中考数学作图题易考题型精讲精练超实用

合集下载

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)

2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)知识总结1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。

如图①②连接MN,过MN的直线即为线段的垂直平分线。

如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。

如图①。

②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。

如图②。

③连接OP,OP即为角的平分线。

(5)过一点作已知直线的垂线.4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。

5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。

专项练习题1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段F A的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD 即为所求;(2)过点O 作OH ⊥BC 于H ,连接OB ,OC .∵AD 是切线,∴OA ⊥AD ,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2. 9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF是菱形.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上F A=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠F AD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵F A=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。

专题22尺规作图(原卷版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)

专题22尺规作图(原卷版)-2023年中考数学一轮复习高频考点精讲精练(全国通用)

专题22 尺规作图一、基础作图【高频考点精讲】1、作一条线段等于已知线段(已经线段a)。

(1)步骤①作射线OP;②以点O为圆心,a为半径作弧,交OP于点A,则OA即为所求线段。

(2)作图原理:圆上的点到圆心的距离等于半径。

(3)适用情形①已知三边作三角形;②作圆的内接正六边形。

2、作一个角等于已知角(已知∠α)。

(1)步骤①以点O为圆心,适当长为半径作弧,分别交∠α的两边于点P、Q;②作射线O′A;③以点O′为圆心,OP长为半径作弧,交O′A于点M;④以点M为圆心,PQ长为半径作弧,交步骤3中的弧于点N;⑤过点N作射线O′B,则∠AO′B即为所求角。

(2)作图原理①三边相等的两个三角形全等;②全等三角形的对应角相等。

(3)适用情形①过直线外一点作直线与已知直线平行;②过三角形一边上一点作直线将其分成两个相似三角形。

3、作已知角的角平分线(已知∠AOB)。

(1)步骤①以点O为圆心,适当长为半径作弧,分别交OA,OB于点N、M;②分别以点M、N为圆心,以大于1/2MN长为半径作弧,两弧在∠AOB的内部相交于点P;③作射线OP,则OP即为所求角的平分线。

(2)作图原理①三边相等的两个三角形全等;②全等三角形的对应角相等;③两点确定一条直线。

(3)适用情形①作一点使得该点到角两边的距离相等;②作三角形的内切圆。

4、作已知线段的垂直平分线(已知线段AB)。

(1)步骤①分别以点A、B为圆心,以大于1/2AB长为半径,在AB两侧作弧,分别交于点M、N;②过点M、N作直线,直线MN即为所求垂直平分线。

(2)作图原理①到线段两端点距离相等的点在这条线段的垂直平分线上;②两点确定一条直线。

(3)适用情形①过三角形的一个顶点作直线平分三角形的面积;②过不在同一直线上的三点作圆/作三角形的外接圆;③作到已知两点距离相等的点。

5、过一点作已知直线的垂线(已知点P和直线l)。

【点P在直线l上】(1)步骤①以点P为圆心,适当长为半径作弧,交直线l于A、B两点;②分别以点A、B为圆心,以大于1/2AB长为半径向直线两侧作弧,两弧分别交于点M、N;③过点M、N作直线,直线MN即为所求垂线。

2024年中考数学二轮复习题型全通关专练—作图题(含答案)

2024年中考数学二轮复习题型全通关专练—作图题(含答案)

2024年中考数学二轮复习题型全通关专练—作图题(含答案)几何直观是初中数学核心素养之一,几何直观主要是指运用图表描述和分析问题的意识与习惯.能够感知各种几何图形及其组成元素,依据图形的特征进行分类;根据语言描述画出相应的图形,分析图形的性质;建立形与数的联系,构建数学问题的直观模型;利用图表分析实际情境与数学问题,探索解决问题的思路.几何直观有助于把握问题的本质,明晰思维的路径.考点讲解:五种基本尺规作图:作一条线段等于已知线段,作一个角等于已知角,作已知角的平分线,作已知线段的垂直平分线,过一点作已知直线的垂线.有时没有直接给出作图的方式,需要根据已知条件分析得出作基本作图中的哪一种或几种.【例1】(2023·陕西·统考中考真题)1.如图.已知锐角ABC ,48B ∠=︒,请用尺规作图法,在ABC 内部求作一点P .使PB PC =.且24PBC ∠=︒.(保留作图痕迹,不写作法)【变1】(2021·江苏南京·统考中考真题)2.如图,已知P 是O 外一点.用两种不同的方法过点P 作O 的一条切线.要求:试卷第2页,共14页(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.考点讲解:一般的网格是由全等的正方形构成的,可视网格的边长为单位“1”,根据正方形的性质,结合作图目标展开作图.常见的是利用网格作三视图,利用网格作作特殊的三角形和四边形,利用网格设计图案等.【例1】(2023·陕西西安·校考三模)3.如图是由若干个完全相同的小正方体组成的一个几何体.(1)请结合俯视图画出这个几何体的主视图和左视图.(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加______个小正方体.【变1】(2023·江苏盐城·校考二模)4.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.A 、B 、C 三点是格点,仅用无刻度尺的直尺.......在给定网格中画图,画图过程用虚线表示,画图结(1)如图1,点P 在线段AB 上,请在图1中完成以下作图:画出一点E ,使BE=BP :(2)在图2中完成以下作图:在线段BC 上画出一点考点讲解:图形的变换包括平移、旋转、对称、位似,根据这些变换的性质作图.(1)将ABC 向上平移4个单位,再向右平移(2)请画出ABC 关于y 轴对称的222A B C △(3)将222A B C △着原点O 顺时针旋转90︒,得到考点讲解:描点作图是针对函数展开的.画函数图象的步骤是:列表,描点,连线.试卷第4页,共14页试卷第6页,共14页结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为______个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约______个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C ______0.990(填“>”“=”或“<”).(2022·广西贵港·中考真题)9.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m ,n .求作ABC ,使90,,A AB m BC n ∠=︒==.(2021·山东青岛·统考中考真题)10.已知:O ∠及其一边上的两点A ,B .求作:Rt ABC ,使90C ∠=︒,且点C 在O ∠内部,BAC O ∠=∠.(2023·山东滨州·统考中考真题)11.(1)已知线段,m n ,求作Rt ABC △,使得90,,C CA m CB n ∠=︒==;(请用尺规作图,保留作图痕迹,不写作法.)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在(2023·江苏·统考中考真题)△12.如图,在Rt ABC,使得圆心(1)尺规作图:作O保留作图痕迹,标明相应的字母,不写作法)试卷第8页,共14页(1)请用无刻度的直尺和圆规作出(2)若(1)中所作的角平分线与边(2023·山东青岛·统考中考真题)(2023·黑龙江哈尔滨·统考中考真题)16.如图,方格纸中每个小正方形的边长均为均在小正方形的顶点上.试卷第10页,共14页(1)在方格纸中画出ABE ,且AB =(2)在方格纸中将线段CD 向下平移MN (点C 的对应点是点M ,点D 长.(1)在图①中,ABC 的面积为92;(2)在图②中,ABC 的面积为5(3)在图③中,ABC 是面积为52的钝角三角形.(2023·湖北·统考中考真题)(1)在图1中作出以BE为对角线的一个菱形BMEN(2)在图2中作出以BE为边的一个菱形BEPQ (2023·湖北武汉·校联考模拟预测)(1)在图中画一个等腰三角形画出该三角形绕矩形ABCD试卷第12页,共14页(2)在图中画一个Rt PQR △,使45P ∠=︒,点Q 在BC 上,点R 在AD 上,再画出该三角形向右平移1个单位后的图形.(2023·湖北宜昌·统考中考真题)21.如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA 绕点O 顺时针旋转90︒后得到的线段OB ,连接AB ;(2)画出与AOB 关于直线OB 对称的图形,点A 的对称点是C ;(3)填空:OCB ∠的度数为_________.(2023·山东枣庄·统考中考真题)22.(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.(2020·宁夏·中考真题)23.在平面直角坐标系中,ABC 的三个顶点的坐标分别是(1,3),(4,1),(1,1)A B C .(1)画出ABC 关于x 轴成轴对称的111A B C △;(2)画出ABC 以点O 为位似中心,位似比为1∶2的222A B C △.(2023·重庆·统考中考真题)24.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.(2023·四川达州·统考中考真题)25.【背景】在一次物理实验中,小冉同学用一固定电压为12V 的蓄电池,通过调节滑试卷第14页,共14页(2)【探究】根据以上实验,构建出函数()1202y x x =≥+的图象与性质.①在平面直角坐标系中画出对应函数②随着自变量x 的不断增大,函数值y 的变化趋势是(3)【拓展】结合(2)中函数图象分析,当x参考答案:【点睛】本题考查了作图合几何图形的基本性质把复杂作图拆解成基本作图,2.答案见解析.【分析】方法一:作出答案第2页,共30页【详解】解:作法:作射线PO ,交O 于点,M N ,以P 为圆心,长为半径画弧交P 于点A ,连接,PA OA ,OA 交O 于点12OB OA =,则PB OA ⊥,PB 即为所求.【点睛】本题考查了作图——复杂作图,涉及垂直平分线的作法,角平分线的作法,等腰三角形的作法,圆的作法等知识点.复杂作图是在五种基本作图的基础上进行作图.键是熟悉基本几何图形的性质,结合基本几何图形的性质把复杂作图拆解成基本作图,操作.(2)2【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,1;左视图有2列,每列小正方形数目分别为3,1;据此可画出图形.(2)结合主视图和俯视图不变得出可在第二层第1列第一行加一个,第三层第1列第一行加一个,共2个.【详解】(1)解:画图如下:(2)解:主视图和俯视图不变得出可在第二层第1列第一行加一个,第三层第1列第一行加一个,共2个.故答案为:2.【点睛】本题考查三视图的画法,以及根据三视图求立方体个数,理解三视图的意义,掌握简单组合体三视图的画法是正确解答的关键.4.(1)见解析(2)见解析【分析】(1)将点A向右平移5个格得到点D,连接CD即得菱形ABCD,连接BD、CP交于点Q,作射线AQ交BC于点E,点E即为所作;(2)连接AC交格点于点M,连接BD交格点于点N,作射线AN交BC于点F,则∠=∠,即点F即为所作.BAF FCN(2)如图,点F即为所作.【点睛】题考查作图﹣应用与设计,涉及菱形的判定与性质、全等三角形、等腰三角形的性质解直角三角形,解题的关键是理解题意,灵活运用所学知识找到关键信息作图..(1)见解析(2)见解析(3)134π答案第4页,共30页(2)如图所示,222A B C △即为所求;(3)将222A B C △着原点O 顺时针旋转90︒,得到设 23A A 所在圆交3OC 于点D ,交2OC 于点E 23OA OA =,23OC OC =,23C E C D ∴=,3290A OA ∠=︒ ,2390C OC ∠=︒,32A OD A OE ∴∠=∠,32A D A E ∴=,3322A C D A C E S S ∴= 曲边曲边,332OC =,OD =π4答案第6页,共30页答案第8页,共30页故答案为:4;②根据表格描点再连接起来,如图所示,;(3)解:①当1x ≥时,2(1)224y x x =--+=-+,故答案为:24x -+;②当1x <时,2(1)22y x x =-+=,当1x =时,2y =,当0x =时,0y =,当2x =时,2240y =-⨯+=,描点如图所示,;(4)解:由解析式得,当x b ≥时,y ax ab c =-+,当0a >时,x b ≥时,y 随x 增大而增大,当a<0时,x b ≥时,y 随x 增大而减小,当x b ≤时,y ax ab c =-++,当0a >时,x b ≤时,y 随x 增大而减小,当a<0时,x b ≤时,y 随x 增大而增大,故答案为:当0a >时,x b ≥时,y 随x 增大而增大,当a<0时,x b ≥时,y 随x 增大而减小,当0a >时,x b ≤时,y 随x 增大而减小,当a<0时,x b ≤时,y 随x 增大而增大(写其中任意一条即可).【点睛】本题考查一次函数的图像与性质,解题的关键是根据绝对值的性质化简出解析式.8.(Ⅰ)见解析;(Ⅱ)见解析,4;(1)11.3;(2)<【分析】(Ⅰ)直接在表格中标记即可;(Ⅱ)根据表格中数据描点连线即可做出函数图象,再结合函数图象找到最低点,可得第一答案第10页,共30页由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度0.990C <,故答案为:<.【点睛】本题考查了函数图象,根据数据描绘函数图象、从函数图象获取信息是解题的关键.9.见解析【分析】作直线l 及l 上一点A ;过点A 作l 的垂线;在l 上截取AB m =;作BC n =;即可得到ABC .【详解】解:如图所示:ABC 为所求.注:(1)作直线l 及l 上一点A ;(2)过点A 作l 的垂线;(3)在l 上截取AB m =;(4)作BC n =.答案第12页,共30页【点睛】本题考查作图——复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.10.见解析【分析】先在∠O 的内部作∠DAB =∠O ,再过B 点作AD 的垂线,垂足为C 点.【详解】解:如图,Rt △ABC 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.11.(1)见解析;(2)见解析【分析】(1)作射线AP ,在AP 上截取AC m =,过点C 作AC 的垂线MN ,在CN 上截取CB n =,连接AB ,则Rt ABC △,即为所求;(2)先根据题意画出图形,再证明.延长CD 至E 使CD DE =,连接AE 、BE ,因为D 是AB 的中点,所以AD BD =,因为CD DE =,所以四边形ACBE 是平行四边形,因为90ACB ∠=︒,所以四边形ACBE 是矩形,根据矩形的性质可得出结论.【详解】(1)如图所示,Rt ABC △即为所求;∵CD 为AB 边中线,∴BD AD =,∴四边形ACBE 为平行四边形.∵90ACB ∠=︒,∴平行四边形ACBE 为矩形,答案第14页,共30页(2)解:∵60,ABC AB ∠=︒=∴30A ∠=︒,∴12DO OB AO ==,∵60,ABC OB OE ∠=︒=,∴OBE △是等边三角形,如图所示,过点E 作EF BO ⊥∴30OEF ∠=︒∠.(2)证明:∵OP平分AOB答案第16页,共30页(2)证明:∵AE 平分BAC ∠∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,性质.(2)解:如图所示,MN,EN22EN=+=.112【点睛】本题考查了平移作图,勾股定理与网格,熟练掌握勾股定理是解题的关键.17.(1)见解析(2)见解析答案第18页,共30页(2)由网格可知,22AB=+=3110以10AB=为底,设AB(3)如图所示,作5==,过点BD AB由网格可知,22BD AB==+=,215△是直角三角形,且∴ABD∥∵CD AB答案第20页,共30页(2)解:如图,菱形BEPQ 即为所求.BEPQ 是菱形,且要求BE 为边,∴①当BE 为上底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向右下偏移,如图所示,②当BE 为上底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向左下偏移如图所示,答案第22页,共30页③当BE 为下底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向左上偏移如图所示,④当BE 为下底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向右上偏移如图所示,【点睛】本题考查了作图-复杂作图,复杂作图是结合了几何图形的性质和基本作图的方法,涉及到的知识点有菱形的性质和判定,解题的关键在于熟悉菱形的几何性质和正六边形的几何性质,将复杂作图拆解成基本作图.19.(1)见解析(2)见解析(3)见解析【分析】(1)根据轴对称变换的性质作出点A的对应点B即可;△的中位(2)取格点H,连接HB,延长HB交网格线与点T,连接AH,AT,作出AHT线,连接GF交AB于点O,点C即为所求;(3)过点B作关于直线AC的对称点B',连接CB',PB'交AC与点O,连接BO,延长BO 交CB'于点M,点M即为所求.【详解】(1)解:在图1中,点B即为所求;(2)解:在图2中,点C即为所求;(3)解:在图3中,点M即为所求.【点睛】本题考查作图一轴对称变换,三角形中位线定理,平行线等分线段定理等知识,解(2)画法不唯一,如图3或图4.【点睛】本题主要考查了格点作图,解题关键是掌握网格的特点,相垂直或平行的线段.21.(1)详见解析(2)详见解析(3)45︒答案第24页,共30页【分析】(1)根据题目叙述画出图形即可;(2)根据题目叙述画出图形即可;(3)由(1)作图可得AOB 是等腰直角三角形,且=45A ︒∠,由对称的性质可得45OCB ∠=︒.【详解】(1)在方格纸中画出线段OA 绕点O 顺时针旋转90︒后得到的线段OB ,连接AB ,如图;(2)画出与AOB 关于直线OB 对称的图形,点A 的对称点是C ;如上图所示:(3)由(1)作图可得AOB 是等腰直角三角形,且=45A ︒∠,再根据对称的性质可得45OCB A ∠=∠=︒.故答案为:45︒.【点睛】此题考查了旋转作图及作轴对称图形,解答本题的关键是仔细审题,得出旋转三要素,进而得出旋转后的图形.22.(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是轴对称图形,且面积为4的图形.【详解】解:(1)观察发现四个图形都是轴对称图形,且面积相等;故答案为:观察发现四个图形都是轴对称图形,且面积相等;(2)如图:答案第26页,共30页【点睛】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.23.(1)如图所示111A B C △为所求;见解析;(2)如图所示222A B C △为所求;见解析.【分析】(1)将ABC 的各个点关于x 轴的对称点描出,连接即可.(2)在ABC 同侧和对侧分别找到2OA=OA 2,2OB=OB 2,2OC=OC 2所对应的A 2,B 2,C 2的坐标,连接即可.【详解】(1)由题意知:ABC 的三个顶点的坐标分别是A (1,3),B (4,1),C (1,1),则ABC 关于x 轴成轴对称的111A B C △的坐标为A 1(1,-3),B 1(4,-1),C 1(1,-1),连接A 1C 1,A 1B 1,B 1C 1得到111A B C △.如图所示111A B C △为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,222A B C △和ABC 在同一侧则A 2(2,6),B 2(8,2),C 2(2,2),连接各点,得222A B C △.第二种,222A B C △在ABC 的对侧A 2(-2,-6),B 2(-8,-2),C 2(-2,-2),连接各点,得222A B C △.综上所述:如图所示222A B C △为所求;【点睛】本题主要考查了位似中心、位似比和轴对称相关知识点,正确掌握位似中心、位似比的概念及应用是解题的关键.24.(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【详解】(1)解:当04t <≤时,连接EF ,答案第28页,共30页由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.【点睛】此题考查了动点问题,一次函数的图象及性质,解一元一次方程,正确理解动点问题是解题的关键.②由图象可知,随着自变量x 的不断增大,函数值故答案为:函数值y 逐渐减小;(3)解:当2x =时,32632y =-⨯+=,当∴函数()1202y x x =≥+与函数362y x =-+的图象交点坐标为答案第30页,共30页由图知,当2x ≥或0x =时,123622x x ≥-++,即当0x ≥时,123622x x ≥-++的解集为2x ≥或故答案为:2x ≥或0x =.【点睛】本题考查函数的图象与性质、描点法画函数图象、两个函数图象的交点问题,根据表格画出函数的图象,并利用数形结合思想探究函数性质是解答的关键.。

中考复习尺规作图专题一题型大汇总中考训练专题ppt课件

中考复习尺规作图专题一题型大汇总中考训练专题ppt课件

3.如图,正方形网格中的每个小正方形边长都 是1,每个小格的顶点叫做格点,以格点为顶 点分别按以下要求画三角形:
〔1〕使三角形的三边长分别为3、2 2、 5〔在 图中画一个即可〕;
方案设计
如下图,知Rt⊿ABC与Rt⊿DEF不类似,
其中∠C,∠F为直角,能否分别将这两个三角
形各分割成两个三角形,使⊿ABC所分成的两
分法三:分割后所得的四个三角形中 △_____≌△____,Rt△_____∽ Rt△______
5. 〔1〕四年一度的国际数学家大会于2002年8 月20日在北京召开.大会会标如图甲.它是由 四个一样的直角三角形与中间的小正方形拼成 的一个大正方形.假设大正方形的面积为13, 每个直角三角形两直角边的和是5.求中间小 正方形的面积.
A 2个 B 4个 C 6个 D 8个
答案:选〔B〕
2.如图,知:AB,求作:(1)确定AB的圆心O (2)过点A且与⊙O相切的直线
(注:作图要求利用直尺和圆规,不写作法,但要 求保管作图痕迹)
4.某地板厂要制造一批正六边形外形的地板砖, 为顺应市场多样化需求要求在地板砖上设计的图 案可以把正六边形6等分,请他帮他们设计等分 图案(至少设计两种).
分法一:分割后所得的四个三角形中 △_____≌△____,Rt△_____∽ Rt△______
4.知△ABC(如图),∠B=∠C=30°。请设计三 种不同的分法,将△ABC分割成四个三角形, 使得其中两个是全等三角形,而另外两个是类 似但不全等的直角三角形.请画出分割线段, 标出可以阐明分法的所得三角形的顶点和内角 度数(或记号),并在各种分法的空格线上填空。
中考复习之 尺规作图 第一辑 平面图形
复习目的和要求:
了解尺规作图的步骤;能作一条 线段等于知线段;作一个角等于知角; 作角的平分线;线段的垂直平分线; 会利用根本图形作三角形。

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习作图题专项练习及答案解析(专题试卷50道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7、如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A. AG平分∠DABB. AD=DHC. DH=BCD. CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:所以PB和PC就是所求的切线.请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)41、如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、▱ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线,交于点,交于点;②以为圆心,为半径作圆,交的延长线于点.⑵在⑴所作的图形中,解答下列问题.①点与的位置关系是_____________;(直接写出答案)②若,,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm 21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2) B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、44、(1)如图;(2)m245、(1)作图见解析;(2)①点B在⊙O上;②5.46、47、见解析48、见解析49、见解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH =BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,考点:作图—基本作图.11、试题解析:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.考点:1.作图—复杂作图;2.线段垂直平分线的性质;3.含30度角的直角三角形.12、试题分析:∵分别以点B和点C为圆心,以大于BC一半的长为半径画弧,两弧相交于点M和N,作直线MN.直线MN交AB于点D,连结CD,∴直线MN是线段BC的垂直平分线,∴BD=CD,∴BD+AD=CD+AD=AB,∵AB=6,AC=4,∴△ADC的周长=(CD+AD)+AC=AB+AC=6+4=10.故答案为:10.考点:线段垂直平分线的性质.13、解:如图所示.△ABC就是所求的三角形.14、试题分析:(1)根据赔付风险的画法画出图形即可.(2)画出作线段CD的垂直平分线MN,即可解决问题.解:(1)∠AOB的平分想如图所示,(2)作线段CD的垂直平分线MN与射线OE交于点P.点P就是所求的点.15、试题分析:(1)利用尺规作出∠ABC的平分线BD即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)∠ABC的平分线BD,交AC于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴.考点:翻折变换(折叠问题);作图—基本作图.16、试题分析:(1)、做出线段AB的中垂线得出答案;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,然后根据Rt△ACP的勾股定理得出答案.试题解析:(1)、如图,点P为所作;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,在Rt△ACP中,∵PC2+AC2=AP2,∴(8﹣x)2+42=x2,解得x=5,即BP的长为5.考点:勾股定理17、试题分析:根据角平分线的作法以及过直线外一点向直线最垂线的作法得出即可.试题解析:如图所示:CD,AE即为所求.考点:作图—复杂作图.18、试题分析:(1)、本题都是作线段相等,则根据SSS来判定三角形全等;(2)、根据垂直得出∠OMP=∠ONP=90°,然后结合OP=OP,OM=ON得出直角三角形全等;(3)、根据三角形全等的性质得出角平分线.试题解析:(1)、SSS(2)、小聪的作法正确理由:∵PM⊥OM , PN⊥ON ∴∠OMP=∠ONP=90°在Rt△OMP和Rt△ONP中∵OP="OP" ,OM=ON∴Rt△OMP≌Rt△ONP(HL)∴∠MOP=∠NOP ∴OP平分∠AOB(3)、如图所示.步骤:①利用刻度尺在OA、OB上分别截取OG=OH. ②连结GH,利用刻度尺找出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.考点:角平分线的做法.19、试题分析:(1)、利用轴对称最短路线求法得出P点关于OA,OB的对称点,进而得出行走路线;(2)、利用等边三角形的判定方法以及其性质得出此人行走的最短路线长为P′P″进而得出答案.试题解析:(1)、如图所示:此人行走的最短路线为:PC→CD→DP;(2)、连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),考点:(1)、作图—应用与设计作图;(2)、轴对称-最短路线问题.20、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质21、试题分析:(1)根据尺规作图的步骤和方法做出图即可;(2)先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.试题解析:(1)如图所示;(2)如图,OE⊥AB交AB于点D,则DE=4cm,AB=16cm,AD=8cm,设半径为Rcm,则OD=OE﹣DE=R﹣4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R﹣4)2,解得R=10.故这个圆形截面的半径是10cm.【考点】作图—应用与设计作图;垂径定理的应用.22、试题分析:首先作出BC的垂直平分线,可确定BC的中点记作D,再根据三角形的中线平分三角形的面积画出直线AD即可.试题解析:如图所示:,直线AD即为所求.考点:作图—复杂作图.23、试题分析:(1)在内圆(或外圆)任意作出两条弦,分别作出者两条弦的垂直平分线,它们的交点就是疫点(即圆心O);(2)利用垂径定理求出AB、CD的长度,问题解决.试题解析:(1)作图如下:(2)如图:连接OA、OC,过点O作OE⊥AB于点E,∴CE=CD=2km,AE=AB,在Rt△OCE中,OE==km,在Rt△OAE中,AE==km,∴AB=2AE=km,因此AC+BD=AB﹣CD=﹣4(km).答:这条公路在免疫区内有(﹣4)千米.考点:作图—应用与设计作图.24、试题分析:(1)延长BO到B′,使OB′=2OB,则B′就是B的对应点,同样可以作出C的对称点,则对应的三角形即可得到;(2)根据(1)的作图即可得到B′、C′的坐标.试题解析:(1)△OB′C′是所求的三角形;(2)B′的坐标是(﹣6,2),C′的坐标是(﹣4,﹣2).考点:作图-位似变换.25、试题分析:(1)连结PO并延长交BC于E,过点A、E作弦AD即可;(2)由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.试题解析:(1)如图所示:(2)∵直线l与⊙O相切与点P,∴OP⊥l,∵l∥BC,∴PE⊥BC,∴BE=CE,∴弦AE将△ABC分成面积相等的两部分.【考点】作图—复杂作图;三角形的外接圆与外心.26、试题分析:作∠AOB的平分线与线段CD的垂直平分线,两线相交于点P,点P即为所求.试题解析:点P即为所求.考点:作图——应用与设计作图.27、试题分析:利用△ABD是以AB为底边的等腰三角形,则点D在AB的垂直平分线上,于是作AB的垂直平分线交AC于D,则△ABD满足条件.试题解析:如图,△ABD为所作.考点:作图﹣复杂作图.28、试题分析:(1)作出BD、BC的垂直平分线,两线的交点就是⊙O的圆心O的位置,然后以O为圆心AO长为半径画圆即可;(2)以B为圆心,BC长为半径化弧,交⊙O于点D,再连接BD,CD即可.试题解析:(1)如图所示:⊙O即为所求;(2)如图所示:点D即为所求.考点:1、作图—复杂作图;2、圆周角定理;3、三角形的外接圆与外心29、试题分析:(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;(2)由(1)可求得∠AOC=120°,继而求得(1)中的长.试题解析:(1)首先连接OA,然后以A为圆心,OA长为半径画弧,交⊙O于B,F,再分别以B,F为圆心,OA长为半径画弧,交⊙O于点E,C,在以C为圆心,OA长为半径画弧,交⊙O于点D,则正六边形ABCDEF即为所求;(2)∵正六边形ABCDEF是⊙O的内接正六边形∴∠AOC=120°,∵⊙O的半径为3,∴的长为:=2π.【考点】正多边形和圆;弧长的计算;作图—复杂作图.30、试题分析:(1)、直接利用作一角等于已知角的作法结合线段垂直平分线的作法得出符合题意的图形;(2)、直接利用平行线的性质以及结合线段垂直平分线的性质得出答案.试题解析:(1)、如图所示:点E即为所求;(2)、∵DE∥AB,∴∠ABD=∠BDE,又∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=∠EBD,即BD平分∠ABE.考点:(1)、作图—复杂作图;(2)、平行线的性质;(3)、线段垂直平分线的性质.31、试题分析:如图,①作∠EAF=∠BOA.②在⊙A上截取,则五边形EFGHL即为所求.试题解析:如图,①作∠EAF=∠BOA.②在⊙A上截取.五边形EFGHL即为所求.考点:1、作图—复杂作图;2、正多边形和圆32、试题分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.试题解析:(1)作出∠B的平分线BD;作出线段AB垂直平分线交AB于点E,点E是线段AB的中点.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).考点:作图—复杂作图;全等三角形的判定.33、试题分析:分别作∠B的平分线BE和线段AB的垂直平分线MN,利用角平分线的性质以及线段垂直平分线的性质得出即可.试题解析:如图,点P即为所求点.考点:作图——基本作图;角平分线的性质.34、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质35、试题分析:(1)、利用尺规作出∠ABC的平分线BD即可;(2)、首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)、∠ABC的平分线BD,交AC于点D,如图所示,(2)、在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=-1,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC 是等腰直角三角形,∴S=.考点:(1)、翻折变换(折叠问题);(2)、作图—基本作图.36、试题分析:根据角平分线的性质定理和线段垂直平分线的性质定理,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,则点D满足条件.试题解析:如图,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,点D为所作.考点:作图—复杂作图.37、试题分析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,两弧相交于点E.试题解析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,如图所示:两弧相交于点E.则点E即为所求.考点:1.翻折变换(折叠问题);2.矩形的性质.38、试题分析:(1)先找到圆心,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆即可;(2)先利用等腰直角三角形的性质求出AB的长,那么OB=OA=AB,又∠BOC=90°,将它们代入弧长公式计算即可.试题解析:(1)如图,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆,⊙O即为所作;(2)∵在等腰直角△ABC中,∠ACB=90°,AC=1,∴AB=AC=,∵线段AB的垂直平分线交AB于O点,∴∠BOC=90°,OB=OA=AB=,∴劣弧BC的长=π.考点:1.弧长的计算;2.作图—复杂作图.39、试题分析:(1)根据角平分线的基本作图画图即可;(2)根据角平分线的性质的到边之间的关系,然后根据三角形的面积公式计算即可.试题解析:(1)如图所示,AD为所求的角平分线;(2)∵∠C=90°,∠B=30°,∴∠CAB =60°,∵AD平分∠CAB,∴∠CAD ="∠DAB" =30°,∵∠ACD=90°,∴AD=2CD,∵∠B=30°,∴∠B=∠DAB,∴AD= BD,∴BD=2CD,∴BC=3CD,∵,,∴.考点:角平分线40、试题分析:作∠AOB的角平分线和线段MN的中垂线,两条直线的交点就是点P的位置.试题解析:如图所示:点P就是所求的点.考点:(1)、角平分线的作法;(2)、线段的中垂线的作法41、试题分析:(1)利用基本作图作BO⊥AC即可;(2)先利用平行线的性质得∠EAC=∠BCA,再根据角平分线的定义和等量代换得到∠BCA=∠BAC,则BA=BC,然后根据等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.试题解析:(1)如图,BO为所作;(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.42、试题分析:(1)连结CE,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD;(2)连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.试题解析:(1)如图1,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD.CE为所求作;(2)如图2,连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.因为三角形BOF和三角形DOE全等,导出BF=DE=AB=CD,从而得出∠BAF=∠BFA=∠FAD,则AF是所求作的角平分线.考点:1.基本作图;2.三角形全等的判定与性质;3.平行四边形的性质.43、试题分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.44、试题分析:(1)直接利用线段垂直平分线的性质作出AB的垂直平分线,交AC于点D,进而得出△ABD;(2)利用锐角三角形关系得出DE的长,进而利用三角形面积求法得出答案.试题解析:(1)如图所示:△ABD即为所求;(2)∵MN垂直平分AB,AB=2m,∠CAB=30°,∴AE=1m,则tan30°=,解得:DE=.故裁出的△ABD的面积为:×2×=(m2).考点:作图—复杂作图.45、试题分析:(1)先作AC的垂直平分线,然后作⊙O;(2)①通过证明OB=OA来判断点在⊙O上;②设⊙O的半径为r,在Rt△AOD中利用勾股定理得到r2=42+(r-2)2,然后解方程求出r 即可.试题解析:(1)如图所示;。

初三专题画图练习题

初三专题画图练习题

初三专题画图练习题在初三数学学习中,画图是解决问题和理解概念的重要方法之一。

针对初三学生的需求,以下是一些专题画图练习题,旨在帮助学生巩固知识,提高解题能力。

一、关于平行四边形的画图练习1. 已知平行四边形ABCD中,AB = 5 cm,BC = 7 cm,绘制这个平行四边形。

解答:在纸上用尺子量取AB = 5 cm的长度,然后在纸上作一条直线段AB。

以点B为圆心,BC = 7 cm为半径作一条弧,与AB交于点D。

连接AD和CD,得到平行四边形ABCD。

2. 已知平行四边形ABCD中,AB = 6 cm,∠B = 120°,绘制这个平行四边形。

解答:在纸上用尺子量取AB = 6 cm的长度,然后在纸上作一条直线段AB。

以点B为圆心,半径为6 cm,画一条弧线。

接着用量角器在AB上量取120°的角度,并以B为顶点画一条射线。

射线与弧线交于一点,记作点D。

连接AD和CD,得到平行四边形ABCD。

二、关于三角形的画图练习1. 给定任意三条边长,绘制一个三角形。

解答:设给定的三条边长分别为a、b和c。

在纸上用尺子量取a的长度,然后在纸上作一条直线段AB,记作边a。

以点A为圆心,以边长b为半径,作一条弧线。

接着以点B为圆心,以边长c为半径,作一条弧线。

弧线与直线段AB的延长线交于点C。

连接AC和BC,得到所求的三角形。

2. 给定一个三角形的底边和底边上的两个角度,绘制这个三角形。

解答:设给定的三角形的底边为AB,底边上的两个角度分别为∠C 和∠D。

在纸上用尺子量取底边AB的长度,然后在纸上作一条直线段AB。

以点A为圆心,量取∠C的角度,并以AB为边绘制一条射线。

以点B为圆心,量取∠D的角度,并以BA为边绘制一条射线。

两条射线的交点记作C,连接AC和BC,得到所求的三角形。

三、关于圆的画图练习1. 已知一个圆的圆心和半径,绘制这个圆。

解答:在纸上选择一个点作为圆心O,然后在纸上选取尺子的一根脚,将其放在O点上,并以此为半径画出一个圆。

(完整word版)中考数学作图专项训练

(完整word版)中考数学作图专项训练

考前作图题专项训练班级姓名座号一、几种根本的尺规作图1、画一条线段等于线段〔和、差、倍、半〕以以下图,线段 a 、线段 b、线段 c 试用尺规作图作〔 1〕 AB= a+b.〔2〕MN=c-b2、画一个角等于角〔和、差、倍、半〕B以以下图,∠AOB为角,试用尺规作图作(1) ∠CDE=∠ AOB,(2〕∠ MPN=2∠AOBo A3、画线段的垂直均分线以以下图,线段AB,画出它的垂直均分线.4、画角均分线利用直尺和圆规把一个角二均分.:如图,∠AOB 求作:射线OC,使∠ AOC=∠ BOCo BA5、作直线垂线〔 1〕过直线上一点作一条直线与直线垂直; 〔 2〕过直线上一点作一条直线与直线垂直AAl 1l 1二 | 综合训练:1、尺规作图,线段a, 画一个底边长度为 a ,底边上的高也为 a 的等腰三角形。

a2.尺规作图:请你作出一个以线段 a 和线段b为对角线的菱形 ABCD.abA 3、如图,∠AOB及 M、 N 两点,求作:点 P,使点 P 到∠ AOB的两边距离相等,且到 M、 N 的两点也距离相等。

MNB O4、三条直线表示三条互订交织的公路,现在要建一个货物中转站P,要求它到三条公路的距离相等,请作出它的地址。

5、如图有一破残的轮片现要制作一个与原轮片同样大小的圆形零件,请你依照所学的有关知识确定这个圆形零件的半径。

AL6、如图,∠ ABC和直线 L,求作⊙ O,使⊙ O与 BA、BC都相切,且圆心 O在 L 上。

三、选择填空题训练:感觉尺规作图的语文文字表达、数学语言、详尽几何图形三者之间的转变1、如图,分别以线段AC 的两个端点 A ,C 为圆心,大于AC 的长为半径画弧,两弧订交于 B ,D 两点,连接BD ,AB ,BC,CD ,DA ,以下结论:①BD垂直均分AC ;② AC 均分∠ BAD ;③ AC=BD ;④四边形ABCD 是中心对称图形.其中正确的有〔〕A .①②③B .①③④C.①②④D.②③④2.用直尺和圆规作一个角的均分线的表示图以以下图,那么能说明∠AOC= ∠ BOC 的依照是【】A . SSSB . ASA C. AAS D.角均分线上的点到角两边距离相等如图,点C 在∠AOB的OB边上,用尺规作出了CN∥OA,作图印迹中,弧 FG是【】3.A .以点 C 为圆心, OD 为半径的弧B.以点 C 为圆心, DM 为半径的弧C.以点 E 为圆心, OD 为半径的弧D.以点 E 为圆心, DM 为半径的弧4. 如图,在平面直角坐标系中,在x 轴、 y 轴的正半轴上分别截取OA 、 OB,使 OA=OB ;再分别以点 A, B 为圆心,以大于1AB 长为半径作弧,两弧交于点C.假设点 C 的坐标为 (m- 1,2n),那么 m与 n2的关系为【】(A)m + 2n=1(B)m - 2n=1(C)2n - m=1(D)n -2m=15、如图,以∠AOB的极点O 为圆心,合适长为半径画弧,交OA于点C,交OB于点D.再分别以点C、 D为圆心,大于CD的长为半径画弧,两弧在∠ AOB 内部交于点E,过点 E 作射线 OE,连接 CD .那么以下说法错误的选项是〔〕A.射线 OE 是∠ AOB 的均分线B.△ COD 是等腰三角形C. C、 D 两点关于OE 所在直线对称D. O 、E 两点关于CD 所在直线对称6、如图,在△ ABC 中,∠ C=90 °,∠ B=30 °,以 A 为圆心,任意长为半径画弧分别交AB、AC 于点 M 和 N,再分别以 M 、 N 为圆心,大于MN 的长为半径画弧,两弧交于点P,连接 AP 并延长交BC 于点 D ,那么以下说法中正确的个数是〔〕① AD 是∠ BAC 的均分线;②∠ADC=60 °;③点 D 在 AB 的中垂线上;④S△DAC: S△ABC =1: 3.A.1B.2C.3D.47. 数学活动课上,四位同学围绕作图问题:“如图,直线l 和PQ,使 PQ⊥ l 于点 Q. 〞分别作出了以下四个图形,其中作法错误的选项是〔l 处一点P,用直尺和圆规作直线〕Pl8、如图 , 数轴上点A, B 分别对应1,2,过点 B作 PQ⊥ AB,以点 B为圆心 , AB长为半径画弧 , 交PQ于点C, 以原点O为圆心 , OC长为半径画弧 , 交数轴于点M, 那么点M对应的数是 ( )A.3B.5C.6D.79、在数学课上, 同学们在练习过点B作线段 AC所在直线的垂线段时, 有一局部同学画出以下四种图形 , 请你数一数 , 错误的个数为 ( )A.1B. 2C. 3D. 410、如图,在△ ABC 中,∠ C=90 0,∠ CAB=50 0,按以下步骤作图:①以点A 为圆心,小于 AC 的长为半径,画弧,分别交 A B , AC 于点 E 、 F ;②分别以点 E,F 为圆心,大于1EF 的长为半径画弧,两弧订交于点 G ;③作射线 AG ,交 BC 边与点 D ,那么∠ ADC 的度数为 211、如图,在△ ABC 中, AD 均分∠ BAC ,按以下步骤作图: 第一步,分别以点 A 、 D 为圆心,以大于AD 的长为半径在 AD两侧作弧,交于两点 M 、 N ;第二步,连接 MN 分别交 AB 、 AC 于点 E 、 F ;第三步,连接 DE 、 DF .假设 BD=6,AF=4, CD=3,那么 BE 的长是四、尺规作图在解答题中的观察12、如图,△ ABC 中, AB=AC=4 , cosC= .( 1〕着手操作:利用尺规作以 AC 为直径的⊙ O ,并标出⊙ O 与 AB 的交点 D ,与 BC 的交点 E 〔保存作图印迹,不写作法〕 ;( 2〕综合应用:在你所作的图中,①求证:= ;②求点 D 到 BC 的距离.13. 如图,在四边形ABCD中, E 是 AD上一点,延长 CE到点 F,使.(1)求证:(2)用直尺和圆规在 AD上作出一点 P,使△ BPC∽△ CDP〔保存作图印迹,不写作法〕。

中考专区二轮专题尺规作图专题训练完整版

中考专区二轮专题尺规作图专题训练完整版
从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短?
B A
l
将A,B 两地抽象为两个点,将河l 抽象为一条直线.
·B A·
l
“1点+2线”型
如图,已知牧马营地在P处,每天牧马人要赶 着马群先到河边a饮水,再带到草地b吃草, 然后回到营地,请你替牧马人设计出最短 的放牧路线.
3、作角的平分线;
4、作线段的垂直平分线(中垂线);
5、过直线上一点作直线的垂线; 6、过直线外一点作直线的垂线. 7、已知三边,两边和其夹角或两角和其夹边作三 角形; 8、已知底边和底边上的高作等腰三角形;
1. 作线段
已知:线段MN=a,求作一条线段等于a.
a
M
N
(1)先作射线AC; (2)用圆规量出线段MN 的长; (3)在射线AC 上截取AB =a ,则线段
a P
b
方法总结
“1点+2线”型最短距离问题 要做两次轴对称,构造出最 短路径。
• 如图,已知∠AOB,P为∠AOB内的一点。在
OA上有一点M,OB上有一点N,当三角形
PMN的周长最小时,问M、N位置?(保留
画图痕迹,不要求写作法)
分别作点P关于两直线的对称点P'和P'',连PP'',
与两直线交点即为M,N.
A
BD
C
E
F
G
当堂训练:1. 如图,P 为∠AOB 的边OA上一点, 你能用直尺和圆规过点P 作一条直线EF ,使得 EF∥OB吗?
A P
A
P
E
D
O
BO
C
B
当堂训练:
2.如图,要在长方形木板上截一个平行四边 形,使它的一组对边在长方形木板的边缘上, 另一组对边中的一条边为AB。请过C点作出 与AB平行的另一条边。

中考数学尺规作图专题复习(含答案)

中考数学尺规作图专题复习(含答案)

中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角.1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3。

角平分线的画法【分析】1。

选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线。

4。

等长的线段的画法直接用圆规量取即可。

5。

等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。

备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分。

例题讲解例题1。

已知线段a,求作△ABC,使AB=BC=AC=a。

解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a)。

②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC。

则△ABC要求作三角形。

例2。

已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A为圆心,a为半径画弧,分别交射线AM,AN于点B,C。

③连接B,C.△ABC即为所求作三角形。

中考数学作图题易考题型精讲精练超实用

中考数学作图题易考题型精讲精练超实用

中考二轮复习——专题分类专题一、作图型试题例1、(无锡)已知图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点△,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.(2)在图2中画出一个与格点△相似但相似比不等于1的格点三角形. 知识点:考查学生平移变换,利用勾股定理进行三角形的有关计算,全等及相似三角形的判定。

精析:本题关键是计算出△的三边的长度,然后找一个不等于1的相似比,比如相似比为2,计算出△三边长或计算出一边长后,利用平移得出△。

准确答案.(1) (2)答案不唯一.中考对该知识点的要求:,点阵中对称点对称图形问题及利用格点进行面积计算已经成为最近几年中考试题的考点问题。

目标达成:1-1-1、(太原)在4×4的正方形网格中,每个小方形的边长都是1。

线段和分别是(图1-1)中1×3的两个矩形的对角线,显然∥。

请你用类似的方法画出过点E 且垂直于的直线,并证明。

图2F D E A B C 图1 A BC 图1A 1B 1C 1 图2F D EGF E D C BA图1-1-11-1-2、(连云港)如图1-2,在55⨯的正方形网格中, 每个小正方形的边长都为1.请在所给网格中按下列要求画 出图形.(1) 从点A 出发的一条线段,使它的另一个端点落在 格点(即小正方形的顶点)上,且长度为22; (2)以(1)中的为边的一个等腰三角形, 使点C 在格点上,且另两边的长都是无理数;(3)以(1)中的为边的两个凸多边形,使它们都是中心对 称图形且不全等,其顶点都在格点上,各边长都是无理数. 1-1-3、(宿迁)如图1-3,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形就是一个“格点四边形”.(1)求图(一)中四边形的面积;(2)在图(二)方格纸中画一个格点三角形,使△的面积等于四边形的面积且为轴对称图形.图(一) 图(二) 1-1-4、(潍坊)如图,ABC ∆画出与ABC ∆全等的一个格点三角形.1-1-5、(宁波)已知:如图,四边形 .(图1-1-2)图1-3 DCBA(1)画出1B1C1D1使1B1C1D1与;(2)画出A2B2C2D2,A2B2C2D2与关于点O中心对称;(3) A1B1C1D1与A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心例2、(河南课改)有一块梯形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图上),并给予合理的解释。

中考数学专卷2020届中考数学总复习(23)尺规作图-精练精析(2)及答案解析

中考数学专卷2020届中考数学总复习(23)尺规作图-精练精析(2)及答案解析

图形的性质——尺规作图2一.选择题(共9小题)1.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.边边边B.边角边C.角边角D.角角边2.下列作图语句正确的是()A.延长线段AB到C,使AB=BC B.延长射线ABC.过点A作AB∥CD∥EF D.作∠AOB的平分线OC3.下列语句()正确.A.射线比直线短一半B.延长AB到CC.两点间的线叫做线段D.经过三点A,B,C不一定能画出直线来4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP 并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④AB=2AC.A.1 B.2 C.3 D.45.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据图形全等的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x7.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是()A.PA=MA B.MA=PE C.PE=BE D.PA=PB8.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A.SAS B.SSS C.ASA D.AAS9.如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∠CAB=∠FDE B.∠ACB=∠DFE C.∠ABC=∠DEF D.∠BCD=∠EFG二.填空题(共6小题)10.∠AOB如图所示,请用直尺和圆规作出∠AOB的平分线(要求保留作图痕迹,不写作法)._________11.如图,点A是直线l外一点,在l上取点B、C.按下列步骤作图:分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D.则四点A、B、C、D可组成的图形是_________ .12.如图,是格点(横、纵坐标都为整数的点)三角形,请在图中画出与全等的一个格点三角形.13.在如图所示的方格纸上过点P画直线AB的平行线.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_________ 个.15.如图,网格中有△ABC和点D,请你找出另外两点E、F,在图中画出△DEF,使△ABC≌△DEF,且顶点A、B、C分别与D、E、F对应.三.解答题(共6小题)16.如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是_________ 度和_________ 度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有_________ 个等腰三角形,其中有_________ 个黄金等腰三角形.17.如图,Rt△ABC的直角边BC=8,AC=6(1)用尺规作图作AB的垂直平分线l,垂足为D,(保留作图痕迹,不要求写作法、证明);(2)连结D、C两点,求CD的长度.18.如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A 在格点上,且△ABC折成的“叠加矩形”为正方形;(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?19.如图,在△ABC中,AB=AC,AD⊥BC,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.20.如图,已知矩形OABC的A点在x轴上,C点在y轴上,OC=6,OA=10.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.21.如图,在△ABC中,BC=AC,且CD∥AB,设△ABC的外心为O.(1)用尺规作出△ABC的外接圆O.(不写作法,保留痕迹)(2)在(1)中,连接OC,并证明OC是AB的中垂线;(3)直线CD与⊙O有何位置关系,试证明你的结论.图形的性质——尺规作图2参考答案与试题解析一.选择题(共9小题)1.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.边边边B边角边C角边角D.角角边考点:作图—基本作图;全等三角形的判定.专题:压轴题.分析:通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,,∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是边边边.故选A.点评:此题是一道综合题,不但考查了学生对作图方法的掌握,也是对全等三角形的判定的方法的考查.2.下列作图语句正确的是()A.延长线段AB到C,使AB=BC B.延长射线ABC.过点A作AB∥CD∥EF D.作∠AOB的平分线OC考点:作图—尺规作图的定义.分析:根据基本作图的方法,逐项分析,从而得出正确的结论.解答:解:A、应为:延长线段AB到C,BC=AB,故本选项错误;B、射线本身是无限延伸的,不能延长,故本选项错误;C、过点A作只能作CD或EF的平行线,CD不一定平行于EF,故本选项错误;D、作∠AOB的平分线OC,正确.故选D.点评:此题主要考查图形中延长线、平行线、角平分线的画法,是基本题型,特别是A选项,应该是作出的等于原来的,顺序不能颠倒.3.下列语句()正确.A.射线比直线短一半B.延长AB到CC.两点间的线叫做线段D.经过三点A,B,C不一定能画出直线来考点:作图—尺规作图的定义.专题:推理填空题.分析:根据直线、射线、线段有关知识,对每个选项注意判断得出正确选项.解答:解:A、直线和射线都没有长短,所以射线比直线短一半错误,故本选项错误;B、延长AB到C,正确的说法是延长线段AB到C,故本选项错误;C、两点间的线叫做线段,不符合线段的定义,故本选项错误;D、若三点A,B,C在一条直线上,则经过三点A,B,C能画出直线来;若三点A,B,C不在一条直线上,则经过三点A,B,C不能画出直线来.所以说经过三点A,B,C不一定能画出直线来,故本选项正确.故选:D.点评:此题考查的知识点是作图﹣﹣尺规作图的定义,熟练掌握概念是解题的关键.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP 并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④AB=2AC.A. 1 B.2 C.3 D.4考点:作图—基本作图.分析:根据角平分线的做法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确.根据直角三角形中30°角所对的直角边等于斜边的一半可得④正确.解答:解:①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故③说法正确,④∵∠C=90°,∠B=30°,∴AB=2AC,故选:D.点评:此题主要考查了角平分线的做法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.5.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据图形全等的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.A AS考点:作图—基本作图;全等三角形的判定.分析:根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.解答:解:根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,在△OCD与△O′C′D′中,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB.故选:A.点评:本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已知,根据已知条件选择判定方法.6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x考点:作图—基本作图;坐标与图形性质.分析:根据角平分线的性质以及第二象限点的坐标特点,进而得出答案.解答:解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.点评:此题主要考查了角平分线的性质以及坐标与图形的性质,得出P点位置是解题关键.7.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是()A.PA=MA B.MA=PE C.PE=BE D.P A=PB考点:作图—基本作图;线段垂直平分线的性质.分析:根据作图的过程可知PD是线段AB的垂直平分线,利用垂直平分线的性质即可得到问题的选项.解答:解:由题意可知:PD是线段AB的垂直平分线,所以PA=PB,故选D.点评:本题考查了基本作图﹣作已知线段的垂直平分线以及考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离线段.8.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M、N为圆心,大于MN的长半径画弧,两弧在∠AOB内部相交于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A.SAS B.SSS C.ASA D.A AS考点:作图—基本作图;全等三角形的判定.分析:根据角平分线的作图方法解答.解答:解:根据角平分线的作法可知,OM=ON,CM=CN,又∵OC是公共边,∴△OMC≌△ONC的根据是“SSS”.故选:B.点评:本题考查了全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.9.如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∠CAB=∠FDE B.∠ACB=∠DFE C.∠ABC=∠DEF D.∠BCD=∠EFG考点:作图—基本作图;平行线的判定.分析:根据同位角相等,两直线平行可得,∠CAB=∠FDE可以说明AB∥DE.解答:解:利用三角尺和直尺画平行线,实际就是画∠CAB=∠FDE,故答案为:A.点评:此题主要考查了画平行线的方法,关键是掌握平行线的判定定理:同位角相等,两直线平行.二.填空题(共6小题)10.∠AOB如图所示,请用直尺和圆规作出∠AOB的平分线(要求保留作图痕迹,不写作法).参见解答考点:作图—基本作图.分析:∵只要在OB上取C,以O为圆心,OC为半径画圆,交OA于点D,连接CD,再分别以大于CD为半径,C,D,为圆心画圆,两圆相交于P,D,连接OP,则OP即为∠AOB 的平分线.解答:解:作法如下:(1)在OB上取C,以O为圆心,OC为半径画圆,交OA于点D,连接CD;(2)再分别以大于CD为半径,C,D,为圆心画圆,两圆相交于P,D,连接OP,则OP即为∠AOB的平分线.点评:本题考查了运用三角形全等的判定与性质,结合圆的性质作等角的方法,需同学们熟练掌握.11.如图,点A是直线l外一点,在l上取点B、C.按下列步骤作图:分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D.则四点A、B、C、D可组成的图形是平行四边形或梯形.考点:作图—复杂作图.分析:根据题意画出图形,可得两弧有两个交点,连接可得答案.解答:解:如图所示:,四点A、B、C、D可组成的图形是平行四边形或梯形.故答案为:平行四边形或梯形.点评:此题主要考查了复杂作图,关键是根据题意画出图形,找到D点位置.12.如图,是格点(横、纵坐标都为整数的点)三角形,请在图中画出与全等的一个格点三角形.考点:作图—复杂作图.专题:作图题.分析:本题答案不唯一,最简单的方法就是从点B所以在的纵坐标找一点,作BC 的平行线,且长度相等,然后再作AB的平行线且长度相等,最后连接,构成三角形.解答:解:点评:本题主要考查了利用网格画图的能力.13.在如图所示的方格纸上过点P画直线AB的平行线.考点:作图—基本作图.专题:网格型.分析:由题意可知应根据小正方形的格数及勾股定理作图,只要在直线找点A,B,D,P使其连接起来构成平行四边形即可.解答:解:作图如下:(1)连接PA,假设图中每个小方格的边长为1,则AP==,AB==;(2)找点D,使得AP=BD,AP∥BD,连接DP,即可.点评:本题考查的是平行四边形的性质,勾股定理的运用,利用图中每个小格的边长相等作图.14.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 4 个.考点:作图—复杂作图.分析:能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个解答:解:如图,可以作出这样的三角形4个.点评:本题考查了学生利用基本作图来做三角形的能力.15.如图,网格中有△ABC和点D,请你找出另外两点E、F,在图中画出△DEF,使△ABC≌△DEF,且顶点A、B、C分别与D、E、F对应.考点:作图—复杂作图;全等三角形的性质;勾股定理.分析:若是三边对应相等的两个三角形互为全等三角形,根据此可画出图.解答:解:从图上可看出两个三角形的三条边对应相等.所以△DEF即为所求.点评:本题考查全等三角形的性质,三边对应相等,以及在表格中如何画出全等的三角形.三.解答题(共6小题)16.如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是108 度和36 度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有2n 个等腰三角形,其中有n 个黄金等腰三角形.考点:作图—应用与设计作图;黄金分割.专题:作图题;探究型.分析:(1)利用等腰三角形的性质以及∠A的度数,进而得出这2个等腰三角形的顶角度数;(2)利用(1)种思路进而得出符合题意的图形;(3)利用当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形,进而得出规律求出答案.解答:解:(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108,36;(2)如图2所示:(3)如图3所示:当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.故答案为:2n,n.点评:此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形的规律是解题关键.17.如图,Rt△ABC的直角边BC=8,AC=6(1)用尺规作图作AB的垂直平分线l,垂足为D,(保留作图痕迹,不要求写作法、证明);(2)连结D、C两点,求CD的长度.考点:作图—基本作图;线段垂直平分线的性质;直角三角形斜边上的中线.分析:(1)根据垂直平分线的作法得出答案即可;(2)根据垂直平分线的性质以及直角三角形的性质得出AB进而得出CD即可.解答:解;(1)如图.直线DE即为所求作的图形.(2)连接CD,∵DE是AB的垂直平分线,∠C=90°,∴AD=B D=CD,∵AC=6,BC=8,∴AB=10,∴CD是Rt△ABC斜边上的中线等于斜边的一半,∴CD=5.点评:此题主要考查了垂直平分线的作法以及直角三角形的性质,根据Rt△ABC斜边上的中线等于斜边的一半得出是解题关键.18.如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE 为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A 在格点上,且△ABC折成的“叠加矩形”为正方形;(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?考点:作图—应用与设计作图.专题:新定义;开放型.分析:(1)应先在三角形的格点中找一个矩形,折叠即可;(2)根据正方形的边长应等于底边及底边上高的一半可得所求三角形的底边与高相等;(3)由(2)可得相应结论.解答:解:(1);(2);(3)由(2)可得,若一个三角形所折成的“叠加矩形”为正方形,那么三角形的一边长与该边上的高相等的直角三角形或锐角三角形.点评:解决本题的关键是得到相应矩形的边长等于所给三角形的底边与底边上的高的一半的关系.19.如图,在△ABC中,AB=AC,AD⊥BC,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.考点:作图—基本作图;等腰三角形的性质;勾股定理.分析:(1)利用角平分线的作法得出DF即可;(2)首先得出∠DAF=90°,即可得出∠ADF=45°,进而利用勾股定理求出即可.解答:解:(1)如图所示,DF就是所求作;(2)∵AD⊥BC,AE∥BC,∴∠DAF=90°,又∵DF平分∠ADC,∴∠ADF=45°,∴AD=AF,.点评:此题主要考查了基本作图以及等腰三角形的性质和勾股定理等知识,熟练掌握角平分线的做法是解题关键.20.如图,已知矩形OABC的A点在x轴上,C点在y轴上,OC=6,OA=10.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.考点:作图—复杂作图;坐标与图形性质;勾股定理;矩形的性质.分析:(1)利用EO=AO,以O为圆心AO为半径画弧得出E即可;(2)首先过点E作EF⊥OA,垂足为F,得出B点坐标,进而求出FO的长,即可得出E点坐标.解答:解:(1)如图所示:E点即为所求;(2)过点E作EF⊥OA,垂足为F.∵矩形OABC中OC=6,OA=10,∴B点坐标为(10,6).∴E F=6.又∵OE=OA,∴OF==8.∴点E的坐标为(8,6).点评:此题主要考查了基本作图以及勾股定理和矩形的性质,得出B点坐标是解题关键.21.(如图,在△ABC中,BC=AC,且CD∥AB,设△ABC的外心为O.(1)用尺规作出△ABC的外接圆O.(不写作法,保留痕迹)(2)在(1)中,连接OC,并证明OC是AB的中垂线;(3)直线CD与⊙O有何位置关系,试证明你的结论.考点:作图—复杂作图;线段垂直平分线的性质;直线与圆的位置关系.分析:(1)首先作出三角形两边的中垂线进而得出圆心求出△ABC的外接圆O;(2)利用等腰三角形的性质得出答案即可;(3)利用切线的判定方法求出∠OCG=90°,进而得出答案.解答:解:(1)如图所示:(2)方法一:连接BO、CO、OA,∵OB=OA,AC=BC,∴OC是AB的中垂线;方法二:在⊙O中,∵AC=BC,∴=,∴∠BOC=∠AOC,∵OB=OA,2 ∴OC是AB的中垂线;(3)直线CD与⊙O相切,证明:∵CD∥AB,CO是AB的垂线,∴∠OCG=90°,∴直线CD与⊙O相切.点评:此题主要考查了切线的判定与性质以及三角形外接圆的作法等知识,熟练掌握等腰三角形的性质是解题关键.3。

专题12尺规作图题型总结-2024年中考数学答题技巧与模板构建(解析版)

专题12尺规作图题型总结-2024年中考数学答题技巧与模板构建(解析版)

专题12尺规作图题型总结题型解读|模型构建|通关试练本专题主要对初中阶段的一般考查学生对基本作图的掌握情况和实践操作能力,并且在作图的基础上进一步推理计算(或证明)。

尺规作图是指用没有刻度的直尺和圆规作图。

尺规作图是中考必考知识点之一,复习该版块时要动手多画图,熟能生巧!本专题主要总结了五个常考的基本作图题型,(1)作相等角;(2)作角平分线;(3)作线段垂直平分线;(4)作垂直(过一点作垂线或圆切线);(5)用无刻度的直尺作图。

模型01作相等角①以∠α的顶点O为圆心,以任意长为半径作弧,交∠α的两边于点P,Q;②作射线O'A';③以O'为圆心,OP长为半径作弧,交O'A'于点M;④以点M为圆心,PQ长为半径作弧,交③中所作的弧于点N;⑤过点N作射线O'B',∠A'O'B'即为所求作的角.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:作平行线模型02作角平分线①以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③过点O作射线OP,OP即为∠AOB的平分线.原理:三边分别相等的两个三角形全等;全等三角形对应角相等延伸:2到两边的距离相等的点②作三角形的内切圆模型03作线段垂直平分线①分别以点A,B为圆心,大于AB长为半径,在AB两侧作弧,分别交于点M和点N;②过点M,N作直线MN,直线MN即为线段AB的垂直平分线.原理:到线段两端距离相等的点在这条线段的垂直平分线上延伸:①到两点的距离相等的点②作三角形的外接圆3找对称轴(旋转中心)4找圆的圆心模型04作垂直(过一点作垂线或圆切线)(点P在直线上)①以点P为圆心,任意长为半径向点P两侧作弧,分别交直线l于A,B两点;②分别以点A,B为圆心,以大于AB的长为半径作弧,两弧交于点M;③过点M,P作直线MP,则直线MP即为所求垂线.原理:等腰三角形的“三线合一”,两点确定一条直线延伸:确定点到直线的距离(内切圆半径)(点P在直线外)①以点P为圆心,大于P到直线l的距离为半径作弧,分别交直线l于A,B两点;②分别以A,B为圆心,以大于AB的长为半径作弧交于点N;③过点P,N作直线PN,则直线PN即为所求垂线.原理:到线段两端距离相等的点在这条线段的垂直平分线上模型05仅用无刻度直尺作图无刻度直尺作图通常会与等腰三角形的判定,三角形中位线定理,矩形的性质和勾股定理等几何知识点结合,熟练掌握相关性质是解题关键.模型01作相等角考|向|预|测做相等角该题型近年主要以解答题形式出现,一般为解答题型的其中一问,难度系数较小,在各类考试中基本为送分题型。

中考数学作图题易考题型精讲精练(超实用)

中考数学作图题易考题型精讲精练(超实用)

中考二轮复习——专题分类专题一、作图型试题例1、(无锡)已知图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点△,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.(2)在图2中画出一个与格点△相似但相似比不等于1的格点三角形. 知识点:考查学生平移变换,利用勾股定理进行三角形的有关计算,全等及相似三角形的判定。

精析:本题关键是计算出△的三边的长度,然后找一个不等于1的相似比,比如相似比为2,计算出△三边长或计算出一边长后,利用平移得出△。

准确答案.(1) (2)答案不唯一.中考对该知识点的要求:,点阵中对称点对称图形问题及利用格点进行面积计算已经成为最近几年中考试题的考点问题。

目标达成:1-1-1、(太原)在4×4的正方形网格中,每个小方形的边长都是1。

线段和分别是(图1-1)中1×3的两个矩形的对角线,显然∥。

请你用类似的方法画出过点E 且垂直于的直线,并证明。

图2F D E A B C 图1 A BC 图1A 1B 1C 1 图2F D EGF E D C BA图1-1-11-1-2、(连云港)如图1-2,在55⨯的正方形网格中, 每个小正方形的边长都为1.请在所给网格中按下列要求画 出图形.(1) 从点A 出发的一条线段,使它的另一个端点落在 格点(即小正方形的顶点)上,且长度为22; (2)以(1)中的为边的一个等腰三角形, 使点C 在格点上,且另两边的长都是无理数;(3)以(1)中的为边的两个凸多边形,使它们都是中心对 称图形且不全等,其顶点都在格点上,各边长都是无理数. 1-1-3、(宿迁)如图1-3,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形就是一个“格点四边形”.(1)求图(一)中四边形的面积;(2)在图(二)方格纸中画一个格点三角形,使△的面积等于四边形的面积且为轴对称图形.图(一) 图(二) 1-1-4、(潍坊)如图,ABC ∆画出与ABC ∆全等的一个格点三角形.1-1-5、(宁波)已知:如图,四边形 .(图1-1-2)图1-3 DCBA(1)画出1B1C1D1使1B1C1D1与;(2)画出A2B2C2D2,A2B2C2D2与关于点O中心对称;(3) A1B1C1D1与A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心例2、(河南课改)有一块梯形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图上),并给予合理的解释。

中考数学复习综合性试题精选之尺规作图

中考数学复习综合性试题精选之尺规作图

中考数学复习综合性试题精选之尺规作图1.如图,方格纸中每个小正方形的边长均为1.线段AB的两个端点在小正方形的顶点上.(1)在图中画一个以AB为腰的等腰三角形△ABC,点C在小正方形的顶点上,且tan B =3;(2)在图中画一个以AB为底的等腰三角形△ABD,点D在小正方形的顶点上,且△ABD 是锐角三角形.连接CD,请直接写出线段CD的长.2.如图,已知∠AOB,点M为OB上一点.(1)画MC⊥OA,垂足为C;(2)画∠AOB的平分线,交MC于D;(3)过点D画DE∥OB,交OA于点E.(注:不需要写出作法,只需保留作图痕迹)3.如图,在每个小正方形的边长均为1的方格纸中有线段AC和EF,点A、C、E、F均在小正方形的顶点上.(1)在方格纸中画出一个以AC为对角线的菱形ABCD,点D在直线AC的下方,且点B、D都在小正方形的顶点上;(2)在方格纸中画出以EF为底边,面积为6的等腰三角形EFG,且点G在小正方形的顶点上;(3)在(1)、(2)的条件下,连接DG,请直接写出线段DG的长.4.如图,在△ABC中,AB=BC,∠ABC=90°,动点E在∠ABC外部,且∠ABC=2∠AEC.(1)利用尺规作图在图1中作出一个符合题意的点E;(不写作法,保留作图痕迹)(2)如图2,若F是AC的中点,线段BE与线段EF的长度存在怎样的等量关系?请说明理由.5.(1)如图(1),在△ABC,AB=AC,O为△ABC内一点,且OB=OC,求证:直线AO 垂直平分BC.以下是小明的证题思路,请补全框图中的分析过程.(2)如图(2),在△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出BC边的垂直平分线(不写画法,保留画图痕迹).(3)如图(3),在五边形ABCDE中,AB=AE,BC=DE,∠B=∠E,请你只用无刻度的直尺画出CD边的垂直平分线,并说明理由.6.如图1,已知直线EF与直线AB交于点E,直线EF与直线CD交于点F,EM平分∠AEF 交直线CD于点M,且∠FEM=∠FME.点G是射线MD上的一个动点(不与点M、F 重合),EH平分∠FEG交直线CD于点H,过点H作HN∥EM交直线AB于点N,设∠EHN=α,∠EGF=β.(1)求证:AB∥CD;(2)当点G在点F的右侧时,①依据题意在图1中补全图形;②若β=80°,则α=度;(3)当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.7.【认识】(1)如图①,∠1、∠2是四边形ABCD的两个外角,求证:∠1+∠2=∠A+∠C.【操作】(2)如图②,已知∠α和∠AOB,点M、N分别在∠AOB的边OA、OB上.请利用无刻度直尺和圆规在∠AOB的内部求作一点P,使得∠AOB+∠MPN=∠α.(保留作图痕迹,不写作法)8.定义:如图,E,F,G,H四点分别在四边形ABCD的四条边上,若四边形EFGH为菱形,我们称菱形EFGH为四边形ABCD的内接菱形.(1)如图,矩形ABCD,AB=5,点E在线段AB上且EB=2,四边形EFGH是矩形ABCD 的内接菱形,求GC的长度;(2)如图,平行四边形ABCD,AB=5,∠B=60°,点E在线段AB上且EB=2,请你在图中画出平行四边形ABCD的内接菱形EFGH,点F在边BC上;(尺规作图,保留痕迹)当BF最短时,请求出BC的长.9.已知HD∥GE,点A、C分别在直线上.(1)如图1,请直接写出∠BCE、∠ABC、∠BAD三个角满足的数量关系.(2)如图2,分别作∠BAH与∠BCG的角平分线,交于点F,探索∠B与∠F的数量关系并予以证明.(3)在图3中完成作图并填空:分别作∠ABC与∠BCE的角平分线,交于点M,过点B 作BN∥CM,设∠BAD=m°,请直接写出∠NBM的度数(用含m的式子表示).10.已知三角形ABC和同一平面内的点D.(1)如图1,点D在边BC上,过点D作DE∥BA,交AC于点E,DF∥CA,交AB于点F.①依题意,在图1中补全图形;②若∠EDF=89°,求∠A的度数;③通过图形说明∠A+∠B+∠C=180°(三角形的内角和为180°);(2)如图2,若点D在BC的延长线上,DE∥CA,DE在BC上方,且∠EDF=∠A,判断DE与BA的位置关系,并证明;(3)若D是三角形ABC外部的一个动点(不在三角形三条边所在的直线上),过点D作DE∥BA交直线AC于点E,DF∥CA交直线AB于点F,直接写出∠EDF与∠A的数量关系.11.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:根据以上情境,解决下列问题:①老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.12.如图1,由于保管不善,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF.请你按照要求完成下列任务:(1)在图1中标出点E、点F的位置,并简述画图方法;(2)说明(1)中所标EF符合要求.13.如图,在边长为1的正方形网格中,点A、C为格点,点B在网格线上,以AB为直径作半圆,点D在半圆上,连接AC、BC.请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果)(1)分别在AB、AC取点E、F,使EF∥BC,EF=12BC;(2)作△ABC的角平分线BM;(3)在△ABC的角平分线BM取一点N,使CN+DN最小.14.图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)在图1中确定点C(点C在小正方形的顶点上),要求以A、B、C为顶点的三角形为锐角等腰三角形,画出此三角形(画出一个即可);(2)在图2中确定点D(点D在小正方形的顶点上),要求以A、B、D为顶点的三角形是以AB为斜边的直角三角形,画出此三角形(画出一个即可),并直接写出此三角形的周长15.最短路径问题:例:如图1所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.应用:已知:如图2,A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(1)借助直角三角板在下图中找出符合条件的点B和C.(2)若∠MON=30°,OA=10,求三角形的最小周长.。

中考数学复习考点知识与题型专题讲义33---尺规作图练习(基础篇)

中考数学复习考点知识与题型专题讲义33---尺规作图练习(基础篇)

中考数学复习考点知识与题型专题讲义33 尺规作图练习(基础)1.已知四点A,B,C,D.根据下列语句,画出图形.(1)画直线AB;(2)连接AC,BD,相交于点O;(3)画射线AD,射线BC相交于点P.【分析】(1)画直线AB即可;(2)连接AC,BD,相交于点O即可;(3)画射线AD,射线BC相交于点P即可.【解答】解:(1)如图所示,直线AB即为所求;(2)如图所示,AC,BD即为所求;(3)如图所示,射线AD,射线BC即为所求.【点评】本题主要考查了复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.2.如图,已知A,B两点.(1)画线段AB;(2)延长线段AB到点C,使BC=AB;(3)反向延长线段AB到点D,使DA=AB;(4)点A,B分别是哪条线段的中点?若AB=3cm,请求出线段CD的长.【分析】(1)、(2)、(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义可判断点A是线段BD的中点;点B是线段AC的中点;然后利用CD =3AB求解.【解答】解:(1)如图,线段AB为所作;(2)如图,点C为所作;(3)如图,点D为所作;(4)点A是线段BD的中点;点B是线段AC的中点;由题意可知:DA=AB=BC=3,所以CD=DA+AB+BC=3×3=9(cm).【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.3.如图,平面内有四个点A,B,C,D.根据下列语句画图:①画直线BC;②画射线AD交直线BC于点E;③连接BD,用圆规在线段BD的延长线上截取DF=BD;④在图中确定点O,使点O到点A,B,C,D的距离之和最小.【友情提醒:截取用圆规,并保留痕迹;画完图要下结论】【分析】根据题中的几何语言画出对应的几何图形.【解答】解:①如图,直线BC为所作;②如图,射线AD和点E为所作;③如图,BD和DF为所作;④如图,点O为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.4.下面是小明某次作图的过程.已知:如图,线段a,b.作法:①画射线AP;②用圆规在射线AP上截取一点B,使线段AB=a;③用圆规在射线AP上截取一点C,使线段BC=b.根据小明的作图过程.(1)补全所有符合小明作图过程的图形:(保留作图痕迹)(2)线段AC=a+b或a﹣b.(用含a,b的式子表示)【分析】(1)根据已知作法画图即可;(2)根据(1)所画图形即可得结论.【解答】解:(1)如图所示:线段AB和BC即为所求作的图形.(2)线段AC=a+b或a﹣b.故答案为:a+b或a﹣b.【点评】本题考查了作图﹣复杂作图,解决本题的关键是准确画图.5.已知:如图,A为⊙O上一点;求作:⊙O的内接正方形ABCD.【分析】先作直径AC,再过O点作AC的垂线交⊙O于D、B,然后连接AB、AD、CD、CB即可.【解答】解:如图,四边形ABCD为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.6.如图,在△ABC中.(1)画出BC边上的高AD和中线AE;(2)若∠B=30°,∠BAC=20°,求∠CAD的度数.【分析】(1)根据三角形的高和中线的定义画图;(2)先根据高的定义得到∠ADB=90°,再根据三角形外角性质计算出∠ACD=50°,然后利用互余计算∠CAD的度数.【解答】解:(1)如图,AD、AE为所作;(2)∵AD为高,∴∠ADB=90°,∵∠ACD=∠B+∠BAC=30°+20°=50°,∴∠CAD=90°﹣∠ACD=90°﹣50°=40°.合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.7.如图,∠AOB内有一点P.(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)图中不添加其它的字母,写出所有与∠O相等的角.【分析】(1)利用题中几何语言画出对应的几何图形;(2)利用平行线的性质求解.【解答】解:(1)如图,PC、PD为所作;(2)∵PC∥OB,∴∠O=∠PCA,∵PD∥OA,∴∠O=∠PDB,∠PCA=∠P,∴与∠O相等的角有∠P,∠PCA,∠PDB.合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质.8.如图,在△ABC中,AB=AC,BC=10.(1)尺规作图:(要求:保留作图痕迹,不写作法)①作∠BAC的平分线交BC于点D;②作边AC的中点E,连接DE;(2)在(1)所作的图中,若AD=12,则DE的长为 6.5.【分析】(1)①利用基本作图作∠BAC的平分线;②作AC的垂直平分线得到AC的中点E;(2)根据等腰三角形的性质得AD⊥BC,BD=CD=12BC=5,再利用勾股定理计算出AC=13,然后根据直角三角形斜边上的中线性质求解.【解答】解:(1)①如图,AD为所作;②如图,DE为所作;(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=12BC=5,在Rt△ACD中,AC=√CD2+AD2=√52+122=13,∵E点为AC的中点,∴DE=12AC=6.5.故答案为6.5.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质.9.在△ABC中,AD是△ABC的高,∠B=30°,∠C=52°.(1)尺规作图:作△ABC的角平分线AE;(2)求∠DAE的大小.【分析】(1)利用基本作图作AE平分∠BAC;(2)先利用三角形内角和定理计算出∠BAC=98°,再利用角平分线的定义得到∠EAC=49°,接着计算出∠DAC,然后计算∠EAC﹣∠DAC即可.【解答】解:(1)如图,AE为所作;(2)∵∠B=30°,∠C=52°,∴∠BAC=180°﹣∠B﹣∠C=98°,∵AE平分∠BAC,∴∠EAC=12∠BAC=49°,∵AD为高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=38°,∴∠DAE=∠EAC﹣∠DAC=49°﹣38°=11°.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形内角和定理.10.如图,在7×5的网格中,横、纵坐标均为整数的点叫做格点,如A(2,3)、B(2,﹣1)、C(5,3)都是格点,且BC=5,请用无刻度直尺在给定网格中画出下列图形,并保留作图痕迹.(画图过程用虚线表示,画图结果用实线表示)(1)①画△ABC的角平分线AE;②画△ABC的中线AD;(2)画△ABC的角平分线CF;(3)画到直线AB,BC,AC的距离相等的格点P,并写出点P坐标(3,2)和(﹣1,0).【分析】(1)①利用网格特点作∠BAC的平分线得到AE;②利用网格特点确定BC的中点D,从而得到中线AD;(2)以C为顶点作腰为5的等腰三角形,通过作出底边上的中线得到角平分线CF;(3)CF和AE的交点为P点或射线CF与∠BAC的邻补角的平分线的交点为P点.【解答】解:(1)①如图,AE为所求;②如图,AD为所求;(2)如图,CF为所求;(3)如图,到直线AB,BC,AC的距离相等的格点P有两个,是P1 和P2,其坐标分别是P1 (3,2)和P2 (﹣1,0).故答案为(3,2)和(﹣1,0).【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质.11.如图,已知四边形ABCD.(1)在边BC上找一点P,使得AP+PD的值最小,在图①中画出点P;(2)请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):①在线段AC上找一点M,使得BM=CM,请在图②中作出点M;②若AB与CD不平行,且AB=CD,请在线段AC上找一点N,使得△ABN和△CDN的面积相等,请在图③中作出点N.【分析】(1)作A点关于BC的对称点A′,连接DA′交BC于P点,利用P A=P A′,则P A+PD =DA′,根据两点之间线段最短可判断P点满足条件;(2)①作BC的垂直平分线交AC于M;②BA和CD的延长线相交于O点,作∠BOC的平分线交AC于N.【解答】解:(1)如图①,点P为所作;(2)①如图①,点M为所作;②如图②,点N为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了最短路径问题.12.尺规作图:已知∠AOB和C,D两点,请在图中用尺规作图找出一点E,使得点E到OA,OB 的距离相等,而且E点到C,D的距离也相等.(不写作法,保留作图痕迹)【分析】根据点E到OA,OB的距离相等,而且E点到C,D的距离也相等,所以作CD的垂直平分线,∠AOB的角平分线,两条线相交于点E即可.【解答】解:如图,点E即为所求.因为点E到OA,OB的距离相等,而且E点到C,D的距离也相等,所以作CD的垂直平分线,∠AOB的角平分线,两条线相交于点E.【点评】本题考查了作图﹣复杂作图,角平分线的性质,线段垂直平分线的性质,解决本题的关键是掌握基本作图方法.13.在△ABC中,AB=AC.(1)如图①,点A在以BC为直径的半圆外,AB、AC分别与半圆交于点D、E.求证BD=EC;(2)如图②,点A在以BC为直径的半圆内,请用无刻度的直尺在半圆上画出一点D,使得△DBC是等腰直角三角形(保留画图痕迹,不写画法).【分析】(1)连接BE、CD,如图①,利用等腰三角形的性质得到∠ABC=∠ACB,根据圆周角定理得到∠BDC=∠CEB=90°,则利用等角的余角相等得到∠BCD=∠CBE,从而得到结论;(2)如图②,分别延长BA、CA交圆于E、C,延长BF和CE,它们相交于P点,连接P A交圆于D点,则D点满足条件.【解答】(1)证明:连接BE、CD,如图①,∵AB=AC,∴∠ABC=∠ACB,∵BC为直径,∴∠BDC=∠CEB=90°,∴∠BCD=∠CBE,̂=CÊ,∴BD∴BD=CE;(2)解:如图②,点D为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰直角三角形的性质和圆周角定理.14.已知:如图,某区政府为了方便居民的生活,在S区域计划修建一个购物中心P,要求到住宅小区A、B的距离必须相等,到两条公路m和n的距离也必须相等.请标出购物中心P的位置.(尺规作图,保留作图痕迹,不写作法)【分析】直接利用角平分线的性质与作法和线段垂直平分线的性质与作法进而得出答案.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了应用与设计作图,正确掌握线段垂直平分线的性质是解题关键.15.如图,已知:射线AM是△ABC的外角∠NAC的平分线.(1)作BC的垂直平分线PF,交射线AM于点P,交边BC于点F;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)过点P作PD⊥BA,PE⊥AC,垂足分别为点D,E,请补全图形并证明BD=CE.【分析】(1)利用基本作图作BC的垂直平分线即可;(2)先根据几何语言画出对应几何图形,再连接PB、PC,根据线段垂直平分线的性质得到PB=PC,根据角平分线的性质得PD=PE,则可判断Rt△BDP≌Rt△CEP,从而得到BD=CE.【解答】(1)解:如图,PF为所作;(2)证明:如图,连接PB、PC,如图,∵PF垂直平分BC,∴PB=PC,∵AM是△ABC的外角∠NAC的平分线,PD⊥BA,PE⊥AC,∴PD=PE,在Rt△BDP和Rt△CEP中,{PB=PCPD=PE,∴Rt△BDP≌Rt△CEP(HL),∴BD=CE.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线和角平分线的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考二轮复习——专题分类专题一、作图型试题例1、(无锡)已知图1和图2中的每个小正方形的边长都是1个单位. (1)将图1中的格点△ABC ,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.(2)在图2中画出一个与格点△DEF 相似但相似比不等于1的格点三角形. 知识点:考查学生平移变换,利用勾股定理进行三角形的有关计算,全等及相似三角形的判定。

精析:本题关键是计算出△ABC 的三边的长度,然后找一个不等于1的相似比,比如相似比为2,计算出△DEF 三边长或计算出一边长后,利用平移得出△DEF 。

准确答案.(1) (2)答案不唯一.中考对该知识点的要求:,点阵中对称点对称图形问题及利用格点进行面积计算已经成为最近几年中考试题的考点问题。

目标达成:1-1-1、(太原)在4×4的正方形网格中,每个小方形的边长都是1。

线段AB 和CD分别是(图1-1)中1×3的两个矩形的对角线,显然AB ∥CD 。

请你用类似的方法画出过点E 且垂直于AB 的直线,并证明。

图2F D E A B C 图1 A BC 图1A 1B 1C 1 图2F D EGF E D C BA图1-1-11-1-2、(连云港)如图1-2,在55⨯的正方形网格中, 每个小正方形的边长都为1.请在所给网格中按下列要求画 出图形.(1) 从点A 出发的一条线段AB ,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为22; (2)以(1)中的AB 为边的一个等腰三角形ABC , 使点C 在格点上,且另两边的长都是无理数;(3)以(1)中的AB 为边的两个凸多边形,使它们都是中心对称图形且不全等,其顶点都在格点上,各边长都是无理数. 1-1-3、(宿迁)如图1-3,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD 就是一个“格点四边形”.(1)求图(一)中四边形ABCD 的面积;(2)在图(二)方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.图(一) 图(二) 1-1-4、(潍坊)如图,ABC ∆画出与ABC ∆全等的一个格点三角形.(图1-1-2)图1-3 DCBA1-1-5、ABCD.(1)画出1B1C1D1使1B1C1D1与关于直线MN对称;(2)画出A2B2C2D2,A2B2C2D2与ABCD关于点O中心对称;(3) A1B1C1D1与A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心例2、(河南课改)有一块梯形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图上),并给予合理的解释。

知识点:考查有关图形的面积计算问题。

精析:一般对于简单的图形可直观的进行分割,而对于稍复杂的题目,是通过计算或是转化为三角形问题来解决的。

准确答案:设梯形上、下底分别为a、b,高为h。

方案一:如图1,连结梯形上、下底的中点E、F,则S四边形ABFE=S四边形EFCD=(a+b)h4方案二:如图2,分别量出梯形上、下底a、b的长,在下底BC上截取BE=12(a+b),连接AE,则S△ABE=S四边形AECD=(a+b)h4。

方案三:如图3,连结AC,取AC的中点E,连结BE、ED,则图中阴影部分的面积等于梯形ABCD的面积的一半。

分析此方案可知,∵AE=EC,∴S△AEB=S△EBC,S△AED=S△ECD,∴S△AEB+S△AED=S△EBC+S△ECD,∴图中阴影部分的面积等于梯形ABCD的面积的一半中考对该知识点的要求:对于图形分割,是历年来各省市的中考试题的一个考点也是难点之一。

它要求学生除了考查学生的基础知识外,还能较好的考查学生的观察、分析、创新能力。

AB CDEF图1AB CDE图 2AB CDE图 3AB CD备用图⑴AB CD备用图⑵图1-1-5目标达成1-2-1.(贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等;(1) 根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线 有 组;(2)请在图1-2-1的三个平行四边形中画出满足小强分割方法的直线; (3)由上述实验操作过程,你发现所画的饿两条直线有什么规律?1-2-2.(梅州)如图5,Rt ΔABC 中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形。

(保留作图痕迹,不要求写作法和证明)1-2-3.(黄冈)蓝天希望学校正准备建一个多媒体教室,计划做长120cm ,宽30cm的长条形桌面。

现只有长80cm ,宽45cm 的木板,请你为该校设计不同的拼接方案,使拼出来的桌面符合要求。

(只要求画出裁剪、拼接图形,并标上尺寸,设计出一种得5分,设计出两种再加1分)ABCDABCDDCBA图1-2-11-2-4.(临沂)小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.A B1-2-5.(2005年佛山)学校有一块如图所示的扇形空地,请你把它平均分成两部分.(要求:用尺规作图,保留作图痕迹,写出作法,不用证明.)能力提高:1-1.(常州)如图,有一木制圆形脸谱工艺品,H、T两点为脸谱的耳朵,打算在工艺品反面两耳连线中点D处打一小孔.现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定点D 的位置(画出图形表示),并且分别说明理由.1-2、(武汉).用四块如图1所示的瓷砖拼成一个正方形图案,使拼成的图案成一个轴对称图形(如图2),请你分别在图3、图4中各画一种与图2不同的拼法,要求两种拼法各不相同,且其中至少有一个图形既是中心对称图形,又是轴对称图形。

1-3(锦州)如图,己知四边形ABCD,用尺规将它放大,使放大前后的图形对应线段的比为1:2.(不写作法,但保留作图痕迹)DC1-4.(青岛)某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛。

(1)若要使花坛面积最大,请你在这块公共区域(如图)内确定圆形花坛的圆心P ; (2)若这个等边三角形的边长为18米,请计算出花坛的面积。

B C1-5.(上海)(1)在图3所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关于坐标原点O 对称的两个三角形的编号为 ;(2)在图4中,画出与△ABC 关于x 轴对称的△A 1B 1C 11-6.(苏州)如图,平行四边形纸条ABCD 中,E 、F 分别是边AD 、BC 的中点。

张老师请同学们将纸条的下半部分平行四边形ABEF 沿EF 翻折,得到一个V 字形图案。

(1)请你在原图中画出翻折后的图形平行四边形A 1B 1FE ; (用尺规作图,不写画法,保留作图痕迹) (2)已知∠A=63°,求∠B 1FC 的大小。

1-7.(温州)小明家用瓷砖装修卫生间,还有一块墙角面未完工(如图甲所示),他想在现有的六块瓷砖余料中(如图乙所示)挑选2块或3块余料进行铺设,请你帮小明设计两种不同的铺设方案(在下面图丙、图丁中画出铺设示意图,并标出所选用每块余料的编号)。

1-8.(盐城)已知:如图,现有的正方形和的矫形纸片若干块,试选用这些纸片(每种至少用一次)在下面的虚线方框中拼成一个矫形(每两个纸片之间既不重叠,也无空隙,批出的图中必须保留拼图的痕迹),使批出的矫形面积为,并标出此矫形的长和宽。

1-9.(茂名)一条小船,(1) 若把小船平移,使点A 平移到点B ,请你在图中画出平移后的小船;a b(2) 若该小船先从点A 航行到达岸边L 的点P 处补给后,再航行到点B,但要求航程最短,试在图中画出点P 的位置1-10.(丽水)某公园有一个边长为4米的正三角形花坛,三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. (1)按圆形设计,利用图1画出你所设计的圆形花坛示意图;(2)按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图; (3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由1-11. (曲沃-阳城)在下面方格纸中设计一个对称图案,在这个图案中必须用到等腰三角形、正方形、圆三种基本图形。

图1 图2 A B C A B C1-12、(下面是天都市三个旅游景点的平面图,请你选用适当的方式借助刻度尺、量角器等基本作图工具,确定出三个景点的位置。

1-13、(深圳南山区)平移方格纸中的图形(如图13),使A点平移到A′点处,画出平移后的图形,并写上一句贴切、诙谐的解说词.解说词:一、作图型试题答案1-1-1.天都市旅游景点示意图•碑林•博物馆•动物园北比例尺0 5 10千米A ··A′1-1-2.1-1-3. (1)方法一:S =12×6×4 =12方法二:S =4×6-12×2×1-12×4×1-12×3×4-12×2×3=12(2)(只要画出一种即可)1-1-4. 只画出一个符合题意的三角形即可.1-1-5. (1)如图,平行四边形A 1B 1C 1D 1,就是所求的平行四边形. -(2)如图,平行四边形A 2B 2C 2D 2,就是所求的平行四边形. (3)是轴对称图形,对称轴是直线EF.C'BACD 6C 6D 5C 5D 4C 4C 2D 1D 3C 3D 2C 1BA (第2题答图1)(第2题答图2)EN2B 1B 21-2-1.(1)无数;(2)只要两条直线都过对角线的交点就给满分;(3)这两条直线过平行四边形的对称中心(或对角线的交点); 1-2-2. 解:作法一:作AB 边上的中线; 作法二:作∠CBA 的平分线;作法三:在CA 上取一点D ,使CD=CB 。

1-2-3.1-2-4. 作法:(1)作AB 的垂直平分线CD 交AB 于点O ;(2)分别以A 、B 为圆心,以AO(或BO)的长为半径画弧,分别交半圆干点M 、N ;(3)连结OM 、ON 即可.1-2-5. 解法一: (1)以O 为圆心,任意长为半径画弧,分别交OA 、OB 于C 、D 两点;(2)分别以C 、D 为圆心,大于CD 21的长为半径画弧,两弧交于E 点(不与O 点重合); 注:也可直接以A 、B 为圆心作图. (3)射线OE 交弧AB 于F ; 则线段OF 将扇形AOB 二等分。

相关文档
最新文档