八上数学幂的运算基础练习题

合集下载

年秋八年级数学上册第十四章整式的乘法与因式分解小专题五运用幂的运算法则巧解计算题试题新版新人教版

年秋八年级数学上册第十四章整式的乘法与因式分解小专题五运用幂的运算法则巧解计算题试题新版新人教版

小专题(五)运用幂的运算法那么巧解计算题同底数幂的乘法、幂的乘方与积的乘方、同底数幂的除法等幂的运算性质是学习整式乘法的根底,也是进行整式运算的主要依据.类型1运用幂的运算性质求代数式的值1.10a=5,10b=6,(1)求102a+103b的值;(2)求102a+3b的值;(3)求102a-3b的值.解:当10a=5,10b=6时,(1)102a+103b=(10a)2+(10b)3=52+63=241.(2)102a+3b=102a×103b=(10a)2×(10b)3=52×63=5400.(3)102a-3b=102a÷103b=(10a)2÷(10b)3=52÷63=.2.a m=3,a n=4,求a3m÷a m+n的值.解:a3m÷a m+n=a2m-n=a2m÷a n=(a m)2÷a n=32÷4=.3.2x+5y-3=0,求4x·32y的值.解:∵2x+5y-3=0,∴2x+5y=3.∴4x·32y=22x·25y=22x+5y=23=8.4.假设x2·x a+2·x2a=x31,那么(a3+a2)-(a3+2a-1)的值是多少?解:因为x2·x a+2·x2a=x2+a+2+2a=x3a+4=x31,所以3a+4=31,a=9.所以(a3+a2)-(a3+2a-1)=a2-2a+1=64.5.3x+2·5x+2=153x-4,求(x-1)2-3x(x-2)-4的值.解:∵3x+2·5x+2=15x+2=153x-4,∴x+2=3x-4,解得x=3,∴(x-1)2-3x(x-2)-4=-2x2+4x-3=-9.类型2运用幂的运算性质探究数量之间的关系6.2x=3,2y=4,2z=12那么x,y,z之间有何数量关系?解:因为2x·2y=2x+y=3×4=12,2z=12,所以2x+y=2z,x+y=z.7.a m=4,a n=2,a p=16,试说明:3m+2n=2p.解:∵(a m)3· (a n)2=43·22=28,(a p)2=162=28,∴(a m)3·(a n)2=(a p)2,又∵(a m)3·(a n)2=a3m+2n,(a p)2=a2p,∴3m+2n=2p.类型3运用幂的运算性质判断末位数字8.21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,观察上述算式的规律,试判断8667的个位数字是几?解:从题中可以看出,指数每连续4个数后,运算结果的末位数就会出现循环,分别是2,4,8,6.所以8667=(23)667=22022=24×500+1,所以它的末位数字为2.9.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,…,归纳各计算结果中的个位数字规律,猜想22022-1的个位数字是多少?解:∵21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,27-1=127,28-1=255,…∴由此可以猜想个位数字以4为周期按照1,3,7,5的顺序进行循环,而2022÷4=504……2,∴猜想22022-1的个位数字是3.类型4运用幂的运算性质比拟大小10.比拟2555,3444,4333的大小.解:因为2555=(25)111=32111,3444=(34)111=81111,4333=(43)111=64111,而81>64>32,所以3444>4333>2555.。

八年级数学同底数幂的乘法测试题

八年级数学同底数幂的乘法测试题

13.1.1 同底数幂的乘法教学目标:1.熟练运用同底数幂的乘法运算法则。

◆随堂检测1、判断1)x5·x5=2x5 ( )2)x13+x13=x26 ( )3)m·m3=m3 ( )4)x3(-x)4=-x7 ( )2、填空:1)54m m =2)n n y y y --∙∙533=3)()()32a a --=4)()()22x x --=3、计算:1)103×1042)(-2)2·(-2) 3·(-2)3)a·a 3·a 54)(a+b)(a+b)m (a+b)n5) a 4n a n+3a6)-a 2·a 37) (-a )2·a 3(8) ()()5222x y y x -∙-1.若 3m =5, 3n =7, 求3m+n+1的值分析:本题的切入点是同底数幂的乘法性质的逆用:a m+n =a m ·a n (m,n 为正整数)。

运用此法则,可以把一个幂分解成两个(或两个以上)同底数幂的积。

其中,拆分所得的(两个或两个以上)同底数幂的底数与原来幂的底数相同,指数之和等于原来幂的指数。

解:∵3m =5, 3n =7,∴3m+n+1=3m ·3n ·3=5×7×3=1051)()()()[]m n py x x y y x 32--∙-∙-= 2)已知2x+2=m,用含m 的代数式表示2x = _____(1)下列计算中 ①b 5+b 5=2b 5 ②b 5·b 5=b 10③y 3·y 4=y 12④m·m 3=m 4 ⑤m 3·m 4=2m 7其中正确的个数有( )A 1个B 2个C 3个D 4个(2)x 3m+2不等于( )A x 3m ·x 2B x m ·x2m+2 C x 3m +2 D x m+2·x 2m3、解答题:(1)5,35==+++b a c b a x x ,求c x 的值. (2)若,14x x x x n m =∙∙求m+n.(3)若61a aa n m n =∙++,且m-2n=1,求n m 的值. (4)计算:4353x x x x x ∙∙+∙.1.(2009年重庆市江津区)下列计算错误的是( ) A .2m+3n=5mnB .426a a a =÷C.632)(x x =D.32a a a =⋅ 2.下列计算中,结果正确的是( )A .236a a a =· B .()()26a a a =·3 C .()326a a = D .623a a a ÷=参考答案:随堂检测1、判断:本题考查同底数幂的乘法法则及合并同类项(1)×(2)×(3)×(4)×2、填空: (1)m 9 (2)y 5 (3)本题要注意符号错误 -a 5(4)注意符号 -x 43、计算:(1)107 (2)26 (3)a 9 ( 4)(a+b)m+n+1 (5)a5n+4 (6) -a 5 (7) a 5 (8)(2y-x)7 拓展提高1、填空;(1)()()()[]m n p y x x y y x 32--∙-∙-=-(x-y )p ·(x-y )2n ·(x-y )3m =-(x-y)p+2n+3m (2)2x+2=2x ·22=m,∴2x=4m2、选择:(1)A 本题考查同底数幂的乘法性质的运用(2)C 由同底数幂的乘法性质可知A、B、D运算结果均为x3m+2,故选 C 3、解答题(1) ∵x a+b+c=x a+b·x c=35,x a+b=5,∴cx=7(2) 由,14x x x x n m=∙∙得x1+m+n=x14,∴1+m+n=14,∴m+n=13 (3)∵a n+1·a m+n=a6∴n+1+m+n=6,即m+2n=5 ,又∵m-2n=1,∴m=3,n=1,∴m n =3(4) 4353x x x x x ∙∙+∙=x 8+x 8=2x8体验中考 1、幂的运算【答案】A2、解析:本题考查整式的有关运算,235a a a = ,选项A 是错的,()()226a a a =·3,选项B 是错的,()326a a =,选项C 是正确的,故选C。

八年级上幂的运算性质基础系列训练

八年级上幂的运算性质基础系列训练

“幂的运算性质”试题(一)同底数幂的乘法一、基础训练1、同底数幂相乘,底数_______,指数______; 用公式表示a m·a n=______(m ,n 都是正整数).2、a 3·a 2=a 3+2=______; 3、a 2·( )=a 7;4、(-b )2·(-b )4=(-b )2+4=_______. 5、a 16可以写成( )A .a 8+a 8B .a 8·a 2C .a 8·a 8D .a 4·a 46、下列计算正确的是( )A .b 4·b 2=b 8B .x 3+x 2=x 6C .a 4+a 2=a 6D .m 3·m=m 47、计算(-a )3·(-a )2的结果是( )A .a 6B .-a 6C .a 5D .-a 58、计算:(1)m 3·m 4·m ·m 7; (2)(xy )2·(xy )8·(xy )18;(3)(-a )2·(-a )4·(-a )6; (4)(m+n )5·(n+m )8;9、一种电子计算机每秒可进行1015次运算,它工作107秒可进行多少次运算?二、能力提升1、下面的计算错误的是( )A .x 4·x 3=x 7B .(-c )3·(-c )5=c 8C .2×210=211D .a 5·a 5=2a 102、x2m+2可写成( )A .2x m+2Bx 2m +x2C .x 2·xm+1D .x 2m ·x 23、若x ,y 为正整数,且2x ·2y =25,则x ,y 的值有( ) A .4对 B .3对 C .2对 D .1对 4、若a m=3,a n=4,则a m+n=( )A .7B .12C .43D .345、若102·10n=102010,则n=_______.6、计算(1)(m -n )·(n -m )3·(n -m )4(2)(x -y )3·(x -y )·(y -x )2(3)x ·x 2+x 2·x7、已知:3x=2,求3x+2的值. 8、已知x m+n·x m -n =x 9,求m 的值.9、若52x+1=125,求(x -2)2011+x的值. 10、35,335,311,377,a a b c d b c d+====+=已知求证:(二)幂的乘方一、基础训练1、幂的乘方,底数_______,指数________.(a m)n= ______________(其中m、n都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a3)2=______;(4)(-x2)3=_______。

幂的运算实数练习题

幂的运算实数练习题

幂的运算实数练习题一、基础题1. 计算:\(2^3\)2. 计算:\((3)^2\)3. 计算:\(\left(\frac{1}{2}\right)^4\)4. 计算:\((2)^5\)5. 计算:\(\left(\frac{3}{4}\right)^3\)二、混合运算题6. 计算:\(2^3 \times 3^2\)7. 计算:\(\frac{4^3}{2^2}\)8. 计算:\((5^2)^3\)9. 计算:\(\left(\frac{2}{3}\right)^2 \times \left(\frac{3}{4}\right)^2\)10. 计算:\(\left(\frac{5}{6}\right)^3 \div \left(\frac{2}{3}\right)^2\)三、指数比较题11. 比较:\(3^4\) 和 \(4^3\)12. 比较:\((2)^5\) 和 \((3)^4\)13. 比较:\(\left(\frac{3}{4}\right)^2\) 和\(\left(\frac{4}{5}\right)^2\)14. 比较:\(\left(\frac{2}{3}\right)^3\) 和\(\left(\frac{3}{4}\right)^3\)15. 比较:\(2^6\) 和 \(3^4\)四、应用题16. 一个正方形的边长为2,求其面积。

17. 一个数的平方是64,求这个数。

18. 一个数的立方是216,求这个数。

19. 如果一个数的平方根是4,求这个数的平方。

20. 如果一个数的立方根是3,求这个数的立方。

五、拓展题21. 计算:\(2^3 + 3^2 4^2\)22. 计算:\(\left(\frac{1}{2}\right)^5 \times\left(\frac{2}{3}\right)^4\)23. 计算:\(\left(\frac{3}{4}\right)^2 \div\left(\frac{4}{5}\right)^2\)24. 计算:\(\left(2^3\right)^2 \times \left(3^2\right)^3\)25. 计算:\(\sqrt[3]{64} \times \sqrt[4]{81}\)六、根式运算题26. 计算:\(\sqrt{49}\)27. 计算:\(\sqrt[3]{27}\)28. 计算:\(\sqrt{64} + \sqrt{25}\)29. 计算:\(\sqrt[4]{16} \times \sqrt[3]{8}\)30. 计算:\(\sqrt{121} \sqrt{81}\)七、分数指数幂题31. 计算:\(4^{\frac{1}{2}}\)32. 计算:\(9^{\frac{3}{2}}\)33. 计算:\(\left(\frac{1}{16}\right)^{\frac{1}{4}}\)34. 计算:\(\left(\frac{1}{25}\right)^{\frac{2}{3}}\)35. 计算:\(32^{\frac{1}{5}}\)八、指数方程题36. 解方程:\(2^x = 32\)37. 解方程:\(3^{x+1} = 27\)38. 解方程:\(\left(\frac{1}{2}\right)^x = 8\)39. 解方程:\(5^{2x1} = 25\)40. 解方程:\(4^{x+2} = \frac{1}{16}\)九、指数不等式题41. 解不等式:\(2^x > 16\)42. 解不等式:\(3^{x1} < 27\)43. 解不等式:\(\left(\frac{1}{3}\right)^x \geq 9\)44. 解不等式:\(5^{2x3} \leq 125\)45. 解不等式:\(4^{x+1} > \frac{1}{64}\)十、综合题46. 已知\(a^2 = 36\),\(b^3 = 64\),计算\(a^3 + b^2\)。

部编数学八年级上册专题07幂的运算与整式的乘法之七大题型(解析版)含答案

部编数学八年级上册专题07幂的运算与整式的乘法之七大题型(解析版)含答案

专题07 幂的运算与整式的乘法之七大题型判断幂的运算、整式运算正确例题:(2023上·福建厦门·八年级校考期末)下列运算结果正确的是( )A .326a a a ×=B .()32628a a =C .()211a a a +=+D .()32a a a a+¸=【答案】B【分析】根据同底数幂乘法、积的乘方、幂的乘方以及整式的乘除运算法则进行判断即可.【详解】解:A 、33522a a a a +×==,故此选项计算错误,不符合题意;B 、()32628a a =,故此选项计算正确,符合题意;C 、()21a a a a +=+,故此选项计算错误,不符合题意;D 、()321a a a a +¸=+,故此选项计算错误,不符合题意;故选:B .【点睛】本题考查了幂的相关运算以及整式的乘除运算法则,熟练掌握相关运算法则是解本题的关键.【变式训练】1.(2023下·四川达州·七年级校考期末)下列计算正确的是( )A .5552x x x ×= B .325a a a +=C .2383()a b a b =D .4222()()bc bc b c -¸-=【答案】D【分析】分别运用同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算即可.【详解】解:A 、5510x x x ×=,所以此选项错误;幂的运算【点睛】本题主要考查了积的乘方,解题的关键是熟练掌握积的乘方运算法则,准确计算.【变式训练】整式的四则混合运算【变式训练】【变式训练】多项式乘多项式【变式训练】1.(2023下·广东揭阳·七年级统考期末)先化简再求值:()()()()222213123x x x x x x -++---,其中3x =.【答案】3238133,45x x x -+-,【分析】根据单项式乘多项式,多项式乘多项式法则运算,再合并同类项,最后代入求值即可.【详解】解:()22(2)21(31)(23)x x x x x x -++---()32322226923x x x x x x x =-++---+32322226923x x x x x x x =-++-++-3238133x x x =-+-,当3x =时,原式3233831333=´-´+´-32789393=´-´+-45=.多项式乘多项式与图形面积【答案】2252a ab b --平方米,【分析】长方形的面积等于:方形面积﹣中间部分面积,化简出结果后,把【详解】解:(3S a =阴影2252a ab b --=(平方米),当6a =,4b =时,原式53664216=´-´-´1802432=--124=(平方米).【点睛】本题主要考查多项式乘多项式,解答的关键是对相应的运算法则的掌握.【变式训练】1.(2023上·江西上饶·八年级校联考期末)如图,某小区有一块长为()23a b +米,宽为()2a b -米的长方形地块,管理部门规划了4块边长均为b 米的正方形空地用于栽种梅、兰、竹、菊,剩余地块将铺设草坪.(1)用含a ,b 的代数式表示铺设的草坪的面积.(结果化为最简形式)(2)若105a b ==,,预计每平方米铺设草坪的费用为30元,请预计铺设草坪所需要的费用.【答案】(1)()22447a ab b +-平方米(2)12750元【分析】(1)用长方形面积减去4个正方形面积即可得到答案;(2)根据(1)所求代入105a b ==,求出草坪的面积,进而求出对应的费用即可.【详解】(1)解:()()22324a b a b b +--22246234a ab ab b b =+---()22447a ab b =+-平方米,∴铺设的草坪的面积为()22445a ab b +-平方米;(2)解:当105a b ==,时,2222445410410575425a ab b +-=´+´´-´=平方米,∴铺设草坪所需要的费用为4253012750´=元.【点睛】本题主要考查了多项式乘法在几何图形中的应用,代数式求值,熟练掌握多项式乘以多项式的计算法则是解题的关键.2.(2023下·陕西榆林·七年级统考期末)如图,在某高铁站广场前有一块长为2a b +,宽为a b +的长方形空地,计划在中间留两个长方形喷泉池(图中阴影部分),两个长方形喷泉池及周边留有宽度为b 的人行通道.(1)求该长方形空地的面积;(用代数式表示)(2)求这两个长方形喷泉池的总面积;(用代数式表示)(3)当200a =,100b =时,求这两个长方形喷泉池的总面积.【答案】(1)2223a ab b ++;(2)22242a ab b -+;(3)20000.【分析】(1)根据长方形的面积列式并计算即可;(2)根据“长为2a b +,宽为a b +的长方形空地,两个长方形喷泉池及周边留有宽度为b 的人行通道”列式计算即可;(3)把200a =,100b =代入(2)中得到结果计算即可.【详解】(1)解:()()22223a b a b a ab b ++=++,答:该长方形空地的面积为2223a ab b ++.(2)()()223a b b a b b +-+-()()22a b a b =--22242a ab b =-+.答:这两个长方形喷泉池的总面积为22242a ab b -+.(3)当200a =,100b =时,这两个长方形喷泉池的总面积为222202220042001002041020002a ab b =´-´´+´-+=.即这两个长方形喷泉池的总面积为20000.【点睛】此题考查了列代数式、多项式乘法的应用、代数式的值等知识,根据题意正确列出代数式是解题的关键.多项式乘积中的规律性问题例题:(2023上·重庆永川·八年级统考期末)根据多项式乘法法则可得:()2222a b a ab b +=++;【答案】10【分析】根据“杨辉三角形”,计算出()5a b +,即可确定字母部分为【详解】解:根据“杨辉三角形”,可知()55a a b =+∴字母部分为32a b 的项的系数为10,【变式训练】1.(2023下·甘肃酒泉·七年级统考期末)观察下列各式()()2111x x x -+=-()()23111x x x x -++=-()()324111x x x x x -+++=-……(1)根据以上规律,则()()6543211x x x x x x x -++++++=______(2)若()1511x M x -×=-,则M =______(3)能否由此归纳出一般性规律:()()111n n x x x x --++++=L ______(4)由(3)直接写出结果:()()54322343a b a a b a b a b ab b -+++++=______(5)根据(3)求:3534222221+++++L 的结果.【答案】(1)71x -(2)()1413121x x x x +++++L(3)11n x +-(4)66a b -(5)3621-【分析】(1)根据题目中给出的式子总结规律,得出答案即可;(2)根据题目中给出的规律得出()()14131213111x x x x x x -+++++=-L ,即可得出答案;(3)根据规律得出结果即可;(4)由()()11a b a b -=---,根据题目中给出的规律得出结果即可;(4)用题目中提供的规律进行计算即可.【详解】(1)解:根据以上规律,可得()()654327111x x x x x x x x -++++++=-,故答案为:71x -;(2)解:根据以上规律,可得:若()1511x M x -×=-,则()1413121M x x x x =+++++L ,故答案为:()1413121x x x x +++++L ;(3)解:由所给算式可得规律为:()()11111n n n x x x x x -+-++++=-L ,故答案为:11n x +-;(4)解:∵()()11a b a b -=---,∴原式()()()5432234511a a b a b a a b b ab b =--++++-ëû+éù()()()()543223455432234511a a b a b a b ab b a a b a b a b b a b a b +++++-++++-+=-()()6611a b =---66a b =-;故答案为:66a b -;(5)解:根据以上规律可得:2343512222+++++L ()()353422122221=-+++++L 3621=-.【点睛】本题主要考查了规律探究,解题的关键是根据题干得出一般规律()()11111n n n x x x x x -+-++++=-L .一、单选题②()()23111x x x x -++=-;③()()324111x x x x x -+++=-;……【归纳】由此可得:()()121111n n n n x x x x x x --+-+++++=-L ;【应用】请运用上面的结论,计算:2023202220212222221++++++=K ( )A .202321-B .202421-C .20242D .202521-【答案】B【分析】根据所给规律求解即可.【详解】解:∵()()121111n n n n x x x x x x --+-+++++=-L ,∴()()202320222021220242122222121-×++++++=-K ,∴2023202220212202422222121++++++=-K .故选:B .【点睛】本题考查了多形式与多项式的乘法的规律问题,灵活运用规律求解是解答本题的关键.二、填空题【答案】5a b =/5b a=【分析】设左上角阴影部分的长为示阴影部分面积之差,可得x 变化,【详解】设左上角阴影部分的长为则右下角阴影部分的长为x a +三、解答题11.(2023下·江苏扬州·七年级统考期末)计算:(1)()()3642a a a a -×+×-(2)()()3x y x y -+【答案】(1)77a -(2)2223x xy y --【分析】(1)先计算积的乘方,再计算单项式乘单项式,最后合并同类项即可;(2)利用多项式乘多项式法则计算.【详解】(1)解:()()3642a a a a -×+×-()3468a a a a =-×+×778a a =-+77a =-;(2)解:()()3x y x y -+ 2233x xy xy y =+--2223x xy y =--.【点睛】本题考查积的乘方、单项式乘单项式、多项式乘多项式等知识点,解题的关键是熟练掌握各项运算法则并正确计算.12.(2023下·山西晋中·七年级统考期末)计算:(1)()322324a b ab a ׸(2)()()253x x +-.【答案】(1)422a b (2)2215x x --【分析】(1)先算幂的乘方和积的乘方,再计算单项式的乘除法;∵化简后不含2x 项和常数项,∴20a -=且120b -=,解得:212a b ==,.【点睛】本题考查了整式的混合运算一化简求值,绝对值和偶次方的非负性,平方差公式,准确熟练地进行计算是解题的关键.14.(2023下·山东烟台·六年级统考期末)已知()()43229323316A x x x x B x x =¸=-+--,.(1)求A 和B ;(2)若y 满足y B A -=,请用含x 的代数式表示y ;(3)在(2)的条件下,当10y =时,求()2225416x x y +--的值.【答案】(1)22932936A x xB x x =--=+-,(2)2188y x =-(3)25【分析】(1)利用多项式除以单项式法则得到A ,利用单项式乘以多项式法则即可得到B ;(2)把(1)中求得的A 和B 代入y A B =+即可得到答案;(3)把10y =代入(2)中关系式得218810x -=求得21x =,再整体代入即可得到答案.【详解】(1)解:()43222932932A x x x x x x =¸=----,,()23316936B x x x x =+-=+-;(2)由y B A -=,得到222932936188y A B x x x x x =+=--++-=-;(3)把10y =代入(2)中关系式得218810x -=,解得21x =.原式()2514110165361625=´+´--=+-=.【点睛】此题考查了整式的乘法和除法,代数式的求值,熟练掌握多项式除以单项式法则、单项式乘以多项式法则、整体代入是解题的关键.15.(2023下·辽宁沈阳·七年级统考期末)甲、乙两个长方形,其边长如图所示(0m >),其面积分别为1S ,2S .(1)用含m 的代数式表示:1S =______,2S =______;(结果化为最简形式)(2)用“<”、“>”或“=”填空:1S ______2S ;(3)若一个正方形的周长等于甲、乙两个长方形的周长之和,设该正方形的面积为3S ,试探究:3S 与()122S S +的差是否为定值?若为定值,请求出该值;如果不是,请说明理由.【答案】(1)265m m ++,268m m ++;(2)<(3)是,10【分析】(1)利用长方形的面积公式进行求解即可;(2)利用求差法可比较两个式子大小;(3)先求出正方形的边长,得到大正方形面积,再结合(1)列出相应的式子,进行运算即可.【详解】(1)解:()()215165S m m m m =++=++;()()224268S m m m m =++=++;(2)∵2212(65)(68)30S S m m m m -=++-++=-<,∴12S S <故答案为:<;(3)解:大正方形的边长为:2(1524)426m m m m m +++++++¸=+,大正方形面积为:223(26)42436S m m m =+=++,()222122 2(6568)42426S S m m m m m m +=+++++=++,()223122(42436)(42426)10S S S m m m m -+=++-++=.答:3S 与()122S S +的差为定值,值为10.【点睛】本题考查了多项式乘多项式,整式的加减,长方形和正方形的面积,熟练掌握运算法则是解题的关键.16.(2023下·黑龙江哈尔滨·六年级统考期末)阅读材料:我们知道,()424213x x x x x -+=-+=,类似地,我们把()a b +看成一个整体,则()()()()()()424213a b a b a b a b a b +-+++=-++=+.“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用整体思想解决下列问题:(1)把()2a b -看成一个整体,合并()()()222265a b a b a b ---+-;(2)已知222x y -=-,求261215x y --的值;(3)已知21a b -=-,25b c -=,10c d -=-,求()()()22a c b d b c -+---的值.【答案】(1)()2a b -(2)27-(3)6-【分析】(1)把()2a b -提出了进行计算即可得;(2)()22612156215x y x y --=--,把222x y -=-代入进行计算即可得;(3)()()()()()()2222a c b d b c a b b c c d -+---=-+-+-,把21a b -=-,25b c -=,10c d -=-代入进行计算即可得.【详解】(1)解:()()()()()()22222265265a b a b a b a b a b ---+-=-+-=-.(2)解:()22612156215x y x y --=--,把222x y -=-代入得,原式()621527=´--=-.(3)解:()()()()()()222222a c b d b c a c b d b c a b b c c d -+---=-+--+=-+-+-把21a b -=-,25b c -=,10c d -=-代入得,原式()15106=-++-=-.【点睛】本题考查了多项式的变形和整体代入的思想,解题的关键是理解题意,掌握这些知识点.。

幂的运算与新定义问题大题培优专练-八年级数学上学期复习备考高分秘籍【人教版】(原卷版)

幂的运算与新定义问题大题培优专练-八年级数学上学期复习备考高分秘籍【人教版】(原卷版)

2023-2024学年八年级数学上学期复习备考高分秘籍【人教版】专题2.10幂的运算与新定义问题大题培优专练班级:_____________ 姓名:_____________ 得分:_____________一.解答题(共30小题)1.(2023秋•西城区校级期中)如果a c=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.2.(2023秋•西城区校级期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.令(2,6)=x,(2,7)=y,(2,42)=z,求证:(2,6)+(2,7)=(2,42).3.(2023秋•南岗区校级期中)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,则(a,b)=c.我们叫(a,b)为“雅对”.例如:因为23=8,所以(2,8)=3.我们还可以利用“雅对”定义说明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5,故3m⋅3n=3m+n=3×5=15,则(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=;(5,1)=;(3,27)=.(2)计算(5,2)+(5,7)=,并说明理由.(3)利用“雅对”定义证明:(2n,3n)=(2,3),对于任意自然数n都成立.4.(2023秋•叙州区校级月考)对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=loga M+log a N.(1)解方程:log x4=2.(2)log28=.(3)计算:lg 2+1g 5﹣2021.5.(2023春•茂名期末)阅读下列材料:若a ,b 两数满足a x =b ,则称x 为b 的“对数”,记作(a ,b )=x ,如42=16,所以(4,16)=2. 请根据以上规定,回答下列问题:(1)根据上述规定要求,请完成填空:(3,27)= ,(﹣2,16)= ,(−23, )=3.(2)计算(3,2)+(3,4)=( , ),并写出计算过程;(3)直接写出结果:①(5,10)﹣(5,2)= ;②(10,4)×(2,10)= .6.(2023春•江南区校级期中)我们知道,同底数幂的乘法法则为a m •a n =a m +n (其中a ≠0,m 、n 为正整数),类似地,我们规定关于任意正整数m 、n 的一种新运算:f (m )•f (n )=f (m +n )(其中m 、n 为正整数).例如,若f (3)=2,则f (6)=f (3+3)=f (3)•f (3)=2×2=4.f (9)=f (3+3+3)=f (3)•f (3)•f (3)=2×2×2=8.(1)若f (2)=5,①填空:f (6)= ;②当f (2n )=25,求n 的值;(2)若f (a )=3,化简:f (a )•f (2a )•f (3a )•…•f (10a ).7.(2023春•仪征市期末)阅读材料,完成问题.如果a c =b ,则(a ,b )=c .例如:32=9,则(3,9)=2.(1)填空:(4,64)= ,(﹣2,1)= ,(−3,−127)= ; (2)试说明(5,3)+(5,7)=(5,21).8.(2023春•泰兴市校级月考)规定两正数a ,b 之间的一种运算记作L (a ,b ),如果a c =b ,那么L (a ,b )=c .例如:因为32=9,所以L (3,9)=2.小明在研究这种运算时发现一个结论:L (a ,m n )=L (a ,m )﹣L (a ,n ). 小明给出了如下的证明:设L (a ,m )=x ,L (a ,n )=y ,由规定,得a x =m ,a y =n ,∴m n =a x ÷a y =a(x ﹣y ), ∴L (a ,m n)=x ﹣y , ∴L (a ,m n )=L (a ,m )﹣L (a ,n ).请你解决下列问题:(1)填空:L (2,16)= ,L ( ,36)=﹣2;(2)证明:L (3,5)+L (3,8)=L (3,40);(3)如果正数a 、m 、n ,满足L (a ,m )=x ﹣2,L (a ,n )=3x ﹣6,L (a ,mn )=2x +2,求x .9.(2023春•万秀区校级期中)如果a c =b ,那么我们规定(a ,b )=c ,例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ;(2)记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证:a +b =c .10.(2023春•巨野县期中)规定a *b =2 a ×2 b ,求:(1)求1*3;(2)若2*(2x +1)=64,求x 的值.11.(2023春•滦南县期中)【阅读理解】阅读下列内容,观察分析,回答问题:Ⅰ.33×34=(3×3×3)×(3×3×3×3)=37;Ⅱ.53×54=(5×5×5)×(5×5×5×5)=57;Ⅲ.a 3×a 4=(a ×a ×a )×(a ×a ×a ×a )=a 7.【概括总结】通过以上分析,填空:a m ×a n =(a ×a ×a ×⋯×a ︸m 个)(a ×a ×a ×⋯×a ︸n 个); =a ×a ×a ×⋯×a ︸(①)=a (②)(m 、n 为正整数).(1)在上述分析过程中:①所在括号中填 ,②所在括号中填 .【应用与拓展】:计算:(2)105×104= ;(3)a •a 3•a 7= ;(4)如果x 是不等于1的正数,且x n •x 3n +3=x 35,求n 的值.12.(2023春•亭湖区校级期中)规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(3,243)= ,(﹣2,﹣32)= ;②若(x ,116)=﹣4,则x = ;(2)若(4,5)=a ,(4,6)=b ,(4,30)=c ,探究a ,b ,c 之间的数量关系并说明理由.13.(2023春•建邺区校级期中)我们约定a ☆b =10 a ×10 b ,如2☆3=102×103=105.(1)试求12☆3和4☆8的值;(2)(a +b )☆c 是否与a ☆(b +c )相等?并说明理由.14.(2022秋•松滋市期末)如果x n =y ,那么我们规定(x ,y ]=n .例如:因为42=16,所以(4,16]=2.(1)(﹣2,16]= ;若(2,y ]=6,则y = ;(2)已知(4,12]=a ,(4,5]=b ,(4,y ]=c ,若a +b =c ,求y 的值;(3)若(5,10]=a ,(2,10]=b ,令t =2ab a+b . ①求25a16b 的值;②求t 的值.15.(2023春•东海县月考)如果a c =b ,那么我们规定(a ,b )=c ,如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,0.25)= ;(2)记(3,5)=a ,(3,6)=b ,(3,30)=c .求证:c ﹣b =a .16.(2023春•霍邱县期中)如果a c =b ,那么我们规定(a ,b )=c ,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)= ,(4,1)= (2,0.25)= ;(2)记(3,5)=a ,(3,6)=b ,(3,30)=c .求证:a +b =c .17.(2022秋•米东区期中)我们规定:a ⊗b =10 a ×10 b ,例如3⊗4=103×104=107,请解决以下问题:(1)试求7⊗8的值.(2)想一想(a +b )⊗c 与a ⊗(b +c )相等吗?请说明理由.18.(2023春•徐汇区校级期中)阅读下列材料:一般地,n 个相同的因数a 相乘a •a …,记为a n .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)写出(1)log24、log216、log264之间满足的关系式.(3)由(2)的结果,请你能归纳出一个一般性的结论:log a M+log a N=(a>0且a ≠1,M>0,N>0).(4)设a n=N,a m=M,请根据幂的运算法则以及对数的定义说明上述结论的正确性.19.(2022秋•浦东新区校级期中)如果a c=b,那么我们规定:F(a,b)=c,例如,因为23=8,34=81那么我们就说F(2,8)=3,F(3,81)=4.(1)请根据上述定义,填空:F(4,16)=;F(2,64)=;F(25,16625)=;(2)已知F(x,5)=a,F(x,6)=b,F(x,m)=c,且a+b=c,求m的值.20.(2022春•平和县期中)如果x n=y,那么我们规定(x,y)=n.例如:因为32=9,所以(3,9)=2.(1)(理解)根据上述规定,填空:(2,8)=,(2,14)=;(2)(说理)记(4,12)=a,(4,5)=b,(4,60)=c.试说明:a+b=c;(3)(应用)若(m,16)+(m,5)=(m,t),求t的值.21.(2022春•邳州市期中)规定m*n=3m×3n.求:(1)0*2;(2)如果2*(x﹣1)=81,求x的值.22.(2021秋•曲阜市期末)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,1)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,7)+(4,8)=(4,56).23.(2022春•包河区校级期中)我们知道,同底数幂的乘法法则为a m •a n =a m +n (其中a ≠0,m 、n 为正整数),类似地,我们规定关于任意正整数m 、n 的一种新运算:f (m )•f (n )=f (m +n )(其中m 、n 为正整数);例如,若f (3)=2,则f (6)=f (3+3)=f (3)•f (3)=2×2=4.(1)若f (2)=5,则:①计算f (6);②当f (2n )=25,求n 的值;(2)若f (a )=3,化简:f (a )•f (2a )•f (3a )•…•f (10a ).24.(2022春•沛县校级月考)规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)= ,(﹣3,1)= ,(﹣2,−132)= .(2)令(4,6)=a ,(4,7)=b ,(4,42)=c ,试说明下列等式成立的理由:(4,6)+(4,7)=(4,42)25.(2022春•宜兴市校级月考)规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(5,125)= ,(﹣2,﹣32)= ;②若(x ,18)=﹣3,则x = . (2)若(4,5)=a ,(4,6)=b ,(4,30)=c ,试探究a ,b ,c 之间存在的数量关系;(3)若(m ,8)+(m ,3)=(m ,t ),求t 的值.26.(2022春•邗江区校级月考)根据同底数幂的乘法法则,我们发现:a m +n =a m •a n (其中a ≠0,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:h (m +n )=h (m )•h (n ),请根据这种新运算解决以下问题:(1)若h (1)=﹣1,则h (2)= ;h (2019)= ;(2)若h (7)=128,求h (2),h (8)的值;(3)若ℎ(4)ℎ(2)=4,求h (2)的值.27.(2021春•清江浦区校级期中)某学习小组学习了幂的有关知识发现:根据a m =b ,知道a 、m 可以求b 的值.如果知道a 、b 可以求m 的值吗?他们为此进行了研究,规定:若a m =b ,那么T (a ,b )=m .例如34=81,那么T (3,81)=4.(1)填空:T (2,32)= ;(2)计算:T(13,27)+T(−2,16);(3)探索T (2,3)+T (2,7)与T (2,21)的大小关系,并说明理由.28.(2021秋•宁江区校级期中)规定a ※b =2 a ×2 b ,例如:1※2=21×22=4.(1)求2※3的值;(2)若2※(x +1)=16,求x 的值.29.(2021秋•郫都区校级月考)定义新运算:a ☆b =10 a ×10 b .(1)试求:12☆3和4☆8的值;(2)判断(a ☆b )☆c 是否与a ☆(b ☆c )相等?验证你的结论.30.(2021春•高新区校级期中)对数的定义:一般地,若a x =N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作:x =L a N .比如指数式24=16可以转化成对数式4=L 216,对数式2=L 225可以转化成指数式52=25,根据对数的定义可得到对的一个性质:L a (M •N )=L a M +L a N (a >0,a ≠1,M >0,N >0).理由如下:设L a M =m ,L a N =n ,则M =a m ,N =a n ,∴M •N =a m •a n =a m +n ,由对数的定义得m +n =L a (M •N );而m +n =L a M +L a N ,∴L a (M •N )=L a M +L a N ,认真阅读理解上述材料,解决以下问题:(1)填空:①将指数式43=64转化成对数式为 ;②将对数式4=L 381转化成指数式为 ;③计算:L 1010= ;(2)试说明:L a (M N )=L a M ﹣L a N (a >0,a ≠1,M >0,N >0); (3)计算:L 32+L 318﹣L 34.。

人教版八年级上册14.1.2幂的运算培优例题和练习(无答案)

人教版八年级上册14.1.2幂的运算培优例题和练习(无答案)

幂的运算幂的运算性质(其中m 、n 、p 都为正整数):1.m n m n a a a +⋅=2.()m n mn a a =3.()n n n ab a b =4.m n m n a a a -÷=5.011(0)(0)p pa a a a a -=≠=≠, 【例1】下列算式,正确的个数是( )①3412a a a ⋅= ②5510a a a += ③336()a a = ④236(2)6a a -- A .0个 B .1个 C .2个 D .3个【解法指导】①同底数幂相乘,底数不变,指数相加,结果应为7a ;②合并同类项,结果为52a ;③幂的乘方,底数不变,指数相乘,即过位9a ;④积的乘方,等于积的每一个因式分别乘方,结果为68a -,故选A .【变式题组】01.计算212()()n n c c +⋅的结果是( )A .42n c +B .44n c +C .22n c +D .34n c + 02.计算100101(2)(2)-+-=_______________ 03.如果3915()n m a b b a b ⋅=,则m =_________,n =____________04.计算2323()()()n n x y x y +-⋅-=_______________【例2】若2n+12448n +=,求n 的值.【解法指导】将等式的左右两边变形为同底数幂的形式.解:∵2n+12448n +=,∴2n+122248n +=,22222232n n n ⋅+=⋅,243232n ⋅=⋅,∴24,2n n ==【变式题组】01.若24m =,216n =,求22m n +的值02.若35n x =,求代数式2332(2)4()n n x x -+的值03.若3m x =,6n x =,则32m n x -=________.04.已知33m a=,32n b =,求233242()()m n m n m n a b a b a b +-⋅⋅⋅的值【例3】(希望杯)552a =-,443b =-,335c =-,226d =-,那么a 、b 、c 、d 的大小关系为( ) A .a >b >c >d B .a >b >d >cC .b >a >c >dD .a >d >b >c 【解法指导】逆用幂的乘方公式()mn m n aa =,将a 、b 、c 、d 变为指数相同的幂的形式. 解:∵55511112(2)32a =-=-=-,44411113(3)81b =-=-=-,33311115(5)125c =-=-=-,22211116(6)36d =-=-=-,∴a >d >b >c.故选D .【变式题组】01.已知3181a =,4127b =,619c =,则a 、b 、c 的大小关系是() A .a >b >c B .a >c >b C .a <b <c D .b >c >a02.已知503a =,404b =,305c =,则a 、b 、c 的大小关系为()A .a <b <cB .c <a <bC .c <b <aD .b <c <a【例4】求满足200300(1)3x ->的x 的最小正整数【解法指导】将左右两边变成指数相同的幂的形式解:∵200300(1)3x -> ∴21003100[(1)](3)x ->∴2(1)27x -> ∵x 为正整数∴1x ->1x >∴x 的最小正整数为7【变式题组】01.求满足2003005n <的最大整数值n.02.如果x 、y 是正整数,且2232x y ⋅=,求满足条件的整数x 、y03.求满足22(1)1n n n +--=的整数n.演练巩固 反馈提高01.下列运算正确的是( )A .3412x x ⋅=B .623(6)(2)3x x x -÷-=C .23a a a -=-D .236(2)6x x -=-02.下列各式计算正确的是() A .23523a a a += B .235(2)6b b = C .2(3)()3xy xy xy ÷= D .56236x x x ⋅=03.当n 为正整数时,221()n x +-等于() A .42n x +- B .41n x +-C .41n x +D .42n x + 04.计算3224()a a a +⋅的结果为() A . 92a B .62a C .68a a +D .12a 05.下列命题中,正确的个数是( )(1)m 为正奇数时,一定有等式(4)4m m -=-(2)等式(2)2m m-=,无论m 为何值时都不成立 (3)三个等式:236326236()()[))]a a a a a a -=-=--=,,((都不成立; (4)两个等式:3434(2)2m m m m x y xy -=-,3434(2)2n n n n x y x y -=-都不一定成立. A .1个 B .2个C .3个D .4个06.下列各题中,计算正确的是( ) A .322366()()m n m n --= B .322331818[()()]m n m n --=-C .2222398()()m n mn m n --=-D .232399()()m n mn m n --=-07.已知22|2||238|0y x x x y x y y x -+-+=⋅-⋅,则=_______________08.32125a a x x x x +⋅⋅=,则关于y 的方程ay =a +14的解是________________09.在555511(2)(3)()()23----,,,中,最大的数是_________________10.一块长方形草坪的长是1m a-米,宽是3m a +米(m 、n 均为大于1的正整数),则该长方形草坪的面积是______________2米.11.计算 ⑴2001100021()(2)34-⋅=_______________ 20012002200311312.计算⑴122n n y yy y +⋅-⋅⑵4344()()2()()x x x x x x x -+⋅-+⋅---⋅⑶4224223322()()()()()()x x x x x x x x +-⋅--⋅-⋅-⑷232223()7()()()x y x x y -+⋅-⋅-13.若2(32)|235|0a b a b ++++=,化简:2322231()()()a a ax y bxy x y z a ⋅-⋅14.已知n 是正整数,216n x =,求322211()()1616n n x x -的值15.已知a 、b 、c 为自然数,且227371998a b c ⋅⋅=,求2010()a b c --的值培优01.若1122222n n n n x y +--=+=+,,其中n 为整数,则x 与y 的数量关系为() A .x =4y B .y =4xC .x =12yD .y =12x 02.化简4322(2)2(2)n n n ++-得( ) A .1128n +- B .12n +- C .78 D .7403.化简2231424m m m ++--=__________________ 04.15825⨯的位数为_____________________05.2001200220033713⨯⨯所得积的末位数字是____________________06.若3436x y ==,,求2927x y x y --+的值07.是否存在整数a 、b 、c 满足91016()()()28915a b c ⋅⋅=?若存在,求出a 、b 、c 的值;若不存在,说明理由.08.如果整数x 、y 、z 满足10981()()()271615256x y z ⋅⋅=,求()x y x y z ---的值09.已知311n m +能被10整除,求证:42311n m +++也能被10整除10.设a 、b 、c 、d 都是非零自然数,且543219a b d c a ==-=,c ,,求d b -的值11.已知k 、x 、y 、z 是整数,且k >x >y >z ,若k 、x 、y 、z 满足方程16(2222)330k x y z +++=,求k 的值.09.已知311n m +能被10整除,求证:42311n m +++也能被10整除10.设a 、b 、c 、d 都是非零自然数,且543219a b d c a ==-=,c ,,求d b -的值11.已知k 、x 、y 、z 是整数,且k >x >y >z ,若k 、x 、y 、z 满足方程16(2222)330k x y z +++=,求k 的值.。

第八章《幂的运算》培优训练卷(含答案)

第八章《幂的运算》培优训练卷(含答案)

第八章《幂的运算》培优训练卷班级___________ 姓名___________ 学号____________ 分数____________一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52aB .62aC .53aD .63a2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2aB .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m+3n的值是( )A .8B .12C .24D .325.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .a c b >>C .a b c <<D .b c a >>二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________.账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦ 浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦ 阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤) 17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷18.(2021·广东高州·七年级期末)计算: (1)﹣12021+(13)﹣2+(π﹣3.14)0;(2)(6a 3b 2﹣4a 2b )÷2ab .19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求: (1)m n a -的值; (2)32m n a -的值.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍? (2)喷气式飞机声音的强度是汽车声音的强度的多少倍?21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求: (1)求1*2;(2)若2*(1)81x +=,求x 的值.22.(2021·福建永春·八年级期中)规定两个非零数a ,b 之间的一种新运算,如果a m =b ,那么a ∧b =m .例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0. (1)根据上述规定填空:2∧32= ;﹣3∧81= . (2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.23.(2021·山西·太原市外国语学校七年级阶段练习)若a *b =c ,则a c =b .例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x ,则x = . (2)记5*2=a ,5*6=b ,5*18=c ,求a ,b ,c 之间的数量关系.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log Na =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2(1)填空:66log = ,16log = ; (2)如果(2)2log m -=3,求m 的值.26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题. (1)已知10m =6,10n =2,求10m ﹣n 的值; (2)如果a +3b =4,求3a ×27b 的值; (3)已知8×2m ÷16m =215,求m 的值.27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=① 则22021202222222S =++⋅⋅⋅++② ②-①得,2022221S S S -==-. 请仿照小明的方法解决以下问题: (1)220222++⋅⋅⋅+=______; (2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2021·重庆八中九年级阶段练习)计算52a a ⋅的结果是( ) A .52a B .62a C .53a D .63a【答案】B 【分析】根据同底数幂的乘法运算法则求解即可. 【详解】 解:562=2a a a ⋅. 故选:B . 【点睛】此题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法运算法则.同底数幂相乘,底数不变,指数相加.2.(2022·全国·七年级)下列选项中,是同底数幂的是( ) A .()2a -与2a B .2a -与()3a -C .5x -与5xD .()3-a b 与()3b a -【答案】C 【分析】根据各项的底数分析判断即可 【详解】A . ()2a -的底数是a -,2a 的底数是a ,故该选项不符合题意;B . 2a -的底数是a ,()3a -的底数是a -,故该选项不符合题意; C . 5x -与5x 的底数都是x ,故该选项符合题意;D . ()3-a b 的底数是()a b -,()3b a -的底数是()b a -,故该选项不符合题意;故选C 【点睛】本题考查了同底数幂的形式,理解幂的定义是解题的关键.把n 个相同的因数a 相乘的积记作n a ,其中a 叫做底数,n 叫做指数.3.(2022·重庆涪陵·八年级期末)下列计算正确的是( ) A .2323a a a +=B .623a a a ÷=C .33(2)6a a =D .()1432a a =【分析】根据合并同类项,同底数幂的除法,积的乘方,幂的乘方依次计算判断即可得. 【详解】解:A 、22a a +,不是同类项,不能化简,选项错误; B 、624a a a ÷=,选项错误; C 、()3328a a =,选项错误; D 、()4312a a =,选项正确; 故选:D . 【点睛】本题主要考查合并同类项,同底数幂的除法,积的乘方,幂的乘方,熟练掌握各运算法则是解题的关键.4.(2021·重庆市万盛经济技术开发区溱州中学八年级阶段练习)若a m =4,a n =2,则a m +3n的值是( )A .8B .12C .24D .32【答案】D 【分析】根据同底数幂的乘法的逆运算,以及幂的乘方的逆运算进行求解即可. 【详解】解:∵4m a =,2n a =,∴()()33334232m n m n m n a a a a a +=⋅=⋅=⨯=,故选D . 【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,解题的关键在于能够熟练掌握相关计算法则.5.(2022·福建省福州第十六中学八年级期末)近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( ) A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000011=71.110-⨯, 故选B . 【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.(2021·北京·清华附中八年级期中)已知781a =,927b =,139c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .a b c << D .b c a >>【答案】A 【分析】根据幂的乘方的逆运算可直接进行排除选项. 【详解】解:∵781a =,927b =,139c =,∴()742833a ==,()932733b ==,()1322633c ==,∴a b c >>; 故选A . 【点睛】本题主要考查幂的乘方的逆用,熟练掌握幂的乘方的逆用是解题的关键. 二、填空题(本大题共10小题,每小题2分,共20分) 7.(2022·四川南充·八年级期末)计算22-的结果是______. 【答案】14【分析】根据负整数指数幂的运算法则计算即可.解:2211224-==, 故答案为:14.【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键.8.(2022·天津市第七中学八年级期末)计算:36x x ⋅=________________. 【答案】9x 【分析】根据同底数幂的乘法法则,底数不变,指数相加计算即可. 【详解】 ∵36x x ⋅=9x , 故答案为:9x . 【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.9.(2021·黑龙江·哈尔滨德强学校八年级阶段练习)计算:202120212552⎛⎫⎛⎫-⨯= ⎪⎪⎝⎭⎝⎭_______.【答案】1- 【分析】由积的乘方的逆运算进行计算,即可得到答案. 【详解】 解:20212021202120212525()(1)15252⎛⎫⎛⎫-⨯=-⨯=-=- ⎪⎪⎝⎭⎝⎭;故答案为:1-. 【点睛】本题考查了积的乘方的逆运算,解题的关键是掌握运算法则,正确的进行计算. 10.(2021·辽宁兴城·八年级期中)已知a m =4,a n =6,则a m +n =______. 【答案】24 【分析】利用同底数幂的乘法的逆运算即可求解.解:4,6m n a a ==, 又4624m n m n a a a +=⋅=⨯=, 故答案是:24. 【点睛】本题考查了同底数幂的乘法的逆运算,解题的关键是掌握相应的运算法则. 11.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 【答案】3x ≠ 【分析】任何不为零的数的零次幂都等于零,根据定义解答. 【详解】解:∵0(3)1x -=, ∴3x ≠, 故答案为:3x ≠. 【点睛】此题考查了零指数幂定义,熟记定义是解题的关键.12.(2021·浙江嘉兴·七年级期末)若9a ∙27b ÷81c =9,则2c ﹣a ﹣32b 的值为____.【答案】-1 【分析】根据幂的乘方公式以及同底数幂的乘法公式的逆运用,即可求解. 【详解】解:∵9a ∙27b ÷81c =9,∴(32)a ∙(33)b ÷(34)c =9,即:32a ∙33b ÷34c =32,∴2a +3b -4c =2,即: a +32b -2c =1,∴2c ﹣a ﹣32b =-1,故答案是:-1. 【点睛】本题主要考查幂的乘方公式以及同底数幂的乘法公式,熟练掌握幂的乘方公式以及同底数幂的乘法公式的逆运用是解题的关键.13.(2022·全国·七年级)若n 是正整数,且210n a =,则3222()8()n n a a --=__________. 【答案】200 【分析】把所求式子化为含a 2n 的形式,再代入即可求值; 【详解】解:32222322()8()()8()1000800200n n n n a a a a --=-=-= 故答案为:200 【点睛】本题考查代数式求值,解题的关键是熟练掌握积的乘方、幂的乘方公式逆用.14.(2021·湖南永兴·八年级阶段练习)11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的排列是____(用<号连接)【答案】()1201(2)36-⎛⎫-<<- ⎪⎝⎭【分析】根据负整数指数幂,零次幂,有理数的乘方分别计算,再比较大小即可. 【详解】()()1021=62=1,396-⎛⎫--= ⎪⎝⎭,,169<< ∴()1201(2)36-⎛⎫-<<- ⎪⎝⎭故答案为:()1201(2)36-⎛⎫-<<- ⎪⎝⎭.【点睛】本题考查了负整数指数幂,零次幂,有理数的乘方,掌握负整数指数幂,零次幂,有理数的乘方是解题的关键.15.(2021·山东·济南育英中学七年级期中)我们定义:三角形=a b •a c ,五角星=z •(x m •y n ),若=4,则的值=_____.【答案】32【分析】根据题意可得出算式2334x y ⋅=,根据同底数幂的乘法得出234x y +=,求出2422316(3)x y y x ++==,根据题意得出所求的代数式是2(981)x y ⋅,再根据幂的乘方和积的乘方进行计算,最后求出答案即可.【详解】解:根据题意得:2334x y ⋅=,所以234x y +=,即2423416x y +==,所以2(981)x y ⋅242[(3)(3)]x y =⨯⋅242(33)x y =⨯⋅222(33)x y =⨯⋅224=⨯32=,故答案为:32.【点睛】本题考查了有理数的混合运算和整式的混合运算,解题的关键是能灵活运用整式的运算法则进行计算.16.(2022·吉林吉林·八年级期末)如图,王老师把家里的WIFI 密码设置成了数学问题.吴同学来王老师家做客,看到WIFI 图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是________. 账号:Mr .Wang 's house王134wang1314x yz ⎢⎥⊕=⎣⎦浩15220hao31520xy x z ⎢⎥⊕⋅=⎣⎦阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦密码【答案】yang 8888【分析】根据题中wifi 密码规律确定出所求即可.【详解】解:阳()()422244x y y z ⎢⎥⊕⋅=⎢⎥⎣⎦阳88888888x y z yang ⊕= 故答案为:yang 8888.【点睛】此题考查了同底数幂相乘和幂的乘方,熟练掌握运算法则是解本题的关键.三、解答题(本大题共11小题,17,18每小题7分,19,20,21,22,23,24,25每小题8分,26,27每小题9分,共88分.解答应写出文字说明、证明过程或演算步骤)17.(2021·吉林临江·八年级期末)计算:2222342()()a b a b a ----⋅÷【答案】8b【分析】幂的混合运算,先做乘方,然后做乘除.【详解】解:2222342()()a b a b a ----⋅÷22668a b a b a ---=⋅÷888a b a --=÷8b =.【点睛】本题考查了整式的混合运算,负整数指数幂,同底数幂的乘法,幂的乘方与积的乘方,解题关键是熟练掌握幂的有关运算法则.18.(2021·广东高州·七年级期末)计算:(1)﹣12021+(13)﹣2+(π﹣3.14)0; (2)(6a 3b 2﹣4a 2b )÷2ab .【答案】(1)9;(2)232a b a -【分析】(1)根据有理数的乘方,负整指数幂,零次幂进行计算即可;(2)直接根据多项式除以单项式的法则计算即可.【详解】(1)(1)﹣12021+(13)﹣2+(π﹣3.14)0 191=-++9=;(2)(6a 3b 2﹣4a 2b )÷2ab3226242a b ab a b ab =÷-÷232a b a =-【点睛】本题考查了有理数的乘方,负整指数幂,零次幂,多项式除以单项式,掌握以上运算法则是解题的关键.19.(2021·全国·八年级课时练习)已知3m a =,5n a =,求:(1)m n a -的值; (2)32m n a -的值.【答案】(1)35;(2)2725. 【分析】(1)根据同底数幂的除法法则的逆运算解题;(2)根据同底数幂的除法法则的逆运算、幂的乘方法则的逆运算解题.【详解】解:(1)∵3m a =,5n a =, ∴3355m n m n a a a -=÷÷==; (2)∵3m a =,5n a =, ∴32323232()527(352)m n m n m n a a a a a -====÷÷÷. 【点睛】本题考查幂的运算,涉及同底数幂的除法的逆运算、幂的乘方的逆运算等知识,是重要考点,掌握相关知识是解题关键.20.(2022·全国·七年级)声音的强弱用分贝表示,通常人们讲话时的声音是50分贝,它表示声音的强度是105,汽车的声音是100分贝,表示声音的强度是1010,喷气式飞机的声音是150分贝,求:(1)汽车声音的强度是人声音的强度的多少倍?(2)喷气式飞机声音的强度是汽车声音的强度的多少倍?【答案】(1) 105;(2) 105.【分析】(1)由题意直接根据同底数幂的除法运算法则进行计算即可得出答案;(2)根据题意利用同底数幂的除法运算法则进行计算即可得出答案.【详解】解:(1)因为1010÷105=1010-5=105,所以汽车声音的强度是人声音的强度的105倍;(2)因为人的声音是50分贝,其声音的强度是105,汽车的声音是100分贝,其声音的强度为1010,所以喷气式飞机的声音是150分贝,其声音的强度为1015,所以1015÷1010=1015-10=105,所以喷气式飞机声音的强度是汽车声音的强度的105倍.【点睛】本题主要考查的是同底数幂的除法的应用,熟练掌握同底数幂的除法法则是解题的关键. 21.(2021·河南·八年级阶段练习)规定*33a b a b =⨯,求:(1)求1*2;(2)若2*(1)81x +=,求x 的值.【答案】(1)27;(2)1x =【分析】(1)根据规定即可完成;(2)根据规定及幂的运算,可得关于x 的方程,解方程即可.【详解】(1)33a b a b *=⨯,1212333927∴*=⨯=⨯=;(2)2(1)81x *+=,214333x +∴⨯=,3433x +∴=则34x +=,解得:1x =.本题是新定义运算问题,考查了同底数幂的运算,解方程等知识,理解新定义运算是解题的关键.22.(2021·福建永春·八年级期中)规定两个非零数a,b之间的一种新运算,如果a m=b,那么a∧b=m.例如:因为52=25,所以5∧25=2;因为50=1,所以5∧1=0.(1)根据上述规定填空:2∧32=;﹣3∧81=.(2)在运算时,按以上规定请说明等式8∧9+8∧10=8∧90成立.【答案】(1)5,4;(2)说明见解析.【分析】(1)结合新定义运算及有理数的乘方运算法则分析计算;(2)结合新定义运算及同底数幂的乘法运算法则进行分析说明.【详解】解:(1)∵25=32,∴2∧32=5,∵(−3)4=81,∴−3∧81=4,故答案为:5;4;(2)设8∧9=a,8∧10=b,8∧90=c,∴8a=9,8b=10,8c=90∴8a×8b=8a+b=9×10=90=8c,∴a+b=c,即8∧9+8∧10=8∧90.【点睛】本题考查新定义运算,掌握有理数乘方运算法则,同底数幂的乘方运算法则是解题关键.23.(2021·山西·太原市外国语学校七年级阶段练习)若a*b=c,则a c=b.例如:若2*8=3,则23=8(1)根据上述规定,若5*1125=x,则x=.(2)记5*2=a,5*6=b,5*18=c,求a,b,c之间的数量关系.【答案】(1)﹣3;(2)2b=a+c.(1)根据定义和负整数指数幂公式即可解答;(2)根据定义得5a =2,5b =6,5c =18,发现62=2×18,从而得到a ,b ,c 之间的关系.【详解】解:(1)根据题意得:3311551255x -===, ∴x =﹣3.故答案为:﹣3;(2)根据题意得:5a =2,5b =6,5c =18,∴52b =(5b )2=62=36,5a ×5c =2×18=36,∴52b =5a ×5c =5a +c ,∴2b =a +c .【点睛】本题考查了负整数指数幂,同底数幂的乘法,幂的乘方,会逆用幂的运算法则是解题的关键.24.(2020·江苏江都·七年级期中)如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.【答案】(1)3,0,﹣2;(2)a +b =c ,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a ,b ,c 的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0, ∵2﹣2=14,∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.25.(2019·福建·莆田第十五中学七年级阶段练习)我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a =N (a >0,a ≠1,N >0),则b 叫做以a 为底N 的对数,记作log N a =b ,例如:因为35=125,所以1255log =3;因为211=121,所以12111log =2 (1)填空:66log = ,16log = ;(2)如果(2)2log m -=3,求m 的值.【答案】(1)1,0;(2)m =10.【分析】(1)把对数运算转化为幂运算求解即可;(2)把对数运算转化为幂的运算求解即可.【详解】解:(1)∵1066,61==,∴66log =1,16log =0,故答案为:1,0;(2)∵(2)2log m -=3,∴32=m ﹣2,解得:m =10.【点睛】本题考查了新运算问题,解答时,熟练将对数运算转化为对应的幂的运算是解题的关键. 26.(2021·河北邢台·八年级阶段练习)按要求解答下列各小题.(1)已知10m =6,10n =2,求10m ﹣n 的值;(2)如果a +3b =4,求3a ×27b 的值;(3)已知8×2m ÷16m =215,求m 的值.【答案】(1)3;(2)81;(3)4m =-【分析】(1)根据同底数幂的除法逆用可直接进行求解;(2)根据同底数幂的乘法的逆用可直接进行求解;(3)根据同底数幂的乘除法可直接进行求解.【详解】解:(1)∵10m =6,10n =2,∴101010623m n m n -=÷=÷=;(2)∵a +3b =4,∴334327333381a b a b a b +⨯=⋅===;(3)∵8×2m ÷16m =215,∴31534422222m m m m +-==⨯÷∴3315m -=,解得:4m =-.【点睛】本题主要考查同底数幂的乘除运算,熟练掌握同底数幂的乘除运算是解题的关键. 27.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)【答案】(1)221−2;(2)2-5012;(3)101223-;(4)()121n a a a +--+11n na a +- 【分析】(1)根据阅读材料可得:设s =220222++⋅⋅⋅+①,则2s =22+23+…+220+221②,②−①即可得结果;(2)设s =2501111222+++⋅⋅⋅+①,12s =2505111112222++⋅⋅⋅++②,②−①即可得结果; (3)设s =()()()2100222-+-+⋅⋅⋅+-①,-2s =()()()23101222-+-+⋅⋅⋅+-②,②−①即可得结果;(4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②−①得as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,同理:求得-2314n a a a a ++--⋅⋅⋅-,进而即可求解.【详解】解:根据阅读材料可知:(1)设s =220222++⋅⋅⋅+①,2s =22+23+…+220+221②,②−①得,2s −s =s =221−2;故答案为:221−2;(2)设s =2501111222+++⋅⋅⋅+①, 12s =2505111112222++⋅⋅⋅++②, ②−①得,12s −s =-12s =5112-1, ∴s =2-5012, 故答案为:2-5012; (3)设s =()()()2100222-+-+⋅⋅⋅+-①-2s =()()()23101222-+-+⋅⋅⋅+-②②−①得,-2s −s =-3s =()1012-+2 ∴s =101223-; (4)设s =2323n a a a na +++⋅⋅⋅+①,as =234123n a a a na ++++⋅⋅⋅+②,②-①得:as -s =-a -2341n n a a a a na +--⋅⋅⋅-++,设m =-a -234n a a a a --⋅⋅⋅-+③,am =-2314n a a a a ++--⋅⋅⋅-④,④-③得:am -m =a -1n a +,∴m =11n a a a +--, ∴as -s =11n a a a +--+1n na +, ∴s =()121n a a a +--+11n na a +-. 【点睛】本题考查了规律型−实数的运算,解决本题的关键是理解阅读材料进行计算。

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。

八年级上册数学幂的运算计算题

八年级上册数学幂的运算计算题

八年级上册数学幂的运算计算题在八年级数学课程中,幂的运算是一个重要的知识点。

幂的运算涉及到指数、底数的运算,也包括了幂的乘法、除法、幂的零次和一次运算等内容。

通过解决一些实际问题和计算题,可以更好地掌握和理解幂的运算方法,从而提高数学运算的水平。

1. 幂的乘法计算题1)计算:\[4^3 \times 4^2\]解析:根据幂的乘法法则,\(a^m \times a^n = a^{m+n}\),所以\[4^3 \times 4^2 = 4^{3+2} = 4^5 = 1024\]2)计算:\[5^4 \times 5^6\]解析:根据幂的乘法法则,\(a^m \times a^n = a^{m+n}\),所以\[5^4 \times 5^6 = 5^{4+6} = 5^{10}\]3)计算:\[(3^2)^3\]解析:根据幂的乘法法则,\((a^m)^n = a^{m \times n}\),所以\[(3^2)^3 = 3^{2 \times 3} = 3^6 = 729\]2. 幂的除法计算题1)计算:\[\frac{3^5}{3^2}\]解析:根据幂的除法法则,\(\frac{a^m}{a^n} = a^{m-n}\),所以\[\frac{3^5}{3^2} = 3^{5-2} = 3^3 = 27\]2)计算:\[\frac{5^7}{5^4}\]解析:根据幂的除法法则,\(\frac{a^m}{a^n} = a^{m-n}\),所以\[\frac{5^7}{5^4} = 5^{7-4} = 5^3 = 125\]3)计算:\[\frac{(2^3)^5}{2^4}\]解析:根据幂的除法法则,\(\frac{(a^m)^n}{a^n} = a^{m \times n - n}\) ,所以\[\frac{(2^3)^5}{2^4} = 2^{3 \times 5 - 4} = 2^{15-4} = 2^{11}\]3. 幂的零次和一次计算题1)计算:\(5^0\)解析:根据幂的零次法则,任何非零数的零次幂都是1,所以\(5^0 = 1\)2)计算:\(2^1\)解析:根据幂的一次法则,任何数的一次幂都是它本身,所以\(2^1 = 2\)3)计算:\((7^2)^0\)解析:根据幂的零次法则,任何非零数的零次幂都是1,所以\((7^2)^0 = 1\)4. 理解幂的运算的重要性幂的运算在数学中有着非常重要的地位,它不仅在简单的计算题中有所体现,更在代数式的简化、方程的求解等更为复杂的数学问题中发挥着重要作用。

八年级数学幂的运算测试题

八年级数学幂的运算测试题

图 14—2幂的运算测试、选择题(30分)4.计算25m- 5m的结果为(A . 4个B . 3个6.下列运算正确的是( )C. 4x 3y 4(-〔xy 2) = -2x 527. 下列等式中正确的个数是(C. 2个 D. 3个8. 计算(a - b )n• ( b - a )n-1 等于(a )2n-1 C.3 2 34 3 2x( x 3_3x 1) = x 4_ 2x 2x5 ,、520 5 5 61 .下列各式运算正确的是2 2 4A . 2a 土 3a = 5a2.若 a m = 2, n a = 3, () .(2ab 2)2= 4a 2b 4 C 则am+n 的值为()6 3 2 .2a 十 a = 2a D2 3 5.(a ) =a3.在等式a 3• a 2・( A . a 7、 11 )=a8.a中,括号里填入的代数式应当是B . 20 .20m.5m5 .下列算式:①(一a)4 .( ④(—a)6 - ( — »= — a 3 .其中, 2) =—a 7c 2 ; ® ( — a)2=正确的有() A. 2x 3y 二5xy2、3^63.(-3x y) = 9x y①a 5a 5』②(-a)6(-a)310二 a A 2x -(2x 3 3x -1) =4x 46x 2 -2xb(b 2-b 1) = b 3-b 2b1 2C - - 2x (2x 2)…x D. 10 .如图14- 2是L 形钢条截面,它的面积为( A .ac+bcB . ac+(b-c)cC . (a-c)c+(b-c)cD. a+b+2c+(a-c)+(b-c) A. 0个 2n・1A.( a - b )B.( b -9.下列各式中计算错误的是(a -b )2n-1 D.非以上答案图14—2、填空题(24分)11 .计算:' 一彳xy * -3x4 5y ) = __________ .12. ________________________ (a+ b)2• (b+ a)6= ____________ ;(2mi-n)3• (n_2m)2= __________________________ .13. ( ______________ )2= a7b8; x 2甘=29 10眉14. 若2m- 2n• 8= 211,贝U _____ .15. 已知9n+1- 32n=72,则n= _______QQ911916. 若a= —9^ , b= f,贝U a b.999—9U ------------17. 若2m+=10,2n+2=12,则2m+n = _______18. 已知n是大于1的自然数,则(Y)2・(-c汇等于______________三、解答题(66分)19. (12分)计算:3 2 2 3 34 5(1) (—a)• (—a); (2)—t• ( —t) • ( —t);4 3 2 3(3)( p —q)宁(q—p) . (p —q) ; (4)( —3a) —( —a) • ( —3a)45 2 X =——x(x -6x -9) - x(x -8x -15) + 2x(3 - x) 其中621. (5 分)如果a2+a=0 (a^ 0),求a2005+a2004+12 的值.22. (5分)已知x3= m, x5= n,用含有m n的代数式表示x14.23. (5分)已知整数a、b、c满足4,求a、b、c的值.24. (8分)(1)已知a2m= 16, a n= 8,你能否求出代数式(a3n-2m—33)2011的值? 出该值;若不能,请说明理由.(2)2m+1=10,2n+2=12,求2m+n25. (8分)观察下面的计算过程,并回答问题.8 6x 5-3= 56x 丄=56+ 53= 56-3= 53= 56+(-3),宀7-2亠72 =几7"2亠严(1)上面两式的计算是否正确?20. (8分)先化简,再求值:①a3• ( —b3)2+ ( —- ab2)3,其中a= 1, b=4。

八年级上阶段方法技巧训练:常见幂的大小比较技巧及幂的运算

八年级上阶段方法技巧训练:常见幂的大小比较技巧及幂的运算
习题课 阶段方法技巧训练(一)
专训2
常见幂的大小比较技巧
及幂的运算之误区
1. 对于幂,由于它包含底数、指数、幂三种量, 因此比较大小的类型有:比较幂的大小,比较 指数的大小,比较底数的大小. 2. 幂的相关运算法则种类较多,彼此之间极易混
淆,易错易误点较多,主要表现在混淆运算法
则,符号辨别不清,忽略指数“1”等.
因为350=(35)10=24310,440=(44)10=25610,530= (53)10=12510,而125<243<256,所以
12510<24310<25610,即530<350<440,故选B.本题
采用的是底数比较法.将比较大小的各个幂的指 数化为相同的指数,然后根据底数的大小关系确 定出幂的大小.
方法3
作商比较法
999 3.已知P= 99 ,Q= 9
关系是( B ) A.P>Q C.P<Q
119 ,那么P,Q的大小 90 9
B.P=Q D.无法比较
因为
P 999 990 (9 11)9 990 99 119 990 99 9 9 9 99 99 Q 9 11 9 11 9 11
1.幂的大小比较的技巧
技巧
方法1
1
比较幂的大小
指数比较法
1.已知a=8131,b=2741,c=961,则a,b,c的
大小关系是( A ) A.a>b>c C.a<b<c B.a>c>b D.b>c>a
因为a=8131=(34)31=3124,b=2741=(33)41=3123, c=961=(32)61=3122,而124>123>122,所以
误区
=33x•3 2y

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

14.1.1同底数幂的乘法一、单选题1.已知32,33x y ==,则3x y +的值为( )A .6B .5C .36D .3【答案】A【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【详解】∵32,33x y ==,∴3=33236x y x y +⋅=⨯=,故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键,2.已知2,3m n a a ==,则m n a +的值为( )A .6B .5C .3D .1 【答案】A【分析】根据同底数幂的乘法的逆用可直接进行求解.【详解】∵2,3m n a a ==,∴236m n m n a a a +=⋅=⨯=;故选A .【点评】本题主要考查同底数幂的乘法的逆用,熟练掌握同底数幂的乘法的逆用是解题的关键.3.计算(-2)99+(-2)100结果等于 ( )A .(-2)199B .-2199C .299D .-299 【答案】C【分析】原式利用乘方的意义计算即可得到结果.【详解】原式=(-2)99+(-2)99×(-2)=(-2)99×(1-2)=299,故选:C .【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.若23a =,25b =,215c =,则( )A .a b c +=B .1a b c ++=C .2a b c +=D .22a b c +=【分析】根据同底数幂乘法的逆运算进行计算即可【详解】∵23a =,25b =,215c =,∵21535222+==⨯=⨯=a b c a b∴a b c +=故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键5.计算()()9910022-+-的结果为( ) A .992-B .992C .2-D .2 【答案】B【分析】根据同底数幂的乘法法则运算即可.【详解】()()9910022-+- =9100922-=9999222-⨯=()99212-⨯ =992故选B .【点评】本题考查了有理数的混合运算,解题的关键是合理利用同底数幂的乘法法则进行简便运算. 6.计算23a a ⋅的结果是( )A .6aB .5aC .4aD .3a【答案】B【分析】根据同底数幂相乘的法则进行计算,然后判断即可.【详解】23235a a a a +⋅==,故选:B .【点评】本题考查了同底数幂相乘,按照法则—同底数幂相乘,底数不变,指数相加进行计算是关键,属于基础题型.7.若3x =10,3y =5,则3x +y 的值是( )A .15B .50C .0.5D .2【分析】直接逆用同底数幂的乘法法则计算得出答案.【详解】∵3x =10,3y =5,∴3x +y =3x •3y =10×5=50.故选:B .【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.8.10102(2)+-所得的结果是( )A .0B .102C .112D .202【答案】C【分析】先把10(2)-化为102,合并后再根据同底数幂的运算法则计算即可.【详解】10102(2)+-=1010101122222=⋅=+.故选:C .【点评】本题考查了同底数幂的运算和合并同类项,属于常考题型,明确求解的方法是解题关键.二、填空题目9.如果23x =,27y =,则2x y +=_____________.【答案】21【分析】根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x =, 27y =,∴2223721x y x y +=⋅=⨯=,故答案为:21.【点评】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算. 10.已知5122120m m ++-=,则m 的值是_________________.【答案】2【分析】根据同底数幂的乘法法则将原式变形可得52222120m m ⨯-⨯=,再利用乘法分配律合并计算,得到m 值.【详解】∵5122120m m ++-=,∴52222120m m ⨯-⨯=,∴()2322120m ⨯-=,∴24m =,∴m=2,故答案为:2.【点评】本题考查了同底数幂的乘法,解题的关键是灵活运用运算法则.11.我们规定一个新数“i ”,使其满足i 1=i ,i 2=﹣1,并且进一步规定:一切有理数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1.那么i 6=____,i 1+i 2+i 3+…+i 2022+i 2023=____.【答案】-1 -1【分析】各式利用题中的新定义计算即可求出值.【详解】i 6=i 5•i =-1,由题意得,i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,i 5=i 4•i =i ,i 6=i 5•i =-1,故可发现4次一循环,一个循环内的和为0,2023÷4=505 (3)i 1+i 2+i 3+…+i 2022+i 2023=505×0+(i -1-i )=-1.故答案为:-1,-1.【点评】本题考查了同底数幂的乘法运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.12.已知4222112x x +-⋅=,则x =________【答案】3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点评】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键.13.已知8m x =,6n x =,则2m n x +的值为______.【答案】384【分析】利用同底数幂相乘的逆运算得到2m n m m n x x x x +⋅⋅=,将数值代入计算即可.【详解】∵8m x =,6n x =,∴2886m n m m n x x x x +⋅⋅==⨯⨯=384,故答案为:384.【点评】此题考查同底数幂相乘的逆运算,正确将多项式变形为2m n m m n x x x x +⋅⋅=是解题的关键. 14.已知25,23a b ==,求2a b +的值为________.【答案】15.【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.三、解答题15.光的速度约为3×105千米/秒,太阳光射到地球需要时间约是5×102秒,地球与太阳的距离约是多少千米?【答案】81.510⨯【分析】根据路程=速度×时间,先列式表示地球到太阳的距离,再用科学记数法表示.【详解】3×105×5×102=15×107=1.5×108千米.故地球与太阳的距离约是1.5×108千米.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.表示时关键要正确确定a 的值以及n 的值.同时考查了同底数幂的乘法.16.判断23221()()()()n m a m a b b a a b a b -++-⋅-⋅-=-是否正确,并说明理由.【答案】不正确,理由见解析【分析】根据题意,要进行幂的乘法运算,先把每一项写成同底数的形式,所以把()3b a -转换成()3a b --,然后进行同底数幂的乘法运算,底数不变指数相加.【详解】不正确.理由如下:232()()()n m a b b a a b --⋅-⋅-232()[()]()n m a b a b a b -=-⋅--⋅-232()()()n m a b a b a b -=--⋅-⋅-21()n m a b ++=--.【点评】本题考查了同底数幂的乘法,需要注意的是当指数是奇数的时候,底数变为原来的相反数,幂的前面要加上负号.17.计算:2726733333(3)⨯-⨯+⨯-.【答案】83【分析】由题意先根据同底数幂相乘指数相加进行运算,再进行同类项合并即可求值.【详解】2726733333(3)⨯-⨯+⨯-272617333+++=--883323=⨯-⨯83=.【点评】本题考查整式乘法,熟练掌握同底数幂的乘法运算法则以及合并同类项原则是解题的关键. 18.若3a =5,3b =10,则3a+b 的值.【答案】50【分析】根据同底数幂乘法的逆运算即可得出答案【详解】3a+b =3a ⨯3b =5⨯10=50【点评】此题考查了同底数幂乘法的逆运算,熟练掌握运算法则是解题的关键19.如果c a b =,那么我们规定()a b c =,.例如:因为328=,所以(2,8)3=.(1)根据上述规定,填空:(4,16)= ,(2,32)= .(2)记(3,5)a =,(3,6)b =,(3,30)c =.求证:a b c +=.【答案】(1)2,5;(2)证明见解析.【分析】(1)由新定义设()4,16,x =可得416,x = 从而可得答案,同理可得()2,32的结果;(2)由新定义可得:35a =,36b =,330c =,从而可得:333=30,a b a b += 从而可得33a b c +=,从而可得结论.【详解】(1)()a b c =,,,c a b ∴=设()4,16,x =24164,x ∴==2,x ∴=()4,16=2∴,设()2,32,y =52322,y ∴==5,y ∴=()2,32 5.∴=故答案为:2,5.(2)证明:根据题意得:35a =,36b =,330c =∵5630⨯=∴333a b c ⋅= 则33a b c +=∴a b c +=.【点评】本题考查的新定义情境下幂的运算,弄懂新定义的含义,掌握同底数幂的乘法,幂的含义是解题的关键.20.规定两正数a ,b 之同的一种运算,记作:E(a ,b),如果a c =b ,那么E(a ,b)=c .例如23=8,所以E(2,8)=3(1)填空:E(3,27)= ,E 11,216⎛⎫ ⎪⎝⎭= (2)小明在研究这和运算时发现一个现象:E(3n ,4n )=E(3,4)小明给出了如下的证明:设E(3n ,4n )=x ,即(3n )x =4n ,即(3n ,4n )=4n ,所以3x =4,E(3,4)=x ,所以E(3n ,4n )=E(3,4),请你尝试运用这种方法说明下面这个等式成立:E(3,4)+E(3,5)=E(3,20)【答案】(1)3;4;(2)证明见解析.【分析】(1)根据规定的两数之间的运算法则:知4311327,,216⎛⎫== ⎪⎝⎭ 从而可得答案; (2)设E (3,4)=x ,E (3,5)=y ,根据定义得:34,35,x y ==利用同底数幂的乘法可得答案.【详解】(1)∵3327,=∴E (3,27)=3; ∵411,216⎛⎫= ⎪⎝⎭ ∴11,4,216E ⎛⎫= ⎪⎝⎭故答案为:3;4;(2)设E (3,4)=x ,E (3,5)=y ,则34,35,x y ==∴3334520,x y x y +=•=⨯=∴E (3,20)=x+y ,∴E (3,4)+E (3,5)=E (3,20).【点评】本题是利用新定义考查幂的运算的逆运算,掌握幂的运算,同底数幂的乘法运算是解题的关键. 21.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.【答案】(1)23;(2)10121-. 【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)∵2x a =,3y a =, ∴23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,∴S=2S-S=10121-.【点评】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键.22.已知a x=5,a x+y=30,求a x+a y的值.【答案】11.【详解】分析:首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出y a的值是多少;然后把x a、y a的值相加,求出x a+y a的值是多少即可.本题解析:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.祝福语祝你考试成功!。

八年级上阶段方法技巧训练:常见幂的大小比较技巧及幂的运算

八年级上阶段方法技巧训练:常见幂的大小比较技巧及幂的运算

(2)a4•a4+(a2)4+(-4a4)2
=a8+a8+16a8 =18a8.
误区
2
符号辨别不清
1 10.计算(- ab2)3的结果是( D ) 2 1 3 6 1 3 5
A. a b
8
B.
1 C.- a3b5 8
1 D.- 8
8
ab
a3b6
同类变式
11.化简(-y)4(-y)3,结果正确的是( A.-y12 B.y12 )
C.y7
D.-y7
同类变式
12.计算: (1)(-a2)3; (3)[(-a)2]3; 解: (1)(-a2)3=-a6. (2)(-a3)2; (4)a•(-a)2•(-a)7.
(2)(-a3)2=a6.
(3)[(-a)2]3=a6. (4)a•(-a)2•(-a)7=a•a2•(-a7)=-a10.
解: (1)原式=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.
(2)原式=(a-b)9÷(a-b)4÷(a-b)3=(a-b)2.
误区
5
不能灵活运用转化思想
15.(1)若3x+2y-3=0,求27x•9y的值;
(2)已知3m=6,9n=2,求3 2m-4n+1的值.
解: (1)27x•9y=(33)x•(32)y
因为350=(35)10=24310,440=(44)10=25610,530= (53)10=12510,而125<243<256,所以
12510<24310<25610,即530<350<440,故选B.本题
采用的是底数比较法.将比较大小的各个幂的指 数化为相同的指数,然后根据底数的大小关系确 定出幂的大小.
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。 2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。 3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力! 4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落, 花谢花开,岂不自在,哪里来的尘埃! 5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。 6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。 7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。 8、有些事,不可避免地发生,阴晴圆缺皆有规律,我们只能坦然地接受;有些事,只要你愿意努力,矢志不渝地付出,就能慢慢改变它的轨迹。 9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。 10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。 11、花开不是为了花落,而是为了开的更加灿烂。 12、随随便便浪费的时间,再也不能赢回来。 13、不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。 14、当你决定坚持一件事情,全世界都会为你让路。 15、只有在开水里,茶叶才能展开生命浓郁的香气。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。 16、成功的反义词不是失败,而是从未行动。有一天你总会明白,遗憾比失败更让你难以面对。 17、没有一件事情可以一下子把你打垮,也不会有一件事情可以让你一步登天,慢慢走,慢慢看,生命是一个慢慢累积的过程。 18、努力也许不等于成功,可是那段追逐梦想的努力,会让你找到一个更好的自己,一个沉默努力充实安静的自己。 19、你相信梦想,梦想才会相信你。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。 20、生活不会按你想要的方式进行,它会给你一段时间,让你孤独、迷茫又沉默忧郁。但如果靠这段时间跟自己独处,多看一本书,去做可以做的事,放下过去的人,等你度过低潮,那些独处的时光必定能照亮你的路,也是这些不堪陪你成熟。所以,现在没那么糟,看似 生活对你的亏欠,其实都是祝愿。 10、放手如拔牙。牙被拔掉的那一刻,你会觉得解脱。但舌头总会不由自主地往那个空空的牙洞里舔,一天数次。不痛了不代表你能完全无视,留下的那个空缺永远都在,偶尔甚至会异常挂念。适应是需要时间的,但牙总是要拔,因为太痛,所以终归还是要放手,随它去。 11、这个世界其实很公平,你想要比别人强,你就必须去做别人不想做的事,你想要过更好的生活,你就必须去承受更多的困难,承受别人不能承受的压力。 12、逆境给人宝贵的磨炼机会。只有经得起环境考验的人,才能算是真正的强者。自古以来的伟人,大多是抱着不屈不挠的精神,从逆境中挣扎奋斗过来的。 13、不同的人生,有不同的幸福。去发现你所拥有幸运,少抱怨上苍的不公,把握属于自己的幸福。你,我,我们大家都可以经历幸福的人生。 14、给自己一份坚强,擦干眼泪;给自己一份自信,不卑不亢;给自己一份洒脱,悠然前行。轻轻品,静静藏。为了看阳光,我来到这世上;为了与阳光同行,我笑对忧伤。 15、总不能流血就喊痛,怕黑就开灯,想念就联系,疲惫就放空,被孤立就讨好,脆弱就想家,不要被现在而蒙蔽双眼,终究是要长大,最漆黑的那段路终要自己走完。 16、在路上,我们生命得到了肯定,一路上,我们有失败也有成功,有泪水也有感动,有曲折也有坦途,有机遇也有梦想。一路走来,我们熟悉了陌生的世界,我们熟悉了陌生的面孔,遇人无数,匆匆又匆匆,有些成了我们忘不掉的背影,有些成了我们一生的风景。我笑, 便面如春花,定是能感动人的,任他是谁。 17、努力是一种生活态度,与年龄无关。所以,无论什么时候,千万不可放纵自己,给自己找懒散和拖延的借口,对自己严格一点儿,时间长了,努力便成为一种心理习惯,一种生活方式! 18、自己想要的东西,要么奋力直追,要么干脆放弃。别总是逢人就喋喋不休的表决心或者哀怨不断,做别人茶余饭后的笑点。 19、即使不能像依米花那样画上完美的感叹号,但我们可以歌咏最感人的诗篇;即使不能阻挡暴风雨的肆虐,但我们可以左右自己的心情;即使无法预料失败的打击,但我们可以把它当作成功的一个个驿站。 20、能力配不上野心,是所有烦扰的根源。这个世界是公平的,你要想得到,就得学会付出和坚持。每个人都是通过自己的努力,去决定生活的样子。

八年级上册数学幂的运算知识点和典型习题分类汇总附答案

八年级上册数学幂的运算知识点和典型习题分类汇总附答案

第9讲 幂的运算❖ 基本知识(熟记,会推导,会倒过来写,要提问.) 1、运算顺序,乘方开方,再乘除,最后加减。

nm nma a a +=⋅2、同底数幂相乘【推导】:【推导】n m nmaa a -=÷3、同底数幂相除:【推导】4、0的任何非0次幂等于0)0( 00≠=n n, 5、0的0次幂没有意义6、任何不等于0的数的0次幂都等于1)0( 10≠=a a , n naa 1=-7、负指数:,其实就是取倒数!【物理上用!】 mnn m a a =)(8、幂的乘方:【推导】mm m b a ab =)(9、积的乘方:【推导】n n nb a b a =⎪⎭⎫⎝⎛10、商的乘方:【推导】❖ 基本计算训练 【同底数幂相乘】 1、计算下列各题 52x x ⋅(1)6a a ⋅(2)34)2()2()2(-⨯-⨯-(3)13+⋅m m x x (4)2、计算下列各题 b b ⋅5(1)32212121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(2)62-⋅a a (3)12+⋅n ny y (4)参考答案1、(17x );(27a );(3)256;(414+m x )2、(15b );(2641);(34-a );(413+n y )【同底数幂相除】 1、计算下列各题 28x x ÷(1)25)()(ab ab ÷(2)64xx (3)32-nn (4)2、计算下列各题 57-÷x x (1)88m m ÷(2)710)()(a a -÷-(3)35)()(xy xy ÷(4)3、计算下列各题431010-(1)32--yy (2)64nn (3)641010-(4)参考答案1、(16x );(233b a );(32-x);(35n )2、(112x );(2)1;(33a -);(422y x )3、(1710);(2y );(32-n );(41010-)【幂的乘方】 1、计算下列各题53)10((1)44)(a (2)2)(m a (3)34)(x -(4)2、计算下列各题33)10((1)23)(x (2)5)(m x -(3)532)(a a ⋅(4)参考答案1、(11510);(216a );(3ma2);(412x -) 2、(1910);(26x );(3mx 5-);(411a )【积的乘方】 1、计算下列各题 3)2(a (1)3)5(b -(2)22)(xy (3)43)2(x -(4)2、计算下列各题 4)(ab (1)321⎪⎭⎫ ⎝⎛-xy (2)32)103(⨯-(3)32)2(ab (4)参考答案1、(138a );(23125b -);(342y x );(41216x ) 2、(144b a );(23381y x -);(37107.2⨯-);(4)638b a【幂的运算综合】1、判断下面计算的对错,并把错误的改正过来。

八年级数学上册 幂的运算培优训练

八年级数学上册  幂的运算培优训练

幂的运算培优训练一、同底数幂的乘法及其推广例1、计算:(1)x·(-x2)·(-x)2·(-x3)·(-x)3 (2)(a-b)2·(b-a)3【变式】规定a*b=2a×2b,求:(1)求2*3;(2)若2*(x+1)=16,求x的值.二、幂的乘方与积的乘方(1)计算:(-m3)2•m5(2)计算:-82018×(-0.125)2018(3)已知a m=6,a n=2,求a2m+3n的值.【变式】若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.三、同底数幂的除法例3:(1)a 6÷a 2;(2)(-a )5÷(-a )2(3)(x -y )10÷(y -x )5÷(x -y );【变式】若33×9m +4÷272m -1的值为729,求m 的值.例4: 2-1-(-23)-2+(32)0【拓展应用】(1)若3x =4,3y =6,求92x -y +27x -y 的值.(2)若26=a 2=4b ,求a +b 值.(3)比较大小:2333和4222.【能力提升】1. 下列计算正确的是( )A .a •a 2=a 3B .a +a 2=a 3C .a 3•a 3=a 9D .a 3+a 3=a 62. 计算(53)2017×(-0.6)2018的结果是( )A .-53B .53C .-0.6D .0.63.若2(3x -6)-2+(x -3)o 有意义,则x 的取值范围是( )A .x >3;B .x <2 ;C .x ≠3或x ≠2;D .x ≠3且x ≠2.4. 若a m =5,a n =6,则a m +n = .5. 计算:(-0.25)2019×42018= .6. 汉语言文字博大精深,丰富细腻易于表达,比如形容时间极短的词语有“一刹那”、“眨眼间”、“弹指一挥间”等根据唐玄奘《大唐西域记》中记载,一刹那大约是0.013秒.将0.013用科学记数法表示应为___________________7. 已知(a m )n =a 6,(a m )2÷a n =a 3(1)求mn 和2m -n 的值;(2)求4m 2+n 2的值.8. 化简求值:(2x -y )13÷[(2x -y )3]2÷[(y -2x )2]3,其中x =2,y =-1.9. 已知常数a 、b 满足3a •3b =27,且(5a )2•(5b )2÷(125a )b =1,求a 2+b 2的值.10. 已知5a =2b =10,求1a +1b 的值.幂的运算【能力提升】答案:1. 下列计算正确的是( )A .a •a 2=a 3B .a +a 2=a 3C .a 3•a 3=a 9D .a 3+a 3=a 6 解:A .a •a 2=a 3,此选项正确;B .a 与a 2不是同类项,不能合并,此选项错误;C .a 3•a 3=a 6,此选项错误;D .a 3+a 3=2a 3,此选项错误;故选:A .2. 计算(53)2017×(-0.6)2018的结果是( )A .-53B .53C .-0.6D .0.6 解:(53)2017×(-0.6)2018=(53)2017×(-35)2018=(53)2017×(35)2017×35=35=0.6.故选:D .3.若2(3x -6)-2+(x -3)o 有意义,则x 的取值范围是() A .x >3; B .x <2 ; C .x ≠3或x ≠2;D .x ≠3且x ≠2.解:同时满足3x -6≠0,x -3≠0故选:D .4. 若a m =5,a n =6,则a m +n = .解:∵a m =5,a n =6,∴a m +n =a m •a n =5×6=30.5. 计算:(-0.25)2019×42018= .解:(-0.25)2019×42018=(-0.25)2018×42018×(-0.25)=(-0.25×4)2018×(-0.25)=-0.25.6. 汉语言文字博大精深,丰富细腻易于表达,比如形容时间极短的词语有“一刹那”、“眨眼间”、“弹指一挥间”等根据唐玄奘《大唐西域记》中记载,一刹那大约是0.013秒.将0.013用科学记数法表示应为___________________解:0.013=1.3×10-2.7. 已知(a m)n=a6,(a m)2÷a n=a3(1)求mn和2m-n的值;(2)求4m2+n2的值.解:(1)∵(a m)n=a6,(a m)2÷a n=a3,∴a mn=a6,a2m-n=a3,则mn=6,2m-n=3;(2)当mn=6、2m-n=3时,4m2+n2=(2m-n)2+4mn=32+4×6=9+24=33.8. 化简求值:(2x-y)13÷[(2x-y)3]2÷[(y-2x)2]3,其中x=2,y=-1.解:原式=(2x-y)13÷(2x-y)6÷ (y-2x)6=(2x-y)13÷(2x-y)6÷ (2x-y)6=2x-y当x=2,y=-1时,原式=5.9. 已知常数a、b满足3a•3b=27,且(5a)2•(5b)2÷(125a)b=1,求a2+b2的值.解:∵3a•3b=27,∴3a+b=33,∴a+b=3,∵(5a)2•(5b)2÷(125a)b=52a+2b÷53ab=1,∴2a+2b=3ab,∴2(a+b)=3ab=6,∴ab=2,∴a2+b2=(a+b)2-2ab=32-4=5.10. 已知5a=2b=10,求1a+1b的值.解:∵5a=2b=10,∴(5a)b=10b,(2b)a=10a,∴5ab=10b,2ab=10a,∴5ab•2ab=10b•10a,∴10ab=10a+b,∴ab=a+b,∴1a+1b=a+bab=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档