找一个调和函数,它在边界Γ上的值为已知.(2)第二边值问题 在某光滑的闭曲面Γ上给出连续函数f ,要求寻找这样一个函数(,,)u x y z ,它在Γ内部的区域Ω中是调和函数,在Ω+Γ上连续,在Γ上任一点处法向导数un∂∂存在,并且等于已知函数f 在该点的值: .uf n Γ∂=∂ (6.2) 这里n 是Γ的外法向矢量.第二边值值问题也称牛曼(Neumann )问题.以上两个边值问题都是在边界Γ上给定某些边界条件,在区域内部求拉普拉斯方程的解.这样的问题称为内问题.在应用中我们还会遇到狄氏问题和牛曼问题的另一种提法.例如,当确定某物体外部的稳恒温度场时,就归结为在区域Ω的外部求调和函数u ,使满足边界条件,u f Γ=这里Γ是Ω的边界,f 表示物体表面的温度分布,象这样的定解解问题称为拉普拉斯方程的外问题.由于拉普拉斯方程的外问题是在无穷区域上给出的,定解问题的解是否应加以一定的限制?基于在电学上总是假定在无穷远处的电位为零,所以在外问题中常常要求附加一个条件*)lim (,,)0(r u x y z r →∞==(6.3)(3)狄氏外问题 在空间(,,)x y z 的某一闭曲面Γ上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它在Γ的外部区域'Ω内调和,在'Ω+Γ上连续,当点(,,)x y z 趋于无穷远时,(,,)u x y z 满足条件(6.3),并且它在边界Γ上取所给的函数值.u f Γ= (6.4)(4)牛曼外问题 在光滑的闭曲面Γ上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它的闭曲面Γ的外面部区域'Ω内调和,在'Ω+Γ上连续,在无穷远处满足条件(6.3),而且它在Γ上任一点的法向导数'un ∂∂存在,并满足 ,'uf n Γ∂=∂ (6.5) 这里n '是边界曲面Γ的内法向矢量.下面我们重点讨论内问题,所用的方法也可以用于外问题.6.2 格林公式为了建立拉普拉斯方程解的积分表达式,需要先推导出格林公式,而格林公式则线面积分中奥-高公式的直接推论.设Ω是以足够光滑的曲面Γ为边界的有界区域,(,,),(,,),(,,)P x y z Q x y z R x y z 是在Ω+Γ上连续的,在Ω内具有一阶连续偏导数的任意函数,则成立如下的奥-高公式*)从数学角度讲,补充了这个条件就能保证外问题的解是唯一的,如果不具有这个条件,外问题的解可能不唯一.例如,在单位圆Γ外求调和函数,在边界上满足1=Γu.容易看出,及1),,(1≡z y x u22221),,(zy x z y x u ++=都在单位圆外满足拉普拉斯方程,并且在单位圆Γ上满足上述边界条件.P Q R d x y z Ω⎛⎫∂∂∂++Ω ⎪∂∂∂⎝⎭⎰⎰⎰ [cos(,)cos(,)cos(,)],P n x Q n y R n z dS Γ=++⎰⎰ (6.6)其中d Ω是体积元素,n 是Γ的外法向矢量,dS 是Γ上的面积元素.下面来推导公式(6.6)的两个推论.设函数(,,)u x y z 和(,,)v x y z 在Ω+Γ上具有一阶连续偏导数,在Ω内具有连续的二阶偏导数.在(6.6)中令,,,v v v P uQ u R u x y z∂∂∂===∂∂∂ 则有2()u v u v u v u v d d x x y y z z ΩΩ⎛⎫∂∂∂∂∂∂∇Ω+++Ω ⎪∂∂∂∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰ ,vudS nΓ∂=∂⎰⎰ 或2().vu v d u dS grad u grad v d n ΩΓΩ∂∇Ω=-⋅Ω∂⎰⎰⎰⎰⎰⎰⎰⎰ (6.7) (6.7)式称为第一格林(Green)公式.在公式(6.7)中交换,u v 位置,则得2().uv u d v dS grad u grad v d n ΩΓΩ∂∇Ω=-⋅Ω∂⎰⎰⎰⎰⎰⎰⎰⎰ (6.8) 将(6.7)与(6.8)式相减得到22().v u u v v u d u v dS n n ΩΓ∂∂⎛⎫∇-∇Ω=- ⎪∂∂⎝⎭⎰⎰⎰⎰⎰ (6.9) (6.9)式称为第二格林公式.利用格林公式我们可以推出调和函数的一些基本性质. (i)调和函数的积分表达式所谓调和函数的积分表达式,就是用调和函数及其在区域边界Γ上的法向导数沿Γ的积分来表达调和函数在Ω内任一点的值.设0000(,,)M x y z 是Ω内某一固定点,现在我们就来求调和函数在这点的值,为此,构造一个函数1v r == (6.10)函数1r除点0M 外处处满足拉普拉斯方程,这函数在研究三维拉普拉斯方程中起着重要的作用,通常称它为三维拉普拉斯方程的基本解.由于1v r=在Ω内有奇异点0M ,我们作一个以0M 为中心,以充分小的正数ε为半径的球面,εΓ在Ω内挖去,εΓ所包围的球域K ε得到区域K εΩ-(图6-1),在K εΩ-内1v r=是连续可微的.在公式(4.9)中取u 为调和函数,而图6-1取1v r=,并以K εΩ-代替该公式中的Ω,得 221111(),K u r u u d u dS r r n r n εεΩ-Γ+Γ⎡⎤⎛⎫∂ ⎪⎢⎥∂⎝⎭⎢⎥∇-∇Ω=-∂∂⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰ (6.11) 因为在K εΩ-内2210,0.u r∇=∇=而在球面εΓ上221111,r r n r r ε⎛⎫⎛⎫∂∂ ⎪ ⎪⎝⎭⎝⎭=-==∂∂ 因此22211144,r u dS udS u u n εεπεπεεΓΓ⎛⎫∂ ⎪⎝⎭==⋅=∂⎰⎰⎰⎰其中u 是函数u 在球面εΓ上的平均值.同理可得22211144,r u dS udS u u n εεπεπεεΓΓ⎛⎫∂ ⎪⎝⎭==⋅=∂⎰⎰⎰⎰ 此外u n ⎛⎫∂ ⎪∂⎝⎭是un ∂∂在球面εΓ上的平均值,将此两式代入(6.11)可得 11440.u u u dS u n r r n n εππεΓ⎛⎫⎛⎫∂∂∂⎛⎫-+-= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎰⎰ 现在令0,ε→由于00lim ()u u M ε→=(因为(,,)u x y z 是连续函数),0lim 40u n επε→⎛⎫∂=⎪∂⎝⎭(因为(,,)u x y z 是一阶连续可微的,故un∂∂有界)则得 000111()()(),4MM MM u M u M u M dS n r r n πΓ⎡⎤⎛⎫∂∂⎢⎥=--⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎰⎰ (6.12)此外为明确起见,我们将r =记成0MM r .(6.12)说明,对于在Ω+Γ上有连续一阶偏导数的调和函数u ,它在区域Ω内任一点0M 的值,可通过积分表达式(6.12)用这个函数在区域边界Γ上的值及其在Γ上的法向导数来表示*).(ii)牛曼内问题有解的必要条件设u 是在以Γ为边界的区域Ω内的调和函数,在Ω+Γ上有一阶连续偏导数,则在公式(6.9)中取u 为所给的调和函数,取1v =,就得到0udS nΓ∂=∂⎰⎰(6.13) 由(6.13)可得牛曼内问题u f nΓ⎛⎫∂=⎪∂⎝⎭有解的必要条件为函数f 满足*)上面的推导是假定点),,(0000z y x M 在区域Ω内,如果0M 在Ω外或0M 在边界Γ上,我们也可用同样方法推得另外两个式子,把它们合并在一起可得⎰⎰Γ⎪⎩⎪⎨⎧ΩΓΩ=⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂-。
第六章格林函数
25
一、半空间上的格林函数 上半空间区域上的格林函数满足
⎧ΔG = −δ (r − r0 ), ⎨ ⎩G z =0 = 0 z>0
在半空间 z > 0 上取一点 M 0 ( x0 , y0 , z0 ), 令 r0 = x + y + z 表示自原点到该点的距离, 并在该点放置一个单位正电荷,它所形成的静电场 在任何一点 M ( x, y, z ) 处的电位函数为 1 1 1 = ⋅ 4π rM0M 4π (x − x0 )2 + ( y − y0 )2 + (z − z0 )2
u (ξ ,η , ζ ) = − ∫∫
S
∂G f dσ+∫∫∫ Gϕ dω. ∂n Ω
对于拉普拉斯第一边值问题, 如果ϕ = 0,
22
上式可写为
∂G dσ u (ξ ,η , ζ ) = − ∫∫ f ∂n S 其中G也可称为拉普拉斯方程第一边值问题的格林函数.
三、格林函数的物理意义
把区域 Ω 的边界考虑为一个金属壳体, 并把它用导线接地, 并在 Ω 内一点 P (ξ ,η , ζ ) 放置一个单位正电荷,令 V ( P, Q ) = V ( x − ξ , y − η , z − ζ ) 表示这个静电场的电位函数,由于现在电荷是 集中在一点的,可用 δ 函数来表示电荷分布密度,
3
k k Δu + f ( x, y , z ) = 0 cρ cρ
或
Δu = − f .
其中 f 为已知函数,这是泊松方程。 如果没有热源,即 f ≡ 0 则
Δu = 0,
我们得到拉普拉斯方程。 例二: 设在一真空空间区域 Ω 中存在一个
4
静电场 E ( x, y , z ), 电荷的密度分布函数为 ρ ( x, y, z ), 根据静电学中的基本定律,有 ρ divE = ∇ • E = (高斯定理) ε0 且 rotE = ∇ × E = 0. (斯托克斯定理) 这个静电场是无旋的,那么必定是有势的, 即存在一个电位函数: u = u ( x, y, z ) 使得
第六章 格林函数法
G U g
相应的方程为
Δ U x x0 , y y0 , M , M0 D
及
Δ g 0, g U,
在D内, 在B上
基本解在前面已经求出,有界区域内调和函数的求法在下一 节介绍。
三维问题解的积分公式
假设格林函数已经求出,下面研究三维泊松方程第一边值 问题解的积分表示。
Δ U x x0 , y y0 , z z0
(9)
以固定点M0为原点,建立球坐标,并假设U与θ ,φ 无关,方 程化为
ΔU 1 d 2 dU r 0, 2 r dr dr r 0
其中
r
x x0 2 y y0 2 z z0 2
u v uΔ v - vΔ u d u n v n ds D B
GM; M M - M - GM; M M - M d
1 2 2 1
GM 2 ; M 1 - GM 1 ; M 2 0
D
格林函数的求法
在内, 在S上
的函数称为拉普拉斯方程第二边值问题的格林函数。
证明 进行体积分并利用格林公式,可得
Δ GdV x x , y y , z z dV 1
0 0 0
Δ GdV
S
G dS 0 n
易知齐次边界条件无法满足,上述定义不能成立,证毕。
在公式(4)中
u v uΔ v dV vΔ u dV u n v n dS S
若令 △v=δ(x,y,z),并在边界上取 v=0,可得
v u v u dV u dS Δ n S
格林函数法
由格林函数的对称性可得
Ò u ( r ) T G ( r ,r 0 ) f( r 0 ) d V 0 [ u ( r 0 ) G ( n r 0 ,r 0 ) G ( r ,r 0 ) u ( n r 0 0 ) ] d S 0
解的基本思想:通过上面解的形式,我们容易观察出引
例1 试求球内的泊松方程的狄利克雷问题的格林函数。
解:该定解问题为三维,其基本解为
G0
4
1 rr r r0
G1 0 r R
G
1
则满足
G1
rR
G 0
rR
4
1 rr R r0
设产生 G 1 的等效点电荷电量q
、位置
rr
(在
1
rr
0
的延长线上
且在球形区域以外,这样方程自然满足)
r R
rr O
r r0
M0
M
q
R ቤተ መጻሕፍቲ ባይዱ0
0
r r1
R2
r
2 0
r r0
G=G0+G1
4
1 rr r r0
40qrr
r r1
M1
球形区域格林 函数表达式; 区域形状不同 其格林函数也
会有所不同
4
1 rr r r0
4Rr00 rr0rr1
4
1 rr r r0
二维时 u r r l r r 0 G n r r 0 ;r r 0 d l0 S G r r ;r r 0 fr r 0 d S 0
上式为第一边值问题解的积分表示式
§5.2 用电像法求格林函数法
数学物理方程 格林函数法优秀课件
由格林第三公式,得
u (,,) ( u n u n )d s u d V(7 )
由定解问题(5)(6)的自由项和边值条件,可得
而 在 u dV un d s 中 ,f( xun,y在,z边)d界V 和 上的 值u 未 n知ds,因 此(须x,进y,一z)步 n处d理s.。
( 1 1 )
将(10)和(11)带入到(9),
G u d V ( u n u n ) d s B ( u n u n ) d s ( 9 )
得到
G u d V ( u n u n )d s u (x ,y ,z ) u n (x ,y ,z )
5.3 半空间及圆域上的Dirichlet问题
由前面的分析,我们可以看出,只要求出了给定区域
上的格林函数,就可以得到该区域泊松方程狄利克雷问题的解。对 一般区域,求格林函数并非易事。但对于某些特殊区域,可有一些 方法。
5.3.1 半空间上的狄利克雷问题
设 { ( x ,y ,z ) |z 0 } , { ( x ,y ,z ) |z 0 } 考虑定解问题
基本解做研究偏微分方程时起着重要的作用。这里首先介绍 拉普拉斯方程的基本解,并做一些特殊区域上由基本解生产格林函 数,由此给出相应区域上的拉普拉斯方程或泊松方程边值问题的解 的表达式。
5.2.1 基本解
设 P0(,,)R3 ,若做点 P0(,, ) 放置一单位正电荷,
则该电荷在空间产生的点位分布为(舍去介电常数 0 )
uf(x,y,z),(x,y,z) (1)
u(x,y,0)(x,y),(x,y) R2 (2)
设 P0(,,),则 P1(,,) 为 P 0 关于 的对称点。
G (P G , P 0)( P 0 ,,P (0 x ),,(yx ,,zy ), z )
格林函数法
格林函数法
格林函数(Green's Function)是描述物理系统状态之间相互转换和
其它类型的转换的一种函数,用来解决系统的边界值问题。
它可以通过物
理系统的差分方程来解释,也可以用来表征物理系统的任意状态之间的相
互作用。
格林函数可以概括地表示为:当系统处于某一特定状态时,其他
状态的影响,及它们之间的相互作用,以及系统当前状态的演变。
格林函数法可以分为两种:一种是无限空间的,这种方法是通过求解
无限空间的格林函数的衍生值来处理边界值问题;另一种是有限空间的,
这种方法是通过求解有限空间的格林函数的衍生值来处理边界值问题。
格
林函数法可以用来研究物理系统中多种形式的边界值问题,包括边界条件、初始条件、响应函数、激励函数、反应函数等。
此外,它还可以用来估计
未知量、估计系统参数、构造信号处理过程和对边界条件进行约束等。
格林函数方法
格林函数方法格林函数方法是一种数值计算方法,它通过求解常微分方程来解决实际问题,并有助于研究工程中的某些物理特性。
格林函数方法以量子力学和热力学的成功应用为基础,现在被广泛用于量子电子学、光学、流体力学、结构力学、能源学等领域,其有效的处理数十亿个基础状态的能力为科学研究提供了无穷的可能性。
格林函数方法的基本思想是将给定的微分方程转换为它的格林函数表示,以便对常微分方程的解或其他数学特性进行分析。
主要特点是,格林函数方法可以用来求解复杂的线性和非线性微分方程组,其中格林函数可以看作是方程组中各元素的描述,而不需要显式地求出它们的解。
这使得格林函数方法得以应用于复杂系统中实际问题的求解,从而在工程实践中节省了大量的时间和精力。
具体来说,格林函数方法一般分为三个步骤:首先,将常微分方程转换为额外的辅助方程和格林函数;其次,解辅助方程,以求出格林函数,并使用它来解决源微分方程;最后,通过使用互补性和通用性特性,求出格林函数方程组的解,并进行可视化分析。
格林函数方法在研究各种量子物理学问题方面表现异常出色,在计算能量谱、场动力学以及其他类似的量子物理问题方面,它具有极大的优势。
如果将格林函数方法与数值模拟技术相结合,就可以更好地描述复杂的物理系统的特性和行为,从而对更复杂的问题有所贡献。
在过去几十年中,随着计算机技术的发展,格林函数方法也取得了巨大的进步。
最近,研究者们发展出了新型的格林函数方法,如蒙特卡洛格林函数方法和一维格林函数方法,它们可以用于更复杂的微分方程组,能够更快地收敛,对于大型系统也更加有效。
此外,现在有一系列的软件可用来帮助研究人员编写格林函数方程组的程序,大大简化了编程的过程,也方便了研究人员使用格林函数方法发掘物理系统的特性。
综上所述,格林函数方法为研究者提供了解决复杂系统的实际问题的独特工具,同时也大大提高了数值计算的效率。
该方法在研究物理学问题方面取得了显著的进展,已经被广泛应用于各个领域;随着科技的进步,格林函数方法也在不断演进,发展出新的计算技术,为科学研究提供无穷的可能性。
格林函数法求解场的问题
格林函数法求解稳定场问题1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。
从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系:Heat Eq.:()2222 ,ua u f r t t∂-∇=∂ 表示温度场u 与热源(),f r t 之间关系 Poission ’s Eq.: ()20u f r ρε∇=-=-表示静电场u 与电荷分布()f r 之间的关系场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。
但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。
例如,在有限体内连续分布电荷在无界区域中产生的电势:()''04r dV r rρφπεΩ=-⎰这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。
或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。
所以,研究点源及其所产生场之间的关系十分重要。
这里就引入Green ’s Functions 的概念。
Green ’s Functions :代表一个点源所产生的场。
普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。
所以,我们需要在特定的边值问题中来讨论 Green ’s Functions.下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。
实际上,只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions 。
2 泊松方程的格林函数静电场中常遇到的泊松方程的边值问题:()()()()()201 f s u r r u r u r r nρεαβϕ⎧∇=-⎪⎪⎨∂⎡⎤⎪+=⎢⎥⎪∂⎣⎦⎩ 这里讨论的是静电场()u r , ()f r ρ代表自由电荷密度。
数理方法第六章[横式]
u (r ) v (r ) dS [ u (r ) v (r ) u (r )
T
2011/2/9 天津大学 物理系 2 2011/2/9 天津大学 物理系
2
v (r )] d .
第一格林公式(Green's First identity)
4
1
2011/2/9
2 G (r ; r0 ) (r r0 ) , (r , r0 T )
Robin Problem
G G (r ; r0 ) h 0, n r
2011/2/9
天津大学 物理系
9
2011/2/9
天津大学 物理系
11
第一类边值问题的格林函数:
2 G (r ; r0 ) (r r0 ) , (r , r0 T )
第一类边值问题(Dirichlet Problem) 第二类边值问题( Neumann Problem) 第三类边值问题(Robin Problem)
而
u(r) G(r; r ) d
2 0 T
u(r) (r r0 ) d
T
u(r0 )
(r , r0 T )
2011/2/9
2011/2/9 天津大学 物理系 14
其中, VT d .
T
2011/2/9
天津大学 物理系
16
4
2011/2/9
注意:下面的格林函数是不存在的,
2 G (r ; r0 ) (r r0 ) , (r , r0 T )
Green函数的坐标对易性:
G n
0,
天津大学 物理系
6
2011/2/9
格林函数
稳定问题的格林函数也可以利用静电场类比法得到。 点源问题可以看成接地的导体边界内在 r’ 处有一个电量为 - ε 0 的点电荷。 边界内部的电场由点电荷与导体中的感应电荷共同产生。 在一些情况下,导体中所有感应电荷的作用可以用一个设想的等效电荷来代替,该等效电荷 称为点电荷的电像。 这种方法称为电像法 发展和应用分类 格林函数在地震工程学中的应用 格林函数在地震工程学中是计算震源机制的函数。根据其发展和应用可以分为以下几类。
经验格林函数法
经验格林函数法是运用包含断层上一个点源动力学破裂的复杂效应、震源主场地速度结构的 不均匀性影响的小震记录来叠加合成较大地震的地震动时程。其优点是信度较高、较为可靠;可 是其缺点同样突出,即对小震记录的要求相当苛刻,必须具有与大震相同的震源机制,小震记录 的信噪比要高等等。如果在震源区找不到良好的小震记录,就不能用经验格林函数法。
理论格林函数法
理论格林函数的计算是一个相当复杂的过程,目前只有对水平成层介质推导的解析公式。计 算要借助计算机实现,且介质层数受到很大的限制,很少有多于两覆盖层的结果发表。
数值格林函数法
与实际地震动观测记录的比较表明,这种在时域合成的地震动模拟,对持时、峰值加速度、 短周期 ( 1 秒以下) 反应谱幅值的预测精度都可以在大约 -50% 范围内, 与经验模型的精度大体相当; 对峰值速度和周期大于 1 秒的反应谱幅值,预测的误差要比经验模型的小。
格林函数
姓名:折再兴
学号:201241802027
专业:物理学
电话:15764212022
格林函数
摘 要 :从物理上看,一个数学物理方程是表示一种特定的"场"和产生这种场的"源"之间的关系.例如,热传 导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等.这样,当源被分解成很 多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场, 这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数。 关键字:点电荷,函数表示,微分算符。 正文: 格林函数法是数学物理方程中一种常用的方法。 格林函数是又称为源函数或影响函数,是英国人 G. 格林于 1828 年引入的。 一个处于 X ’点上的单位点电荷所激发的电势 Ψ ( x )满足泊松方程:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vΔudV
S
u
v n
dS
若令u=1,可得
ΔvdV
S
v n
dS
二维公式
平面格林公式
D
Q x
P y
d
C
Pdx
Qdy
或写成对弧长积分的形式
(5)
D
Q x
P y
d
Qn1
C
Pn2 ds
其中 n =(n1,n2)为边界曲线C的单位外法线向量。
(6)
关于边界曲线弧长与坐标,有如下微分关系
dy n1ds, dx n2ds
得
x
u
v x
y
u
v y
z
u
v z
dV
S
u
v x
cosn,
x
u
v y
cosn,
y
u
v z
cosn,
z
dS
整理得
uvdV
u
x
v x
u y
v y
u z
v z
dV SBiblioteka uv ndS
于是得到第一格林公式
uΔvdV
u
S
v n
dS
-
gradu gradvdV
(2)
三维公式
利用格林公式,有
ΔUdV
S
U dS n
1
取边界S 为球面,其半径为 r,则有
所以
S
U n
dS
S
U r
dS
S
B r2
dS
4B
B 1 4π
最后得三维拉普拉斯方程的基本解
U 1 4πr
求二维拉普拉斯方程的基本解
解 由定义1 可知,即求U使其满足方程
ΔU x x0, y y0
(2)
以固定点M0为原点,建立极坐标,并假设U与θ无关,方程化 为
C
C
u
v x
v
u x
n1
u
v y
v
u y
n2
ds
C
u
v x
n1
v y
n2
-
v
u x
n1
u y
n2
ds
C
u
v n
v
u n
ds
如是证得公式(8)。
几种常用的积分形式
在公式(8)中
uΔvd
D
vΔud
D
C
u
v n
v
u ds n
若令 △v=δ(x,y),并在边界上取 v=0,可得
u
D
vΔud
(3)
以固定点M0为原点,建立极坐标,并假设U与θ无关,方程化 为
其中
ΔU
1 r
d dr
r
dU dr
k 2U
0,
r0
r x x0 2 y y0 2
求解零阶贝塞尔方程得
U r AJ0 kr BY0 kr
考虑到在 r = 0 处,J0(kr)有界,取 A = 0,而 Y0(kr) 具有 (2/π)lnr 的奇异性。为进一步确定B值,对式(3)两边进行 面积分得
的解本解,其中M为区域Ω内任意一点,M0为Ω中的任意一个 固定点。
求三维拉普拉斯方程的基本解
解 由定义 1 可知,即求U使其满足方程
ΔU x x0, y y0, z z0
(1)
以固定点M0为原点,建立球坐标,并假设U与θ,φ无关,方 程化为
其中
ΔU
1 r2
d dr
r 2
dU dr
由公式(6)可推导出,平面第二格林公式
uΔv - vΔud
D
C
u
v n
v
u n
ds
其中n为边界曲线C的外法线向量。
(7) (8)
推导细节
设
Q u v v u , P u v v u
x x
y y
公式(6)左边等于
D
Q x
P y
d
uΔv - vΔud
D
公式(6)右边等于
推导细节
Qn1 Pn2 ds
C
u
v n
ds
若令 u=1,可得
Δvd
D
C
v n
ds
讨论二维第二格林公式
令
u2
u
v x
v
u x
,
u1
v
u y
u
v y
由三维Stokes环流定理可得二维第二格林公式
D
uΔv
-
vΔud
C
u
v n
v
u n
ds
6.2 基本解
定义 1 设L为线性微分算子,称方程 LU=δ(M-M0)
的解U(M,M0)为方程 LU=0 或LU=f(M)
0,
r0
r x x0 2 y y0 2 z z0 2
求解常微分方程可得
r2
dU dr
-B,
dU
B r2
dr
U A B r
考虑到基本解在 r=0 处应具有奇异性,取 A = 0。为进一 步确定B值,对式(1)两边进行体积分得
ΔUdV x - x0, y - y0, z - z0 dV 1
Y0
kr
Y0
k
r
~
2
ln
r
练习
利用三维调和方程的基本解,试求三维双调和方程的 基本解
Δ2U x x0, y y0, z z0
解
以固定点M0为原点,建立球坐标,并假设U与θ,φ无关。若 U满足
ΔU
1 r2
d dr
r 2
dU dr
1 4πr
,
r0
(a)
则必满足
Δ2U 0, r 0 设未知函数表达式为
同理,有
vΔudV
v
S
u n
dS
-
gradu
gradvdV
将上二式两边相减得第二格林公式
uΔv
-
vΔudV
S
u
v n
v
u n
dS
(3) (4)
几种常用的积分形式
在公式(4)中
uΔvdV
vΔudV
S
u
v n
v
u n
dS
若令 △v=δ(x,y,z),并在边界上取 v=0,可得
u
D
D
利用格林公式,有
ΔUd
D
C
U n
ds
1
取边界C为圆周, 其半径为 r ,则有
所以
C
U n
ds
C
U r
ds
C
Bds r
2B
B 1 2π
于是得二维拉普拉斯方程的基本解
U 1 lnr 2π
求二维亥姆霍斯方程的基本解
解 由定义1 可知,即求U使其满足方程
ΔU k 2U x x0, y y0
ΔU k2U d x - x0, y - y0 d 1
D
D
利用格林公式,有
ΔUd
D
C
U ds n
取边界C为圆周,其半径为 r,则有
1 lim r0 C
U ds n
D
k 2Ud
B
lim
r 0
2r
2
r
2
r k 2 2 ln
0
d
4B
于是得二维亥姆霍斯方程的基本解
U
r
1 4
U Ar
其中A为待定系数。将表达式代入方程( a ),可得
A 1
8
于是,最后得到双调和方程的基本解
U r
8
6.3 格林函数
二维格林函数的定义
定义2 满足
ΔG2G0, x x0, y y0 ,
在D内, 在B上
的函数称为拉普拉斯方程第一边值问题的格林函数,其中B 为平面区域D的边界。
第六章 格林函数法
本章主要研究基本解和格林函数及其 在边值问题和初值问题中的应用,并
介绍混合问题的相关解法。
6.1 格林公式
高斯公式
P x
Q y
R z
dV
Pcosn,x Qcosn, y Rcosn,zdS
S
其中n为S的外法线方向。
取
P u v , Q u v , R u v
x
y
z
(1)
其中
ΔU
1 r
d dr
r
dU dr
0,
r0
r x x0 2 y y0 2
求解常微分方程得
r
dU dr
B,
dU
B dr r
U A Blnr
考虑到基本解在 r = 0 处应具有奇异性,取 A = 0。为进一步 确定B值,对式(2)两边进行面积分得
ΔUd x x0, y y0 d 1