透射电镜的选区电子衍射

合集下载

透射电镜TEM电子衍射分析

透射电镜TEM电子衍射分析

1-3-3 正点阵与倒易点阵的指数变换
正点阵与倒易点阵互为倒易关系,正点阵的(hkl)晶面与倒易点阵的同指数倒易方向[hkl]*正交,正点阵 的[uvw]晶向与倒易点阵同指数倒易平面(uvw)*正交,在电子衍射分析中,常需要知道(hkl)晶面的法
线方向[uvw]的指数,反过来要知道与晶向[uvw]正交的晶面指数(hkl),只有立方晶系中 h=u,k=v,l=w,
对其它晶系无此关系一般说来,(hkl)晶面的法线指数 u,v,w 与[uvw]晶向正交的晶面指数 h,k,l 不一
定是整数,故需下列计算:
已知晶面(hkl)求法线[uvw]公式
u
ar* ⋅ ar*
ar
*

r b
*
ar* ⋅ cr*
h
v
=
r b
*

ar
*
r b
*

br*
r b
*

cr
*
k
w
cr* ⋅ ar*
2.71
2.51
1
1-2 晶体对电子的散射
1-2-1 布拉格定律:
晶体内部的质点是有规则的排列,由于这种组织结构的规则性,电子的弹性
散射波可以在一定方向相互加强,除此以外的方向则很弱,这样就产生一束
或几束衍射电子波,晶体内包含着许多族晶面的堆垛,每一族晶面的每一个
晶面上质点都按同样的规律排列且这族晶面的堆垛间距是一个恒定的距离,
:
O''G'
Q 电子波长短,掠射角θ 很小, tgθ ≈ sinθ , G' 与 G'' 很近,则
Q O''G'≈ O''G'= R

透射电镜用选区电子衍射附件技术参数

透射电镜用选区电子衍射附件技术参数

透射电镜用选区电子衍射附件技术参数1. 主要用途选区电子衍射借助设置在物镜像平面的选区光阑,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。

选区光阑用于挡住光栏孔以外的电子束,只允许光阑孔以内视场所对应的样品微区的成像电子束通过,使得在荧光屏上观察到的电子衍射花样仅来自于选区范围内晶体的贡献。

2. 主要组成2.1 冷指2.2 选区光阑杆(含选区光阑)2.3 电子束遮挡器2.4 双倾样品杆2.5 衍射测量软件2.6 软件升级包2.7 离线工作站3. 配置组成及用途说明3.1 冷指:用于减少图像漂移,增强成像效果;3.2 选区光阑杆(含选区光阑):用于选定进行分析的样品微小区域;3.3 电子束遮挡器:在荧光屏上观察到电子衍射花样后,需使用电子束遮挡器将中心透射斑遮挡住,有效提高样品衍射花样的清晰度,并可有效保护CCD,避免受到电子束的损伤;3.4 双倾样品杆:可在α方向和β方向进行旋转,可用于寻找样品指定晶带轴,全面表征分析晶体的结晶情况;3.5 衍射测量软件:可实现对电子衍射花样的可视化分析,包括单晶、多晶等多种晶体结构,自动识别衍射花样的参数信息。

3.6 软件升级包:离线分析软件,具有扩展升级功能,可用于多种离线分析。

3.7 离线工作站:配合离线分析软件,进行多种离线分析。

4. 安装要求4.1 安装在日立透射电镜HT7700电镜主机上4.2 电源:220 V(±10%),50 Hz/60 Hz;4.3 工作环境温度:15~23度4.4 工作环境湿度:<60 %RH4.5 运行持久性:连续使用4.6 地线接地电阻小于100欧姆5. 技术指标5.1 衍射长度:高反差方式0.2~8.0 m5.2 高分辨方式0.2~2.0 m5.3 4孔光阑:光阑孔尺寸50-100—200-400 μmφInspector ALERT V2多功能核辐射检测仪1. 检测射线:α、β、γ和x射线2. 探测器:卤素填充盖革计数管(能量补偿)。

选区电子衍射分析完整版

选区电子衍射分析完整版

选区电子衍射分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】选区电子衍射分析实验报告一、实验目的1、掌握进行选区衍射的正确方法;2、学习如何对拍摄的电子衍射花样进行标定;3、通过选区衍射操作,加深对电子衍射原理的了解。

二、实验内容1、复习电镜的操作程序、了解成像操作、衍射操作的区别与联系;2、以复合材料(Al2O3+TiB2)/Al为观察对象,进行选区衍射操作,获得衍射花样;3、对得到的单晶和多晶电子衍射花样进行标定。

三、实验设备和器材JEM-2100F型TEM透射电子显微镜四、实验原理选区电子衍射就是对样品中感兴趣的微区进行电子衍射,以获得该微区电子衍射图的方法。

选区电子衍射又称微区衍射,它是通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。

图1即为选区电子衍射原理图。

平行入射电子束通过试样后,由于试样薄,晶体内满足布拉格衍射条件的晶面组(hkl)将产生与入射方向成2θ角的平行衍射束。

由透镜的基本性质可知,透射束和衍射束将在物镜的后焦面上分别形成透射斑点和衍射斑点,从而在物镜的后焦面上形成试样晶体的电子衍射谱,然后各斑点经干涉后重新在物镜的像平面上成像。

如果调整中间镜的励磁电流,使中间镜的物平面分别与物镜的后焦面和像平面重合,则该区的电子衍射谱和像分别被中间镜和投影镜放大,显示在荧光屏上。

显然,单晶体的电子衍射谱为对称于中心透射斑点的规则排列的斑点群。

多晶体的电子衍射谱则为以透射斑点为中心的衍射环。

非晶则为一个漫散的晕斑。

(a)单晶(b)多晶(c)非晶图2电子衍射花样五、实验步骤通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。

具体步骤如下:(1)由成像操作使物镜精确聚焦,获得清晰形貌像。

透射电镜中的电子衍射

透射电镜中的电子衍射

R=λLghkl=Kghkl
R=λL/d=K/d
Lλ称为电子衍射的相机常数; 而L称为相机长度。
2021/6/13
4
6.8.1 有效相机常数
R=λL/d=K/d
R是正空间的矢量,而ghkl是 倒易空间中的矢量,因此相 机常数Lλ是一个协调正、倒 空间的比例常数。
Rhdkl f0M1MP LK
其中K‘称为有效相机常数,因为
2021/6/13
7
6.8.2 选区电子衍射
为了保证物镜像平面和选区光阑的重合,获得选区电子 衍射花样,必须遵循下面的标准操作步骤:
1. 插人选区光阑,调节中间镜电流使荧光屏上显示该光阑 边缘的清晰像。此时意味着中间镜物平面和选区光阑重合;
2. 插入物镜光阑,精确调节物镜电流,使所观察的样品形 貌在荧光屏上清晰显示;意味着物镜像平面与中间镜物平面 重合,也就是与选区光阑重合;
200 220 311 222
2021/6/13
26
6.9.3 复杂的电子衍射花样
1. 高阶劳厄斑点
2021/6/13
27
6.9.3 复杂的电子衍射花样
2.超点阵斑点
AuCu3在395℃以上是无序固溶体,每个原子位置上发现Au和Cu的 几率分别为0.25和0.75,在395℃以下, AuCu3便是有序态,此时Au 原子占据晶胞顶角位置,Cu原子则占据面心位置。
2021/6/13
28
2.超点阵斑点
2021/6/13
29
2.超点阵斑点
2021/6/13
30
6.9.3 复杂的电子衍射花样
3. 二次衍射斑点
• 电子受原子散射作用很强,以致衍射束强度可与透射 束强度相当(动力学交互作用),故衍射束可作为新的 入射束,并产生衍射,称为二次衍射。

9.透射电镜中的电子衍射

9.透射电镜中的电子衍射

优点
• 首先它能够在同一试样上把物相的形貌观 察与结构分析结合起来,使人们可以借助 显微图象,将放大几十万倍的情况下,将 直径小到几百埃的微晶挑选出来,进行晶 体结构的研究,也可借助衍射花样,弄清 薄晶衍衬成象的衬度来源,对光怪陆离的 现象加以确切解释。这些,对于材料科学 工作者是至关重要的。
优点
• 从结构消光原理来看,体心立方点阵h+k+l=偶数时才有 衍射产生,因此它的N值只有2,4,6,8„。面心立方点阵h、 k、l为全奇或全偶时才有衍射产生,固有N值为3, 4,8,11,12„。因此,只要把测量的各个R值平方,并整理 成式(10-18),从式中N值递增规律来验证晶体的点阵 类型,而与某一斑点的R2值对应的N值便是晶体的晶面族 指数,例如N=1即为{100};N=3为{111};N=4为{200}等。
图10-15为衍射束通过物镜折射在 后焦面上会集成衍射花样以及用 底片直接记录衍射花样的示意图。 根 据 三 角 形 相 似 原 理 , △OAB∽△O′A′B′,因此,前一 节讲的一般衍射操作时的相机长 度L和R在电镜中与物镜的焦距 f0 和 r(副焦距A′到主焦点B′的距 离)相当。电镜中进行电子衍射 操作时,焦距f0 起到了相机长度 的作用。由于f0 将进一步被中间 镜和投影镜放大,
• 在决定第二个斑点的指数时,应进行所谓 尝试校验,即只有h2k2l2代入夹角公式后求 出的ψ 角和实测的一致时,(h2k2l2)指数才 是正确的,否则必须重新尝试。应该指出 的是{ h2k2l2}晶面族可供选择的特定 (h2k2l2)值往往不止一个,因此第二个斑 点指数也带有一定的任意性。 • (7)确定两个斑点后,其它斑点可以根据矢 量加法求得。 • (8)根据晶带定理求零层倒易截面法线的方 向,即晶带轴的指数。

TEM透射电镜中的电子衍射及分析

TEM透射电镜中的电子衍射及分析

TEM透射电镜中的电子衍射及分析TEM透射电镜(Transmission Electron Microscopy)是一种高分辨率的显微镜,它利用电子束穿透样品,并通过电子衍射和显微成像技术来观察样品的内部结构和晶格信息。

本文将通过一个实例来介绍TEM透射电镜中的电子衍射及分析过程。

实例:研究纳米材料的晶格结构研究目标:使用TEM透射电镜研究一种纳米材料的晶格结构,确定其晶格常数和晶体结构。

实验步骤:1.样品制备:首先,需要制备纳米材料的TEM样品。

常见的制备方法包括溅射,化学气相沉积和溶液法等。

在本实验中,我们将使用溶液法制备纳米颗粒样品,并将其沉积在碳膜上。

2.装载样品:将TEM样品加载到TEM透射电镜的样品台上,并进行适当的调整,以使样品位于电子束的路径中。

3.调整TEM参数:调整透射电镜的参数,如电子束的亮度,聚焦和对比度等。

这些参数的调整对于获得良好的电子衍射图像至关重要。

4. 获得电子衍射图:通过调整TEM中的衍射镜,观察和记录电子衍射图。

可以使用选区衍射(Selected Area Diffraction,SAD)模式,在样品上选择一个小区域进行衍射。

电子束通过纳米颗粒样品时,会与晶体的原子排列相互作用,并在相应的探测器上形成衍射斑图。

5.解析电子衍射图:利用电子衍射图分析软件,对获得的电子衍射图进行解析。

通过测量衍射斑的位置和相对强度,可以推断出样品的晶格常数和晶体结构。

6.确定晶格常数:根据衍射斑的位置,使用布拉格方程计算晶格常数。

布拉格方程为:nλ = 2dsin(θ)其中,n是衍射阶数,λ是电子波长,d是晶体平面的间距,θ是入射角。

通过测量不同衍射斑的位置和计算,可以得到晶格常数及其误差范围。

7.确定晶体结构:根据衍射斑的相对强度以及已知的晶格常数,可以利用衍射斑的几何关系推断样品的晶体结构。

常见的晶体结构包括立方晶系、六方晶系等。

8.结果分析:根据实验获得的数据,进行晶格常数和晶体结构的分析和比较。

透射电镜的基本功能

透射电镜的基本功能

透射电镜的基本功能透射电镜是一种非常重要的电子显微镜,广泛应用于材料科学、生物学和化学等领域。

它可以通过控制电子束的路径和能量,产生高分辨率的影像,从而帮助我们研究物质的微观结构和性质。

本文将介绍透射电镜的基本功能,包括成像、衍射和能谱分析等方面。

一、透射电镜的成像功能透射电镜的主要功能是成像,它可以产生高分辨率的样品图像,从而帮助我们观察和研究样品的微观结构和形态。

透射电镜的成像原理是利用电子束与样品相互作用的效应,通过收集和处理电子束的散射和透射信号,生成图像。

透射电镜的成像原理可以用透射电子显微镜的简化模型来说明。

透射电子显微镜由电子枪、透射样品和投影屏三部分组成。

电子枪产生高能的电子束,经过准直器和聚焦器的调节,使电子束聚焦到样品表面。

样品对电子束的散射和透射会产生不同的信号,这些信号通过投影屏被收集和记录。

透射电镜的成像分为两种模式:直接成像和倒置成像。

在直接成像模式下,样品图像与样品本身的方向一致。

在倒置成像模式下,样品图像与样品本身的方向相反。

这是因为在透射电镜中,电子束与样品的相互作用是非常复杂的,包括电子的散射、透射和吸收等过程,从而导致图像的倒置。

透射电镜的成像分辨率取决于电子束的能量和样品的性质。

一般来说,电子束的能量越高,成像分辨率越高。

但是,高能电子束也会引起样品的损伤和辐射损伤,因此需要适当调节电子束的能量和强度。

此外,样品的结构和厚度也会影响成像分辨率,因为电子束在样品中的传播和散射会受到样品的影响。

二、透射电镜的衍射功能透射电镜的衍射功能是指利用电子束与样品相互作用的效应,产生衍射信号,从而研究样品的晶体结构和晶格参数。

透射电镜的衍射原理与X射线衍射类似,都是利用波粒二象性和布拉格定律来解释。

透射电镜的衍射模式包括电子衍射和选区电子衍射两种。

其中,电子衍射是指在整个样品上均匀照射电子束,观察电子衍射的强度和位置,从而确定样品的晶体结构和晶格参数。

选区电子衍射是指在样品上选定一个小区域,只在该区域内照射电子束,观察电子衍射的强度和位置,从而确定该区域的晶体结构和晶格参数。

选区电子衍射分析

选区电子衍射分析

选区电子衍射分析Last revision on 21 December 2020选区电子衍射分析实验报告一、实验目的1、掌握进行选区衍射的正确方法;2、学习如何对拍摄的电子衍射花样进行标定;3、通过选区衍射操作,加深对电子衍射原理的了解。

二、实验内容1、复习电镜的操作程序、了解成像操作、衍射操作的区别与联系;2、以复合材料(Al2O3+TiB2)/Al为观察对象,进行选区衍射操作,获得衍射花样;3、对得到的单晶和多晶电子衍射花样进行标定。

三、实验设备和器材JEM-2100F型TEM透射电子显微镜四、实验原理选区电子衍射就是对样品中感兴趣的微区进行电子衍射,以获得该微区电子衍射图的方法。

选区电子衍射又称微区衍射,它是通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。

图1即为选区电子衍射原理图。

平行入射电子束通过试样后,由于试样薄,晶体内满足布拉格衍射条件的晶面组(hkl)将产生与入射方向成2θ角的平行衍射束。

由透镜的基本性质可知,透射束和衍射束将在物镜的后焦面上分别形成透射斑点和衍射斑点,从而在物镜的后焦面上形成试样晶体的电子衍射谱,然后各斑点经干涉后重新在物镜的像平面上成像。

如果调整中间镜的励磁电流,使中间镜的物平面分别与物镜的后焦面和像平面重合,则该区的电子衍射谱和像分别被中间镜和投影镜放大,显示在荧光屏上。

显然,单晶体的电子衍射谱为对称于中心透射斑点的规则排列的斑点群。

多晶体的电子衍射谱则为以透射斑点为中心的衍射环。

非晶则为一个漫散的晕斑。

(a)单晶(b)多晶(c)非晶图2电子衍射花样五、实验步骤通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。

具体步骤如下:(1)由成像操作使物镜精确聚焦,获得清晰形貌像。

(2)插入尺寸合适的选区光栏,套住被选视场,调整物镜电流,使光栏孔内的像清晰,保证了物镜的像平面与选区光栏面重合。

透射电镜用途及应用范围

透射电镜用途及应用范围

透射电镜用途及应用范围透射电镜(Transmission Electron Microscope,TEM)是一种非常重要的高分辨率显微镜,利用电子束通过样品并在光学系统下进行放大,可以实现对物质的高分辨率成像与分析。

透射电镜在材料科学、生物学、医学、纳米技术等领域有着广泛且重要的应用。

首先,透射电镜在材料科学领域有着广泛的应用。

它可以对材料的微观结构进行观察和分析,例如:晶体结构、晶粒大小和形貌,材料的相变、晶界、缺陷等。

同时,透射电镜可以通过选区电子衍射(Selected Area Electron Diffraction,SAED)技术来确定材料的晶体结构以及取向关系,提供有关晶体结构的重要信息。

此外,透射电镜还可以用于研究材料的化学成分和分布情况,通过能量色散X射线谱仪(EDX)可以提供元素成分的定量和定性分析。

其次,在生物学和医学领域,透射电镜被广泛应用于细胞和组织的观察。

透射电镜可以对细胞和器官的超微结构进行高分辨率成像,例如:细胞器、细胞膜结构和核酸蛋白质复合物等。

透射电镜能够提供有关细胞内部组织、结构和功能的详细信息,对于研究传染病病毒等微生物,以及细胞分裂、细胞凋亡等生物学现象有着重要的作用。

同时,透射电镜还在医学领域中广泛应用于病理学、药物输送系统和生物材料等研究。

此外,透射电镜在纳米技术领域也具有重要的应用价值。

纳米材料具有特殊的物理、化学、生物学性质,透射电镜可以提供对纳米材料进行形貌、结构以及活性等方面的表征。

透射电镜可以帮助研究人员观察纳米颗粒、纳米管、纳米结构的形貌、尺寸和位置,并对其成分和晶体结构进行分析。

同时,透射电镜还可以通过选区电子衍射技术来研究纳米材料的晶体结构以及纳米材料之间的界面和相互作用等。

除了上述领域,透射电镜还有许多其他的应用范围。

例如,透射电镜在能源领域可以用于观察电池、催化剂、材料的能量转换机制等;在环境科学中可以用于观察空气污染物、水中微生物等;在电子器件研究中,透射电镜可以被用来探究半导体和磁性材料的电子结构和性能。

透射电镜的选区电子衍射

透射电镜的选区电子衍射

透射电子显微镜的选区衍射摘要:本文主要是以透射电子显微镜的选区电子衍射为主题来说明透射电镜在材料学中的应用。

关键词:透射电镜;电子衍射谱;选区电子衍射;应用Selected-Area Electron Diffraction of TEMAbstract: The Selected-Area Electron Diffraction of TEM is mainly talked about in this paper, And it tell us the application of the TEM in materials science.Key words:Transmission electron microscope; Electron diffraction spectrum; Selected-Area Electron Diffraction; application1.透射电镜的电子衍射概论透射电镜的电子衍射是透射电镜的一个重要应用,而透射电镜广泛应用于断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析[1]中。

透射电镜的电子衍射能够在同一试样上将形貌观察与结构分析结合起来[2]。

这就使得电子衍射在应用中有着举足轻重的地位。

在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。

如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。

而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点。

另外,由于二次衍射等原因会使电子衍射花样变得更加复杂。

选区衍射的特点是能把晶体试样的像与衍射图对照进行分析,从而得出有用的晶体学数据,例如微小沉淀相的结构、取向及惯习面,各种晶体缺陷的几何学特征等[3]。

2.选区电子衍射的原理及特点2.1选区电子衍射的原理为了得到晶体中某一个微区的电子衍射花样,一般用选区衍射的方法,将选区光阑放置在物镜像平面(中间镜成像模式时的物平面),而不是直接放在样品处。

(整理)选区电子衍射与晶体取向分析

(整理)选区电子衍射与晶体取向分析

实验四选区电子衍射与晶体取向分析一、实验目的与任务1)通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。

2)选择合适的薄晶体样品,利用双倾台进行样品取向的调整,利用电子衍射花样测定晶体取向的基本方法。

二、选区电子衍射的原理和操作1.选区电子衍射的原理使学生掌握简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。

选区电子衍射的基本原理见图10—16。

选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过,使得在荧光屏上观察到的电子衍射花样仅来自于选区范围内晶体的贡献。

实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,选区域以外样品晶体对衍射花样也有贡献。

选区范围不宜太小,否则将带来太大的误差。

对于100kV的透射电镜,最小的选区衍射范围约0.5m;加速电压为1000kV时,最小的选区范围可达0.1m。

2.选区电子衍射的操作1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。

2) 插入并选用尺寸合适的选区光栏围住被选择的视场。

3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。

对于近代的电镜,此步操作可按“衍射”按钮自动完成。

4) 移出物镜光栏,在荧光屏上显示电子衍射花样可供观察。

5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。

三、选区电子衍射的应用单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用:1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子衍射基本公式Rd=L,可以进行物相鉴定。

2) 确定晶体相对于入射束的取向。

3) 在某些情况下,利用两相的电子衍射花样可以直接确定两相的取向关系。

TEM透射电镜中的电子衍射及分析(实例)

TEM透射电镜中的电子衍射及分析(实例)

图2-5 关系
c*
与正点阵的
实用文档
晶带定律
r·g =0,狭义晶带定律 ,倒易矢量与r垂直,它 们构成过倒易点阵原点的 倒易平面
r·g=N,广义晶带定律, 倒易矢量与r不垂直。这时 g的端点落在第非零层倒易 结点平面。
注:书上为第N层不妥,第1层的N值可以为2。
实用文档
r uvw
(uvw)*N








实用文档
选区衍射操作步骤:
为了尽可能减小选区误差,应遵循如下 操作步骤:
1. 插入选区光栏,套住欲分析的物相,调整中 间镜电流使选区光栏边缘清晰,此时选区光栏 平面与中间镜物平面生重合;
2. 调整物镜电流,使选区内物象清晰,此时样 品的一次象正好落在选区光栏平面上,即物镜 象平面,中间镜物面,光栏面三面重合;
2q 2q
f
2q
试样
物镜 后焦面
图2-7 意图
衍射花样形成示
实用文档
象平面
(图2-8), Ewald图解法: A:以入射束与反射面的交点为原点,作半
径为1/的球,与衍射束交于O*. B:在反射球上过O*点画晶体的倒易点阵; C:只要倒易点落在反射球上,,即可能产
生衍射.
实用文档
入射束 厄瓦尔德球
实用文档
(1)、指数直接标定法:已知样品和相机 常数
可分别计算产生这几个斑点的晶面间距 并与标准d值比较直接写出(hkl),(P32例, 图2-24)。也可事先计算R2/R1,R3/R1, 和R1、R2间夹角,据此进行标定(P32例,图 2-24)。
实用文档
h1k1l1 h2 k 2 l2
h3k3l3 R2

TEM透射电镜中的电子衍射及分析实例

TEM透射电镜中的电子衍射及分析实例

TEM透射电镜中的电子衍射及分析实例TEM(透射电子显微镜)是一种利用电子束来研究物质结构的仪器。

它通过透射电子的衍射来获得高分辨率的图像,可以观察到物质的晶体结构、晶格缺陷、成分分布等信息。

下面将介绍几个常见的TEM电子衍射及分析实例。

1.晶体结构分析:TEM电子衍射可以用于确定物质的晶体结构。

例如,我们可以用TEM观察纳米颗粒的晶体结构,通过衍射斑图的形状和位置可以确定晶体的点群、空间群以及晶胞参数。

这对于研究纳米颗粒的生长机制、性能优化等具有重要意义。

2.晶格缺陷分析:晶格缺陷对材料的性质具有重要影响。

TEM电子衍射可以用于观察晶格缺陷并进行分析。

例如,通过对衍射斑图的解析,可以确定晶格缺陷的类型(例如位错、晶格错配等)、位置以及密度。

这对于研究材料的力学性能、电学性能等具有重要意义。

3.单晶取向分析:TEM电子衍射可以用于确定单晶的晶面取向。

通过选取合适的照射条件(如照射角度、光斑尺寸等),观察到的衍射斑图可以得到晶面的取向信息。

这对于材料的晶面取向控制、物理性质优化等具有重要意义。

4.晶体成分分析:TEM电子衍射可以用于确定材料的成分。

通过观察材料的纹理和衍射斑图的位置等信息,可以获得材料的成分分布。

例如,TEM电子能谱(EDS)结合电子衍射可以同时确定材料的晶体结构和成分,对于研究复杂多相体系具有重要意义。

5.界面结构研究:TEM电子衍射可以用于研究材料的界面结构。

通过选择合适的照射条件,观察到的衍射斑图可以提供界面的结构和晶面取向信息。

这对于研究界面的稳定性、反应动力学等具有重要意义。

总之,TEM电子衍射是一种非常重要的材料分析技术,它可以提供关于晶体结构、晶格缺陷、成分分布、晶面取向和界面结构等信息。

通过对衍射斑图的定性和定量分析,我们可以深入了解材料的性质和行为,为材料设计和性能优化提供指导。

这些实例只是TEM电子衍射应用的一部分,随着技术的发展,相信将会有更多更广泛的应用出现。

透射电子显微镜-TEM

透射电子显微镜-TEM
复型类型
1. 塑料一级复型 2. 碳一级复型 3. 塑料-碳二级复型 4. 抽取复型
透射电子显微镜样品制备
塑料一级复型
样品上滴浓度为1%的火棉 胶醋酸戍酯溶液或醋酸纤维 素丙酮溶液,溶液在样品表 面展平,多余的用滤纸吸掉, 溶剂蒸发后样品表面留下一 层100nm左右的塑料薄膜。 印模表面与样品表面特征相反。
透射电镜实现了工厂化生产。 上世纪50年代,英国剑桥大学卡文迪许实验室的Hirsch和
Howie等人建立电子衍射衬度理论并用于直接观察薄晶体缺陷和 结构。 1965年,扫描电子显微镜实现商品化。 70年代初,美国阿利桑那州立大学J.M. Cowley提出相位衬度理 论的多层次方法模型,发展了高分辨电子显微象的理论与技术。 饭岛获得原子尺度高分辨像(1970) 。 80年代,晶体缺陷理论和成像模拟得到进一步发展,透射电镜和 扫描电镜开始相互融合,并开始对小于5埃的尺度范围进行研究。 90年代至今,设备的改进和周边技术的应用。
re 人眼分辨本领 r0 显微镜分辨本领
有效放大倍数
光学显微镜的有效放大倍数
人眼的分辨率( 0.2mm) 光学显微镜分辨率( 200 nm)
透射电镜的有效放大倍数
人眼的分辨率( 0.2mm) 透射电子显微镜分辨率 (0.1nm)
由上面公式可以直接得出,光学显微镜的有效放 大倍数远小于透射电镜。
透射电子显微镜-TEM
Transmission electron microscope
内容
简介 结构原理 样品制备 透射电子显微像 选区电子衍射分析
TEM 简介
1898年J.J. Thomson发现电子 1924年de Broglie 提出物质粒子波动性假说和1927年实验的
证实。 1926年轴对称磁场对电子束汇聚作用的提出。 1932年,1935年,透射电镜和扫描电镜相继出现,1936年,

选区电子衍射分析

选区电子衍射分析

选区电子衍射分析实验报告一、实验目的1、掌握进行选区衍射的正确方法;2、学习如何对拍摄的电子衍射花样进行标定;3、通过选区衍射操作,加深对电子衍射原理的了解。

二、实验内容1、复习电镜的操作程序、了解成像操作、衍射操作的区别与联系;2、以复合材料(Al2O3+TiB2)/Al为观察对象,进行选区衍射操作,获得衍射花样;3、对得到的单晶和多晶电子衍射花样进行标定。

三、实验设备和器材JEM-2100F型TEM透射电子显微镜四、实验原理选区电子衍射就是对样品中感兴趣的微区进行电子衍射,以获得该微区电子衍射图的方法。

选区电子衍射又称微区衍射,它是通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。

图1即为选区电子衍射原理图。

平行入射电子束通过试样后,由于试样薄,晶体内满足布拉格衍射条件的晶面组(hkl)将产生与入射方向成2θ角的平行衍射束。

由透镜的基本性质可知,透射束和衍射束将在物镜的后焦面上分别形成透射斑点和衍射斑点,从而在物镜的后焦面上形成试样晶体的电子衍射谱,然后各斑点经干涉后重新在物镜的像平面上成像。

如果调整中间镜的励磁电流,使中间镜的物平面分别与物镜的后焦面和像平面重合,则该区的电子衍射谱和像分别被中间镜和投影镜放大,显示在荧光屏上。

显然,单晶体的电子衍射谱为对称于中心透射斑点的规则排列的斑点群。

多晶体的电子衍射谱则为以透射斑点为中心的衍射环。

非晶则为一个漫散的晕斑。

(a )单晶 (b )多晶 (c )非晶图2电子衍射花样五、实验步骤通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。

具体步骤如下:(1)由成像操作使物镜精确聚焦,获得清晰形貌像。

(2)插入尺寸合适的选区光栏,套住被选视场,调整物镜电流,使光栏孔内的像清晰,保证了物镜的像平面与选区光栏面重合。

透射电镜的选区衍射

透射电镜的选区衍射
透射电镜的选区衍射
汇报人: 汇报时间:2011.12.15
一、透射电镜电子衍射概论 二、透射电镜选区衍射的原理及特点 三、选区衍射花样的分析与应用 四、透射电镜及选区衍射的发展前景
一、透射电镜电子衍射概论
透射电镜的电子衍射能够在同一试样 上将形貌观察与结构分析相结合。
选区衍射能够将晶体试样图像与衍射图 进行对照分析,得出有用的晶体学数据。
图3 镍基合金中孪晶的形貌像及选区衍射花样 (a) 孪晶的形貌像 (b) [10-1]M、[-101]T晶带衍射花样
B.选区衍射在Si-B-C-N 陶瓷材料析晶过程中的应用
图4(a)的SAED表 明,仅存在立方 SiC晶体; 图4(b)的SAED表 明,对应区域中 存在六方Si3N4; 图4(d)中长条状 晶粒应该对应于 Si3N4,还可能为 石墨化团簇(Cg) 或BCN相的层状 结构。
图5 T1000选区衍射(a) 及高分辨图像(b)
图6 T1000+1400选 区衍射(a)及高分辨图 像(b)
四、透射电镜及选区衍射的发展前景
• 利用EELS精细结构研究电子结构 ; • 利用Z衬度实现原子的化学成份的分辨; • 结合正、倒空间信息,进行三维重构,实 现原子水平的空间分辨本领; • 利用计算机技术进行球差矫正 ,获得高分 辨率;
图4 T1400的选区衍射(a 、b)高分辨图像(c、d)
样品T1000 的选区衍射 (图5(a))只显 示非晶结构, 而其高分辨 像也表明非 晶结构很均 匀. 图中所指的 可能是石墨 化团簇形成 的区域。
SAED衍射环 的标定结果表 明,样品中主 要结晶相仅为 C-SiC ; 自由碳也更明 显地出现了石 墨化的趋势 ; 析晶相h-BN衍 射环完全与石 墨相重叠,因 此不能判断BN 是否已经结晶。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

透射电子显微镜的选区衍射摘要:本文主要是以透射电子显微镜的选区电子衍射为主题来说明透射电镜在材料学中的应用。

关键词:透射电镜;电子衍射谱;选区电子衍射;应用Selected-Area Electron Diffraction of TEMAbstract: The Selected-Area Electron Diffraction of TEM is mainly talked about in this paper, And it tell us the application of the TEM in materials science.Key words:Transmission electron microscope; Electron diffraction spectrum; Selected-Area Electron Diffraction; application1.透射电镜的电子衍射概论透射电镜的电子衍射是透射电镜的一个重要应用,而透射电镜广泛应用于断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析[1]中。

透射电镜的电子衍射能够在同一试样上将形貌观察与结构分析结合起来[2]。

这就使得电子衍射在应用中有着举足轻重的地位。

在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。

如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。

而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点。

另外,由于二次衍射等原因会使电子衍射花样变得更加复杂。

选区衍射的特点是能把晶体试样的像与衍射图对照进行分析,从而得出有用的晶体学数据,例如微小沉淀相的结构、取向及惯习面,各种晶体缺陷的几何学特征等[3]。

2.选区电子衍射的原理及特点2.1选区电子衍射的原理为了得到晶体中某一个微区的电子衍射花样,一般用选区衍射的方法,将选区光阑放置在物镜像平面(中间镜成像模式时的物平面),而不是直接放在样品处。

选区电子衍射借助设置在物镜像平面的选区光阑,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。

选区电子衍射的基本原理[4]见图4-1。

选区光阑用于挡住光阑孔以外的电子束,只允许光阑孔以内视场所对应的样品微区的成像电子束通过。

使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内的晶体的贡献。

实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍射花样也有贡献。

因此,选区范围不宜太小,否则将带来太大的误差。

对于100kV 的透射电镜,最小的选区衍射范围约0.5μm;加速电压为1000kV时,最小的选区范围可达0.1μm。

图1 选区电子衍射原理示意图2.2选区衍射的特点选区电子衍射花样的优点是电子衍射能在同一试样上将形貌观察与结构分析结合起来;电子波长短,单晶的电子衍射花样就如同晶体倒易点阵的一个二维截面在底片上的放大投影,从底片上的电子衍射花样可以直观地辨认出一些晶体的结构和对称性等特点,使晶体结构的研究比通过X射线的研究简单;物质对电子的散射能力强,约为X射线一万倍,曝光时间短。

但是它也存在着不足,电子衍射强度有时几乎与透射束相当,以致两者产生交互作用,从而导致电子衍射花样,特别是强度分析变得复杂,不能像X射线那样从测量衍射强度来广泛的测定结构;散射强度高导致电子透射能力有限,要求试样薄,这就使试样制备工作较X射线复杂;另外在精度方面也远不如X射线法。

3.选区电子衍射花样的分析与应用3.1获得选区衍射花样的步骤为了确保得到的衍射花样来自所选的区域,应当遵循如下操作步骤:(1)按成像操作得到清晰的图像;(2)加入选区光阑将需观测的区域围起来,调节中间镜电流使光阑边缘的像在荧光屏上清晰,这就使得中间镜的物面与选区光阑的平面相重叠;(3)调整物镜电流使选区光阑内的像清晰,这就使得物镜的像面与选区光阑及中间镜的物面相重叠,从而保证了选取区的准确;(4)抽出物镜光阑,减弱中间镜电流,使中间镜物平面上移到物镜背焦面处,这时在荧光屏上就会看到衍射花样的放大像。

在许多电子显微镜中(H-800,EM400,CM12等)只要把旋钮拨到事先固定好的“衍射”位置上即可粗略地达到此目的,再稍微调整中间镜电流使中心斑点变得既小又圆;(5)减弱聚光镜电流以减小入射电子束的孔径角,得到更趋近于平行的电子束,这样可以进一步减小焦斑尺寸。

只有严格按上述步骤操作,才会保证选区衍射的精确度。

3.2选区电子衍射的分析单晶电子衍射花样[5]可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用。

(1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子衍射基本公式Rd=Lλ,待求得d之后与标准d值[6]进行对比从而可以进行物相鉴定;(2) 确定晶体相对于入射束的取向;(3) 在某些情况下,利用两相的电子衍射花样可以直接确定两相的取向关系;(4) 利用选区电子衍射花样提供的晶体学信息,并与选区形貌像对照,可以进行第二相和晶体缺陷的有关晶体学分析[7]。

如测定第二相在基体中的生长惯习面、位错的柏氏矢量等。

以下仅介绍其中两个方面的应用。

A.镍基合金特征平面的取向分析特征平面是指片状的第二相、惯习面、层错面、滑移面、孪晶面等平面。

特征平面的取向分析(即测定特征平面的指数)是透射电镜分析工作中经常遇到的一项工作。

利用透射电镜测定特征平面的指数[8]。

其根据是选区衍射花样与选区内组织形貌的微区对应性。

这里特别介绍一种最基本、较简便的方法。

该方法的基本要点为,使用双倾台或旋转台倾转样品,使得特征平面平行于入射束方向,在此位向下获得的衍射花样中将会出现该特征平面的衍射斑点。

把这个位向下拍照的形貌像和相应的选区衍射花样对照,经过磁转角校正后,即可确定特征平面的指数。

其具体操作步骤如下:(1)利用双倾台来倾转样品,使特征平面处于与入射束平行的方向;(2)拍摄包含有特征平面的形貌像,以及该视场内的选区电子衍射花样;(3)标定选区电子衍射花样,经过磁转角校正后,将特征平面在形貌像中的迹线画在衍射花样中;(4)由透射斑点作迹线的垂线,该垂线所通过的衍射斑点的指数,即为特征平面的指数。

镍基合金中的片状δ-Ni3Nb相通常沿基体(面心立方结构)的某些特定平面生长[9]。

当片状δ相表面相对入射束倾斜一定角度时,在形貌像中片状相的投影宽度较大(见图2(a));如果倾斜样品使片状相表面逐渐趋近平行于入射束,其在形貌像中的投影宽度将不断减小;当入射束的方向与片状相表面平行时,片状相在形貌像中显示最小的宽度(图2(b))。

图2(c)是入射电子束与片状δ相表面平行时,拍照的基体衍射花样。

由图2(c)所示的衍射花样的标定结果,可以确定片状δ相的生长惯习面为基体的(111)面,通常习惯用基体的晶面表示第二相的惯习面[10]。

图2 镍基合金中片状δ相的分布形态及选区衍射花样(a) δ相在基体中的分布形态(b) δ相表面平行入射束时的形态(c) 基体[110]晶带衍射花样图3是镍基合金基体中孪晶的形貌像及相应的选区衍射花样。

图3中的形貌像和衍射花样是在孪晶面处于平行入射束的位向下拍照的。

将孪晶的形貌像与选区衍射花样相对照,很容易确定孪晶面为(111)。

图3 镍基合金中孪晶的形貌像及选区衍射花样(a) 孪晶的形貌像(b) [10]M、[01]T晶带衍射花样B.选区衍射在Si-B-C-N 陶瓷材料析晶过程中的应用不同前驱体制备的Si基陶瓷材料由于其晶化机制和聚合机制的不同而有着复杂的性能。

采用透射电镜等多种先进分析手段,对Si-B-C-N材料从1000℃< T <1400℃的晶化过程进行了系统性研究观测。

通过对比不同温度下的结晶情况进一步探究该陶瓷材料的晶化机制和聚合机制[11]。

以聚硼硅氮烷(boron modified poly(vinyl) silazane, BPVS)材料(编号为T2-1)作为前驱体[12]经过一系列处理过程获得陶瓷块体样品。

通过不同的热解过程生成不同的PDC样品。

进行实验观察的样品分别是:T1400(以60℃/h的速率加热到1400℃保温2h,然后以300℃/h冷却获得);T1000(以60℃/h的速率加热到500℃保温12h,再以10℃/h的速率加热到1000℃保温1h然后以300℃/h的速率降到室温获得);T1000+1400(T1000样品加热到1400后退火获得的样品)。

样品制备完毕采用分辨率为0.17nm的JEOL4000EX观察;而SAED(选区电子衍射Selected-Area Electron Diffraction) 结果则通过JEOL2000FX获得。

以下是透射电镜观察到的不同温度下的热解显微结构。

图4 T1400的选区衍射(a 、b)高分辨图像(c、d) 图5 T1000选区衍射及高分辨图像图6 T1000+1400选区衍射(a)及高分辨图像(b)对样品T1400的微结构观察发现基体中的结晶分布很不均匀。

在同一样品中的不同观察区域,出现了不同的析晶情况。

SAED结果表明,C-SiC、石墨化团簇和BCN 相普遍地分布在基体中(图4(a)), 然而部分区域还出现了明显的Si3N4衍射斑点(图4(b)). 高分辨像的观察结果更为直观地显示了T1400中的不均匀结晶状况. 图4(c)是(a)的高分辨图像,其左下角为相应晶粒的FFT(Fast Fourier Transforms),由图知等轴晶体在基体中均匀分布。

由图4(a)的SAED结果表明,这一区域仅存在立方SiC晶体。

同样由图4(b)的SAED结果表明,该对应区域中存在六方Si3N4,在图4(d)中长条状晶粒应该对应于Si3N4,还出现了可能为石墨化团簇(Cg)或BCN相的层状结构。

样品T1000的选区衍射(图5(a))只显示非晶结构,而其高分辨像也表明非晶结构很均匀,仅有部分区域出现了有序化趋势(图5(b))。

图中所指的可能是石墨化团簇形成的区域。

样品T1000+1400(图6(a))与样品T1400(图4(a)和(b))的选区衍射明显不同。

虽然经过1400℃的退火后,样品T1000+1400也出现了晶化现象,但是SAED衍射环的标定结果表明,样品中结晶相仅是C-SiC[13]。

此外,样品中的自由碳也更明显地出现了石墨化的趋势。

由于另一种可能出现的析晶相h-BN的衍射环完全与石墨相重叠,因此不能判断BN是否已经结晶。

相关文档
最新文档