数学建模港口问题_排队论
数学建模--排队论
B表示顾客源的数目;C表示服务规则;
课件
13
M /M /1/ / /FCFS
表示了一个顾客的到达时间间隔服从相同的负指数分布, 服务时间为负指数分布、单个服务台、 系统容量为无限、 顾客量无限、排队规则为先来先服务的排队模型。
课件
14
四、排队系统的主要数量指标和记号
1、队长和排队长 2、等待时间和逗留时间 3、忙期和闲期
排队论(Queueing Theory)
现实生活中的实例:
进餐馆就餐 到图书馆借书 去售票处购票 在车站等车等等
课件
2
一、排队系统的特征及排队论:
顾客为了得到某中服务而到达系统,若不能获得服 务而允许排队等待,则加入等待队伍,待获得服务后离 开系统。
课件
3
排队的形式:
顾客到达
队列
服务台
服务完成后离去
记
,
并设
1,
n 则:Cn
n1,2,
pnnp0
n1,2,
课件
22
其中:
p0
1
1
n
1
n
n0
1
n1
因此: p n(1)n
n0 ,1 ,
课件
23
②几个主要数量指标
平均队长:
Ln 0nnp n 0n (1)n1
平均排队长:
Lq (n1)pn L(1p0)L n1
2 2 1 ()
课件
24
关于顾客在系统中的逗留时间T,说明服从参数
的负指数分布,P T t e ( ) t
t 0
因此,平均逗留时间W为:
WE(T) 1
顾客在系统中逗留时间为等待时间和接受服务时间之和:
2013年数学建模竞赛练题目港口物流问题
2013年数学建模竞赛训练题目港口物流问题随着我国国民经济的持续增长和对外开放政策的实施,上海、深圳、宁波、青岛、天津等港口货运吞吐量逐年呈不断上升趋势,在运输高峰期,港口货物装卸繁忙,大量货物堆积在码头,由于场地、到货时间以及货物本身等因素,交货期比较早且先期到达的集装箱可能被后送来的集装箱压在下层或堵在相对不方便出货的地方,造成某些批次货物运输的不畅;另一方面,各批次货物又有各自的运输期限要求,物流部门如果处理不当未能在规定期限内将货物运送到客户指定地点,则须向客户付出一定的赔偿。
延误不但给物流公司造成直接经济损失,同时也影响港口的工作效率。
因此,如何组织安排各批次货物的运送时间和运送顺序,提高货运能力和效率,是当前港口物流的一个重大研究课题。
考虑以下物流运送问题:设有货物批次集合I={1, 2,···,n},其中第j批货物的客户重要性等级为wj,无障碍装货时间为pj,第i批货的阻碍造成的装货时间损失为sij,i,j=1,2,···, n。
如果第j批货物完成装货任务的时间为cj,第j批货物在时刻c j<=dj之前完成装货,则该批货物可以按期到达,否则就要延误,延误时间为Lj=Cj-dj,j=1,···,n。
设当前时刻为t=0,建立以下问题的数学模型:问题一:当sij=0,i,j=1,2,···,n时,如何制订各批次货物的装货顺序,才能使最大装货延误时间Lmax=max(1<=j<=n)Lj达到最小?问题二:当Sij=0,j=1,2···,n时,如何制订各批次货物的装货顺序,才能使延误的货物批次总数达到最小?问题三:货物之间的阻碍随时间的变化而发生变化,因此,物流公司需要分时段动态考虑货物阻碍问题。
考虑在Sij不全为零的情况下讨论总装货时间Cmax=max(1<=j<=n)Cj最小化的装货顺序。
港口物流调度优化模型
港口物流调度优化模型港口物流调度优化模型是指通过数学建模和优化算法,对港口物流调度过程中的资源分配、任务调度、路线规划等进行优化,以提高物流效率和降低成本。
下面将从问题描述、数学建模和优化算法三个方面展开,详细介绍港口物流调度优化模型。
问题描述:港口物流调度过程中存在着资源有限、任务繁多、调度复杂等问题。
港口内有若干装卸区、堆场、码头等不同资源,需要合理分配和调度,以满足货物的装卸、仓储和运输需求。
同时,港口物流调度还需要考虑船舶的到港时间、装卸时间、货物的优先级、空闲资源的利用率等约束条件。
数学建模:1.港口资源建模:将港口的装卸区、堆场、码头等资源抽象成容量、服务能力等属性的数学模型。
例如,装卸区的容量可以表示为变量x,堆场的容量可以表示为变量y,码头的服务能力可以表示为变量z。
2.任务建模:将需要完成的装卸、仓储和运输任务抽象成数学模型。
例如,货物的数量可以表示为变量a,装卸所需的时间可以表示为变量b,运输所需的时间可以表示为变量c。
3.约束条件建模:根据实际情况,建立港口资源和任务之间的约束关系。
例如,装卸区的容量不能超过一定的阈值,堆场的容量不能超过一定的阈值,码头的服务能力不能超过一定的阈值。
4.目标函数建模:根据优化目标,建立港口物流调度优化问题的目标函数。
例如,最小化货物的装卸时间和运输时间,最大化空闲资源的利用率。
优化算法:1.贪心算法:贪心算法是一种简单且高效的算法,可以用来解决港口物流调度中的资源分配和任务调度问题。
该算法通过每次选择当前最优的分配或调度策略,逐步构建最终的解。
例如,可以先按照货物的优先级进行装卸区的分配,再按照装卸时间进行堆场的调度,最后根据运输时间进行码头的分配。
2.遗传算法:遗传算法是一种模拟进化过程的优化算法,可以用来解决大规模和复杂的港口物流调度问题。
该算法通过模拟自然选择、交叉和变异等操作,得到最优解。
例如,可以将港口资源和任务分别表示为染色体的基因,通过交叉和变异操作生成新的染色体,并通过适应度函数评估染色体的优劣。
( 数学建模)排队论模型
导出 pn (t ) 满足的微分方程组
p0 (t t ) p0 (t )(1 t ) p1 (t ) t (1 t ) o(t ) p0 (t t ) p0 (t ) p0 (t ) t p1 (t ) t o( t )
(1)流具有平衡性 对任何 a 0和 0 t1 t2 tn , x(a ti ) x(a ) (1 i n) 的分布只取决于 t1 , t2 , , tn 而与 a 无关。 (2)流具有无后效性 对互不交接的时间区间序列 ai , bi (1 i n) , x (bi ) x ( ai ) 是一组相互独立的随机变量。 (3)流具有普通性 Prx(a t ) x(a) 1
Prx(t ) k
E x (t ) t
k!
e
(k 0,1,2,)
故参数λ表示单位时间内事件发生次数的平均数。
2.Poisson流的发生时间间隔分布
当流(过程) x(t ) : t 0 构成Poisson过程时,就称 为Poisson流。设流发生的时刻依次为 t1 , t2 , , tn ,…, 发生的时间间隔记为 n tn tn1 (n 1,2,) ,其中t0 0 。
1.最简单流与Poisson过程
记随机过程{x(t):t≥0}为时间[0,t]内 流(事件)发生的次数,例如对于随机到来某电话交换 台的呼叫,以x(t)表示该交换台在[0,t]这段时 间内收到呼叫的次数;若是服务机构,可以用x(t) 表示该机构在[0,t]时间内来到的顾客数。
最简单流应 x(t ) : t 0 具有以下特征称 5 3二、单通道等待制排队问题
(M/M/1排队系统)
对于单通道等待制排队问题主要讨论输入过 程为Poisson流,服务时间服从负指数分布,单服 务台的情形,即M/M/1排队系统。
排队论计算港口锚地泊位的图表法及其应用
排队论计算港口锚地泊位的图表法及其应用◎ 王文博 广州港工程管理有限公司摘 要:现有M/M/S排队论模型在用于计算港口锚位数量时采用的公式较为复杂。
本文对基于排队论的港口锚位数量计算方法进行了探讨,给出了快速确定锚位数量的图表方法。
关键词:锚地;锚位数;排队论1.引言港口锚地的合理配布是港口规划、设计和建设过程中的重要环节,而如何确定合适的锚位数量则是确定锚地规模的核心问题。
目前关于锚位数量的研究主要采用两种方法,即静态分析方法和动态分析方法。
静态分析方法是根据锚泊船舶所占用的水域面积进行估算。
静态分析方法没有考虑船舶到达的随机性和船舶占用锚地时间的随机性,在确定锚位数量时,具有一定的局限性。
动态分析方法考虑了船舶到达和船舶占用锚地时间的随机性,可以较好地反映出船舶在港口锚地的行为规律,从而对锚位数量做出较为准确的分析。
目前比较常用的两种动态分析方法是排队论模型和计算机模拟。
本文从排队论的角度对港口锚位数量进行探讨。
2.问题的提出某港区一期码头建有3个5000吨级通用泊位,年吞吐量为146万吨。
港内配套建设有一处锚地,共4个锚位,进出港船舶均在此锚泊,现状锚位数充足,能够满足港区日常运营、调度的需要。
由于近年来该港腹地经济发展迅速,港口货物吞吐量激增,一期码头在空间和通过能力上已经不能满足要求,因此拟新建二期码头,共3个5000吨级通用泊位,设计年吞吐量为165万吨。
二期码头建设后,预计进出港船舶流量将大幅增加,港区现有锚地可能不满足二期码头建设后进出港船舶锚泊需要,可能要对锚地进行扩建。
港区现状可利用水域面积较小,二期码头建设后,将无充足水域进行锚地扩容建设。
如锚地确需扩容,则需采用挖入式方案,以增加可用水域面积。
但挖入式方案存在下列若干缺点:1)占用宝贵土地资源,减少陆域使用面积;2)锚地建设需报海事等主管部门,协调工作量大,周期长,难度大;3)挖入式方案工程投资较大。
因此需对锚地规模进行论证,以确定是否需要对锚地进行扩建。
数学建模.排队论讲解
P1
(m 1)
(m n 1) (m n)
P2
Pn 1
Pn
Pn 1
2
由状态转移图,可以建立系统概率平衡方程如下: P 1 mP 0, Pn 1 (m n 1)Pn 1 [(m n) ]Pn , 1 n m 1 Pm Pm 1 ,
E (T ) 1
n!
e
1.5 排队系统的常用分布
同样,对顾客服务时间常用的概率分布也是负指数分布, 概率密度为: t
f (t ) e
(t 0)
其中 表示单位时间内完成服务的顾客数,也称平均服务率. 3)爱尔朗分布:
(k ) k t k 1 kt 分布密度函数: f k (t ) (k 1)! e (t 0, k , 0)
N k k
模型的各数量指标参数如下: 1)系统里没有顾客的概率 1 1 N 1 P
0
1 1
1 1 N
2.2 系统容量有限的 M / M / 1/N / 模型
n P P0,n N 2)系统里有n个顾客的概率 n
3)在系统里的平均顾客数
3)服务时间的分布——在多数情况下,对每一个顾客的服务 时间是一随机变量,其概率分布有定长分布、负指数分布、 爱尔朗分布等.
1.3 排队系统的符号表示(Kendall符号)
根据不同的输入过程、排队规则和服务台数量,可以形成 不同的排队模型,为方便对模型的描述,通常采用如下的符 号形式:
X /Y / Z / A/ B /C
式中 表示平均到达率与平均服务率 之比,称为服务强度.
2.1 标准的 M / M / 1 模型
建模论文 港口船只排队问题
数学建模课程论文设计姓名:王芳专业:化学工程与工艺学号: 00862094指导教师: 韩海涛2010年12月9日蒙特卡罗模拟法港口船只排队问题摘要:本文用蒙特卡洛法在Excel上对卸货泊位的服务状态和排队等待问题进行模拟,建立动态模型,模拟港口船只排队问题。
蒙特卡罗方法是一种基于“随机数”的数学计算方法,又是一种有效的统计实验计算法,这种方法的基本思想是人为地造出一种概率模型,使它的某些参数恰好重合于所需计算的量;又可以通过实验,用统计方法求出这些参数的估值;把这些估值作为要求的量的近似值。
本文考察一个带有船只卸货设备的港口排队问题:服务条件:单泊位,一艘轮船卸货的时间服从35分钟到90分钟的均匀分布。
输入过程:根据调查,轮船到达海港的间隔时间独立,服从20分钟到150分钟的均匀分布。
排队规则:单队且对队长没有限制,先到先服务(船只一般在航道两侧或锚地等候)。
轮船到达时如果停泊处有船卸货,排队等待,先进先出。
用蒙特卡罗模拟算法统计港口排队及服务情况,对各种管理模式进行估价,可以得出每艘船在港口等待卸货和停留的时间分布,以及设备的利用情况,从中分析港口以及客户的利益情况,如果等待的时间较长,这种等待对船主来说是一笔费用,这样顾客会对设备不满意,码头设备的拥有者就要提高他们的服务质量,码头设备拥有者的顾问可以通过雇佣更多的劳动力,或者换用卸货效率更高的设备来提高服务质量,从而缩短等待时间,以满足客户的要求,从而增加客户量,双方利益都会增加。
首先在Excel上以相邻俩艘到达时间间隔为20~150分钟,每艘船卸货时间为35~90分钟的模型进行计算;但在这样的模式下进港船只需要等待较长时间,港口设备改进后,每艘船的卸货时间减少为25~80分钟,再次对模型进行计算;在客户量提升后,相邻两艘船的到达时间间隔也相应缩短,又一次建立模型,再次进行计算,得到理想的数据。
关键词:蒙特卡罗模拟法港口船只排队问题正文:一、港口排队问题提出现在来考察这样一个带有船只卸货设备的港口,任何时间只能为一艘船只卸货,船只进港是为了卸货,相邻两艘船到达的时间间隔在20分钟到150分钟之间变化,一艘船只卸货的时间由所卸货物的类型决定,在35分钟到90分钟之间变化。
数学建模:第五章 排 队 论
令 T0 = 0 Tn :第 n 个顾客到达时刻, Xn:第 n 个顾客与第 n-1 个顾客到达的时间间隔。 则有
T0 T1 Tn
X n Tn Tn1 , n 1,2,
18
一般假定 { Xn }是独立同分布的,并记其分布函数 为 A( t )。关于{ Xn }的分布,排队论中经常用到的 有以下两种: ➢定长分布(D):顾客相继到达时间间隔为确定 的常数。
Wq(t):时刻 t 到达系统的顾客在系统中的等待时间。
pn(t):时刻 t ,系统中有 n 个顾客的概率。
44
pn(t)
过渡状态
平稳状态
t
45
上述指标一般都是和系统运行的时间有关的随机变量 ,求这些随机变量的瞬时分布一般都是很困难的。 相当一部分排队系统,在运行了一定时间后,都会趋 于一个平稳状态(或称平衡状态),平稳状态下这些 指标和系统所处的时刻无关。
19
➢Poisson流(M):顾客相继到达时间间隔的密度 函数为:
e t
a(
2. 排队
损失制排队系统
有限排队
队长有限排队系统
排队
混合制排队系统 等待时间有限排队系统
逗留时间有限排队系统 无限排队(等待制排队系统)
21
(1)有限排队
有限排队:排队系统中的顾客数是有限的,即系统 的空间是有限的,当系统被占满时,后面再来的顾 客将不能进入排队系统。
顾客相继到达时间 单个服务台
间隔为负指数分布
顾客源无限
M / M / 1 / ∞ / ∞ / FCFS
服务时间为负指数
分布
系统容量为无限
先到先服务
39
X/Y/Z/A/B/C
省略后三位
(完整word版)数学建模 港口问题_排队论
排队模型之港口系统本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。
好。
关键词:问题提出:一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。
船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。
一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。
那么,每艘船只在港口的平均时间和最长时间是多少?若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少?卸货设备空闲时间的百分比是多少?船只排队最长的长度是多少?问题分析:排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。
本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。
【1】M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,//1前面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。
蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。
该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。
(2)排队论研究的基本问题1.排队系统的统计推断:即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。
港口泊船的排队模型
港口泊船的排队模型[摘要]:中国经济持续发展, 港口的吞吐量逐年增加, 为解决原有泊位生产能力不足的矛盾, 提出应用排队论, 在没有新增泊位的前提下, 通过缩短卸船活动的辅助作业时间、改善料场管理实现协作型系统、加强设备保养和设备交接等方式, 不断提高港口的作业能力本文将随机服务系统理论引入港口设备数量的设计与计算, 论证了港口服务系统的常用排队模型, 以及它的某些数量指标的确定及其区间估计的方法,[关键词]:排队论;物流能力;作业率;港口;泊位[前言]:随着中国经济的持续不断发展, 港口的吞吐量逐步增加, 为解决原有泊位生产能力的间题, 多数企业考虑新增泊位的方式来提高港口的作业能力, 但在实际生产中, 亦可采取诸多其它方式提高港口作业量,本文根据某港口应用排队论的原理, 加强管理及对堆场进行内部改造, 从而大幅增加作业量的方式, 提供一种不增加港口泊位来提高港口作业量的一种方法, 从而解决企业因水岸线不足和港口新增泊位引起的相关费用排队论或称随机服务系统理论, 起源于对电话服务系统的研究, 而后它的应用便日趋广泛。
六十年代, 运输系统成了排队论应用的第二大领域, 最近几年, 它的排队模型仍在不断得到完善。
国内应用排队论解决运输系统的问题, 还是较晚近的事。
运输系统排队模型的确立及其某些数量指标的确定, 对于提高运输系统的运行效率、科学管理水平以及设计水平, 无疑会产生积极的作用。
本文则试图将这一理论引人到港口设备数量的设计与计算中来。
一、港口作业流程的随机过程描述港口的生产过程构成了一个复杂的动态系统, 船舶到港及其卸船活动可以看成一个排队论过程, 船舶是排队论中的“顾客”, 港口可作为服务机构, 根据统计资料及有关文献分析, 港口作业过程的随机过程描述为:(1)输人过程即船舶到港过程基本服从泊松分布, 假设每条船吨位相等, 则分布参数为,N表示一年当中进港的总船数,365表示一年的总天数。
数学建模-排队论
①模型特点
顾客总体为m个,每个顾客到达并经过服 务台后,任然回到原来总体,所以任然可 以到来。
②系统的稳态概率 Pn ;
1
P0 m m! ( )i
i0 (m i)!
Pn
m! (m n)!
(
)n
P0
,1
n
m
③系统运行指标 a、 系统中平均顾客数(队长期望值)
Ls m (1 P0)
排队论
(Queueing Theory)
生活中处处可见的排队现象
商店、超市等收款处排队付款 车站、民航、港口等售票处依次购买车船票 各种生产系统、存储系统、运输系统等一系
列现象 大型网游登陆前的排队等等
基本概念
研究随机的排队服务模型的主要工具是 排队论,排队论又称为随机服务系统理 论,是研究由顾客、服务机构及其排队 现象所构成的一种排队系统理论。
PnP10
P1 0 Pn1 (
) Pn
0
n 1
(3)
这是关于 Pn 的差分方程,表明了各状态间的转移 关系,可以用下图表示:
0
1
n-1
n
n+1
由上式可得 Pn ( / )n P0 令 / 1(否则队列将
排至无限远),由概率性质知
Pn 1
n0
将
Pn
的关系带入,
P0
n
n0
1
P0 1
求 limPn(t) Pn,此时系统的状态概率分布不再随时间变化 n
(4)利用 Pn 求系统运行指标
①队长:系统中的顾客数,期望记为 Ls ②排队长:系统中排队等待覅物的顾客数,期望记为 Lq ③逗留时间:一个顾客在系统中的停留时间,期望记为 Ws ④等待时间:一个顾客在系统中排队等待的时间,期望记
对排队模型港口系统的思考
100 艘船港口系统的模拟结果(到达时间间隔:15~145.卸货时间:45~90)
一艘船待在港 口的平均时间 一艘船待在港 口的最长时间 一艘船的平均
等待时间 一艘船的最长
等待时间 卸货设备空闲 时间的百分比
88.1434 193.7977 20.0052 125.7563 0.1876
98.1021 206.0542 30.6373 139.2063 0.2042
可得到新的每次100艘船共6次独立模拟的结果如下:
100 艘船港口系统的模拟结果(到达时间间隔:15~145 卸货时间:45~90)
类似正态分布
一艘船待在港 口的平均时间
88.3226
76.7906 102.2981
97.1903
95.4113
77.1597
一艘船待在港 口的最长时间
140.7674 119.0514 257.8954
五、结论与讨论 无论船到达间隔时间是均匀分布还是正态分布,仿真模拟结果都显示:当卸
货时间有 45 分钟~90 分钟调整至 30 分钟~70 分钟时,船只待在港口的时间、等 待时间缩短了,而设备的空闲时间的百分比却增加了近一倍。当两艘船到达的时 间间隔减少至 10~110 时,设备空闲时间的百分比缩短,使得设备的使用率提 高,而客流量并不会减少。
果并入我们的模型。设想观测了利用港口卸货的 1200 艘船,收集的数据见
下表:
两艘船到达的间隔 出现次数 出现概率 卸货时间
15~24
11
0.009
45~49
25~34 35~44
35
0.029
50~54
42
0.035
55~59
45~54 55~64
港口问题的蒙特卡罗算法
。
1
证明 因为 T1 是 Possion 过程中第一个顾客到达的时间, 所以时间 T t 等价于 0, t 内没有顾客到达。故 P T t P N t 0 t
1 0
0!
e t e t ,进而可得
P T1 t 1 P T1 t e t
P Tn t T1 s1 , T2 s2 , , Tn1 sn-1 P N t s1 sn N s1 sn-1 0 P N t N 0 0 e t
即
P Tn t 1 e t
因为船 1 在时钟于 t=0 分钟计时开始后 20 分钟到达,所以港口卸货设备在 开始时空空闲了 20 分钟。船 1 立即开始卸货,卸货用时 55 分,其间,船 2 在时 钟开始计时后 t=20+30=50 分中到达。在船 1 与 t=20+55=75 分钟卸货完毕之前, 船 2 不能开始卸货,这意味着船 2 在卸货前必须等待 75-50=25 分钟。 在船 2 开始卸货之前,船 2 于 t=50+15=65 分钟到达,因为船 2 在 t=75 分钟 开始卸货,并且卸货需 45 分钟,所以在船 2 与 t=75+45=120 分钟卸货完毕之前, 船 3 不能开始卸货。这样,船 3 必须等待 120 分钟。 船 4 在 t=65+120=185 分钟之前没有到达,因此船 3 已经在 t=120+60=180 分钟卸货完毕, 港口卸货设备空闲 185-180=5 分钟, 并且, 船 4 到达后立即卸货。 最后,在船 4 于 t=185+75=260 分钟卸货完毕之前,船 5 在 t=185+25=210 到达,于是船 5 在开始卸货前等待 260-210=50 分钟。
数学建模-排队论及其应用)
ρ ——服务强度,即每个服务台单位时间内的平均 服务时间,—般有ρ =λ /(sμ ),这是衡量排队 系统繁忙程度的重要尺度,当ρ 趋近于0时,表 明对期望服务的数量来说,服务能力相对地说 是很大的。这时,等待时间一定很短,服务台 有大量的空闲时间;如服务强度ρ 趋近于1,那 么服务台空闲时间较少而顾客等待时间较多。 我们一般都假定平均服务率μ 大于平均到达率 λ ,即λ /μ <1,否则排队的人数会越来越多, 以后总是保持这个假设而不再声明。
Wq W 1 0.75h 0.75h 45min
(4)为使病人平均逗留时间不超过半 小时,那么平均服务时间应减少多少? 由于
1 1 W 2
代入λ =3,解得μ ≥5,平均服务时间 为:
1
1
5
h 12 min
15-12=3min 即平均服务时间至少应减少3min
例1 某医院急诊室同时只能诊治一个病人,诊
故服务强度为:
60 3人 / h, 人 / h 4人 / h 15
3 0.75 4
(2)计算稳态概率:
P0 1 1 0.75 0.25
这就是急诊室空闲的概率,也是病人不 必等待立即就能就诊的概率。 而病人需要等待的概率则为:
(5)若医院希望候诊的病人90% 以上都能有 座位,则候诊室至少应安置多少座位? 设应该安置χ 个座位,加上急诊室的一 个座位,共有χ +1个。要使90% 以上的候诊 病人有座位,相当于使“来诊的病人数不 多于χ +1个”的概率不少于90%,即
P( N x 1) 1 P( N x 1) 0.9
(3)混合制
3.服务台
数学建模 排队
(二)银行排队问题分析 银行排队问题作为排队系统, 其基本结构有四部分:输入过程 (顾客流量)、服务时间
(业务办理时间)、服务机构(服务窗口设置)和排队规则。 1. 顾客流量分析: 顾客流量是指单位时间内到银行办理业务的顾客数。顾客到达的方式通常是不 连续的,当然也有成批到达的,但总是有一定的规律。根据概率理论,顾客的到达 规律可以用概率来描述,即顾客的到达时间间隔符合一定的概率分布,通常假设为 相互独立且遵从同一概率分布的随机变量。在数学建模中常用的分布规律有:泊松 分布、爱尔朗分布、 等长分布。在排队系统中,泊松分布是应用最为广泛的,因为 服从泊松分布过程的到达被认为是随机到达,此时顾客在各个时刻到达的可能性相 同并与其它顾客的到达无关。 服从泊松分布要求满足 4 个条件为:平稳性、无后效性、普 通性、有限性。即: ①平稳性:在某一时间间隔内到达的顾客数概率只与这段时间的长度和顾客数有关; ②无后效性:不相交的时间区间内到达的顾客数是相互独立的; ③普通性:在同时间点上最多到达 1 个顾客,不存在同时到达 2 个以上顾客的情况; ④有限性:在有限的时间区间内只能到达有限位顾客,不可能有无限个顾客到达。 可见,在银行的排队问题中,顾客流量基本满足泊松分布条件的,因此,在建立 这个模型时,我们假设顾客到达服从泊松分布。 实践也证明了这种假设的有效性; 泊 松分布函数为:
业的主体,已成为我们现代生活关系最密切的服务系统,银行业运作的效率越来越 成为我 们百姓关注的焦点。但是,目前去银行办事,大家最头疼的是排队问题。而各家银行为减少 排队等候时间也是八仙过海、招数频出,甚至将顾客等候时间列入银行相关管理人员的责任 考核指标。尽管这样,银行的排队问题依然没有很好解决。实际上,银行的排队问题绝不是 看上去的那么简单,它蕴涵了丰富的数学、运筹学、行为学、管理学等学科的知识理论。通 常情况下,银行的排队问题的决定因素有顾客数量,服务水平和服务窗口数量等,服务水平 可通过银行内部管理实现,顾客多,要增加服务窗口以减少排队等候时间就,就要增加投入, 而增加窗口有可能出现空闲,又浪费资源。因此,解决银行排队问题就是要尽可能地找到一 个平衡点,使三者达到最佳的平衡状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排队模型之港口系统本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。
好。
关键词:问题提出:一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。
船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。
一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。
那么,每艘船只在港口的平均时间和最长时间是多少若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少卸货设备空闲时间的百分比是多少船只排队最长的长度是多少问题分析:|排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。
本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。
【1】M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,前//1面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。
蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。
该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。
(2)排队论研究的基本问题1.排队系统的统计推断:即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行研究。
2.系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。
3.最优化问题:即包括最优设计(静态优化),最优运营(动态优化)。
【3】 为了得到一些合理的答案,利用计算器或可编程计算器来模拟港口的活动。
假定相邻两艘船到达的时间间隔和每艘船只卸货的时间区间分布,加入两艘船到达的时间间隔可以是15到145之间的任何数,且这个区间内的任何整数等可能的出现。
再给出模拟这个系统的一般算法之间,考虑有5艘传至的假象情况。
对每艘船只有以下数据:因为船1在时钟于t=0分钟计时开始后20分钟到达,所以港口卸货设备在开始时空空闲了20分钟。
船1立即开始卸货,卸货用时55分,其间,船2在时钟开始计时后t=20+30=50分中到达。
在船1与t=20+55=75分钟卸货完毕之前,船2不能开始卸货,这意味着船2在卸货前必须等待75-50=25分钟。
在船2开始卸货之前,船2于t=50+15=65分钟到达,因为船2在t=75分钟开始卸货,并且卸货需45分钟,所以在船2与t=75+45=120分钟卸货完毕之前,船3不能开始卸货。
这样,船3必须等待120分钟。
¥船4在t=65+120=185分钟之前没有到达,因此船3已经在t=120+60=180分钟卸货完毕,港口卸货设备空闲185-180=5分钟,并且,船4到达后立即卸货。
最后,在船4于t=185+75=260分钟卸货完毕之前,船5在t=185+25=210到达,于是船5在开始卸货前等待260-210=50分钟。
相邻两艘船到达的时间间隔203015!12025卸货时间55456075 80模型建立:对于问题中存在的服务系统,建立排队论模型,在仅能为一艘船通过是一个标准的//1M G 模型:所谓//1M G 模型,就是输入过程为泊松流时,服务时间为任意的条件之下的,服务机器只有一个得时候。
对于//1M G 模型,服务时间T 的分布式一般的,(但是要求期望值()E T 和()Var T 方差都存在),其他条件和标准的//1M M 型相同。
为了达到稳态1ρ<还是必要的,其中有()E T ρλ=。
单服务员的排队模型设:(1) 船只到来间隔时间服从参数为的指数分布.(2) 对船只的服务时间服从[4,15]上的均匀分布. (3) 排队按先到先服务规则,队长无限制. 系统的假设:(1) 船只源是无穷的; (2) 排队的长度没有限制;|(3) 到达系统的船只按先后顺序依次进入服务, 即“先到先服务”。
符号说明w :总等待时间;c i :第i 个顾客的到达时刻;b i :第i 个顾客开始服务时刻;e i :第i 个顾客服务结束时刻;x i :第i-1个顾客与第i 个顾客之间到达的间隔时间;y i :对第i 个顾客的服务时间 c i =c i-1+ x i e i =b i +y i b i =max(c i ,e i-1)图9-2单服务台单队系统……船只到达进入队列<接受服务船只离去, ;~模拟框图(模型检验:表1 100艘船港口和系统的模拟结果上图为一艘船呆在港口的平均时间上图为一艘船呆在港口的最长时间一艘船的平均等待时间上图为一艘船的最长等待时间,上图为一艘船的最长等待时间以上就是对港口问题的具体分析,其实港口问题还可以从船只的排队角度出发,我们还可以对多个港口通行做相应的模拟试验,让船主尽量减少等待时间且港口卸货设备的利用率达到最高,从而是港口的主人获得更大的利润。
从排队角度来解决问题,可以使问题的广度增加,选秘书问题就是一个很典型的例子,可以从排队角度解决,如果用我在文章中应用的方法来解决也是可以的,这仅仅是一个港口的小问题,甚至可以说是一个非常简单的问题,但是已经让我感觉到了数学的美,在老师的引导下慢慢接近一种抽象的美,在写论文的这几天中,数据的整理和分析是最值得享受的时刻,在Excel里输入自己的数据,是一种忐忑的感觉,因为在那么多的数据面前,我真的不知道将会发生什么,拟合的过程就更是有意思了,一次一次的尝试,一次一次的比较,在这个过程中,如果有一点点的进步都会让我兴奋,数学建模在生活中处处存在,如果真的能够掌握这个本领,生活一定会变得简单而精彩!参考文献:(1)《运筹学》教材编写组编. 运筹学. 北京:清华大学出版社,2008(2)Jerry Banks,John ,Barry L Nelson 等著. 离散事件系统仿真.北京:机械工业出版社,2007《(3) <<排队论模型与蒙特卡罗仿真>>附录一编程如下:clearcs=100;for j=1:csw(j)=0;i=1;-x(i)=exprnd(10);c(i)=x(i);b(i)=x(i);while b(i)<=480y(i)=unifrnd(4,15);e(i)=b(i)+y(i);w(j)=w(j)+b(i)-c(i); i=i+1;,x(i)=exprnd(10); c(i)=c(i-1)+x(i); b(i)=max(c(i),e(i-1)); end i=i-1; t(j)=w(j)/i; m(j)=i; end$pt=0; pm=0; for j=1:cs pt=pt+t(j); pm=pm+m(j); end pt=pt/cs pm=pm/cs 附录二排队论中一个感兴趣的问题时,当输入过程是Possion 流时,顾客相继到达的间隔时间T 服从什么规律。
定理 设(){},0N t t ≥是具有参数λ的泊松过程,即(){}(){},0,1,2,,0,,1!nt n t P N t n e n t T n n λλ-===>≥是对应的时间间隔序列,则随机变量()0,1,2,,0nT n t =>是独立同分布的,且服从均值为1λ-的负指数分布,即()-tet 00 t 0f t λλ⎧≥⎪=⎨<⎪⎩ 。
证明 因为1T 是Possion 过程中第一个顾客到达的时间,所以时间{}1T t ≥等价于[)0,t 内没有顾客到达。
故{}(){}()0100!t t t P T t P N t e e λλλ--≥====,进而可得{}{}111t P T t P T t e λ-<=-≤=所以1T 是服从均值为1λ-的负指数分布。
1、利用Possion 过程的独立、平稳增量性质,得{}[){}[){}()()(){}()(){}(){}2112,, 000 t P T t T s P t t s T s P t t s Possion P N t s N s P N t N Possion e P T t λ-≥==+==+=+-==-===≥在内没有顾客到达在内没有顾客到达过程的独立性过程的平稳增量性质即{}{}2211tP Tt P T t e λ-<=-≥=-,故2T 也是服从均值为1λ-的负指数分布。
2、 对于任意的1n ≥和1,,0n t s s ≥有{}()(){}()(){}11221-111-1,,,000t n n n n n P T t T s T s T s P N t s s N s s P N t N e λ--≥====+++-++==-==即 {}tn1e P Tt λ-<=-,所以对任一()1nT n ≥,它都服从均值为1λ-的负指数分布。
证毕。