2018中考一元一次不等式(组)真题

合集下载

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。

§2.3 一元一次不等式(组)

§2.3 一元一次不等式(组)

解析 (1)根据题意,得-2x+3>1,解得x<1. (5分) (2)B. (7分) 理由:由(1)知x<1,∴-x>-1,∴-x+2>1, 又(-x+2)-(-2x+3)=x-1<0, ∴-x+2<-2x+3, ∴-x+2对应的点在点A与点B之间,即在线段AB上.
栏目索引
B组 2016—2020年全国中考题组 考点1 一元一次不等式(组) 1.(2017安徽,5,4分)不等式4-2x>0的解集在数轴上表示为 ( )
5.(2020淮安,18,8分)解不等式2x-1>
3x-1 2
.
解:去分母,得2(2x-1)>3x-1.
……
(1)请完成上述解不等式的余下步骤;
(2)解题回顾:本题“去分母”这一步的变形依据是
(填“A”或“B”).
A.不等式两边都乘(或除以)同一个正数,不等号的方向不变
B.不等式两边都乘(或除以)同一个负数,不等号的方向改变
解析
3x-1
(1)2x-1> 2 ,
去分母,得2(2x-1)>3x-1,
去括号,得4x-2>3x-1,
移项,得4x-3x>-1+2,
合并同类项,得x>1.
(2)A.
栏目索引
6.(2018盐城,18,6分)解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.
解析 3x-1≥2(x-1), 去括号,得3x-1≥2x-2, 移项,得3x-2x≥1-2, 合并同类项,得x≥-1. 把解集表示在数轴上,如图.
D.z>y>x
答案 A 五位评委打的五个分数的总分是固定的,当去掉一个最低分之后,剩下的四个分数和最大,故y 是最大的.比较x和z的大小时,由一个去掉了最高分,一个去掉了最高分和最低分,可知3z+最低分=4x,又 最低分<z,所以4x<4z,即目索引

一元一次不等式(组) 选择题题库

一元一次不等式(组) 选择题题库

一元一次不等式(组) 选择题题库一、单选题1. (2019河北)语句“x 的18与x 的和不超过5”可以表示为( A )A. x8+x ≤5 B. x8+x ≥5C. 8x +5≤5 D.8x +x =52. (2019桂林)如果a >b ,c <0,那么下列不等式成立的是( D )A. a +c >bB. a +c >b -cC. ac -1>bc -1D. a (c -1)<b (c -1)3. (2018海南)下列四个不等式组中,解集在数轴上表示如图所示的是(D )第3题图A. ⎩⎪⎨⎪⎧x ≥2x >-3B. ⎩⎪⎨⎪⎧x ≤2x <-3C. ⎩⎪⎨⎪⎧x ≥2x <-3D. ⎩⎪⎨⎪⎧x ≤2x >-34. (2019山西)不等式组⎩⎪⎨⎪⎧x -1>32-2x <4的解集是( A )A. x >4B. x >-1C. -1<x <4D. x <-15. (2019宿迁)不等式x -1≤2的非负整数解有( D )A. 1个B. 2个C. 3个D. 4个6. (2019衡阳)不等式组⎩⎪⎨⎪⎧2x >3x x +4>2的整数解是( B )A. 0B. -1C. -2D. 17. (2019日照)把不等式组⎩⎪⎨⎪⎧2-x ≤5x +32<2的解集在数轴上表示出来,正确的是( C )1.学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x +30y ≥500”表示的实际意义是( A )A .两种客车总的载客量不少于500人B .两种客车总的载客量不超过500人C .两种客车总的载客量不足500人D .两种客车总的载客量恰好等于500人2.若x y >,则下列式子中错误的是( D )A .33x y ->-B .33x y >C .33x y +>+D .33x y ->-3.x =3是下列不等式( D )的一个解.A .x +1<0B .x +1<4C .x +1<3D .x +1<51.据我市气象台报道,今天的气温t 的范围是19 ℃≤t ≤21 ℃,则今天的最低气温是(A )A.19 ℃B.19.1 ℃C.18.9 ℃D.21 ℃2.数学表达式:①-5<7;②3y -6>0;③a =6;④x -2x ;⑤a ≠2;⑥7y -6>5y +2中,是不等式的有(C )A.2个B.3个C.4个D.5个3.若x >y ,则下列式子中错误的是(D )A.x -3>y -3B.x 3>y 3C.x +3>y +3D.-3x >-3y 4.不等式2x -1>3的解集为(C )A.x >1B.x >-2C.x >2D.x <25.若代数式3x +4的值不大于0,则x 的取值范围是(B )A.x <-43B.x ≤-43C.x <43D.x ≥436.不等式组⎩⎪⎨⎪⎧x +1>2,3x -4≤2的解集表示在数轴上正确的是(C )7.如图,a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是(C )A.a >c >bB.b >a >cC.a >b >cD.c >a >b8.若不等式(a -3)x >a -3的解集为x >1,则(A )A.a >3B.a <3C.a ≠3D.a 为任何数9.不等式组⎩⎪⎨⎪⎧3x ≥9,x <5的整数解共有(B ) A.1个 B.2个 C.3个 D.4个10.一次函数y =kx +b(k ≠0)的图象如图所示,当y >0时,x 的取值范围是(C )A.x <0B.x >0C.x <2D.x >211.若函数y =(2a -1)x +(a -1)的图象经过第一、二、三象限,则a 的取值范围是(B )A.a >12B.a >1C.12<a <1D.a <1212.已知(x -2)2+|2x -3y -m|=0中,y 为正数,则m 的取值范围是(C )A.m <2B.m <3C.m <4D.m <513.某校举行关于“活力毕节”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是(A )A.16B.17C.15D.1214.关于x 的不等式3x -a ≤0只有两个正整数解,则a 的取值范围是(B )A.6<a <9B.6≤a <9C.6≤a ≤9D.6<a ≤915.某市居民用电的电价实行阶梯收费,收费标准如下表: 一户居民每月用电量x(度) 电费价格(元/度)0<x ≤200 0.48200<x ≤400 0.53x >400 0.78七月份是用电高峰期,李叔计划七月份电费支出不超过200元,则李叔家七月份最多可用电的度数是(D )A.100B.400C.397D.3964.不等式220x -≤的解集在数轴上表示正确的是( D )A .B .C .D .5.下列说法正确的是( A )A . 3.14x =是不等式250x ->的一个解B .352x x+<是一元一次不等式 C .不等式组:35318x x +<⎧⎨->⎩有一个正整数解 D .不等式:230x -+>的解集是:32x > 1.如果a b >,那么下列各式中正确的是( C ).A.33a b -<-B.33a b < C.22a b -<- D.a b ->- 2.如图,图中阴影部分表示x 的取值范围,则下列表示中正确的是( B )A.x >-3<2B.-3<x ≤2C.-3≤x ≤2D.-3<x <223.点A (4,12m m --)在第三象限,则m 的取值范围是( C ). A.12m > B.4m< C.142m << D.4m > 4.如图,当y <0时,自变量x 的范围是 ( A ).A .x <-2B .x >-2C .x >2D .x <25.不等式组21511x x +<⎧⎨+-⎩,≥的整数解个数为( D )A.1个B.2个C.3个D.4个 (4题图) 6.已知正比例函数(21)y m x =-的图象上两点11(,)A x y ,22(,)B x y ,当12x x <时,有12y y >,则m 的取值范围是( A )A.12m <B.12m > C.2m < D.0m > 7.如果不等式组541x x x m+<-⎧⎨<⎩ 无解,则m 的取值范围是( D )A.m <2B.m >2C.m ≥2D.m ≤28.如果不等式213-<+x m x 的解集是1>x ,那么m 的值是( B ) A.21-=m B.1-=m C.23=m D.1=m 9.若不等式组⎩⎨⎧>≤<mx x 21有解,则m 的取值范围是( A )A.2<mB.2≥mC.1<mD.21<≤m10.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( B )A.6折B.7折C.8折D.9折6.某商品的标价比成本价高%a ,根据市场需要,该商品需降价%b .为了不亏本,b 应满足( B ) A .b a ≤ B .100100a b a ≤+ C .100a b a ≤+ D .100100a b a≤- 7.如图,正比例函数y kx =与一次函数y ax b =+交于点(,)P m n ,则关于x 的不等式()0a k x b -+>的解集为( B )A .x m >B .x m <C .x n >D .x n <9.若关于x 的不等式组3210x x m -≤⎧⎨-<⎩的所有整数解的和是6,则m 的取值范围是( C ) A .3<m <4 B .3≤m <4 C .3<m ≤4 D .3≤m ≤410.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( D )A .2a >-B .2a <C .22a -<<D .2a ≤一、选择题(每小题3分,共30分)1.“x 的3倍与y 的和不小于2”用不等式可表示为( C )A .3x +y >2B .3(x +y )>2C .3x +y ≥2D .3(x +y )≥22.已知a >b >0,下列结论错误的是( C )A .a +m >b +mB .ac 2>bc 2(c ≠0)C .-2a >-2b D.a 2>b 23.一元一次不等式2(x +1)≥4的解集在数轴上表示为( A )A. B.C. D.4.不等式组⎩⎪⎨⎪⎧3x <2x +4,x -1≥2的解集是( C ) A .x >4 B .x ≤3C .3≤x <4D .无解5.与不等式x -33<-1有相同解集的是( C ) A .3x -3<4x -5B .2(x -3)<3(4x +1)-1C .3(x -3)<2(x -6)+3D .3x -9<4x -46.在平面直角坐标系内,点P (2x -6,x -5)在第四象限,则x 的取值范围是( A )A .3<x <5B .-3<x <5C .-5<x <3D .-5<x <-37.若关于x 的方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( A )A .m >-54B .m <-54C .m >54D .m <548.若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1有解,则实数a 的取值范围是( C ) A .a <-36 B .a ≤-36C .a >-36D .a ≥-369.如图,直线y =kx +b 经过点A (-1,-2)和点B (-2,0),直线y =2x 过点A ,则不等式2x <kx +b <0的解集为( B )A .x <-2B .-2<x <-1C .-2<x <0D .-1<x <010.有一家人参加登山活动,他们要将矿泉水分装在旅行包内带上山.若每人带3瓶,则剩余3瓶;若每人带4瓶,则有一人带了矿泉水,但不足3瓶,则这家参加登山的人数为( D )A .5人B .6人C .7人D .5人或6人1.某市4月5日的气温是20 ℃±3 ℃,用不等式表示该市4月5日的气温T 的范围是( D )A .17 ℃<T <20 ℃B .17 ℃≤T ≤20 ℃C .20 ℃<T <23 ℃D .17 ℃≤T ≤23 ℃2.若x >y ,则下列式子中错误的是( D )A .x -3>y -3B .x 3>y 3C .x +3>y +3D .-3x >-3y 3.不等式2x ≥x -1的解集在数轴上表示正确的是( B )4.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( A )A .m >92B .m <0C .m <92D .m >0 5.已知a<b ,若c 是任意有理数,则下列不等式中总成立的是( A )A .a +c<b +cB .a -c>b -cC .ac>bcD .ac 2>bc 26.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围是( C ) A .m >-23 B .m ≤23 C .m >23 D .m ≤-237.若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,则m 的取值范围是( A )A .-1≤m <0B .-1<m ≤0C .-1≤m ≤0D .-1<m <08.方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解满足0<x +y <1,则k 的取值范围是( A ) A .-4<k <0 B .-1<k <0 C .0<k <8 D .k >-49.某运输公司要将300吨的货物运往某地,现有A ,B 两种型号的汽车可调用,已知A 型汽车每辆可装货物20吨,B 型汽车每辆可装货物15吨.在每辆汽车不超载的情况下,要把这300吨货物一次性装运完成,并且A 型汽车确定要用7辆,至少调用B 型汽车的辆数为( B )A .10B .11C .12D .1310.我们定义⎝ ⎛⎭⎪⎫a b c d =ad +bc ,例如⎝ ⎛⎭⎪⎫234 5=2×5+3×4=22,若x 满足-2≤⎝ ⎛⎭⎪⎫4 23 x <2,则整数x 的值有(B ) A .0个 B .1个C .2个D .3个1.下列各式中,是一元一次不等式的是( C )A .x 2≥0B .2x -1C .2y ≤8D .1x -3x >02.若x >y ,则下列式子中错误的是( C )A .x -3>y -3B .x +3>y +3C .-3x >-3yD .x 3>y33.一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( C )(第3题)A .-2<x <1B .-2<x ≤1C .-2≤x <1D .-2≤x ≤14.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( A )A .m >92B .m <0C .m <92 D .m >05.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围是( A )A .-1<m <3B .1<m <3C .-3<m <1D .m >-16.若关于x 的一元一次不等式组⎩⎨⎧x -2m <0,x +m >2有解,则m 的取值范围是( C )A .m >-23B .m ≤23C .m >23D .m ≤-237.解不等式2x -12-5x +26-x ≤-1,去分母,得( C )A .3(2x -1)-5x +2-6x ≤-6B .3(2x -1)-(5x +2)-6x ≥-6C .3(2x -1)-(5x +2)-6x ≤-6D .3(2x -1)-(5x +2)-x ≤-18.方程组⎩⎨⎧3x +y =k +1,x +3y =3的解满足0<x +y <1,则k 的取值范围是( A ) A .-4<k <0 B .-1<k <0 C .0<k <8 D .k >-49.某年7月份全国多地出现极端高温天气,网友戏称,三分之一个中国进入了“烧烤”模式,市民出行纷纷撑伞防晒.某商场抓住这一商机,以20元的进价购进一批太阳伞,以30元的标价出售,为了让利给顾客,商家准备打折销售,但要保持利润率不低于5%,则至多打( B )A .6折B .7折C .8折D .9折10.若关于x 的不等式组⎩⎨⎧x -a ≥0,2x -b <0的整数解为x =1和x =2,则适合这个不等式组的整数a ,b 组成的有序实数对(a ,b )共有( C )A .0对B .1对C .2对D .3对。

中考数学复习 一元一次不等式(组)及应用

中考数学复习 一元一次不等式(组)及应用

“≠”连接而成的式子.
2.解集:一般地,一个含有未知数的不等式的所有
的解,组成这个不等式的解集.
如果a>b,那么a±c>b±c
3.性质如果a>b,c>0,那么ac>bc或ac>bc
如果a>b,c<0,那么ac
①_<_bc或ac
②_<_bc
第1部分 第二单元 方程(组)与不等式(组)
二、一元一次不等式 一元一次不等式
第二单元 方程(组)与不等式(组)
课时 8 一元一次不等式(组)及应用
CONTENTS
目 录
课前自测 知识梳理 知识过关
第1部分 第二单元 方程(组)与不等式(组)
课前自测
1.已知a>b,则下列不等式中不正确的是( C )
A.4a>4b
B.a+4>b+4
C.-4a>-4b
D.a-4>b-4
第1部分 第二单元 方程(组)与不等式(组)
第1部分 第二单元 方程(组)与不等式(组)
广东中考
1.(2013广东)已知实数a,b,若a>b,则下列结论 正确的是( D )
A.a-5<b-5 B.2+a<2+b C.a3<b3 D.3a>3b
第1部分 第二单元 方程(组)与不等式(组)
2.(2018广东)不等式3x-1≥x+3的解集是( D )
(1)求商场销售A,B两种型号计算器的销售价格分别 是多少元?(利润=销售价格-进货价格)
(2)商场准备用不多于2 500元的资金购进A,B两种 型号计算器共70台,问最少需要购进A型号的计算器多 少台?
第1部分 第二单元 方程(组)与不等式(组)
解:(1)设 A 种型号计算器的销售价格是 x 元,B 种

上海六年级数学下册同步精练 专题04 一元一次不等式(组)(真题测试)(教师版)

上海六年级数学下册同步精练 专题04 一元一次不等式(组)(真题测试)(教师版)

专题04一元一次不等式(组)【真题测试】一、选择题1.(金山2018期中5)如果x >y ,那么下列结论中错误的是()(A )x 4>y 4(B )22x y ->-(C )44x y +>+(D )33x y>【答案】B ;【解析】因为x y >,所以44x y >,22x y -<-,44x y +>+,33x y>,故B 错误,因此选B.2.(浦东四署2019期中5)下列不等式的变形不正确的是()A.若a b >,则33a b +>+;B.若a b >,则33a b -<-;C.若a b >,则0a b ->;D.若a b >,则ac bc >.【答案】D ;【解析】根据不等式性质1知A 正确;根据不等式性质1、3知B 正确;根据不等式性质1知C 正确;根据不等式性质2、3可知当0c >时,有ac bc >,若当0c <时,有ac bc <,故D 错误;因此选D.3.(金山2018期末3)如果a 、b 都是有理数(0≠⋅b a ),且b a <,那么下列结论正确的是()(A)22b a <;(B)b a 22-<-;(C)ba 11<;(D)22a b -+>-+.【答案】D;【解析】A、如:222,1a b a b =-=>,则,故A 错误;B、根据不等式性质3,可得22a b ->-,故B 错误;C、如:111,2a b a b==>,则,故C 错误;D、根据不等式性质3和1可知22a b -+>-+,故D 正确;因此选D.4.(奉贤2018期末3)如果a b >,下列不等式正确的是()A .)3()3(-+<-+b aB .b a ->-55C .c a +3<c b+3D .3232+-<+-b a 【答案】D;【解析】考查不等式的性质,因为a b >,所以(3)(3)a b +->+-(性质1),故A 错误;因为a b >,所以55a b -<-(性质3、1),故B 错误;因为a b >,所以33a bc c +>+(性质2、1),故C 错误;因为a b >,所以2323a b -+<-+(性质3、1),故D 正确;因此答案选D.5.(浦东四署2019期中6)已知有理数a 、b 、c 、d ,且满足以下条件:0,0,0abcd a b cd <+=>,那么在这四个数中负数的个数至少有()A.1个;B.2个;C.3个;D.4个.【答案】A ;【解析】由0a b +=可知a 、b 中必有一个为负数,一个为正数;由0cd >可知c 、d 同号,因此在这四个数中负数的个数至少有1个,因此选A.6.(崇明2018期中2)下列不等式组中,解集在数轴上表示出来如图所示的不等式组为()(A)⎩⎨⎧-≤>;1,2x x (B)⎩⎨⎧-≥<;1,2x x (C)⎩⎨⎧-><;1,2x x (D)⎩⎨⎧-≤<.1,2x x 【答案】B;【解析】根据图形可知,12x -≤<即21x x <⎧⎨≥-⎩.故选B.二、填空题7.(普陀2018期末12)不等式511x ->的解集是.【答案】115x <-;【解析】解不等式511x ->,得115x <-(不等式性质3).8.(松江2018期末4)不等式组43x x ≤-⎧⎨<-⎩的解集是_______________.【答案】4x ≤-;【解析】解不等式组43x x ≤-⎧⎨<-⎩的解集是4x ≤-,规律是“小小取小”.9.(浦东四署2019期中13)不等式2541x x ->-的最大整数解是.【答案】3x =-;【解析】移项得:2451x x ->-,合并得:24x ->,系数化为1得:2x <-,故其中最大的整数解为3x =-.10.(浦东2018期末9)比较大小:如果a b <,那么23______23a b --.(填“>”“<”或“=”)【答案】>;【解析】因为a b <,所以33a b ->-(不等式性质3),所以2323a b ->-(不等式性质1).11、(金山2018期末12)若23x -是非负数,那么满足题意的最小整数x 是.【答案】2x =;【解析】依题,得203x -≥,解得2x ≥,所以最小整数是2;12.(金山2018期中15)已知a 与b 两数的和是非负数,若用不等式表示,那么结果是.【答案】0a b +≥;【解析】因为a 与b 两数的和是非负数,所以用不等式表示为0a b +≥.13.(松江2019期中9)用不等式表示“x 的相反数减去3的差是一个非负数”:.【答案】30x --≥;【解析】用不等式表示“x 的相反数减去3的差是一个非负数”为30x --≥.14.(崇明2018期中11)用不等式表示“2-a 是不大于3-的数”为.【答案】23a -≤-;【解析】用不等式表示“2a -是不大于-3的数”为23a -≤-.15.(奉贤2018期末17)若不等式组412x m x m <-⎧⎨>+⎩无解,则m 的取值范围是.【答案】1m ≤;【解析】因为不等式组412x m x m <-⎧⎨>+⎩无解,故412m m -≤+,解得1m ≤.16.(金山2018期中18)关于x 的不等式(1)1b x +>-的解集是32x <-,那么关于x 的不等式2)1b x +<-(的解集为.【答案】3x <-;【解析】因为关于x 的不等式(1)1b x +>-的解集是32x <-,所以由(1)1b x +>-得11x b -<+,则1312b -=+,所以53b =-,将53b =-代入2)1b x +<-(中得113x <-,所以3x <-.三、解答题17.(浦东2018期末21)解不等式:)9(5-x ≥)1(615--x .【解析】解:去括号,得5451566x x -≥-+,移项,得562145x x +≥+,所以6x ≥.所以,原不等式的解集为6x ≥.18.(金山2018期中26)解不等式:1015(82)x x x -<--.【答案】2x >-;【解析】解:去括号,得101582x x x -<-+,移项,得158210x x x -+<+,合并,得612x -<,系数化为1,得2x >-.所以原不等式的解集是2x >-.19.(松江2018期中25)解不等式:632412+≥--x x ,并把它的解集表示在数轴上.【答案】3x ≤;【解析】解:去分母,得243(1)2(23)x x --≥+,去括号,得243346x x -+≥+,移项整理得721x -≥-,所以3x ≤.所以原不等式的解集为3x ≤.将不等式的解集在数轴上表示如图所示:20.(宝山2018期末23)解不等式631125x x ≤--,并把不等式的解集表示在数轴上.【答案】32x ≥;【解析】解:去分母,得54(1)2x x --≤,去括号,得5442x x -+≤,移项合并,得69x -≤-,所以32x ≥.故原不等式的解集为32x ≥.用数轴表示如下图所示.21.(浦东四署2019期中23)解不等式组:26623232x x x x -≤-⎧⎪⎨++>⎪⎩;在数轴上表示出不等式组的解集,并写出它的整数解.【解析】解:解不等式2662x x -≤-,得3x ≤,解不等式3232xx ++>,得1x >-,将不等式解集表示在数轴上如下:所以不等式组的解集为13x -<≤;则不等式组的整数解有0,1,2,3x =.22.(杨浦2019期中27)解不等式组1225104(3)2(1)x x x x -+⎧>⎪⎨⎪--≥-⎩①②,并把它的解集在数轴上表示出来.【答案】34x <≤;【解析】解:由①得:5524,5245,3x x x x x ->+->+∴>,由②得:1041222,624,4x x x x -+≥-∴-≥-∴≤.所以原不等式组的解集为34x <≤.23.(黄浦2018期末21)解不等式组:2(1)5223x x x x -<⎧⎪+⎨<+⎪⎩,.并把不等式组的解集表示在数轴上.【答案】12x -<<;【解析】解:2(1)5223x x x x -<⎧⎪+⎨<+⎪⎩, .①②,由①得2(1)x x -<,得2x <;由②得523(2)x x +<+,得1x >-;∴不等式组的解集为:12x -<<.把解集表示在数轴上如图所示.24.(宝山2018期末24)求不等式组32452113x x x ->-⎧⎪-⎨≤⎪⎩的正整数解.【答案】1和2;【解析】解:32452113x x x ->-⎧⎪-⎨≤⎪⎩①②,由①得,3x <,由②得,2x ≤,解集数轴表示略,所以,原不等式的解集是2x ≤,正整数解为1,2.25.(松江2018期末22)求不等式组:245103(2)21(6)x x x x -<-⎧⎨-≤-+⎩①②的整数解.【答案】3,4,5;【解析】由○1得36x -<-,解得2x >;由○2式去括号:36216x x -≤--,解得214x ≤;所以不等式组的解集为:2124x <≤,所以其中的整数解为3,4,5.26.(普陀2018期末23)解不等式组:612,39(2)4x x x -+-⎧⎨⎩≥<①②并把它的解集在数轴上表示出来.【答案】132x <≤;【解析】解:由①,解得1.2x ≥由②,解得3x <.不等式①、②的解集在数轴上表示为:所以,原不等式组的解集是132x <≤.27.(浦东四署2019期中25)最近,王老师家所在的小区新开了一家健身会所,王老师打算参加该健身会所开设的瘦身健美课程,按照收费标准,一次需要收费280元,若购买该健身会所的会员年卡,可享受如下优惠:会员年卡类型会员卡年费(元)每次收费(元)A 类2800200B 类3800150C 类580080(1)请你帮助王老师算一算,她一年参加瘦身健美课程多少次,办A 类会员年卡和办C 类会员年卡的消费费用是一样的?(2)若王老师一年参加课程的次数是20次,你认为哪种方式最省钱?(3)如果王老师想办理C 类会员年卡,那么王老师在一年内至少要参加多少次课程,才能保证比办理A 类会员卡和B 类会员卡都要省钱?【答案】(1)25次;(2)【解析】解:(1)设王老师一年参加瘦身健美课程x 次,根据题意,得2800200580080x x +=+,解方程,得25x =,答:王老师一年参加瘦身健美课程25次,办A 类会员年卡和办C 类会员年卡的消费费用是一样的;(2)不办理会员年卡:280205600⨯=元;办理A 类年卡:2800200206800+⨯=元;办理B 类年卡:3800150206800+⨯=元;办理C 类年卡:580080207400+⨯=元,故若王老师一年参加课程的次数是20次,不办理年卡最省钱;(3)设设王老师一年参加瘦身健美课程x 次,依题得:58008028002005800803800150x x x x+<+⎧⎨+<+⎩,解之得20042877x >=.答:如果王老师想办理C 类会员年卡,在一年内至少要参加29次课程,才能保证比办理A 类会员卡和B 类会员卡都要省钱.28.(浦东四署2019期末27)先阅读理解下列问题,再按要求完成解答.例题:解一元二次不等式(32)(21)0x x -+>.解:由有理数的乘法法则“两数相乘,同号得正”有320320210210x x x x ->-<⎧⎧⎨⎨+>+<⎩⎩或①②,解不等式组①得23x >,解不等式②得12x <-.所以元二次不等式(32)(21)0x x -+>的解集是2132x x ><-或.根据上述例题解答,求不等式51023x x +<-的解集.【答案】1352x -<<;【解析】解:由有理数的除法法则“两数相除,异号得负”有510510230230x x x x +>+<⎧⎧⎨⎨-<->⎩⎩或①②,解不等式组①得1352x -<<,解不等式②得无解.所以元二次不等式51023x x +<-的解集是1352x -<<.。

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式组的典型应用题类型一例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。

一元一次不等式(组)的解法

一元一次不等式(组)的解法

期末复习专项综合练习(3)一元一次不等式(组)的解法(解析版)(时间45分钟总分100分)一.选择题(共6小题,每小题4分,共24分)1.(2021•南充)不等式x12>2x23−1的正整数解的个数是( )A.1个B.2个C.3个D.4个思路引领:根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,即可得其正整数解.解:去分母得:3(x+1)>2(2x+2)﹣6,去括号得:3x+3>4x+4﹣6,移项得:3x﹣4x>4﹣6﹣3,合并同类项得:﹣x>﹣5,系数化为1得:x<5,故不等式的正整数解有1、2、3、4这4个,故选:D.解题秘籍:本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.(2021•南昌)将不等式组x+2≥12(x+3)−3>3x的解集在数轴上表示出来,正确的是( )A.B.C.D.思路引领:求出两个不等式的解集,然后表示在数轴上即可.解:x+2≥1①2(x+3)−3>3x②,解不等式①得,x≥﹣1,解不等式②得,x<3,在数轴上表示如下:.故选:D.解题秘籍:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(2022春•薛城区期中)已知点P(a+1,−a2+1)关于原点的对称点在第三象限,则a的取值范围在数轴上表示正确的是( )A.B.C.D.思路引领:根据关于原点对称的点的横坐标、纵坐标都互为相反数,根据第三象限内的点的横坐标小于零,纵坐标小于零,可得答案.解:由题意,得P(a+1,−a2+1)关于原点的对称点在第三象限,得﹣a﹣1<0,且a2−1<0,解得﹣1<a<2,如图,故选:B.解题秘籍:本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点的横坐标、纵坐标都互为相反数.4.(2021•x−1≤7−3 2 x>3(x+1)的解集表示在数轴上,正确的是( )A.B.C.D.思路引领:分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则分析选项可得答案.解:解不等式12x﹣1≤7−32x,得:x≤4,解不等式5x﹣2>3(x+1),得:x>5 2,∴不等式组的解集为:52<x≤4,故选:A.解题秘籍:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2022•绵阳)在关于x、y的方程组2x+y=m+7x+2y=8−m中,未知数满足x≥0,y>0,那么m的取值范围在数轴上应表示为( )A.B.C.D.思路引领:把m看作已知数表示出方程组的解,根据x≥0,y>0求出m的范围,表示在数轴上即可.解:2x+y=m+7①x+2y=8−m②,①×2﹣②得:3x=3m+6,即x=m+2,把x=m+2代入②得:y=3﹣m,由x≥0,y>0,得到m+2≥0 3−m>0,解得:﹣2≤m<3,表示在数轴上,如图所示:,故选:C.解题秘籍:此题考查了解一元一次不等式组,二元一次方程组的解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.6.(2021春•大竹县校级月考)关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是( )A.﹣3<b<﹣2B.﹣3≤b<﹣2C.﹣3≤b≤﹣2D.﹣3<b≤﹣2思路引领:首先解不等式,然后根据条件即可确定b的值.解:∵x﹣b>0,∴x>b,∵不等式x ﹣b >0恰有两个负整数解,∴﹣3≤b <﹣2.故选:B .解题秘籍:本题考查不等式的整数解问题,解题的关键是利用数轴分析,其次解题时必须理解题意,属于基础题,中考常考题型.二.填空题(共5小题,每题4分,共20分)7.(2021春•万州区校级期中)若﹣3是关于x 的方程x−a 3−2−x 4=1的解,则x−a 3−2−x 4≥1的解集是 x ≥﹣3 .思路引领:根据方程解的定义,将方程的解代入方程可得关于字母系数a 的一元一次方程,从而可求出a 的值,再解不等式即可.解:把x =﹣3代入方程x−a 3−2−x 4=1,可得:a =−394,把a =−394代入x−a 3−2−x 4≥1,解得:x ≥﹣3,故答案为:x ≥﹣3.解题秘籍:此题考查不等式的解法,关键是根据已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母a 的方程进行求解.8.(2021春•x +1≥−3>0的最大整数解为 .思路引领:分别求出两个不等式的解集,可得不等式组的解集,即可求最大整数解.解:解12x +1≥﹣3,解得:x ≥﹣8,解x ﹣2(x ﹣3)>0,解得:x <6,∴不等式的解集为:﹣8<x <6∴最大整数解为:x =5故答案为:x =5,解题秘籍:本题考查了一元一次不等式组的整数解,解答本题的关键是掌握一元一次不等式组的解法.9.(2021•2(x−3)−2x−13>−1的所有整数解的和是 .思路引领:首先分别计算出两个不等式的解集,再根据不等式组解集的确定规律可得x 的解集,再在解集的范围内找出符合条件的整数,算出答案即可.2(x−3)①−2x−13>−1②,由①得:x≤3,由②得:x>−115,不等式组的解集为:−115<x≤3,则不等式组的整数解为:﹣2,﹣1,0,1,2,3,所有整数解的和:﹣2﹣1+0+1+2+3=3.故答案为:3.解题秘籍:此题主要考查了一元一次不等式组的整数解,关键是正确解出不等式,确定出不等式组的解集.10.(2020春•回民区期末)若关于x的不等式组x+a≥01−2x≥x−2的解集当中有3个整数解,则a的取值范围是 1≤a<2 .思路引领:先根据一元一次不等式组解出x的取值,再根据不等式组只有3个整数解,求出a的取值范围.解:x+a≥0①1−2x≥x−2②,由①得:x≥﹣a,由②得:x≤1,∴不等式组的解集为:﹣a≤x≤1,∵有3个整数解,∴整数解为:﹣1,0,1,∴﹣2<﹣a≤﹣1,∴1≤a<2,故答案为1≤a<2.解题秘籍:此题考查的是一元一次不等式的解法,根据x的取值范围,得出x的取值范围,然后根据不等式组只有3个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.(2021秋•普陀区期末)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是 .(2)如果[x12]=3,满足条件的所有正整数x为 .思路引领:(1)根据定义:对于实数a,符号[a]表示不大于a的最大整数,即可解答;(2)根据定义:对于实数a,符号[a]表示不大于a的最大整数,先求出x的取值范围,然后在其范围内找出满足条件的所有正整数即可.解:(1)∵[a]=﹣2,∴a的取值范围是:﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1;(2)由题意得:3≤x12<4,解得:5≤x<7,∴满足条件的所有正整数x为:5,6,故答案为:5,6.解题秘籍:本题考查了解一元一次不等式组,根据题目的已知理解定义是解题的关键.三.解答题(共6小题,共54分)12.(2021秋•江东区校级期中)(1)解不等式:2x−13−9x26≤1,并把解集表示在数轴上(2≤2(x+3)>x2,并写出不等式组的整数解.思路引领:(1)首先去分母,然后去括号,移项、合并同类项,系数化成1即可求解;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.解:去分母,得:2(2x﹣1)﹣(9x+2)≤6,去括号,得:4x﹣2﹣9x﹣2≤6,移项,得:4x﹣9x≤6+2+2,合并同类项,得:﹣5x≤10,系数化成1得:x≥﹣2.把解集表示在数轴上为:;(22(x+3)⋯①>x2⋯②,解①得:x≤4,解②得:x>2,则不等式组的解集是:2<x≤4.则不等式组的整数解是:3,4.解题秘籍:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.(2021春•广饶县校级月考)若代数式3(2k5)2的值不大于代数式5k+1的值,求k的取值范围.思路引领:根据题意列出不等式,求出不等式的解集即可得到k的范围.解:根据题意得:3(2k5)2≤5k+1,去分母得:3(2k+5)≤2(5k+1),去括号得:6k+15≤10k+2,移项合并得:4k≥13,解得:k≥13 4.解题秘籍:此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解集.14.(2021春•高明区校级期末)解不等式组2x+5≤3(x+2)2x−13x2≤1,并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.思路引领:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.解:2x+5≤3(x+2)①2x−13x2≤1②,由①得:x≥﹣1,由②得:x≤3,不等式组的解集为:﹣1≤x ≤3.在数轴上表示为:.不等式组的非负整数解为3,2,1,0.解题秘籍:此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.15.(2021春•浦东新区期末)先阅读理解下列例题,再按要求完成作业.例题:解一元二次不等式(3x ﹣2)(2x +1)>0.解:由有理数的乘法法则“两数相乘,同号得正”有①3x−2>02x +1>0或②3x−2<02x +1<0解不等式组①得x >23,解不等式组②得x <−12.所以一元二次不等式(3x ﹣2)(2x +1)>0的解集是x >23或x <−12.作业题:(1)求不等式5x 12x−3<0的解集;(2)通过阅读例题和做作业题(1),你学会了什么知识和方法?思路引领:由不等式组分别解出x 的取值范围,写出x 的公共部分就是不等式组的解集.解:(1)由有理数的除法法则“两数相除,异号得负”有①5x +1>02x−3<0或②5x +1<02x−3>0解不等式组①,得−15<x <32;解不等式组②,得不等式组②无解,所以不等式5x 12x−3<0的解集为−15<x <32.(2)运用有理数的乘法法则,把一元二次不等式转化为一元一次不等式组来解决;运用有理数的除法法则,把分母中含有未知数的不等式转化为一元一次不等式(组)来解决.解题秘籍:本题考查的是一元一次不等式组的解,本题比较新颖,也不是很难.16.(2013•扬州)已知关于x 、y 的方程组5x +2y =11a +182x−3y =12a−8的解满足x >0,y >0,求实数a 的取值范围.思路引领:先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.解:5x+2y=11a+18①2x−3y=12a−8②,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是x=3a+2y=−2a+4,∵x>0,y>0,∴3a+2>0①−2a+4>0②,由①得,a>−2 3,由②得,a<2,所以,a的取值范围是−23<a<2.解题秘籍:本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(2018•南通三模)若关于x+x13>0+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.思路引领:首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.+x13>0①+5a+4>4(x+1)+3a②,由①得:x>−2 5,由②得:x<2a,则不等式组的解集为:−25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤3 2,故答案为:1<a≤3 2.解题秘籍:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。

中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)-人教版初中九年级全册数学试题

中考数学真题分类汇编(第三期)专题6 不等式(组)试题(含解析)-人教版初中九年级全册数学试题

不等式(组)1. (2018·某某江汉·3分)若关于x的一元一次不等式组的解集是x >3,则m的取值X围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.2.(2018·某某省某某·3分)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值X 围是.解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1.2.3,则3≤a<4.故答案为:3≤a<4.3.(2018·某某省某某市)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x≤2,∴不等式组的解集为﹣2<x≤2,在数轴上表示为.故选B.4. (2018•呼和浩特•3分)若满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,则实数m的取值X围是()A.m<﹣1 B.m≥﹣5 C.m<﹣4 D.m≤﹣4解:∵满足<x≤1的任意实数x,都能使不等式2x3﹣x2﹣mx>2成立,∴m<,∴m≤﹣4故选:D.5.(2018·某某某某·3分)不等式3x﹣6≥0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:3x﹣6≥0,3x≥6,x≥2,在数轴上表示为,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.1.(2018·某某省某某市)(3.00分)不等式组的解集是﹣2≤x<2 .【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.(2018·某某省某某市)不等式组的解集是0<x≤8.【解答】解:∵解不等式①得:x≤8,解不等式②得:x>0,∴不等式组的解集为0<x≤8.故答案为:0<x≤8.3. (2018•呼和浩特•3分)若不等式组的解集中的任意x,都能使不等式x ﹣5>0成立,则a的取值X围是.解:∵解不等式①得:x>﹣2a,解不等式②得:x>﹣a+2,又∵不等式x﹣5>0的解集是x>5,∴﹣2a≥5或﹣a+2≥5,解得:a≤﹣2.5或a≤﹣6,经检验a≤﹣2.5不符合,故答案为:a≤﹣6.1. (2018·某某贺州·8分)某自行车经销商计划投入7.1万元购进100辆A型和30辆B 型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A.B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧X,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.2. (2018·某某某某·8分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1.2.3,原式=•[﹣]=•=,∵x≠±3.1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.3.(2018·某某荆州·5分)求不等式组的整数解.【解答】解:解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1.0.4.(2018·某某省某某)某某市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么X围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的X围.5.(2018·某某省某某·8分)(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.【解答】解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【点评】本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式,本题属于中等题型.6.(2018·某某省·8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A.B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)3 2 120A商品200B商品设生产A种商品x千克,生产A.B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值X围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.7.(2018·某某省某某·8分)解不等式组:【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.【解答】解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.8.(2018·某某省某某市) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?【解答】解:(1)设修建一个足球场x万元,一个篮球场y万元,根据题意可得:,解得:,答:修建一个足球场和一个篮球场各需3.5万元,5万元;(2)设足球场y个,则篮球场(20﹣y)个,根据题意可得:3.5y+5(20﹣y)≤90,解得:y,答:至少可以修建6个足球场.9.(2018·某某省某某市)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:,解得:,答:购买一个篮球,一个足球各需150元,100元;(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,解得:a≤4,答;最多可购买4个篮球.10.(2018·某某省某某市)(12.00分)为落实“美丽某某”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.11. (2018•某某•9分)解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.12. (2018•某某•3分)已知点P(1﹣a,2a+6)在第四象限,则a的取值X围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(1﹣a,2a+6)在第四象限,∴,解得a<﹣3.故选:A.【点评】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(2018·某某某某·9分)解不等式组:解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.14. (2018·某某某某·10分)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【答案】(1)老师有16名,学生有284名;(2)8;(3)共有3种租车方案,最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设老师有x名,学生有y名,根据等量关系:若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,列出二元一次方程组,解出即可;(2)由(1)中得出的教师人数可以确定出最多需要几辆汽车,再根据总人数以及汽车最多的是42座的可以确定出汽车总数不能小于=(取整为8)辆,由此即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值X围,分析得出即可.【详解】(1)设老师有x名,学生有y名,依题意,列方程组为,解得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,word综合起来可知汽车总数为8辆,故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组是解题的关键.15.(2018·某某某某·8分)解方程组和不等式组:(2)【分析】(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(2),解不等式①得:x≥3;解不等式②得:x≥﹣1,所以不等式组的解集为:x≥3.16.(2018·某某某某·5分)(2)解不等式组:【解答】解:(2)解不等式2x﹣4>0,得:x>2,解不等式x+1≤4(x﹣2),得:x≥3,则不等式组的解集为x≥3.11 / 11。

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。

一元一次不等式组练习题(含答案)

一元一次不等式组练习题(含答案)
解不等式②得:x>–a,
∴不等式组的解集是:–a<x<b,
∵不等式组 的解集为2<x<3,
∴–a=2,b=3,即a=–2,
故选A.
13.【答案】C
【解析】把方程组 的两式相加,得3x+3y=2+2m,
两边同时除以3,得x+y= ,所以 <0,即m<–1.故选C.
14.【答案】0
【解析】–1< ≤2,
清理捕鱼网箱人数/人
总支出/元
A
15
9
57000
B
10
16
68000
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
所以整数解为0,1,2共3个.
故选C.
22.【解析】由①,得3x–2x<3–1,∴x<2.
由②,得4x>3x–1,∴x>–1.
∴不等式组的解集为–1<x<2.
23.【解析】解①得:x≤4,
解②得:x>2,
故不等式组的解为:2<x≤4,
在数轴上表示如下:

24.【解析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,
第九章不等式与不等式组
9.3一元一次不等式组
1.不等式组 的解集为
A. B.
C. 或 D.
2.在下列各选项中,属于一元一次不等式组的是
A. B.
C. D.

一元一次不等式组试题(含答案)

一元一次不等式组试题(含答案)

C 一元一次不等式组试题一、选择题1.下列不等式组中,是一元一次不等式组的是(CA )A.2,3xx>⎧⎨<-⎩B.10,20xy+>⎧⎨-<⎩C.320,(2)(3)0xx x->⎧⎨-+>⎩D.320,11xxx->⎧⎪⎨+>⎪⎩2.下列说法正确的是(A )A.不等式组3,5xx>⎧⎨>⎩的解集是5<x<3 B.2,3xx>-⎧⎨<-⎩的解集是-3<x<-2C.2,2xx≥⎧⎨≤⎩的解集是x=2 D.3,3xx<-⎧⎨>-⎩的解集是x≠33.不等式组2,3482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解为()A.-1 B.0 C.1 D.44.在平面直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是()|A.3<x<5 B.-3<x<5 C.-5<x<3 D.-5<x<-3 5.“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图1-6-1所示,那么每个“○”、“□”、 “△”这样的物体,按质量从小到大的顺序排列为()A.○□△B.○△□C.□○△D.△□○6.不等式组20,30x x ->⎧⎨-<⎩的解集是( )A .x>2B .x<3C .2<x<3D .无解 7.不等式23>7+5x 的正整数解的个数是( ). A 1个 B 无数个 C 3个 D 4个.8.小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为69•千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,•这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,•加在他和妈妈坐的一端,结果爸爸被跷起,那么小宝的体重可能是( ) A .千克 B .23千克 C .千克 D .千克^9.关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是 ( )A .3>aB .3≤aC .3<aD .3≥a二、填空题1.若不等式组2,x x m<⎧⎨>⎩有解,则m 的取值范围是______.2.已知三角形三边的长分别为2,3和a ,则a 的取值范围是_____.3.若不等式组2,20x a b x ->⎧⎨->⎩的解集是-1<x<1,则(a+b )2006=______.4 .当k________时,方程k x 332-=5(x-k)+1的解是非负数5.当X__________时,代数式251x -的值不小于代数式4323+-x的值. 6.若不等式组⎩⎨⎧><bx ax 的解集是空集,则a 、b 的大小关系是_______________.。

第4章 一元一次不等式(组)

第4章 一元一次不等式(组)
期末复习
第4章 一元一次不等式(组)
题型归类 过关训练
题型归类
题型一 不等式的概念和基本性质
[2018秋·长兴县期中]若a>b,则下列不等式不成立的是( A )
A.-3a>-3b
B.a-3>b-3
C.a3>b3
D.-a<-b
【解析】 A.a>b,两边同时乘以-3,不等号的方向要改变,即-3a<- 3b,A 项不成立;
7.不等式组- x-2x2<>60, 的解集是( C )
A.x>-3
B.x<-3
C.x>2
D.无解
8.不等式组x2+ x-2>6≤0,0 的解集在数轴上表示正确的是( C )
9.[2018·平度市一模]不等式组-12x<1, 的解集中,整数解有( D ) 5-x≥0
(2)常用以下结论:同大取大,同小取小,小大大小中间找,大大小小无解了. (3)利用数轴确定解集的范围更直观.
【变式跟进】
7.[2018春·萍乡期末]不等式组 12x+2-3>0, 的解集是x>4,那么m的 x>m
取值范围是( A ) A.m≤4
B.m<4
C.m≥4
D.m>4
【解析】 解不等式12(x+2)-3>0,得 x>4,由不等式组的解集为 x>4 知
B.a>b,两边同时减去 3,不等号的方向不变,即 a-3>b-3,B 项成立; C.a>b,两边同时除以 3,不等号的方向不变,即a3>b3,C 项成立; D.a>b,两边同时乘以-1,不等号的方向改变,即-a<-b,D 项成立.故 选 A.
【点悟】 运用不等式的基本性质进行判断时,要注意分析所要判断正误的 不等式是在已知不等式的基础上进行的什么类型的变换,进而确定是以哪一条基 本性质为依据进行判断.需特别注意的是,应用基本性质 3 时,不等号的方向要 改变.

2018年山东省菏泽市中考数学试卷(word原版+解析版)

2018年山东省菏泽市中考数学试卷(word原版+解析版)

2018年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号填在答题卡的相应位置。

) 1.(3分)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.12.(3分)习近平主席在2018年新年贺词中指出,“安得广厦千万间,大庇天下寒土俱欢颜!”2017年,340万贫困人口实现异地扶贫搬迁,有了温暖的新家,各类棚户区改造开工提前完成600万套目标任务.将340万用科学记数法表示为()A.0。

34×107B.34×105 C.3.4×105D.3.4×1063.(3分)如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是()A.45°B.30°C.15°D.10°4.(3分)如图是两个等直径圆柱构成的“T”形管道,其左视图是()A.B.C.D.5.(3分)关于x的一元二次方程(k+1)x2﹣2x+1=0有两个实数根,则k的取值范围是()A.k≥0 B.k≤0 C.k<0且k≠﹣1 D.k≤0且k≠﹣16.(3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58°C.32°D.26°7.(3分)规定:在平面直角坐标系中,如果点P的坐标为(m,n),向量可以用点P的坐标表示为:=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么点与互相垂直.下列四组向量,互相垂直的是() A.=(3,2),=(﹣2,3)B.=(﹣1,1),=(+1,1)C.=(3,20180),=(﹣,﹣1) D.=(,﹣),=(()2,4)8.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分,请把最后结果填写在答题卡的相应区域内.)9.(3分)不等式组的最小整数解是.10.(3分)若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.11.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.12.(3分)据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、RV减速器、电焊钳、3D视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图所示,在该扇形统计图中,美国所对应的扇形圆心角是度.13.(3分)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为3:4,∠OCD=90°,∠AOB=60°,若点B的坐标是(6,0),则点C的坐标是.14.(3分)一组“数值转换机"按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.三、解答题(本大题共10个小题,共78分,请把解答或证明过程写在答题卡的相应区域内。

一元一次不等式组试题含解-中考数学真题分类汇编第二辑

一元一次不等式组试题含解-中考数学真题分类汇编第二辑

不等式(组)一.选择题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)若关于x的一元一次不等式组的解集是x>3,则m的取值范围是()A.m>4 B.m≥4 C.m<4 D.m≤4【分析】先求出每个不等式的解集,再根据不等式组的解集和已知得出关于m的不等式,再求出解集即可.【解答】解:,∵解不等式①得:x>3,解不等式②得:x>m﹣1,又∵关于x的一元一次不等式组的解集是x>3,∴m﹣1≤3,解得:m≤4,故选:D.【点评】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于m的不等式是解此题的关键.2. (2018·湖北襄阳·3分)不等式组的解集为()A.x>B.x>1 C.<x<1 D.空集【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式2x>1﹣x,得:x>,解不等式x+2<4x﹣1,得:x>1,则不等式组的解集为x>1,故选:B.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2018•江苏宿迁•3分)若a<b,则下列结论不一定成立的是()A. a-1<b-1B. 2a<2bC.D.【答案】D【分析】根据不等式的性质逐项进行判断即可得答案.【详解】A.∵a<b,∴ a-1<b-1,正确,故A不符合题意;B.∵a<b,∴ 2a<2b,正确,故B不符合题意;C.∵a<b,∴ ,正确,故C不符合题意;D.当a<b<0时,a2>b2,故D选项错误,符合题意,故选D.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的性质是解题的关键.不等式性质1:不等式两边同时加上(或减去)同一个数,不等号方向不变;不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等号方向不变;不等式性质3:不等式两边同时乘以(或除以)同一个负数,不等号方向改变.4.(2018•江苏苏州•3分)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.一.选择题5.(2018•山东聊城市•3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,∴2≤x<5,表示在数轴上,如图所示,故选:A.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.6.(2018•山东东营市•3分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7. (2018•嘉兴•3分)不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【答案】A【考点】解一元一次不等式【解析】【解答】解:因为1-x≥2,3≥x,所以不等式的解为x≤3,故答案为A。

一元一次不等式(组)练习题

一元一次不等式(组)练习题

一元一次不等式(组) 练习题一、选择题1、若0<-b a ,则下列各式中一定正确的是( ) A 、b a > B 、0>ab C 、0<baD 、b a ->- 2、不等式组⎪⎩⎪⎨⎧≥-≤-03021x x 的整数解的个数是( )A 、1个B 、2个C 、3个D 、4个 3.不等式组⎩⎨⎧>+≤02,12x x 的解集在数轴上如图表示为( )4.下面各个结论中,正确的是( ) A .3a 一定大于2a B .13a 一定大于a C .a +b 一定大于a -b D .a 2+1不小于2a 5. 在数轴上与原点的距离小于8的点对应的x 满足( )A.-8<x <8B.x <-8或x >8C.x <8D.x >86.如果不等式()22m x m ->-的解集为1x <,那么( ) A .2m ≠B .2m >C .2m <D .m 为任意有理数7.下列说法①2x =是不等式36x ≥的一个解;②当12a ≠时,210a ->;③不等式3≥1恒成立; ④不等式230x -->和23y <-解集相同,其中正确的个数为( ) A .4个B .3个C .2个D .1个8. 现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列得不等式组为( ) A 、⎩⎨⎧≤--+≥--+6)1(6)194(1)1(6)194(x x x x B 、⎩⎨⎧≥--+≤--+6)1(6)194(1)1(6)194(x x x xC 、⎩⎨⎧≥--+≤--+5)1(6)194(1)1(6)194(x x x xD 、⎩⎨⎧≤--+≥--+5)1(6)194(1)1(6)194(x x x x9.若关于x 的不等式组⎩⎨⎧<<+a x x ,1123 的解集是x<3,则下列结论正确的是( )A 、3≤aB 、3<aC 、3>aD 、3≥a10.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买( )块肥皂. A.5 B.4 C.3 D.2二、填空题11、x 与3的和不小于6,用不等式表示为 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考一元一次不等式(组)真题
一元一次不等式(组)
参考答案与试题解析
一.选择题(共20小题)
1.(2018•衢州)不等式3x+2≥5的解集是()
A.x≥1 B.x≥C.x≤1 D.x≤﹣1
【分析】根据一元一次不等式的解法即可求出答案.
【解答】解:3x≥3
x≥1
故选:A.
2.(2018•岳阳)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.
【分析】分别解不等式组进而在数轴上表示出来即可.
【解答】解:,
解①得:x<2,
解②得:x≥﹣1,
故不等式组的解集为:﹣1≤x<2,
故解集在数轴上表示为:.
故选:D.
3.(2018•襄阳)不等式组的解集为()
A.x>B.x>1 C.<x<1 D.空集
【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
【解答】解:解不等式2x>1﹣x,得:x>,
解不等式x+2<4x﹣1,得:x>1,
则不等式组的解集为x>1,
故选:B.
4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()
A.B.C.D.
【分析】根据不等式解集的表示方法,可得答案.
【解答】解:移项,得:x﹣2x≥﹣1﹣1,
合并同类项,得:﹣x≥﹣2,
系数化为1,得:x≤2,
将不等式的解集表示在数轴上如下:

故选:B.
5.(2018•衡阳)不等式组的解集在数轴上表示正确的是()
A. B.C.
D.
【分析】分别解两个不等式得到x>﹣1和x≤3,从而得到不等式组的解集为﹣1<x≤3,然后利用此解集对各选项进行判断.
【解答】解:,
解①得x>﹣1,
解②得x≤3,
所以不等式组的解集为﹣1<x≤3.
故选:C.
6.(2018•聊城)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.
D.
【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.
【解答】解:根据题意得:,
由①得:x≥2,
由②得:x<5,
∴2≤x<5,
表示在数轴上,如图所示,
故选:A.
7.(2018•滨州)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()
A.B.C.D.
【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.
【解答】解:解不等式x+1≥3,得:x≥2,
解不等式﹣2x﹣6>﹣4,得:x<﹣1,
将两不等式解集表示在数轴上如下:
故选:B.
8.(2018•荆门)已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()
A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7
【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m 的取值范围.
【解答】解:解不等式3x﹣m+1>0,得:x>,
∵不等式有最小整数解2,
∴1≤<2,
解得:4≤m<7,
故选:A.
9.(2018•临沂)不等式组的正整数解的个数是()
A.5 B.4 C.3 D.2
【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.
【解答】解:解不等式1﹣2x<3,得:x>﹣1,
解不等式≤2,得:x≤3,
则不等式组的解集为﹣1<x≤3,
所以不等式组的正整数解有1、2、3这3个,
故选:C.
10.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()
A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1
【分析】根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.
【解答】解:由x>2a﹣3,
由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,
由关于x的不等式组仅有三个整数:
解得﹣2≤2a﹣3<﹣1,
解得≤a<1,
故选:A.
11.(2018•嘉兴)不等式1﹣x≥2的解在数轴上表示正确的是()
A.B.C.D.
【分析】先求出已知不等式的解集,然后表示在数轴上即可.
【解答】解:不等式1﹣x≥2,
解得:x≤﹣1,
表示在数轴上,如图所示:
故选:A.
12.(2018•孝感)下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()
A.B.C.D.
【分析】先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.
【解答】解:A、此不等式组的解集为x<2,不符合题意;
B、此不等式组的解集为2<x<4,符合题意;
C、此不等式组的解集为x>4,不符合题意;
D、此不等式组的无解,不符合题意;
故选:B.
13.(2018•宿迁)若a<b,则下列结论不一定成立的是()
A.a﹣1<b﹣1 B.2a<2b C.﹣>﹣D.a2<b2
【分析】由不等式的性质进行计算并作出正确的判断.
【解答】解:A、在不等式a<b的两边同时减去1,不等式仍成立,即a﹣1<b﹣1,故本选项错误;
B、在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;
C、在不等式a<b的两边同时乘以﹣,不等号的方向改变,即﹣>﹣,故本选项错误;
D、当a=﹣5,b=1时,不等式a2<b2不成立,故本选项正确;
故选:D.
14.(2018•株洲)下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x
<5()
A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>0
【分析】首先计算出不等式5x>8+2x的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.
【解答】解:5x>8+2x,
解得:x>,
根据大小小大中间找可得另一个不等式的解集一定是x<5,
故选:C.
15.(2018•娄底)不等式组的最小整数解是()
A.﹣1 B.0 C.1 D.2
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、
大大小小无解了确定不等式组的解集.
【解答】解:解不等式2﹣x≥x﹣2,得:x≤2,
解不等式3x﹣1>﹣4,得:x>﹣1,
则不等式组的解集为﹣1<x≤2,
所以不等式组的最小整数解为0,
故选:B.
16.(2018•泰安)不等式组有3个整数解,则a的取值范围是()
A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5
【分析】根据解不等式组,可得不等式组的解,根据不等式组的解有3个整数解,可得答案.【解答】解:不等式组,
由﹣x<﹣1,解得:x>4,
由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,
故不等式组的解为:4<x≤2﹣a,
由关于x的不等式组有3个整数解,
解得:7≤2﹣a<8,
解得:﹣6<a≤﹣5.
故选:B.
17.(2018•恩施州)关于x的不等式的解集为x>3,那么a的取值范围为()
A.a>3 B.a<3 C.a≥3 D.a≤3
【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.
【解答】解:解不等式2(x﹣1)>4,得:x>3,
解不等式a﹣x<0,得:x>a,
∵不等式组的解集为x>3,
∴a≤3,
故选:D.
18.(2018•台湾)如图的宣传单为菜克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全
数售出后的利润超过成本的2成?()
A.112 B.121 C.134 D.143
【分析】设妮娜需印x张卡片,根据利润=收入﹣成本结合利润超过成本的2成,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内最小的整数即可得出结论.【解答】解:设妮娜需印x张卡片,
根据题意得:15x﹣1000﹣5x>0.2(1000+5x),
解得:x>133,
∵x为整数,
∴x≥134.
答:妮娜至少需印134张卡片,才可使得卡片全数售出后的利润超过成本的2成.
故选:C.
19.(2018•长沙)不等式组的解集在数轴上表示正确的是()
A.B.C.
D.
【分析】先求出各不等式的解集,再求出其公共解集即可.
【解答】解:解不等式x+2>0,得:x>﹣2,
解不等式2x﹣4≤0,得:x≤2,
则不等式组的解集为﹣2<x≤2,
将解集表示在数轴上如下:
故选:C.
20.(2018•广东)不等式3x﹣1≥x+3的解集是()
A.x≤4 B.x≥4 C.x≤2 D.x≥2
【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,
合并同类项,得:2x≥4,
系数化为1,得:x≥2,
故选:D.。

相关文档
最新文档