有理数与无理数课件-课件·PPT
有理数与无理数ppt
正 整 数 :10
整数:
0
负 整 数 : 3
分数:正分数:
负分数:
2.5, 5%, 0.618, 16 7
5.6, 3,3.14,6 4
1 4
像这样,整数和分数我们统称为有理数
所以,像刚才上面的数我们给它们一个名字, 它们都是有理数
正 整 数 :10
整
数
0
有
理 数
分
数
负
正
负
整 分 分
3.非负有理数不包括0;
4.0是最小的数
5.一个数如果不是正数,必定就是负数。
A.1 B.2 C.3 D.4
练习3:.把下列各数填入相应的集合内:
-7.33,-3,0,+16,1,
3 7
10.01,+108,-392 ,-0.618
分数集合 -7.33,3 ,10.01,-3 2 ,-0.618 …}
《数学》( 苏科版.七年级 上册 )
你能把下面的数分分类吗?
-5.6,-3,2.5, 3 ,0,-3.14,
5%,1 6
, 6 1
4 ,10,0.618
7
4
下面大家一起来试试:
第一步:
整数:-3,0,10
第分二数步::-0.5.661,8,-127 6.5,,
3 64 1
4
,-3.14,5%, ,
3 4
,
3 .1 4 ,
6
1 4
大家可以看到零既不是正数也不是负数,但它是整数!
练习1.下列说法正确的是( B)
A.整数就是正整数和负整数 B.分数包括正分数和负分数 C.正数和负数统称为有理数
D.3.14不是有理数
有理数与无理数
【有理数与无理数】无限不循环小数和开根开不尽的数叫无理数整数和分数统称为有理数数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。
分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作a/b,故又称作分数。
希腊文称为λογο?? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。
不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
《有理数》概念、定义集合1、大于0的数叫做正数(positive).2、小于0的数叫做负数(negative).3、可以写成分数形式的数叫做有理数(rational number).4、只有符号不同的两个数叫做互为相反数(opposite number).5、数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value).6、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.7、有理数减法法则:减去一个数,等于加上这个数的相反数.8、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0..9、乘积是1的两个数互为倒数.10、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.(两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0.)11、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).在an中,a叫做底数(base number),n叫做指数(exponent),当an看作a 的n次方的结果时,也可读作a的n次幂.12、有理数混合运算的运算顺序:(1)先乘方,再乘除,最后加减.(2)同级运算,从左到右进行.(3)如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行.13、把一个大于10的数表示成a×10n的形式(a是整数数位只有一位的数,n是正整数),使用的是科学计数法.有理数(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;p不是有理数;(2)有理数的分类: ① 整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a>0 a是正数;a<0 a是负数;a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .。
《认识无理数》课件
无理数的特征
无理数的小数部分是无限不循环的, 无法精确表示。
无理数是实数的一种,具有实数的所 有性质和运算规则。
无理数与有理数的区别
有理数是可以表示为 两个整数之比的数, 包括整数、分数和十 进制小数。
有理数和无理数在实 数域中是互斥的,即 它们不能相互转化。
无理数则无法表示为 分数形式,其小数部 分无限不循环。
古希腊数学家阿基米德首次使用圆内接多边形的方法近似计 算出圆周率的值。
根号2的发现
根号2是一个无限不循环小数,表示2的平方根。
古希腊数学家欧几里德在《几何原本》中首次证明了根号2的存在性,并对其进 行了近似计算。
03 无理数的应用
在几何学中的应用
勾股定理
无理数在几何学中最为著名的应 用是勾股定理,它说明了直角三 角形的两条直角边的平方和等于 斜边的平方,其中斜边长度是一
无理数在未来的发展前景
01
推动数学与其他学科的进一步融合
随着科学技术的不断发展,无理数将在更多领域发挥重要作用,推动数
学与其他学科的进一步融合。
02
深化实数理论的研究
随着数学的发展,实数理论的研究将不断深入,无理数作为实数理论的
基础之一,其研究也将得到进一步深化。
03
促进数学教育的发展
无理数是数学教育中的重要内容之一,随着教育的不断改革和完善,无
02 无理数的产生
无法精确表示的数
无法用分数精确表示的数
例如,0.333...虽然可以无限接近于1/3,但无法精确等于1/3。
无法用有限小数或循环小数精确表示的数
例如,0.1010010001...是一个无限不循环小数,无法用有限小数或循环小数来 表示。
圆周率π的发现
七上数学课件第2章:有理数与无理数-课件
10 10
9
15
1
3 1
456 1151
ሶ
ሶ
ሶ
ሶ
× 3. 5= ×(3+0. 5)= + × =
10
10 10
999
3330
想一想
4、小学里学过的有限小数和循环小数是有理数吗?
如:0.3,-3.11,0.333 …,0.2666.…
0.3=
-3.11=−
311
100
有限小数和循环小数都可以
负分数集合∶{
…};
-4.8、
整数集合∶{ 20、0、-13、-2020、…};
分数集合∶ {
…};
-4.8、
有理数集合∶ {
20、-4.8、0、-13、+ 、
86%、-2020. …};
解析:20是正整数,也是整数、有理数;-4.8是负分数,也是分数、有理数;0是
整数,也是有理数;-13,-2020
= . … … =1.2ሶ
=0.81818181…
−
27
11
9
, , 。
4
9
11
=0. 8ሶ 1ሶ
如果一个无限小数的各数位上的数字,从小数部
分的某一位起,按一定顺序不断重复出现,那么
这样的小数叫做无限循环小数,简称循环小数,
其中重复出现的一个或几个数字叫做它的一个循
环节,例如,0.666…的循环节是“6” ,它可以
典例展示厅
题型二、识别有理数、无理数
无理数
【典例2】⑴若一个边长为a的正方形的面积为8,则数a为___________(填“有理数”
或“无理数” );若一个边长为b的正方形的面积为 9,则数b为____________填“有理数”
《有理数的运算》课件
CHAPTER 04
有理数运算的应用
在日常生活中的应用
购物计算
在购物时,我们需要计算找零、 折扣等,有理数运算可以帮助我
们快速准确地完成这些计算。
金融计算
VS
详细描述
交换律是指加法或乘法中的数可以任意交 换位置而不改变结果,结合律则是指加法 或乘法中的数可以任意组合成组而不改变 结果。这些运算律在有理数的混合运算中 非常重要,可以帮助简化计算过程。
乘方和开方的定义及运算规则
总结词
乘方和开方是有理数混合运算中的重要概念 ,需要掌握其定义和运算规则。
详细描述
CHAPTER 03
有理数的混合运算
顺序与符号
总结词
运算顺序和符号的确定是有理数混合 运算中的重要环节。
详细描述
在进行有理数的混合运算时,应遵循 先乘除后加减的顺序,同时要特别注 意符号的处理。在运算过程中,应先 确定每个数的符号,再根据运算法则 进行计算。
运算的交换律和结合律
总结词
交换律和结合律是有理数混合运算中的 基本运算律。
有理数加法运算的基本法则
详细描述
同号数相加,取相同的符号,并把绝对值相加;异号数相加,取绝对值较大的数的符号,并用较大的绝对值减去 较小的绝对值;任何数与0相加,仍得这个数本身。
减法运算
总结词
有理数减法运算的基本法则
详细描述
有理数的减法运算可以转化为加法运算,即a-b=a+(-b)。
乘法运算
总结词
几何图形
在解决几何图形问题时, 有理数运算可以帮助我们 计算面积、周长等几何量 。
有理数与无理数
40
2.2.4实数集是不可数的
定理6
实数集是不可数的。 证明:1)构造法 2)区间套法 定理7 存在着无理的实数。
41
2.2.5代数数
a0 xn a1xn1 a2 xn2 ... an1x an 0
代数基本定理 n次方程(1)在复数域中有n 个根。 定义 一个实数或复数叫做代数数,如果它 是某一个整系数方程的根。 定义 任何不是代数数的实数叫做超越数。 定理8 代数数的集合是可数的。 定理9 存在超越数。
38
几个对等集的例子:
A
A B
B
A
B
39
2.2.3有理数集是可数的
定义
凡与集N对等的集A都叫做可数集, 或称集 A是可数的。 定理1 正有理数的集合是可数的。 定理2 一个有限集和一个可数集如无公共 元素,那么它们的和集是可数的。 定理3 两两不相交的有限个可数集的和集 是可数的。 系1 全体整数的集合是可数的。 系2 全体有理数的集合是可数的。 定理4 两两不相交的可数个有限集的和集 是可数的。 定理5 两两不相交的可数个可数集的和集
17
2.1.5有理数域 数学造型:从0和1出发,通过有理运算可以 造出全部有理数。 有理数域兊服了自然数系的缺陷,相对来说 是比较完美的:对四则运算是封闭的,而且 具有稠密性。 数域是抽象代数的一个基本概念,有理数域 只是数域的一种(最小的数域).
18
2.1.6第一次数学危机
一个正方形的对角线与其 一边的长度是不可公度的 「万物皆数」
书里的著名对话说明远在康托尔 的集合论创始之前,伽利略对 无限已经有了很好的理解。
36
2.2.1一段富有启发性的历史对话
江苏省无锡市长安中学2.2有理数与无理数(1)课件苏科版七年级数学上册)
试一试
把下列各数填入相应的集合中:
22 1 4,2005,3.14,0, ,5.23, ,95% 7 8
正整数集合
负分数集合
练习2:把下列各数填入相应的集合中:
2 2 1.23,2,15,0,3, ,20.02,100,2 ,0.516 7 3
正整数集合
负分数集合
练习3:把下列各数填入相应的集合中
下列各数: 1 22 -4,9,-3.14,0, 5.23, ,7 228 属于正数的有: 9 , 5.23 ,
7
属于负数的有: -4 , -3.14 , 属于整数的有: -4 ,
1 8
9,
0
22 1 属于分数的有: , - , -3.14 , 5.23 8 7
3 -7.33,-3,0,+16 ,1, 7 2 10.01,+108, -3 , -0.618
2.2
有理数与无理数
议一议
3 22 5 ,1021,7,0, 1.如果要将2, , 7 3 7 分成两类,你会怎样分?是这怎样的两类?
2.如果再增加 还能分成这样的两类吗?
0.53 ,0.3
两数 ,你
有理数 整数和分数统称______________ 。
{ 有理数 {_______ 分数 {________ 负分数
练习1: 把下列各数填入相应的集合内:
分数集合
整数集合
2 , 3 -0.618 10.01, -3 -7.33,7 , 9
-3, 0, +16, 1, +108 -3
2 , 9
9
…}
…}
负数集合 -7.33, -3,
正数集合
… } -0.618 3 … } +108 +16, 1, , 10.01,
《有理数与无理数》课件
有理数与无理数的联系
实数之间的关系
有理数和无理数共同构成了实数的集 合,即实数是有理数和无理数的统称 。
极限思想
在数学分析中,有理数可以通过极限 思想“逼近”无理数,即对于任意给 定的无理数,总存在一个有理数序列 ,该序列的极限等于该无理数。
有理数与无理数在实际中的应用
物理测量
在物理测量中,许多量如长度、 时间等都是以有理数的形式表示 的,但在某些精确计算中可能需
无理数的运算
加法运算
无理数的加法运算与有 理数的加法运算类似, 遵循交换律和结合律。
减法运算
无理数的减法可以通过 加法运算进行转化,例 如 a - b = a + (-b)。
乘法运算
无理数的乘法运算具有 封闭性,即两个无理数 的乘积仍然是无理数。
除法运算
无理数的除法运算可以 通过乘法运算进行转化
,例如 a / b = a * (1/b),其中 b ≠ 0。
习题的解答和解析
选择题:正确的是() 无理数都是无限小数(√)
有理数都是有限小数(×)
习题的解答和解析
无限小数都是无理数(×) 有限小数都是有理数(√) 填空题:答案见解析。
THANKS
感谢观看
05
CATALOGUE
习题与解答
有理数与无理数的相关习题
判断题
所有的无理数都是无限不循环小数。()
选择题
下列说法正确的是()
有理数与无理数的相关习题
无限小数都是无理数 有理数都是有限小数
有限小数都是有理数
有理数与无理数的相关习题
有理数
${3.14, - frac{22}{7}, 0, - sqrt[3]{8},frac{22}{7},pi}$
2.2 《有理数与无理数》课件 苏科版 (2)
是3.141 592 653 589…
无限不循环小数叫做无理数.
任务四:辨别有理数与无理数 无限不循环小数叫做无理数.
有理数
分数
整数
正整数 零
负整数
正分数 负分数
无理数 ——无限不循环小数
任务五:随堂反馈
将下列各数填入相应的括号内: 组卷网
分数有:{
无理数有{
1 9.3, , 0.33, 0.33, 6aa ,那来自 a 2 2 . a是有理数吗?
1.414213562373895124675431981367
组卷网
801679235401835541 … …
事实上, a 不能化为分数的形式,a是一个无限不循环
小数,它的值是1.414 213 562 373895124675431981
小学学过的圆周率π是无限不循环小数,它的值
有理数
分数
整数
正整数 零 负整数 正分数 负分数
有限小数和无限循环小数属于分数,所以属于有理 数。学.科.网
任务三:探索无理数
是不是所有的数都是有理数呢? 将两个边长为1的小正方形,沿图中红线剪开,重新拼成 一个大正方形,它的面积为2.
a
a
a
如果设它的边长为 a是整数吗? a是分数吗?
2.2有理数与无理数
学.科.网
任务一、回顾数的有关知识
根据所给的数回答问题. 1 +7,-9, ,-4.5,0,
1 - , -0.3333…, 2 3 问题1: 是正数 是负数 按照这样的标准我们可以把这些数分成几类? 问题2: 是整数
是分数
这时,我们又可以怎样分类呢?(独立完成) 正整数 正分数 分数 整数 零 负分数 负整数
《认识无理数》课件
这是一份关于无理数的PPT课件,将带你深入了解无理数的概念、定义、分类、 计算方法、数学中的应用等。
简介
无理数是数学中一个非常有趣的概念,这部分将介绍无理数的概念和背景, 并解释有理数和无理数之间的关系。
无理数的定义
无理数是数学术语,它有着特定的符号和数学定义。本部分将介绍无理数的 定义、特点和表现形式。
无理数的分类
无理数可以根据其性质和标准进行分类。我们将比较无理数和有理数之间的差异,并阐述它们分别在数学中的 应用。
无理数的计算
无理数的计算方法和规则是数学中的重要内容。我们将探讨无理数的基本计 算方法,并通过几个例题进行演示。
数学中的应用
无理数在数学中有广泛的应用。在这一部分,将展示无理数在数学中的应用, 并介了无理数的基本知识点,强调了无理数在数学中的 重要性和应用。
结束语
通过本次课程,希望你对无理数有了更深入的理解和认识。鼓励你在数学学习中勇于探索和发现更多的数学知 识。
北师大版八年级数学上册课件 第2章 第1节 认识无理数(共32张PPT)
算一算
1
x
x2 ?
2
问:x是整数(或分数)吗?
剪一剪
把两个边长为1的小正方形通过剪、 拼,设法得到一个大正方形,你会吗?
1 1
1 1
拼一拼
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/82021/9/8Wednesday, September 08, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/82021/9/82021/9/89/8/2021 11:00:52 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/82021/9/82021/9/8Sep-218-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/82021/9/82021/9/8Wednesday, September 08, 2021
(2)无限小数都是无理数; ( ╳ )
(3)无理数都是无限小数; ( √ )
(4)有理数是有限小数. ( ╳ )
强调
无理数是无限不循环小数, 有理数是有限小数或无限循环小数.
c 例3 以下各正方形的边长是无理数的是( )
A.面积为25的正方形;
B.面积为 4 的正方形; 25
C.面积为8的正方形;
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/82021/9/82021/9/82021/9/89/8/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月8日星期三2021/9/82021/9/82021/9/8 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/82021/9/82021/9/89/8/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/82021/9/8September 8, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/82021/9/82021/9/82021/9/8
有理数和无理数
有理数和无理数
有理数和无理数分别指的是:
1、有理数:
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
整数也可看做是分母为一的分数。
不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
2、无理数:
无理数,也称为无限不循环小数,不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
有理数和无理是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
有理数的加法运算:
1、同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两数相加得0。
4、一个数同0相加仍得这个数。
5、互为相反数的两个数,可以先相加。
6、符号相同的数可以先相加。
7、分母相同的数可以先相加。
8、几个数相加能得整数的可以先相加。
《有理数概念》课件
制动气集成
yre 初步 the main icherust"病理掏出 巫IO簌的确簌
03
簌人之哗跺的确�巫尽了 frozen的确气鲜 st,
01
bbbb一问既往反向
02
R切实
巫的确 st,一度" ,/迩,"巫的确, states叨,I/斯特,叨淹 st, navbar/以致 组成部分
01
02
判断题答案解析
所有的负数都小于0,这是正确的。因为负数是小于0的数,而0本身也是有理数。
选择题答案解析
选项B. π 不是有理数,因为π是一个无限不循环小数,无法表示为两个整数的比值。其他选项都是有理数。
填空题答案解析
在数轴上表示-3/2的位置,它位于表示-2的点的左侧。因为-3/2小于-2。
THANKS
定义
有理数只包括有限小数和无限循环小数,而实数包括有理数、无限不循环小数(无理数)。
范围
有理数可以用分数或小数表示,而实数可以用无限不循环小数表示。
表现形式
运算性质
有理数和实数的四则运算(加、减、乘、除)规则基本一致,但实数的运算更为复杂。
包含关系
有理数是实数的子集,所有有理数都是实数,但并非所有实数都是有理数。
03
02
01
有理数集合是所有可以表示为两个整数之比的数集合,包括整数和分数。
定义
ቤተ መጻሕፍቲ ባይዱ有理数集合是有序的,可以按照大小进行排列。有理数集合具有稠密性,即任意两个不同的有理数之间都存在其他有理数。
特性
有理数在日常生活和科学研究中具有广泛应用,如测量、计算和建模等。
应用
02
有理数的性质
总结词
同号相加、异号相减
初一数学有理数与无理数
有理数与无理数1.有理数我们把能够写成分数形式n m (m 、n 是整数,n ≠0)的数叫做有理数.2.无理数无限不循环小数叫无理数,例如π.3.有理数的分类()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数常见题型:区分有理数和无理数;有理数与无理数分类.易错点:1.正数和零统称为非负数;2.负数和零统称为非正数;3.正整数和零统称为非负整数;4.负整数和零统称为非正整数.中考回顾:基础知识,是运算的基础.例1在+2017,﹣3.2,0,227-,π,0.010010001…,﹣49这七个数中,有理数的个数为()A .4B .5C .6D .7例2按要求选择下列各数:3,π,0, 3.5-,13,0.03-,0.26+,1-,132,94-,1,7-,2.4.(1)属于整数的有________________________________________________(2)属于分数的有________________________________________________(3)属于非正数的有______________________________________________(4)属于非负数的有______________________________________________(5)属于非负整数的有____________________________________________(6)属于有理数的有______________________________________________参考答案1.【答案】B【考点】有理数的概念【解析】在+2017,﹣3.2,0,227-,π,0.010010001…,﹣49这七个数中,有理数有+2017,﹣3.2,0,227-,﹣49,有理数的个数为5;其中0.010010001…只是小数部分有规律并不是循环小数,是无限不循环小数,即无理数.2.【答案】(1)属于整数的有3、0、1-、1、7-(2)属于分数的有 3.5-、13、0.03-、0.26+、132、94-、2.4(3)属于非正数的有0、0.03-、1-、94-、7-(4)属于非负数的有3、π、0、13、0.26+、132、1、2.4(5)属于非负整数的有1-、7-(6)属于有理数的有3、0、 3.5-、13、0.03-、0.26+、1-、132、94-、1、7-、2.4【考点】有理数的分类【解析】主要是其中的非正数包括0和负数,非负数包括0和正数,非负整数包括0和正整数.。