2016-2017学年甘肃省高二下学期学业水平测试数学试题
甘肃省2023年普通高中学业水平合格性考试模拟测试数学试题
19.在正四棱锥 P ABCD 中, E, F 分别是 AB, AD 的中点,过直线 EF 的平面 分别与
侧棱 PB, PD 交于点 M , N .
(1)求证: MN //BD ; (2)求证: MN PC .
20.已知函数 f (x) 是定义在2,2 上的奇函数,当 0 x 2 时, f (x) x 2 2x . (1)求 f 1 (2)求: 2 x 0 时,函数 f x 的解析式;
)
A. z 2
B. z 的实部为 -1
C. y x3 C. z 的虚部为 i
D.
y
1 x
D.z 的共轭复数为
1 i
3.已知 a , b 是实数,则“ a 0 且 b 0 ”是“ a b 0 且 ab 0 ”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
词,此时 L 表示在时间 t 内该生能够记忆的单词个数.已知该生在 5min 内能够记忆 20 个
单词,则 k 的值约为( ln 0.9 0.105 , ln 0.1 2.303 )( )
A.0.021
B.0.221
C.0.461
D.0.661
二、填空题
13.命题 p : x 0, ( 1 )x 1的否定形式为
A.48
B.60
C.72
D.84
8.在 ABC 中, A, B,C 所对的边分别为 a,b, c ,若 a 1,b 7, c 3 ,则 B ( )
A.
5 6
B. 6
C. 3
D.
2 3
9.设函数
f
x
= sin
2x
π 3
,则下列结论正确的是
中学2016-2017学年高二下期末考试数学试卷含解析
2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。
指数对数运算练习题40道(附答案)
每天一刻钟,数学点点通郭大侠的数学江湖指数对数运算练习题1.已知,b=0.32,0.20.3c =,则a,b,c 三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a2.已知432a =,254b =,1325c =,则(A)b a c <<(B)a b c <<(C)b c a<<(D)c a b<<3.三个数6log ,7.0,67.067.0的大小顺序是()A.7.07.0666log 7.0<< B.6log 67.07.07.06<<C.67.07.07.066log << D.7.067.067.06log <<4.已知4log ,4.0,22.022.0===c b a ,则()A.c b a >>B.a c b>>C.c a b>>D.b c a>>5.设 1.1 3.13log 7,2,0.8ab c ===则()A.c a b <<B.ba c << C.ab c << D.bc a <<6.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是()A.b c a <<B.c b a <<C.ca b <<D.ac b <<7.已知 1.22a =,0.80.5b =,2log 3c =,则()A.a b c>>B.c b a <<C.c a b>>D.a c b>>8.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a >>9.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则()A.a>b>cB.a>c>bC.b>c>aD.c>b>a10.设0.61.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是()(A)a b c <<(B) a c b <<(C)b a c <<(D)b c a<<试卷第2页,总8页11.设a=34⎛⎫ ⎪⎝⎭0.5,b=43⎛⎫ ⎪⎝⎭0.4,c=log 34(log 34),则()A.c<b<a B.a<b<c C.c<a<bD.a<c<b12.已知132a -=,21211log ,log 33b c ==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>13.已知03131log 4,(),log 105a b c ===,则下列关系中正确的是()A.a b c >>B.b a c >>C.a c b >>D.c a b>>14.设0.5342log log 2a b c π-===,,,则()A.b a c>> B. b c a >> C.a b c >> D.a c b>>15.设0.90.48 1.512314,8,(2y y y -===,则()A.312y y y >>B.213y y y >>C.132y y y >>D.123y y y >>16.设12log 5a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则()A .a b c<<B .c b a<<C .c a b<<D .b a c<<17.设221333111(,(),()252a b c ===,则,,a b c 的大小关系是()A.a b c >>B.c a b >>C.a c b>> D.c b a>>18.已知0.5log sin a x =,0.5log cos b x =,0.5log sin cos c x x =,,42x ππ⎛⎫∈ ⎪⎝⎭,则,,a b c 的大小关系为()A.b a c>> B.c a b>> C.c b a>> D.b c a>>19.设0.50.82x =,2log y =sin1z =,则x 、y 、z 的大小关系为()A.x y z<< B.y z x<< C.z x y<< D.z y x<<每天一刻钟,数学点点通郭大侠的数学江湖20.若21log 0,(12ba <> ,则()A .1,0a b >>B .1,0a b ><C .01,0a b <<> D .01,0a b <<< 21.已知1122log log a b <,则下列不等式一定成立的是()A.1143ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.11a b> C.()ln 0a b -> D.31a b-<22.计算(1)(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+23.计算:1132081()274e π-⎛⎫⎛⎫--++ ⎪ ⎪⎝⎭⎝⎭;②2lg 5lg 4ln ++.24.化简下列各式(其中各字母均为正数):(1)131.5-×76⎛⎫-⎪⎝⎭0+80.25)6;211113322---()(3)41332233814a a bb a⎛÷⨯⎝--+25.(12分)化简或求值:(1)110232418(22(2)()5427--+⨯-;(2)2lg5+试卷第4页,总8页每天一刻钟,数学点点通郭大侠的数学江湖26.(12分)化简、求值:(1)220.53327492()()(0.008)8925---+⨯;(2)计算2lg 5lg8000(lg 11lg 600lg 36lg 0.0122⋅+--27.(本小题满分10分)计算下列各式的值:(1)2203227()(1()38-+-;(2)5log 33332log 2log 32log 85-+-试卷第6页,总8页28.计算:(1)0021)51(1212)4(2---+-+-;(2)3log 5.222ln 001.0lg 25.6log +++e 29.(本题满分12分)计算以下式子的值:1421(0.252--+⨯;(2)7log 237log 27lg 25lg 47log 1++++.30.计算(1)7log 203log lg 25lg 47(9.8)+++-(2)32310641(833()1(416-+--π-每天一刻钟,数学点点通郭大侠的数学江湖31.计算:()10012cos3022π-⎛⎫-+- ⎪⎝⎭.32.(本题满分12分)计算(1)5log 923215log 32log (log 8)2+-(2)())121023170.0272179--⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭33.(1)化简:1222232()()()a b ab a b ---⋅÷;.34.计算:(1)2482(2013)ππ---⨯--(26cos 45-o试卷第8页,总8页35.(1)计算3log 238616132(log 4)(log 27)log 82log 3--+.(2)若1122x x-+=,求1223x x x x --++-的值.36.求值:(122316ln 4⎛⎫-+ ⎪⎝⎭37.(1)求值:(2)已知31=+x x 求221xx +的值38.计算:(1)943232053312332278-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛(2)23log 32lg 222lg 52lg ++-39.下列四个命题:①11(0,),()()23xxx ∃∈+∞>;②23(0,),log log x x x ∃∈+∞<;③121(0,),()log 2xx x ∀∈+∞>;④1311(0,),(log 32xx x ∀∈<.其中正确命题的序号是.40.(23227log 28-⎛⎫--- ⎪⎝⎭=_____________________________参考答案1.A【来源】2013-2014学年福建省三明一中高二下学期期中考试文科数学试卷(带解析)【解析】试题分析:由指数函数的单调性可知0.3xy =是单调递减的所以0.50.20.30.3<即a<c<1;2xy =是单调增的,所以0.30221y =>=,即可知A 正确考点:指数函数比较大小.2.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.【考点】幂函数的性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.3.D【来源】2013-2014学年广西桂林十八中高二下学期开学考理科数学试卷(带解析)【解析】试题分析:0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=,所以60.70.7log 600.716<<<<.考点:用指数,对数函数特殊值比较大小.4.A .【来源】2014届安徽“江淮十校”协作体高三上学期第一次联考理数学卷(带解析)【解析】试题分析:因为0,10,1<<<>c b a ,所以c b a >>,故选A.考点:利用指数函数、幂函数、对数函数的单调性比较数式的大小.5.B【来源】2014年全国普通高等学校招生统一考试文科数学(安徽卷带解析)【解析】试题分析:由题意,因为3log 7a=,则12a <<; 1.12b =,则2b >; 3.10.8c =,则00.81c <=,所以c a b<<考点:1.指数、对数的运算性质.6.C【来源】2014-2015学年山东省德州市重点中学高一上学期期中考试数学试卷(带解析)【解析】试题分析:∵200.31a <=<,22b log 0.3log 10=<=,0.30221c =>=,∴c a b <<考点:根式与分数指数幂的互化及其化简运算.7.D【来源】2014届河北省唐山市高三年级第三次模拟考试文科数学试卷(带解析)【解析】试题分析:∵ 1.222a =>,0.800.51<<,21log 32<<,∴a c b >>.考点:利用函数图象及性质比较大小.8.C【来源】2014年全国普通高等学校招生统一考试文科数学(辽宁卷带解析)【解析】试题分析:因为132(0,1)a -=∈,221log log 103b =<=,112211log log 132c =>=,故c a b >>.考点:指数函数和对数函数的图象和性质.9.A【来源】2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(带解析)【解析】试题分析:由指数函数和对数函数的图像和性质知0a >,0b <,0c <,又对数函数()0.2log f x x =在()0,+∞上是单调递减的,所以0.20.2log 3log 4>,所以a b c >>.考点:指数函数的值域;对数函数的单调性及应用.10.C【来源】2015年全国普通高等学校招生统一考试文科数学(山东卷带解析)【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C .考点:1.指数函数的性质;2.函数值比较大小.11.C【来源】2014届上海交大附中高三数学理总复习二基本初等函数等练习卷(带解析)【解析】由题意得0<a<1,b>1,而log 34>1,c=log 34(log 34),得c<0,故c<a<b.12.C【来源】2014年全国普通高等学校招生统一考试理科数学(辽宁卷带解析)【解析】试题分析:1032122110221,log 0,log log 31,33ab c -<=<==<==>所以c a b >>,故选C.考点:1.指数对数化简;2.不等式大小比较.13.A.【来源】2015届湖南省益阳市箴言中学高三第一次模拟考试文科数学试卷(带解析)【解析】试题分析:∵33log 4log 31a =>=,01(15b ==,11331log 10log 13c =<=,∴a b c >>.考点:指对数的性质.14.A【来源】2015届河南省八校高三上学期第一次联考文科数学试卷(带解析)【解析】试题分析:∵0.53422,,a b log c log π-===,0.52112>-,341122>,=log log π.∴>>b a c .故选:A.考点:不等式比较大小.15.C【来源】2012-2013学年广东省执信中学高一下学期期中数学试题(带解析)【解析】试题分析:根据题意,结合指数函数的性质,当底数大于1,函数递增,那么可知0.9 1.80.48 1.44 1.5 1.5123142,82,()22y y y -======,结合指数幂的运算性质可知,有132y y y >>,选C.考点:指数函数的值域点评:解决的关键是以0和1为界来比较大小,属于基础题。
二项式定理(1)
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
甘肃省白银十中2016—2017学年第一学期高三年级第一次月考数学试题Word版含答案.doc
白银十中2016—2017学年第一学期高三年级第一次月考数学(理科)试题出题人:田学礼 审题人:王开泰第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集U ={1,2,3,4,5,6},集合A ={2,3,4},集合B ={2,4,5},则下图中的阴影部分表示( )A .{5}B .{1,3}C .{2,4}D .{2,3,4,5} 2.下列函数中,与函数y =x 相同的是( ) A .y =x 2xB .y =(x)2C .y =lg 10xD . 2log 2x y =3. 下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数为 ( )A .2y x -=B .1y x -=C .2y x =D .13y x =4. 给出以下四个判断,其中正确的判断是 ( )A .函数f(x)的定义域关于原点对称是f(x)具有奇偶性的充分不必要条件B .命题“若x≥4且y≥2,则x +y≥6”的逆否命题为“若x +y <6,则x <4且y <2”C .若p :∂0x ≥ ,x 2-x +1>0,则¬p :∀x<0,x 2-x +1≤0D .己知n ∈N ,则幂函数y =x 3n-7为偶函数,且在x ∈(0,+∞)上单调递减的充分必要条件为n =15.已知函数220()log 0x x f x x x ⎧≤=⎨>⎩ ,则方程1()2f x =的解集为( ) A. B. C.{ D. 6. 如图给出了函数y =a x ,y =log a x ,y =log (a +1)x ,y =(a -1)x 2的图象,则与函数y =a x ,y =log a x ,y =log (a +1)x ,y =(a -1)x 2依次对应的图象是 ( )A .①②③④B .①③②④C .②③①④D .①④③②7. 已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x>0,都有1(2)()f x f x +=-,且当x ∈[0,2)时f(x)=log 2(x +1),则f(2 015)+f(2 016)的值为( )A .-1B .-2C .2D .18. 定义在区间[0,1]上的函数f(x)的图象如下图所示,以A(0,f(0))、B(1,f(1))、C(x ,f(x))为顶点的△ABC 的面积记为函数S(x),则函数S(x)的导函数S′(x)的大致图象为()9.函数2()(1)1f x x f x '=--+在x=1处的切线方程为( )A. 4y x =-+B. 3y x =C. 33y x =-D. 39y x =-10.已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数()y f x '=的图象如图所示.下列关于f(x)的命题:①函数f(x) 在x=0,4处取到极大值;②函数f(x)在区间[0,2]上是减函数;③如果当x ∈[-1,t]时,f(x)的最大值是2,那么t 的最大值为4;④当1<a <2时,函数y =f(x)-a 不可能有3个零点.其中所有真命题的序号是( )A.①②B. ①②③C. ①②④D. ①②③④11.函数f(x)在定义域R 内可导,f(x)=f(2-x),当(1,)x ∈+∞时,()()10x f x '<-,设352a=f(),b=f 22(),c=f(5)log log log ,则( )A .c<a<bB .c<b<aC .a<b<cD .b<a<c12. 设函数2sin 20()20a x x f x x a x +≥⎧=⎨+<⎩(其中a ∈R )的值域为S ,若[1,+∞)⊆S ,则a 的取值范围是( )A .(﹣∞,)B .[1,]∪(,2]C .(﹣∞,)∪[1,2]D .(,+∞)第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.函数f(x)= 1-2log 6x 的定义域为________. 14.已知函数()()21()0,1m f x log x m m =-+>≠且的图象恒过点P,且点P 在直线1,,ax by a b R +=∈上,那么ab 的最大值为____________________.15. 已知a≥0,函数f(x)=(x 2-2ax)e x ,若f(x)在[-1,1]上是单调减函数,则a 的取值范围是________.16. 设函数f(x)=e 2x 2+1x ,g(x)=e 2x e x ,对任意x 1,x 2∈(0,+∞),不等式g(x 1)k ≤f(x 2)k +1恒成立,则正数k 的取值范围是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分10分)已知()f x xlnx =.(1)求曲线f(x)在x e =处的切线方程.(2)求函数f(x)的单调区间.18. (本小题满分12分)已知函数f(x)=ax 3+cx +d(a ≠0)是R 上的奇函数,当x =1时,f(x)取得极值-2.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间和极大值;19.(本小题满分12分)设函数f(x)=a x -(k -1)a -x (a>0且a ≠1)是定义域为R 的奇函数. (1)求k 值;(2)若f(1)<0,试判断函数单调性并求使不等式f(x 2+tx)+f(4-x)<0恒成立的t 的取值范围.20.(本小题满分12分)已知函数()f x 是定义在R 上的偶函数,现已画出函数()f x 在y 轴左侧的图象(二次函数图象的一部分),如图所示,请根据图象:(1)画出函数()f x 在y 轴右边的图像并写出函数()()f x x R ∈的解析式.(2)若函数()()[]2()2,1,2g x f x ax x =-+∈(a R ∈为常数),求函数()g x 的最小值及最大值.21.(本小题满分12分)已知函数f(x)=ax 2+bx +c e x(a >0)的导函数y =f ′(x)的两个零点为-3和0.(1)求f(x)的单调区间;(2)若方程()0f x m -=有三个不同的的解,求m 的取值范围(用a 表示)。
福建省龙岩市一级达标校2016-2017学年高二第二学期期末教学质量检查理科数学试卷(扫描版含答案)
福建省龙岩市一级达标校2016-2017学年高二第二学期期末教学质量检查理科数学试卷(扫描版含答案)龙岩市一级达标校2016-2017学年第二学期期末高二教学质量检查数学(理科)试题参考答案一、选择题(每小题5分,共60分)1.B2.A3.C4.C5.D6.B7.A8.C9.B10.A11.D12.D二、填空题(每小题5分,共20分)13.914.2715.a(45,81)16.m≤e+2三、解答题(共70分)17.(本小题满分12分)Ⅰ)列出列联表:男女合计课外体育不达标 60 90 150课外体育达标 30 20 50合计 90 110 200Ⅱ)依表格数据得跳远成绩的平均数x=70,短跑100米成绩的平均数y=66.b=(∑xy-5x·y)/(∑x^2-5x^2)=-5·70·66/2250=0.54b=y-b x=66-0.54·70=28.2所求的回归方程为y=0.54x+28.2.因为k=2200/33≈6.06<6.635,所以在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关。
17.(本小题满分12分)Ⅰ)解得z=1+i,所以ω=(2-i)/(2+i)=1-i。
OA=(1,-1),OB=(0,2)。
逆时针旋转5π/4可得到OA的位置,即θ的最小值为5π/4.Ⅱ)由已知可得n=10.设第r+1项的系数最大,则C(10,r+1)=2·C(10,r)。
2(r+2)/(r+1)≥10/(r+1),解得2≥r+1,即1≤r≤3.r=1,2,3.所以3≤n-r≤9,即n-r=3,4,5,6,7,8,9.解得x=1/3或x=-1/2.所求的三项式为3x^2-2x或2x^3-3x^2.答案不唯一。
注:原文章中,解答题的第17题和第18题没有明确区分,已修改。
所以r=7,即系数最大的项为T77.根据分式拆分,2x^2=x^2,化简得x=±24.解:(Ⅰ)由题意得y=(4+202)/(p-10-2p-x)=10+2p-x/(4+x+1)。
2016-2017学年甘肃省武威第十八中学高一下学期期末考试数学试题
高一数学试卷命题人:一、选择题(每小题5分,共60分)1.已知中,,,,则等于( )A.B. 1C.D. 22.已知ABC ∆中, ,2,32A a b π===,则B =( ) A.23π B. 3π C. 3π或23π D. 2π 3.已知数列是等差数列, 13352,4a a a a +=+=,则57a a += ( )A. 6B. 8C. 12D. 164.已知数列{}n a 为等比数列,且34a =-, 716a =-,则5a =( ) A. 8 B. 8- C. 64 D. 64-5.在等差数列{}n a 中,若16a =, 32a =,则5a =( ) A. 6 B. 4 C. 0 D. -26.如图,在正方体1111D C B A -ABCD 中,直线BD 与11C A 的位置关系是( )A. 平行B. 相交C. 异面但不垂直D. 异面且垂直7.已知直线b a,,平面α,满足α⊂a ,则使α||b 的条件为( )A. α||bB. a b ||且α⊄bC. a 与b 异面D. a 与b 不相交8.正方体1111D C B A -ABCD 中,直线A D 1与DB 所成的角为( )A. 30oB. 45oC. 60oD. 90o9.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b 等于( )A. 2B. 3C. 9D. -910.点()3,4在直线:10l ax y -+=上,则直线l 的倾斜角为( ) A. 30 B. 45 C. 60 D. 120 11.不等式组⎩⎨⎧<>+1||0)2(x x x 的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}12.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积是( )A .2πB .3πC .4πD .π 二、填空题(每小题5分,共20分)13.在ABC ∆中,c b,a,分别是角C B A ,,的对边,且3B ,1c 3,a π===,则b 的值为________; 14.已知等比数列中, 34a =, 612a =,则公比q =___________15.若不等式x4x a +<对),0(+∞∈∀x 恒成立,则实数a 的取值范围是__________.16.下列命题中,正确的命题是_________.(1)直线的倾斜角为α,则此直线的斜率为tan α (2)直线的斜率为tan α,则此直线的倾斜角为α(3)任何一条直线都有倾斜角,但不是每一条直线都存在斜率 (4)直线的斜率为0,则此直线的倾斜角为0或π 三、解答题(每小题5分,共20分)17.已知等差数列{}n a 中,且31a =-, 67a =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n a 前n 项和21n S =-,求n 的值.18.如图,已知正方体1111ABCD A B C D -,11111,,,BD BC B D AC 分别为各个面的对角线;(1)求证:1111AC BB D D ⊥平面; (2)求异面直线111B D BC 与所成的角.19.求经过M (-1,2),且满足下列条件的直线方程 (1)与直线2x + y + 5 = 0平行 ; (2)与直线2x + y + 5 = 0垂直;20.已知直线2x+(t-2)y+3-2t=0,分别根据下列条件,求t的值:(1)过点(1,1);(2)直线在y轴上的截距为-3.高一数学试卷答案一、选择题1 2 3 4 5 6 7 8 9 10 11 12 ABABDDBCDCCA二、填空题:13. 14.1215. 16.(3)三、解答题17.(1)25n a n =-+(2)7n =18.(1)∵11111111111 BB A B C D AC A B C D ⊥⊂平面平面∴111BB AC ⊥∴1111AC B D ⊥,又∵11111111111 B D BB B BB BB D D B D BB D D =⊂⊂ 平面平面∴1111AC BB D D ⊥平面(2)60︒ 19.(1)(2)20.(1)3(2)。
2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
13.
设由方程组
y + xyz
z+x =1
=
0
确定的隐函数
y
=
y(x)
及
z
=
z(x),求
dy dx ,
dz dx
.
14.
设连续函数
f (x)
满足方程
f (x)
=
ˆ
3x
f
() t d t + e2x,
求
f (x).
¨(
0
3
)
(
)
15. 计算曲面积分 I = x2 − yz d y d z + y2 − zx d z d x + 2z d x d y, 其中 Σ
xOy ydx
平面上一条简单光滑的正向闭曲线,原点在其所围闭区域之外,则
=
【】
C x2 + 4y2
(A) 4π
(B) 0
(C) 2π
(D) π
6. 微分方程 xy′′ − y′ = 0 满足条件 y′(1) = 1, y(1) = 0.5 的解为
【】
(A) y = x2 + 1 44
(B) y = x2 2
1,
√ − ¨x
⩽
y
⩽
√x},则正确的选x 项为
¨
【】
(A) f (y)g(x) d x d y = 0
(B) f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
河南省天一大联考2016-2017学年高二下学期期末考试数学(理)-含答案
天一大联考2016—2017学年高二年级期末考试数学试卷(理科)第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.在复平面内,复数21i z i-=+(i 为虚数单位)所对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限2.设集合{}2|0,|411x A x B x x x -⎧⎫=≤=-≤≤⎨⎬+⎩⎭,则A B = A. []1,1- B. []4,2- C. (]1,1- D.()1,1-3.已知向量()3,2a =与向量(),3b x =相互垂直,则x =A. -2B. -1C. 1D. 24.某几何体是三视图如图所示,则该几何体的体积为A. 40B. 30C.20D. 105.执行如图所示的程序框图,则输出S 的等于A. 2450B. 2500C.2550D.26506.如果实数,x y 满足260303x y x y y --≤⎧⎪+-≥⎨⎪≤⎩,则2z x y =+的最大值为 A. -6 B. 3 C. 6 D. 2127.已知三个学生A,B,C 能独立解出一道数学题的概率分别为0.6,0.5,0.4,现让这三个学生各自独立解这道数学题,则该题被解出的概率为A.0.88B.0.90C. 0.92D.0.958.已知公比不为1的等比数列{}n a 的前n 项和n S 满足11a =,且243,,a a a 成等差数列,则63S S = A. 78 B. 78- C. 98 D. 98- 9.已知甲、乙、丙、丁、戊五个人在图中矩形的四个顶点及中心,要求甲乙必须站在同一条对角线上,且丙不站在中心,则不同的站法有A. 16种B. 48种C.64种D.84种10.已知函数()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,将函数()y f x =的图象上所有点的横坐标缩短为原的12(纵坐标不变),再把所得的图象向右平移ϕ个单位长度,得到偶函数()y g x =的图象,则ϕ的值可能是 A. 8π B. 524π C. 34π D. 1524π 11.已知双曲正弦函数2x x e e shx --=和双曲余弦函数2x xe e chx -+=与我们学过的正弦函数和余弦函数有许多类似的性质,则下列类比结论中错误的是A. shx 为奇函数,chx 是偶函数B. 22sh x shxchx =C. ()sh x y shxchy chxshy -=-D.()ch x y chxchy shxshy -=+12.已知O 为坐标原点,F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,A,B 分别为双曲线C 的左右顶点,过点F 作x 轴的垂线交双曲线C 于P,Q 两点,连接PA 交y 轴于点E,连接EB 并延长交QF 于点M,若M 恰好为QF 的中点,则双曲线C 的离心率为 A. 2 B. 52 C. 3 D. 72二、填空题:本大题共4小题,每小题5分,共20分.13.在等差数列{}n a 中,3283,14a a a =+=,则10a = .14.已知某一离散型随机变量X 的分布列如下表所示:则()E X .15.已知随机变量()()()2,,020.34N P P ξμσξξ≤=≥=,则()01P ξ≤≤= .16.若()201722017012201721x a a x a x a x -=++++,则012201722017a a a a ++++= .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,且sin cos .c A C =(1)求C 的值;(2)若1,b c ==ABC ∆的面积.18.(本题满分12分)如图,AD ⊥平面ABC ,//CE AD 且2.AB AC CE AD ===(1)试在线段BE 上确定一点M ,使得//DM 平面ABC ;(2)若AB AC ⊥,求平面BDE 与平面ABC 所成角的余弦值.19.(本题满分12分)若{}n a 为等差数列,{}n b 为等比数列,设n n n c a b =,则我们经常用“错位相减法”求数列{}n c 的前n 项和n S ,记()n S f n =,在这个过程中许多同学常将结果算错.为了减少出错,我们可以代入1n =和2n =进行检验:计算()11S f =,检验是否与11a b 相等;在计算()22S f =检验是否与1122a b a b +相等.如果两处中有一处不等,则说明计算错误,某次数学考试对“错位相减法”进行了考查.现随机抽取100名学生,对他们是否进行检验以及答案是否正确进行了统计,得到数据如下表所示:(1)请完成上表;(2)是否有95%的把握认为检验计算结果可以有效避免计算错误?(3)在调查的100名学生中,用分层抽样的方法从未检验结果的学生中抽取8名学生,进一步调查他们不检验的原因.现从这8人中任取3人,记其中答案正确的学生人数为随机变量,求的分布列和数学期望.20.(本题满分12分)已知抛物线()2:20C y px p =>上一点()2,P t 到焦点F 的距离为3.(1)求抛物线C 的方程;(2)过点F 作两条相互垂直的直线12,l l ,设1l 与抛物线C 交于,A B 两点,2l 与抛物线C 交于,D E 两点,求AF FB EF FD ⋅+⋅的最小值.21.(本题满分12分)已知函数().xf x e x =- (1)若函数()()21F x f x ax =--的导数()F x '在[)0,+∞上单调递增,求实数a 的取值范围;(2)求证:()1111,.234142n f f f f n n N n n *⎛⎫⎛⎫⎛⎫⎛⎫++++>+∈ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
2016-2017学年高二上学期第二次考试文科数学试卷
一、选择题:(本大题共12小题,每小题5分,共60分).1. 命题p :3是奇数,q :5是偶数,则下列说法中正确的是 ( ). A .p 或q 为真 B .p 且q 为真 C .非p 为真 D . 非q 为假 2.把11化为二进制数为 ( ). A .1 011(2) B .11 011(2) C .10 110(2) D .0 110(2) 3.从学号为1~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是( ).A. 4,13,22,31,40B. 1,2,3,4,5C. 2,4,6,8,10D. 5,15,25,35,45 4抛物线px y 22 上一点Q ),6(0y ,且Q 点到焦点的距离为10,则抛物线的焦点到准线的距离是( ).A. 4B. 8C.12D. 165.有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计得到了一天所卖的热饮杯数(y )与当天气温(x ℃)之间的线性关系,其回归方程为yˆ=-2.35x +147.77.如果某天气温为2℃时,则该小卖部大约能卖出热饮的杯数是 ( ).A .140B .143C .152D .1566.程序框图如右图所示,该程序运行后输 出的最后一个数是( ). A .1617 B .89 C .45 D .237.先后抛掷硬币三次,则至少一次正面朝上的概率是 ( ) A .81 B . 83 C . 85 D . 878.下列说法错误..的是 ( ). A .如果命题“p ⌝”与命题“p 或q ”都是真命题,那么命题q 一定是真命题.B.命题p :042,0200<+-∈∃x x R x ,则042,:2≥+-∈∀⌝x x R x pC .命题“若0a =,则0ab =”的否命题是:“若0a ≠,则0ab ≠”D .特称命题 “R x ∈∃,使2240x x -+-=”是真命题.9.点O 为边长为6的等边三角形内心,P 是三角形内任一点,使得OP<3的概率是 ( ).A .123 B .93 C .123π D .93π10.一次函数nx n m y 1+-=的图象同时经过第一、三、四象限的必要但不充分条件是( ).A .1,1m n ><且B .0mn <C .0,0m n ><且D .0,0m n <<且11.椭圆C :22x y a21+=(0)a >的左、右焦点分别为1F 、2F ,P 为椭圆上异于端点的任意一点,1PF ,2PF 的中点分别为,,M N O 为坐标原点,四边形OMPN 的周长为23,则△PF 1F 2的周长是( ).A .2(2+3) B.2+2 3 C.2+ 3 D .4+2 3条渐近线的对称点位于双曲线上,则该双曲线的离心率e 的值为 ( ).二、填空题:(本大题共4小题,每小题5分,共20分). 13.命题:“若>a ,则2>a ”的逆否命题是__________________________________________14.已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N:22(1)1x y (1)-+-=的位置关系是_______________________________________.15.设抛物线22(0)y px p =>的焦点为F ,准线为l ,点(0,2)A .若线段FA 的中点B 在抛16.某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A ,B ,C ,D 四个单位回收的问卷数依次成等差数列,且共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽30份,则在D 单位抽取的问卷是________份. 三、解答题:(本大题共6小题,共70分)17.(本小题满分10分)如图,从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:(1)计算甲、乙两人射箭命中环数的平均数和方差;(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.18.(本小题满分12分)已知命题),0(012:,64:22>≥-+-≤-a a x x q x p 若非p 是q的充分不必要条件,求a 的取值范围.19.(本小题满分12分)已知圆C 和y 轴相切,圆心在直线03=-y x 上,且被直线x y =截得的弦长为,求圆C 的方程.20.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(0,的距离之和为4,设点P 的轨迹为C ,直线1y kx =+与C 交于,A B 两点。
甘肃省2023年普通高中学业水平合格性考试模拟测试数学试题(高频考点版)
一、单选题二、多选题1. 若以函数的图象中相邻三个最值点为顶点的三角形是面积为1的直角三角形,则的值为A .1B .2C .D.2. 若椭圆上一点到两焦点的距离之和为,则此椭圆的离心率为A.B .或C.D .或3. 关于命题,下列判断正确的是( )A .命题“每个正方形都是矩形”是存在量词命题B .命题“有一个素数不是奇数”是全称量词命题C .命题“”的否定为“”D .命题“每个整数都是有理数”的否定为“每个整数都不是有理数”4. 设,其中a ,b 是实数,则( )A.B.C.D.5. 已知椭圆的离心率为是上一点,且点到焦点的最大距离为.过焦点作直线轴,交椭圆于两点,则( )A .2B .1C.D.6.复数的共轭复数是( )A.B.C.D.7. 安排3名志愿者完成5项工作,每人至少完成1项,每项工作至少由1人完成,则不同的安排方式共有多少种A .120种B .180种C .240种D .150种8. 已知函数在区间内单调且,在区间内存在最值点,则当取得最大值时,满足的一个值可能为( )A .0B.C.D.9. 在平面直角坐标系中,抛物线的焦点为,准线为,为抛物线上一点,,为垂足.若直线的斜率,则下列结论正确的是()A.准线方程为B.焦点坐标C.点的坐标为D.的长为3甘肃省2023年普通高中学业水平合格性考试模拟测试数学试题(高频考点版)甘肃省2023年普通高中学业水平合格性考试模拟测试数学试题(高频考点版)三、填空题四、解答题10. 下列不等关系中判断正确的是( )A.B.C.D.11.已知实数满足,且,则下列说法正确的是( )A.B.C.D.12. 已知点集,且P ,,,点是坐标原点,下列说法正确的是( )A .点集表示的图形关于轴对称B .存在点和点,使得C .若直线PQ 经过点,则|的最小值为2D .若直线PQ经过点,且的面积为,则直线PQ的方程为13.已知等比数列中,,,则满足成立的最大正整数的值为______.14. 直线过点且交拋物线于两点,若是线段的中点,则直线的斜率为___________.15. 棱长为2的正方体中,P 为侧面内的动点,且,则下列命题中正确的是___________.(请填入所有正确命题的序号)①;②的最小值为③三棱锥的体积为定值.16. 已知椭圆的左焦点,点在上,过的直线与交于,两点.(1)求的标准方程;(2)当时,求直线的方程;(3)已知点,证明:以点为圆心且与直线相切的圆必与直线相切.17. 在①,②这两个条件中选一个合适的补充在下面的横线上,使得问题可以解答,并写出完整的解答过程问题:在各项均为整数的等差数列中,,公差为,且__________(1)求的通项公式;(2)若,求数列的前项和18.如图,为圆锥的顶点,为圆锥底面的圆心,为底面直径,为底面圆周上一点,,四边形为矩形,点在上,且平面.(1)请判断点的位置并说明理由;(2)平面将多面体分成两部分,求体积较大部分几何体的体积.19. 等边的边长为,点,分别是,上的点,且满足 (如图(1)),将沿折起到的位置,使二面角成直二面角,连接,(如图(2)).(1)求证:平面;(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.20. 在xoy坐标平面内,已知椭圆的左、右焦点分别为、,直线与相交于A、B两点.(1)记d为A到直线的距离,当变化时,求证:为定值;(2)当时,求的值;(3)过B作BM⊥x轴,垂足为M,OM的中点为N,延长AN交于另一点P,记直线PB的斜率为,当取何值时,有最小值?并求出此最小值.21. 如图,直四棱柱被平面所截,截面为CDEF,且,,,平面EFCD与平面ABCD所成角的正切值为.(1)证明:;(2)求直线DE与平面所成角的正弦值.。
天水一中2016-2017学年高二上学期第二次段考数学试卷(兰天班) 含解析
2016—2017学年甘肃省天水一中高二(上)第二次段考数学试卷(兰天班)一、选择题(每小题4分,共40分)1.已知条件p:x>y,条件q:>,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.若实数x,y满足则z=x﹣2y的最小值是()A.﹣2 B.﹣1 C.0 D.23.过抛物线y2=4x的焦点作两条垂直的弦AB,CD,则+=()A.2 B.4 C. D.4.下列命题错误的个数()①“在三角形ABC中,若sinA>sinB,则A>B"的逆命题是真命题;②命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;③命题“若a2+b2=0,则a,b都是0"的否命题是“若a2+b2≠0,则a,b都不是0".A.0 B.1 C.2 D.35.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.6.已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为( )A.B.C.D.7.在椭圆+=1(a>b>0)上有一点P,椭圆内一点Q在PF2的延长线上,满足QF1⊥QP,若sin∠F1PQ=,则该椭圆离心率取值范围是()A.(,1)B.(,1)C.()D.()8.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y﹣4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是( )A.B.C.D.9.设F为抛物线y2=16x的焦点,A,B,C为该抛物线上三点,若,则的值为()A.36 B.24 C.16 D.1210.设F1、F2是双曲线x2﹣=1的左、右两个焦点,若双曲线右支上存在一点P,使(+)•=0(O为坐标原点)且且|PF1|=λ|PF2|,则λ的值为( )A.2 B. C.3 D.二、填空题(每小题4分,共16分)11.命题:“∃x∈R,x2﹣x﹣1<0”的否定是.12.若双曲线的渐近线方程为y=±x,则双曲线的离心率为.13.设正实数x,y,z满足x2﹣xy+4y2﹣z=0.则当取得最小值时,x+4y﹣z的最大值为.14.在平面直角坐标系xOy中,已知点A在椭圆+=1上,点P 满足=(λ﹣1)(λ∈R),且•=72,则线段OP在x轴上的投影长度的最大值为.三、解答题15.已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<m的解集为(c,c+2).(1)求实数m的值;(2)若x>1,y>0,x+y=m,求+的最小值.16.点P在圆O:x2+y2=8上运动,PD⊥x轴,D为垂足,点M在线段PD上,满足.(Ⅰ)求点M的轨迹方程;(Ⅱ) 过点Q(1,)作直线l与点M的轨迹相交于A、B两点,使点Q为弦AB的中点,求直线l的方程.17.已知直线l与抛物线y2=8x交于A.B两点,且线段AB恰好被点P(2,2)平分.(1)求直线l的方程;(2)抛物线上是否存在点C和D,使得C.D关于直线l对称?若存在,求出直线CD的方程;若不存在,说明理由.18.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,椭圆C过点P(1,),直线PF1交y轴于Q,且=2,O为坐标原点.(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.2016—2017学年甘肃省天水一中高二(上)第二次段考数学试卷(兰天班)参考答案与试题解析一、选择题(每小题4分,共40分)1.已知条件p:x>y,条件q:>,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义分别判断充分性和不必要性,从而得到答案.【解答】解:由条件p:x>y,不能推出条件q:>,p是q的不充分条件,由条件q:>,推出条件p:x>y,p是q的必要条件,故选:B.2.若实数x,y满足则z=x﹣2y的最小值是()A.﹣2 B.﹣1 C.0 D.2【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,结合函数的图象求出z的最小值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(1,1),由z=x﹣2y得:y=x﹣,显然直线过A(1,1)时,z最小,z的最小值是﹣1,故选:B.3.过抛物线y2=4x的焦点作两条垂直的弦AB,CD,则+=()A.2 B.4 C. D.【考点】抛物线的简单性质.【分析】设出两直线的倾斜角,利用焦点弦的弦长公式分别表示出|AB|,|CD|即可求得答案.【解答】解:抛物线y2=4x,可知2p=4,设直线l1的倾斜角为θ,则l2的倾斜角为﹣θ,过焦点的弦,|AB|=,|CD|=,∴+=,故选:D.4.下列命题错误的个数( )①“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题;②命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;③命题“若a2+b2=0,则a,b都是0"的否命题是“若a2+b2≠0,则a,b 都不是0”.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据大角对大边,正弦定理可得结论;②根据原命题和逆否命题为等价命题,可相互转化;③在否定中,且的否定应为或.【解答】解:①“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是在三角形ABC中,若A>B,则a>b,由正弦定理得sinA>sinB,故逆命题为真命题;②命题p:x≠2或y≠3,命题q:x+y≠5,则非p:x=2且y=3,非q:x+y=5,显然非p⇒非q,∴q⇒p,则p是q的必要不充分条件,故正确;③命题“若a2+b2=0,则a,b都是0”的否命题是“若a2+b2≠0,则a ≠=或b≠0”故错误.故选B.5.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.6.已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【考点】双曲线的标准方程;直线与圆锥曲线的综合问题.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B 点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a 和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.7.在椭圆+=1(a>b>0)上有一点P,椭圆内一点Q在PF2的延长线上,满足QF1⊥QP,若sin∠F1PQ=,则该椭圆离心率取值范围是( )A.(,1)B.(,1)C.()D.()【考点】椭圆的简单性质.【分析】当满足QF1⊥QP,由点P在y轴上时,∠F1PQ=2α,sin2α=.sinα=e,解得.当点Q在最下端时,∠F1QF2最大,此时F1Q⊥F2Q.可得点Q在椭圆的内部,当b=c时,e=,即可得出.【解答】解:∵满足QF1⊥QP,∴点P在y轴上时,∠F1PQ=2α,sin2α=.sinα=e,cosα=,∴2e=,解得.当点Q在最下端时,∠F1QF2最大,此时F1Q⊥F2Q.可得点Q在椭圆的内部,当b=c,e=,因此.综上可得:.故选:D.8.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y﹣4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是()A.B.C.D.【考点】抛物线的应用.【分析】先根据抛物线方程求得焦点坐标,根据圆的方程求得圆心坐标,根据抛物线的定义可知P到准线的距离等于点P到焦点的距离,进而问题转化为求点P到点Q的距离与点P到抛物线的焦点距离之和的最小值,根据图象可知当P,Q,F三点共线时P到点Q的距离与点P到抛物线的焦点距离之和的最小,为圆心到焦点F的距离减去圆的半径.【解答】解:抛物线y2=4x的焦点为F(1,0),圆x2+(y﹣4)2=1的圆心为C(0,4),根据抛物线的定义可知点P到准线的距离等于点P到焦点的距离,进而推断出当P,Q,F三点共线时P到点Q的距离与点P到抛物线的焦点距离之和的最小为:,故选C.9.设F为抛物线y2=16x的焦点,A,B,C为该抛物线上三点,若,则的值为()A.36 B.24 C.16 D.12【考点】抛物线的简单性质.【分析】由题意可得F(4,0),是三角形ABC的重心,故=4,再由抛物线的定义可得=x A+4+x B+4+x C+4=24.【解答】解:由题意可得F(4,0),是抛物线的焦点,也是三角形ABC的重心,故故=4,∴x A+x B+x C=12.再由抛物线的定义可得:=x A+4+x B+4+x C+4=12+12=24,故选B.10.设F1、F2是双曲线x2﹣=1的左、右两个焦点,若双曲线右支上存在一点P,使(+)•=0(O为坐标原点)且且|PF1|=λ|PF2|,则λ的值为( )A.2 B. C.3 D.【考点】双曲线的简单性质.【分析】设点P(,m),由=0解出m,根据双曲线的第二定义得e==,求出|PF2|的值,再利用第一定义求出|PF1|的值,即得λ值.【解答】解:由题意得a=1,b=2,∴c=,F1(﹣,0),F2(,0),e=.设点P(,m),∵=(+,m)•(﹣,m)=1+﹣5+m2=0,m2=,m=±.由双曲线的第二定义得e==,∴|PF2|=2,∴|PF1|=2a+|PF2|=4,∴λ===2,故选A.二、填空题(每小题4分,共16分)11.命题:“∃x∈R,x2﹣x﹣1<0”的否定是∀x∈R,x2﹣x﹣1≥0 .【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题:“∃x∈R,x2﹣x﹣1<0”的否定是∀x∈R,x2﹣x﹣1≥0;故答案为:∀x∈R,x2﹣x﹣1≥0.12.若双曲线的渐近线方程为y=±x,则双曲线的离心率为或.【考点】双曲线的简单性质.【分析】当焦点在x轴上时,=,根据==求出结果;当焦点在y轴上时,=,根据==求出结果.【解答】解:由题意可得,当焦点在x轴上时,=,∴===.当焦点在y轴上时,=,∴===,故答案为:或.13.设正实数x,y,z满足x2﹣xy+4y2﹣z=0.则当取得最小值时,x+4y﹣z的最大值为.【考点】基本不等式在最值问题中的应用;简单线性规划.【分析】将z=x2﹣xy+4y2代入,利用基本不等式化简即可得到当取得最小值时的条件,用x,z表示y后利用配方法求得x+2y﹣z的最大值.【解答】解:∵x2﹣xy+4y2﹣z=0,∴z=x2﹣xy+4y2,又x,y,z为正实数,∴=+﹣1≥2﹣1=3(当且仅当x=2y时取“=”),当且仅当=,即x=2y(y>0)时取等号,此时x+4y﹣z=2y+4y﹣(x2﹣xy+4y2)=6y﹣6y2=﹣6(y﹣)2+≤.∴x+4y﹣z的最大值为.故答案为:14.在平面直角坐标系xOy中,已知点A在椭圆+=1上,点P 满足=(λ﹣1)(λ∈R),且•=72,则线段OP在x轴上的投影长度的最大值为15 .【考点】椭圆的简单性质.【分析】根据向量共线定理可得||||=72,设A(x,y)、PB 为点A在x轴的投影,求出OP在x轴上的投影长度为||cosθ,再利用基本不等式求最值,可得结论.【解答】解:∵=(λ﹣1),∴=λ,则O,P,A三点共线,∵•=72,∴||||=72,设OP与x轴夹角为θ,设A(x,y),B为点A在x轴的投影,则OP在x轴上的投影长度为||cosθ==72×=72×≤72×=15.当且仅当|x|=时等号成立.则线段OP在x轴上的投影长度的最大值为15.故答案为:15.三、解答题15.已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<m的解集为(c,c+2).(1)求实数m的值;(2)若x>1,y>0,x+y=m,求+的最小值.【考点】基本不等式在最值问题中的应用.【分析】(1)根据函数的值域求出a与b的关系,然后根据不等式的解集可得x2+ax+﹣m=0的两个根为c,c+2,2=c+2﹣c,解之即可.(2)利用“1”的代换,即可求+的最小值.【解答】解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=.不等式f(x)<m的解集为(c,c+2).即为x2+ax+<m的解集为(c,c+2).则x2+ax+﹣m=0的两个根为c,c+2∴2=c+2﹣c∴m=2;(2)x+y=2,∴x﹣1+y=1,∴+=(+)(x﹣1+y)=3++≥3+2.当且仅当=时,+的最小值为3+2.16.点P在圆O:x2+y2=8上运动,PD⊥x轴,D为垂足,点M在线段PD上,满足.(Ⅰ) 求点M的轨迹方程;(Ⅱ)过点Q(1,)作直线l与点M的轨迹相交于A、B两点,使点Q为弦AB的中点,求直线l的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)判断M线段PD的中点,设M(x,y),则P(x,2y),运用代入法,即可得到所求轨迹方程;(Ⅱ)方法一、运用直线方程和椭圆方程联立,运用韦达定理和中点坐标公式,化简整理可得斜率k,由点斜式方程可得直线方程;方法二、设A(x1,y1),B(x2,y2),A、B两点在椭圆上,代入椭圆方程,运用作差法和斜率公式,再由点斜式方程可得直线的方程.【解答】解:(Ⅰ)∵点M在线段PD上,满足,∴点M是线段PD的中点,设M(x,y),则P(x,2y),∵点P在圆O:x2+y2=8上运动,则x2+(2y)2=8,即,故点M的轨迹方程为.(Ⅱ)方法一:当直线l⊥x轴时,由椭圆的对称性可得弦AB的中点在x轴上,不可能是点Q,这种情况不满足题意.设直线l的方程为,由,可得,由韦达定理可得x1+x2=﹣,由AB的中点为,可得﹣=2,解得,即直线l的方程为y﹣=﹣(x﹣1),则直线l的方程为x+2y﹣2=0.方法二:当直线l⊥x轴时,由椭圆的对称性可得弦AB的中点在x 轴上,不可能是点Q,这种情况不满足题意.设A(x1,y1),B(x2,y2),A、B两点在椭圆上,满足,由(1)﹣(2)可得,则,由AB的中点为,可得x1+x2=2,y1+y2=1,代入上式,即直线l的方程为,∴直线l的方程为x+2y﹣2=0.17.已知直线l与抛物线y2=8x交于A.B两点,且线段AB恰好被点P(2,2)平分.(1)求直线l的方程;(2)抛物线上是否存在点C和D,使得C.D关于直线l对称?若存在,求出直线CD的方程;若不存在,说明理由.【考点】直线与抛物线的位置关系.【分析】(1)利用点差法,求出直线的斜率,即可求出直线l的方程;(2)设直线CD的方程为x+2y+c=0,与抛物线联立,可得y2+16y+8c=0,求出CD的中点坐标,代入直线l,即可得出结论.【解答】解:(1)设A(x1,y1),B(x2,y2),则x1+x2=4,y1+y2=4,∵y12=8x1,y22=8x2,∴4(y1﹣y2)=8(x1﹣x2),∴k AB=2,∴直线l的方程为:y﹣2=2(x﹣2),化为2x﹣y﹣2=0.(2)设直线CD的方程为x+2y+c=0,与抛物线联立,可得y2+16y+8c=0,设C(x3,y3),D(x4,y4),则y3y4=﹣8c,y3+y4=﹣16,∴x3+x4=(y32+y42)=32+2c,∴CD的中点坐标为(16+c,﹣8)代入2x﹣y﹣2=0,可得32+2c+8﹣2=0,∴c=﹣19,∴直线CD的方程为x+2y﹣19=0.18.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,椭圆C过点P(1,),直线PF1交y轴于Q,且=2,O为坐标原点.(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.【考点】椭圆的简单性质.【分析】(1)由椭圆C过点,可得,由=2,可得PF2⊥F1F2,可得c=1,及其a2﹣b2=1,联立解出即可得出.(2)对直线AB的斜率分类讨论:当直线AB的斜率不存在时,利用k1+k2=2,及其斜率计算公式即可得出.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),直线方程与椭圆方程联立化为关于x的一元二次方程,利用根与系数的关系、斜率计算公式即可得出.【解答】解:(1)∵椭圆C过点,∴①,∵=2,∴PF2⊥F1F2,则c=1,∴a2﹣b2=1,②由①②得a2=2,b2=1,∴椭圆C的方程为.(2)当直线AB的斜率不存在时,设A(x0,y0),则B(x0,﹣y0),由k1+k2=2得,得x0=﹣1.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),,得,∴,即,由m≠1,(1﹣k)(m+1)=﹣km⇒k=m+1,即y=kx+m=(m+1)x+m⇒m(x+1)=y﹣x,故直线AB过定点(﹣1,﹣1).2017年2月11日。
人教版高二第一章三角函数单元测试精选(含答案)1
人教版高二第一章三角函数单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.tan 600o =( )A .B .-C D .【来源】甘肃省平凉市静宁县第一中学2017-2018学年高一下学期期末考试数学(文)试题 【答案】C2.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( )A .B .C .D .【来源】2008年高考江西卷理科数学试题 【答案】D3.要得到函数y =cos 23x π⎛⎫+ ⎪⎝⎭的图象,只需将函数y =cos2x 的图象( )A .向左平移π个单位长度 B .向左平移π个单位长度C .向右平移6π个单位长度 D .向右平移3π个单位长度 【来源】浙江省金华十校2017-2018学年高一上学期期末调研考试数学试题 【答案】B4.已知0>ω,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A .15[,]24B .13[,]24C .1(0,]2D .(0,2]【来源】2012年全国普通高等学校招生统一考试理科数学(课标卷带解析) 【答案】A5.已知cos cos θθ=,tan tan θθ=-|,则2θ的终边在( ) A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上【来源】辽宁省营口市2017-2018学年高一4月月考数学试题 【答案】D6.记0cos(80)k -=,那么0tan100=( )A .B .C D .【来源】2010年普通高等学校招生全国统一考试(全国Ⅰ)理科数学全解全析 【答案】B7.在ABC ∆中,tan tan tan A B A B ++=,则C 等于( )A .6π B .4π C .3π D .23π 【来源】广西宾阳县宾阳中学2017-2018学年高一5月月考数学试题 【答案】C8.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B9.如图,在平面直角坐标系xOy 中,质点M N ,间隔3分钟先后从点P ,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟【来源】福建省福州格致中学2017-2018学年高一下学期第四学段质量检测数学试题 【答案】A10.函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷) 【答案】D11.函数y =的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【来源】2019年一轮复习讲练测 4.3三角函数的图象与性质 【答案】D12.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关【来源】2019高考备考一轮复习精品资料 专题十八 三角函数的图象和性质 教学案 【答案】B象关于y 轴对称,则m 的最小值是( ) A .6π B .3π C .23π D .56π 【来源】2011届江西省湖口二中高三第一次统考数学试卷 【答案】C14.若tan 3α=,4tan 3β=,则tan()αβ-= A .3B .3-C .13D .13-【来源】北京市清华附中2017-2018学年高三数学十月月考试题(文) 【答案】C 15.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .43【来源】2012年全国普通高等学校招生统一考试文科数学(江西卷带解析) 【答案】B16.函数()sin()f x x ωϕ=+(其中2πϕ<)的图象如图所示,为了得到()sin g x xω=的图象,则只要将()f x 的图象A .向右平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向左平移个单位长度【来源】2015届福建省八县(市)一中高三上学期半期联考文科数学试卷(带解析) 【答案】A17.曲线sin (0,0)y A x a A ωω=+>>在区间2π0,ω⎡⎤⎢⎥⎣⎦上截直线2y =及1y =-所得的弦长相等且不为0,则下列对A ,a 的描述正确的是( ). A .12a =,32A >B .12a =,32A ≤ C .1a =,1A ≥ D .1a =,1A ≤【来源】广东省华南师范大学附属中学2016-2017学年高一上学期期末考试数学试题 【答案】A价y (单位:元/平方米)与第x 季度之间近似满足关系式:()()500sin 95000y x ωϕω=++>.已知第一、二季度的平均单价如下表所示:则此楼盘在第三季度的平均单价大约是( ) A .10000B .9500C .9000D .8500【来源】第一章全章训练 【答案】C19.函数5sin(2)2y x π=+的图象的一条对称轴方程是( ) A .2x π=-B .4πx =-C .8x π=D .54x π=【来源】2012-2013学年黑龙江省集贤县第一中学高一上学期期末考试数学试题(带解析) 【答案】A 20.已知-2π<θ<2π,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .-3B .3或13C .-13D .-3或-13【来源】浙江省温州中学2016-2017学年高一下学期期中考试数学试题 【答案】C 21.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D 22.1cos()2πα+=-,322παπ<<,()sin 2πα-的值为( )A .B .12C .±D .2【来源】江西省上饶市“山江湖”协作体2018-2019学年高一下学期统招班第一次月考【答案】D23.若0<α<β<π4,sinα+cosα=a,sinβ+cosβ=b,则( ).A .a <bB .a >bC .ab <1D .ab >2【来源】河北省石家庄市辛集中学2015-2016学年高一下学期综合练习(三)数学试题 【答案】A24.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3a =,7c =,60C =︒,则b = ( ) A .5B .8C .5或-8D .-5或8【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】B25.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7sin()6πα+的值是( )A .5-B .5C .45-D .45【来源】广东省广州市执信中学2018-2019学年度上学期高三测试数学(必修模块)试题 【答案】C26.将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增 B .在区间,04π⎡⎤-⎢⎥⎣⎦ 上单调递减 C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增 D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 【来源】黑龙江省牡丹江市第一高级中学2017-2018学年高二下学期期末考试数学(文)试题 【答案】A27.若α是第三象限的角, 则2απ-是( )A .第一或第二象限的角B .第一或第三象限的角C .第二或第三象限的角D .第二或第四象限的角【来源】浙江省杭州第二中学三角函数 单元测试题28.已知函数()()0,0,2f x Asin x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为 ( )A .()sin()84f x x ππ=+B .()sin()84f x x ππ=-C .3()sin()84f x x ππ=+D .3()sin()84f x x ππ=-【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】A29.曲线cos 2y x =与直线y =在y轴右侧的交点按横坐标从小到大依次记为1P ,2P ,3P ,4P ,5P ,…,则15PP 等于 ( )A .πB .2πC .3πD .4π【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B二、填空题30.若sin(+θ)=25,则cos2θ= . 【来源】2017届福建福州外国语学校高三文上学期期中数学试卷(带解析) 【答案】31.已知直线l :mx +y +3m −√3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=2√3,则|CD|=__________. 【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版) 【答案】432.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【答案】二33.设定义在R 上的函数()()0,122f x sin x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭,给出以下四个论断:①()f x 的周期为π; ②()f x 在区间,06π⎛⎫-⎪⎝⎭上是增函数;③()f x 的图象关于点,03π⎛⎫⎪⎝⎭对称;④()f x 的图象关于直线12x π=对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“p q ⇒”的形式)______________.(其中用到的论断都用序号表示) 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】①④⇒②③ 或①③⇒②④ 34.关于下列命题:①若,αβ是第一象限角,且αβ>,则sin sin αβ>; ②函数sin()2y x ππ=-是偶函数;③函数sin(2)3y x π=-的一个对称中心是(,0)6π;④函数5sin(2)3y x π=-+在,]1212π5π[-上是增函数,所有正确命题的序号是_____.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题 【答案】②③ 35.在ABC ∆中,若B a bsin 2=,则A =______.【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】30o 或150o36.若sin()2cos(2),αππα-=-则sin()5cos(2)3cos()sin()παπαπαα-+----的值为____________.【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】35-37.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+ ⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____.【答案】π4三、解答题38.已知函数()3sin(2)3f x x π=-,(1)请用“五点作图法”作出函数()y f x =的图象;(2)()y f x =的图象经过怎样的图象变换,可以得到sin y x =的图象.(请写出具体的变换过程)【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】(1)见解析;(2)变换过程见解析.39.在△ABC 中,222a c b +=(1)求B 的大小;(2)求cos A +cos C 的最大值.【来源】浙江省嘉兴市第一中学2017-2018学年高二10月月考数学试题 【答案】(1)π4(2)140.已知A 、B 、C 是△ABC 的三个内角,向量m =(-1,n =(cos A ,sin A ),且m ·n =1. (1)求角A ; (2)若221sin 2cos sin BB B+-=-3,求tan C . 【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3【答案】(1)3π;(2) . 41.已知函数()()()sin 0,0,02f x A x A ωϕωϕπ=+>><<的部分图象如图所示,且()506f f π⎛⎫=⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)求()f x 的解析式,并写出它的单调递增区间. 【来源】第一章全章训练【答案】(1)π;(2)()22sin 23f x x π⎛⎫=+⎪⎝⎭;单调递增区间为7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z .42.已知函数()f x =4tan xsin (2x π-)cos (3x π-)-.(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f (x )在区间[,44ππ-]上的单调性.【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3 【答案】(Ⅰ){|,}2x x k k Z ππ≠+∈,π;(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 43.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷)【答案】(Ⅰ)见解析(Ⅱ)函数()f x 在区间[,]122ππ-上的值域为[ 44.设函数()sin(2)()3f x A x x R π=+∈的图像过点7(,2)12P π-.(2)已知10()21213f απ+=,02πα-<<,求1cos()sin()2sin cos 221sin cos ππαααααα-++-+++的值; (3)若函数()y g x =的图像与()y f x =的图像关于y 轴对称,求函数()y g x =的单调区间.【来源】浙江省杭州第二中学三角函数 单元测试题【答案】(1)()223f x sin x π⎛⎫=+ ⎪⎝⎭;(2)713-;(3)单减区间为15(,)()1212k k k z ππππ-+∈, 单增区间为511(,)()1212k k k z ππππ++∈. 45.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离与y 轴的距离之比为3∶4,求2sin α+cos α的值.【来源】第3章章末检测-2018-2019版数学创新设计课堂讲义同步系列(湘教版必修2)【答案】(1)-25(2)见解析(3)见解析 46.是否存在实数a ,使得函数y =sin 2x +acosx +5a 8−32在闭区间[0,π2]上的最大值是1?若存在,求出对应的a 值;若不存在,请说明理由.【来源】重庆市万州二中0910年高一下学期期末考试【答案】f max (t)=f(a 2)=a 42+58a −12=1, 47.A,B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限,记∠AOB =θ,且sinθ=45.(1)求点B 的坐标;(2)求sin (π+θ)+2sin(π2−θ)2tan (π−θ)的值.【来源】2015-2016学年广西钦州港开发区中学高二上第一次月考理科数学试卷(带解析)【答案】(1)(−35,45);(2)−53. 48.已知函数()sin 214f x x π⎛⎫=++ ⎪⎝⎭(1)用“五点法”作出()f x 在7,88x ππ⎡⎤∈-⎢⎥⎣⎦上的简图; (2)写出()f x 的对称中心以及单调递增区间;(3)求()f x 的最大值以及取得最大值时x 的集合.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题【答案】(1)见解析;(2)k ππ,028⎛⎫+ ⎪⎝⎭,k Z ∈,最大值为2,此时,,8x k k ππ=+∈Z . 49.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,5c =,3cos 5B =. (1)求b 的值;(2)求sin C 的值.【来源】正余弦定理 滚动习题(三) [ 范围 1 ]【答案】(1; (2.50.已知函数f (x )=4sin π-3x ⎛⎫ ⎪⎝⎭cos . (1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 区间在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.【来源】人教A 版2018-2019学年高中数学必修4第三章三角恒等变换测评【答案】(1)T=π,递增区间为π5ππ-,π1212k k ⎡⎤+⎢⎥⎣⎦(k ∈Z).(2) m ∈-3.。
甘肃天水市第一中学2017-2018学年高二下学期第一次学业水平模拟测试语文试题及答案 人教版高二
甘肃天水市第一中学2017-2018学年高二下学期第一次学业水平模拟测试语文试题及答案人教版高二下册天水市第一中学2016级2017—2018学年学业水平测试模拟题语文本试卷分为第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
满分100分,考试时间为120分钟。
第Ⅰ卷(阅读题共50分)一、(6分,每小题2分)阅读下面的文字,完成1—3题。
在审美活动中,感知是出发点,理解是认识性因素,感知在生理上,理解在逻辑程序中都是常数,正是想象才使它们成了变数。
想象大概是审美中的关键,正是它使感知超出自身,正是它使理解不走向概念,正是它使情感能构造另一个多样化的幻想世界。
动物没有想象,只有人能想象。
想象从一开始便贯穿在感知里。
想象把某些经验的(或体验的)东西提出来进行回忆、联想、类比、期待,把脑中一些模模糊糊的东西明确下来。
想象是既与个别事物有关联的,又具有主动支配性和综合统一性的感性活动。
正因为想象极为丰富和复杂,不为概念性的认识所规范,所以想象才多义而宽泛。
想象又常常与情感、欲望等本能相联系,受后者支配,具有无意识的意向性。
在审美欣赏中,对内在意义的理解,不是靠概念而正是靠想象来联系的。
高尔基的《海燕》没有明确的讲革命,却给人以革命的启示。
这是通过想象,即由想象来负载审美理解。
想象在心理学中一般分为再现性想象和创造性想象。
想象还包括联想,联想分为接近联想、类比联想等等。
接近联想如由齐白石画的《岁朝图》(爆竹)而感到春节的气氛,类比联想如用花比美人、用暴雨比革命等等。
此外,无意识中的变形、浓缩、重叠、不遵守同一律(是A又是非A)等种种非理性的想象,在现代文艺中也广泛流行。
艺术作品之所以必须具有“空白点”、之所以具有朦胧性、不确定性,便正是为了给想象以抒发活动的天地。
如果没有这种活动,这个美感也就建立不起来。
想象的这种广阔性使艺术与生活的对应关系变得十分复杂和深刻。
古典主义的三一律和模拟论美学早已被弃若敝屣,主观心理的时空和主体感受的真实占领了现代艺术的中心。
数学2016-2017学年度第一学期期末考试试题
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
宁夏石嘴山市高二数学下学期第二次月考试卷 文(含解析)-人教版高二全册数学试题
2016-2017学年某某某某高二(下)第二次月考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x>0},集合B={x|2≤x≤3},则A∩B=()A.[3,+∞)B.[2,3] C.(0,2]∪[3,+∞)D.(0,2]2.已知全集U=R,N={x|x(x+3)<0},M={x|x<﹣1},则图中阴影部分表示的集合是()A.{x|﹣3<x<﹣1} B.{x|﹣3<x<0} C.{x|﹣1≤x<0} D.{x|x<﹣3}3.满足条件M∪{1}={1,2,3}的集合M的个数是()A.1 B.2 C.3 D.44.下列各组函数f(x)与g(x)相同的是()A.f(x)=1,g(x)=x0B.f(x)=x2,g(x)=(x+1)2C.f(x)=x,g(x)=e lnx D.f(x)=|x|,g(x)=5.若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.26.已知a,b∈R,则“b≠0”是“复数a+bi是纯虚数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知复数z满足(z﹣5)(1﹣i)=1+i,则复数z的共轭复数为()A.5+i B.5﹣i C.﹣5+i D.﹣5﹣i8.下列函数中与函数y=﹣3|x|奇偶性相同且在(﹣∞,0)上单调性也相同的是()A.y=﹣B.y=log2|x| C.y=1﹣x2D.y=x3﹣19.设U=R,A={x|mx2+8mx+21>0},∁U A=∅,则m的取值X围是()A.[0,)B.{0}∪(,+∞)C.(﹣∞,0] D.(﹣∞,0]∪(,+∞)10.A、B为两个非空集合,定义集合A﹣B={x|x∈A且x∉B},若A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A﹣B=()A.{2} B.{1,2} C.{﹣2,1,2} D.{﹣2,﹣1,0}11.曲线C的参数方程为(α为参数),M是曲线C上的动点,若曲线T极坐标方程2ρsinθ+ρcosθ=20,则点M到T的距离的最大值()A.B.C.D.12.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是()A.0 B.0或C.或D.0或二、填空题13.函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上递减,则实数a的取值X围是.14.已知函数f(x)=若f(1)+f(a)=2,则a的值为.15.已知定义在R上的奇函数f(x),当x<0时,f(x)=2x﹣3.若f(a)=7,实数a的值是.16.给出下列四个命题:①“若x+y≠5,则x≠2或y≠3”是假命题;②已知在△ABC中,“A<B”是“sinA<sinB”成立的充要条件;③若函数,对任意的x1≠x2都有<0,则实数a的取值X围是;④若实数x,y ∈[﹣1,1],则满足x2+y2≥1的概率为.其中正确的命题的序号是(请把正确命题的序号填在横线上).三.解答题17.已知集合A={x|3≤x<7},B={x|2<x<10},求:A∪B,(∁R A)∩B.18.设函数f(x)=ln(2x﹣m)的定义域为集合A,函数g(x)=﹣的定义域为集合B.(Ⅰ)若B⊆A,某某数m的取值X围;(Ⅱ)若A∩B=∅,某某数m的取值X围.19.已知m∈R,命题p:对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立;命题q:存在x∈[﹣1,1],使得m≤ax 成立.(1)若p为真命题,求m 的取值X围;(2)当a=1 时,若p且q为假,p或q为真,求m的取值X围.20.已知函数f(x)=|x+3|+|2x﹣4|.(1)当x∈[﹣3,3]时,解关于x的不等式f(x)<6;(2)求证:∀t∈R,f(x)≥4﹣2t﹣t2.21.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(﹣2,﹣4)且倾斜角为的直线l 与曲线C相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|AP|•|BP|=|BA|2,求m的值.22.已知f(x)是定义在[﹣2,2]上的奇函数,且f(2)=3.若对任意的m,n∈[﹣2,2],m+n≠0,都有>0.(1)判断函数f(x)的单调性,并说明理由;(2)若f(2a﹣1)<f(a2﹣2a+2),某某数a的取值X围;(3)若不等式f(x)≤(5﹣2a)t+1对任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,某某数t的取值X围.2016-2017学年某某某某三中高二(下)第二次月考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x>0},集合B={x|2≤x≤3},则A∩B=()A.[3,+∞)B.[2,3] C.(0,2]∪[3,+∞)D.(0,2]【考点】1E:交集及其运算.【分析】利用交集定义直接求解.【解答】解:∵集合A={x|x>0},集合B={x|2≤x≤3},∴A∩B=[2,3].故选:B.2.已知全集U=R,N={x|x(x+3)<0},M={x|x<﹣1},则图中阴影部分表示的集合是()A.{x|﹣3<x<﹣1} B.{x|﹣3<x<0} C.{x|﹣1≤x<0} D.{x|x<﹣3}【考点】1J:Venn图表达集合的关系及运算.【分析】首先化简集合N,然后由Venn图可知阴影部分表示N∩(C U M),即可得出答案.【解答】解:N={x|x(x+3)<0}={x|﹣3<x<0}由图象知,图中阴影部分所表示的集合是N∩(C U M),又M={x|x<﹣1},∴C U M={x|x≥﹣1}∴N∩(C U M)=[﹣1,0)故选:C.3.满足条件M∪{1}={1,2,3}的集合M的个数是()A.1 B.2 C.3 D.4【考点】1D:并集及其运算.【分析】先由M∪{1}={1,2,3}可知集合M必含2和3,是否含1,不确定,则得出两种可能集合,得出答案.【解答】解:满足条件M∪﹛1﹜=﹛1,2,3﹜的集合M,M必须包含元素2,3,所以不同的M集合,其中的区别就是否包含元素1.那么M可能的集合有{2,3}和{1,2,3},故选:B.4.下列各组函数f(x)与g(x)相同的是()A.f(x)=1,g(x)=x0B.f(x)=x2,g(x)=(x+1)2C.f(x)=x,g(x)=e lnx D.f(x)=|x|,g(x)=【考点】32:判断两个函数是否为同一函数.【分析】分别判断两个函数的定义域和对应法则是否一致,否则不是同一函数.【解答】解:A.f(x)的定义域为R,而g(x)的定义域为(﹣∞,0)∪(0,+∞),所以定义域不同,所以函数f(x)与g(x)不相同.B.两个函数的对应法则不相同,所以函数f(x)与g(x)不相同.C.f(x)的定义域为R,而g(x)的定义域为(0,+∞),所以定义域不同,所以C函数f (x)与g(x)不相同.D.f(x)=,两个函数的定义域和对应法则相同,所以函数f(x)与g(x)相同.故选D.5.若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.2【考点】3J:偶函数.【分析】本小题主要考查函数的奇偶性的定义:f(x)的定义域为I,∀x∈I都有,f(﹣x)=f(x).根据定义列出方程,即可求解.【解答】解:f(1)=2(1﹣a),f(﹣1)=0∵f(x)是偶函数∴2(1﹣a)=0,∴a=1,故选C.6.已知a,b∈R,则“b≠0”是“复数a+bi是纯虚数”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】a,b∈R,复数a+bi是纯虚数⇔,即可判断出结论.【解答】解:a,b∈R,复数a+bi是纯虚数⇔,∴“b≠0”是“复数a+bii是纯虚数”的必要不充分条件.故选:B.7.已知复数z满足(z﹣5)(1﹣i)=1+i,则复数z的共轭复数为()A.5+i B.5﹣i C.﹣5+i D.﹣5﹣i【考点】A5:复数代数形式的乘除运算.【分析】把已知等式变形,利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案.【解答】解:由(z﹣5)(1﹣i)=1+i,得z﹣5=,∴z=5+i,则,故选:B.8.下列函数中与函数y=﹣3|x|奇偶性相同且在(﹣∞,0)上单调性也相同的是()A.y=﹣B.y=log2|x| C.y=1﹣x2D.y=x3﹣1【考点】3E:函数单调性的判断与证明;3K:函数奇偶性的判断.【分析】先判定函数y=﹣3|x|的奇偶性以及在(﹣∞,0)上的单调性,再对选项中的函数进行判断,找出符合条件的函数.【解答】解:∵函数y=﹣3|x|是偶函数,且在(﹣∞,0)上是增函数,∴对于A,y=﹣是奇函数,不满足条件;对于B,y=log2|x|是偶函数,在(﹣∞,0)上是减函数,∴不满足条件;对于C,y=1﹣x2是偶函数,且在(﹣∞,0)上是增函数,∴满足条件;对于D,y=x3﹣1是非奇非偶的函数,∴不满足条件.故选:C.9.设U=R,A={x|mx2+8mx+21>0},∁U A=∅,则m的取值X围是()A.[0,)B.{0}∪(,+∞)C.(﹣∞,0] D.(﹣∞,0]∪(,+∞)【考点】1F:补集及其运算.【分析】由补集的定义可得A=R,即不等式mx2+8mx+21>0恒成立,讨论m=0,m>0,m<0,结合二次函数的图象和性质,解不等式即可得到所求X围.【解答】解:设U=R,A={x|mx2+8mx+21>0},∁U A=∅,可得A=R,即不等式mx2+8mx+21>0恒成立,当m=0时,21>0成立;当m>0,△<0,即64m2﹣84m<0,解得0<m<;当m<0时,不等式不恒成立.综上可得,0≤m<.故选:A.10.A、B为两个非空集合,定义集合A﹣B={x|x∈A且x∉B},若A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A﹣B=()A.{2} B.{1,2} C.{﹣2,1,2} D.{﹣2,﹣1,0}【考点】1H:交、并、补集的混合运算.【分析】先分别求出集合A、B,由此能求出A﹣B.【解答】解:∵A、B为两个非空集合,定义集合A﹣B={x|x∈A且x∉B},A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0}={x|﹣2<x<1},∴A﹣B={﹣2,1,2}.故选:C.11.曲线C的参数方程为(α为参数),M是曲线C上的动点,若曲线T极坐标方程2ρsinθ+ρcosθ=20,则点M到T的距离的最大值()A.B.C.D.【考点】QH:参数方程化成普通方程.【分析】先求出曲线C的普通方程,使用参数坐标求出点M到曲线T的距离,得到关于α的三角函数,利用三角函数的性质求出距离的最值.【解答】解:曲线T的普通方程是:x+2y﹣20=0.点M到曲线T的距离为=,∴sin(α+θ)=﹣1时,点M到T的距离的最大值为2+4,故选B.12.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是()A.0 B.0或C.或D.0或【考点】3P:抽象函数及其应用.【分析】先作出函数f(x)在[0,2]上的图象,再分类讨论,通过数形结合与方程思想的应用即可解决问题.【解答】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),又f(x+2)=f(x),∴f(x)是周期为2的函数,又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].综上所述,a=﹣或0故选D.二、填空题13.函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上递减,则实数a的取值X围是(﹣∞,﹣3].【考点】3W:二次函数的性质.【分析】f(x)是二次函数,所以对称轴为x=1﹣a,所以要使f(x)在区间(﹣∞,4]上递减,a应满足:4≤1﹣a,解不等式即得a的取值X围.【解答】解:函数f(x)的对称轴为x=1﹣a;∵f(x)在区间(﹣∞,4]上递减;∴4≤1﹣a,a≤﹣3;∴实数a的取值X围是(﹣∞,﹣3].故答案为:(﹣∞,﹣3].14.已知函数f(x)=若f(1)+f(a)=2,则a的值为 4 .【考点】3T:函数的值.【分析】根据函数的表达式先求出f(1),从而求出f(a)的值,求出a即可.【解答】解:f(1)=log21=0,即由f(1)+f(a)=2得f(a)=2﹣f(1)=2﹣0=2,若a>0,则由f(a)=log2a=2,得a=4,若a≤0,则由f(a)=2a=2,得a=1,不成立,综上a=4,故答案为:4.15.已知定义在R上的奇函数f(x),当x<0时,f(x)=2x﹣3.若f(a)=7,实数a的值是 2 .【考点】3L:函数奇偶性的性质.【分析】先求出x>0时的解析式,再利用条件,即可求出a的值.【解答】解:设x>0,则﹣x<0,∴f(x)=﹣f(﹣x)=﹣(﹣2x﹣3)=2x+3,∴a<0,2a﹣3=7,a=5(舍去);a>0,2a+3=7,∴a=2.故答案为:2.16.给出下列四个命题:①“若x+y≠5,则x≠2或y≠3”是假命题;②已知在△ABC中,“A<B”是“sinA<sinB”成立的充要条件;③若函数,对任意的x1≠x2都有<0,则实数a的取值X围是;④若实数x,y ∈[﹣1,1],则满足x2+y2≥1的概率为.其中正确的命题的序号是②④(请把正确命题的序号填在横线上).【考点】2K:命题的真假判断与应用;21:四种命题.【分析】①根据逆否命题的等价性进行转化证明即可.②根据大角对大边以及正弦定理进行证明.③根据分段函数单调性的性质进行证明.④根据几何概型的概率公式进行证明.【解答】解:①“若x+y≠5,则x≠2或y≠3”的等价命题为x=2且y=3时,x+y=5,则等价命题为真命题,则原命题为真命题,故①错误,②已知在△ABC中,“A<B”等价为a<b,根据正弦定理得“sinA<sinB”成立,即,“A <B”是“sinA<sinB”成立的充要条件;故②正确,③若对任意的x1≠x2都有<0,则函数f(x)为减函数,则满足,即,得≤a<,故③错误,④由题意可得,的区域为边长为2的正方形,面积为4,∵x2+y2≥1的区域是圆的外面的阴影区域,其面积S=4﹣π,∴在区间[﹣1,1]上任取两个实数x,y,则满足x2+y2≥1的概率为=.故④正确.故正确的答案是②④,故答案为:②④三.解答题17.已知集合A={x|3≤x<7},B={x|2<x<10},求:A∪B,(∁R A)∩B.【考点】1F:补集及其运算;1D:并集及其运算;1E:交集及其运算.【分析】根据并集的定义,由集合A={x|3≤x<7},B={x|2<x<10},求出A与B的并集即可;先根据全集R和集合A求出集合A的补集,然后求出A补集与B的交集即可.【解答】解:由集合A={x|3≤x<7},B={x|2<x<10},把两集合表示在数轴上如图所示:得到A∪B={x|2<x<10};根据全集为R,得到C R A={x|x<3或x≥7};则(C R A)∩B={x|2<x<3或7≤x<10}.18.设函数f(x)=ln(2x﹣m)的定义域为集合A,函数g(x)=﹣的定义域为集合B.(Ⅰ)若B⊆A,某某数m的取值X围;(Ⅱ)若A∩B=∅,某某数m的取值X围.【考点】33:函数的定义域及其求法;1E:交集及其运算.【分析】(Ⅰ)分别求出集合A、B,根据B⊆A,求出m的X围即可;(Ⅱ)根据A∩B=∅,得到关于m的不等式,求出m的X围即可.【解答】解:由题意得:A={x|x>},B={x|1<x≤3},(Ⅰ)若B⊆A,则≤1,即m≤2,故实数m的X围是(﹣∞,2];(Ⅱ)若A∩B=∅,则≥3,故实数m的X围是[6,+∞).19.已知m∈R,命题p:对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立;命题q:存在x∈[﹣1,1],使得m≤ax 成立.(1)若p为真命题,求m 的取值X围;(2)当a=1 时,若p且q为假,p或q为真,求m的取值X围.【考点】2E:复合命题的真假.【分析】(1)对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立,可得﹣2≥m2﹣3m,解得mX围.(2)a=1时,存在x∈[﹣1,1],使得m≤ax 成立.可得m≤1.由p且q为假,p或q为真,可得p与q必然一真一假,即可得出.【解答】解:(1)对任意x∈[0,1],不等式2x﹣2≥m2﹣3m 恒成立,∴﹣2≥m2﹣3m,解得1≤m≤2.(2)a=1时,存在x∈[﹣1,1],使得m≤ax 成立.∴m≤1.∵p且q为假,p或q为真,∴p与q必然一真一假,∴或,解得1<m≤2或m<1.∴m的取值X围是(﹣∞,1)∪(1,2].20.已知函数f(x)=|x+3|+|2x﹣4|.(1)当x∈[﹣3,3]时,解关于x的不等式f(x)<6;(2)求证:∀t∈R,f(x)≥4﹣2t﹣t2.【考点】R5:绝对值不等式的解法;R4:绝对值三角不等式.【分析】(1)通过讨论a的X围,求出不等式的解集即可;(2)求出f(x)的分段函数的形式,求出f(x)的最小值,得到关于t的不等式,证出即可.【解答】解:(1)当﹣3≤x≤2时,f(x)=x+3﹣(2x﹣4)=﹣x+7,故原不等式可化为﹣x+7<6,解得:x>1,故1<x≤2;当2<x≤3时,f(x)=x+3+(2x﹣4)=3x﹣1,故原不等式可化为3x﹣1<6,解得;综上,可得原不等式的解集为.(2)证明:,由图象,可知f(x)≥5,又因为4﹣2t﹣t2=﹣(t+1)2+5≤5,所以f(x)≥4﹣2t﹣t2.21.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(﹣2,﹣4)且倾斜角为的直线l 与曲线C相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|AP|•|BP|=|BA|2,求m的值.【考点】Q4:简单曲线的极坐标方程.【分析】(1)曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),即ρ2sin2θ=mρcosθ(m >0),利用互化公式可得直角坐标方程.过点P(﹣2,﹣4)且倾斜角为的直线l参数方程为:(t为参数).相减消去参数化为普通方程.(2)把直线l的方程代入曲线C的方程为:t2﹣(m+8)t+4(m+8)=0.由于|AP|•|BP|=|BA|2,可得|t1•t2|=,化为:5t1•t2=,利用根与系数的关系即可得出.【解答】解:(1)曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),即ρ2sin2θ=mρcosθ(m>0),可得直角坐标方程:y2=mx(m>0).过点P(﹣2,﹣4)且倾斜角为的直线l参数方程为:(t为参数).消去参数化为普通方程:y=x﹣2.(2)把直线l的方程代入曲线C的方程为:t2﹣(m+8)t+4(m+8)=0.则t1+t2=(m+8),t1•t2=4(m+8).∵|AP|•|BP|=|BA|2,∴|t1•t2|=,化为:5t1•t2=,∴20(m+8)=2(m+8)2,m>0,解得m=2.22.已知f(x)是定义在[﹣2,2]上的奇函数,且f(2)=3.若对任意的m,n∈[﹣2,2],m+n≠0,都有>0.(1)判断函数f(x)的单调性,并说明理由;(2)若f(2a﹣1)<f(a2﹣2a+2),某某数a的取值X围;(3)若不等式f(x)≤(5﹣2a)t+1对任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,某某数t的取值X围.【考点】3R:函数恒成立问题;3E:函数单调性的判断与证明;3F:函数单调性的性质.【分析】(1)设任意x1,x2,满足﹣2≤x1<x2≤2,利用函数单调性的定义证明;(2)由(1)知,f(2a﹣1)<f(a2﹣2a+2)可化为﹣2≤2a﹣1)<a2﹣2a+2≤2,从而解得.(3)不等式f(x)≤(5﹣2a)t+1对任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,f max(x)≤(5﹣2a)t+1对任意的a∈[﹣1,2]都恒成立,令g(a)=2ta﹣5t+2,a∈[﹣1,2],从而求t.【解答】解:(1)设任意x1,x2,满足﹣2≤x1<x2≤2,由题意可得f(x1)﹣f(x2)=f(x1)+f(﹣x2)=(x1﹣x2)<0,即f(x1)<f(x2),∴f(x)在定义域[﹣2,2]上是增函数.(2)由(1)知,f(2a﹣1)<f(a2﹣2a+2)可化为﹣2≤2a﹣1)<a2﹣2a+2≤2,解得0≤a<1,∴a的取值X围为[0,1).(3)由(1)知,不等式f(x)≤(5﹣2a)t+1对任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,f max(x)≤(5﹣2a)t+1对任意的a∈[﹣1,2]都恒成立,∴3≤(5﹣2a)t+1恒成立,即2ta﹣5t+2≤0对任意的a∈[﹣1,2]都恒成立,令g(a)=2ta﹣5t+2,a∈[﹣1,2],则只需,解得t≥2,∴t的取值X围是[2,+∞).。
2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)
2016-2017学年四川省绵阳市高二下学期期末数学试卷(文科)(解析版)2016-2017学年四川省绵阳市高二(下)期末数学试卷(文科)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={-1,1,2},B={x| (x+1)(x-2)<0 },则A∩B=()A。
{-1}B。
{1}C。
{-1,1}D。
{1,2}2.与命题“若a∈M,则b∈M”等价的命题是()A。
若a∈M,则XXXB。
若b∈M,则a∉MC。
若b∉M,则a∈MD。
b∉M,则a∉M3.已知a>b,则下列不等式恒成立的是()A。
a^2>b^2B。
a^2<b^2C。
a^2>abD。
a^2+b^2>2ab4.设f(x)= 1/(x-3),则f(f(4))=()A。
-1B。
1/13C。
1/11D。
1/75.设a=0.9^1.1,b=1.1^0.9,c=log0.9 1.1,则a,b,c的大小关系正确的是()A。
b>a>cB。
a>b>cC。
c>a>bD。
a>c>b6.函数f(x)= -log3x的零点所在的区间为()A。
(-∞,0)B。
(0,1)C。
(1,3)D。
(3,∞)7.设p:x^2-x-20≤0,q:x≥1,则p是q的()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件8.若变量x,y满足x+y=3,则2x-y的最大值是()A。
-2B。
3C。
7D。
99.设f(x)=sinx-x,则下列说法正确的是()A。
f(x)是有零点的偶函数B。
f(x)是没有零点的奇函数C。
f(x)既是奇函数又是R上的增函数D。
f(x)既是奇函数又是R上的减函数10.已知函数y=xf′(x)(f′(x)是函数f(x)的导函数)的图象如图所示,则y=f(x)的大致图象可能是()11.当x∈(0,3)时,关于x的不等式e^x-x-2mx>XXX成立,则实数m的取值范围是()A。
江苏省泰州2016-2017学年高二下学期期末数学试题(理)含答案
江苏省泰州2016-2017学年高二下学期期末数学试题(理)含答案2016-2017学年度第二学期期末考试高二数学(理科)试题一、填空题:共14小题,每小题5分,共70分1.4!的值为 24.2.椭圆的参数方程为{x=2cosθ。
y=sinθ}(θ为参数),则该椭圆的普通方程为 x^2/4+y^2=1.3.已知a=(2,4,-1)。
b=(m,1,0),若a⊥b,则m=-2.4.在[-2,1]上随机取一个数x,使得x<1的概率为3/4.5.某高级中学共有2000名学生,为了了解不同年级学生的眼睛的近视情况,现用分层抽样的方法抽取一个容量为100的样本,高三年级抽取的学生人数为35人,则高三年级学生人数为 175人.6.右图是一个算法的流程图,则输出的k的值是 4.7.极坐标系中,点(1,0)到直线θ=π/4的距离是1/√2.8.一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷两次,观察向上的点数,则两点数之和不为5的概率为 11/18.9.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为 20.10.现将5张连号的电影票分给5个人(5人中含甲乙两人),每人一张,且甲、乙两人分得的电影票连号,则共有不同的分法的种数为 12.11.若Cx(x+3)-Cx+2=28,则x的值为 3.12.若点P(ρ,θ)到直线θ=π/3的距离为3,则ρ=3/√3=√3.13.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,且在两种坐标系中取相同的长度单位,已知平面直角坐标系中,直线l的参数方程为 {x=-1+2t。
y=2+t}(t为参数)在极坐标系中,圆C的圆心的极坐标为C(1,π/4),半径为1.1)求圆C的直角坐标方程;圆C的极坐标方程为ρ=1,θ=π/4,所以C的直角坐标为(√2/2.√2/2).2)判断直线l与圆C的位置关系。
2016-2017学年高二下学期期中考试数学(理)试题(A卷)Word版含答案
试卷类型 A2016-2017学年高二下学期期中考试数学(理)试题一.选择题(5分×12=60分)在每小题给出的四个选项只有一个正确。
1.下列求导运算正确的是( ) A. 233'1x x x ⎛⎫+=+ ⎪⎝⎭ B. ()21log 'ln2x x = C. ()33'3log x x e = D. ()2cos '2sin x x x x =-2.曲线34y x x =-在点(-1,-3)处的切线方程是( ) A.74y x =+ B.72y x =+ C.2y x =- D.4y x =- 3.由“若b a>,则c b c a +>+”推理到“若b a >,则bc ac >”是( )A.归纳推理B.类比推理C.演绎推理D.不是推理4.已知三棱锥O ABC -,点,M N 分别为,AB OC 的中点,且,,OA a OB b OC c === ,用a , b , c表示MN ,则MN等于( )A. ()12b c a +-B.()12a b c +- C. ()12a b c -+ D. ()12c a b -- 5.若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( ) A .-3 B . -6 C .-9 D .-126.若2(sin cos )2x a x dx π-=⎰,则实数a 等于( )A .1-B .1C .7.如图,函数()y f x =的图象在点P 处的切线方程是8y x =-+,则()()55f f '+=( )A .12B .1C .2D .0 8.函数32()23f x x x a =-+的极大值为6,那么a 的值是( ) A .5 B .0 C .6 D .19.函数f (x )在x=x 0处导数存在,若p :f′(x 0)=0:q :x=x 0是f (x )的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 10.若2()2'(1)f x xf x =+,则'(0)f 等于 ( ) A. -2 B. -4 C. 2 D. 0 11.由曲线x y =,直线2-=x y 及y 轴所围成的封闭图形的面积为( )A .316 B .310C .4D .6 12.函数()f x 在实数集R 上连续可导,且()()20f x f x '->在R 上恒成立,则以下不等式一定成立的是( ) A. ()()221f f e >B. ()()221f f e <C. ()()321f e f -> D. ()()321f e f -<二.填空题。
2016-2017学年高二数学人教B版必修4学案1.3.3《已知三角函数值求角》
1.3.3 已知三角函数值求角明目标、知重点 1.掌握已知三角函数值求角的步骤和方法.2.了解符号arcsin x ,arccos x ,arctan x 的含义,并能用这些符号表示非特殊角.已知三角函数值时角的表示探究点一 已知正弦值,求角思考1 阅读教材58页下半页,谈谈对arcsin a 表示的意义. 答 (1)当|a |≤1时,arcsin a 表示一个角;(2)这个角在区间⎣⎡⎦⎤-π2,π2内取值,即arcsin a ∈⎣⎡⎦⎤-π2,π2; (3)这个角的正弦值等于a ,即sin(arcsin a )=a . 因此,a 的范围必是|a |≤1.思考2 请你根据符号arcsin a 的含义写出下列式子的结果: arcsin 12=π6;arcsin ⎝⎛⎭⎫-12=-π6; arcsin22=π4;arcsin ⎝⎛⎭⎫-32=-π3; arcsin0=0;arcsin(-1)=-π2;arcsin ⎝⎛⎭⎫sin π2=π2;arcsin ⎝⎛⎭⎫sin 34π=π4. 例1 已知sin x =32. (1)当x ∈⎣⎡⎦⎤-π2,π2时,求x 的取值集合;(2)当x ∈[0,2π]时,求x 的取值集合; (3)当x ∈R 时,求x 的取值集合.解 (1)∵y =sin x 在⎣⎡⎦⎤-π2,π2上是增函数, 且知sin π3=32.∴满足条件的角只有x =π3.∴x 的取值集合为⎩⎨⎧⎭⎬⎫π3.(2)∵sin x =32>0,∴x 为第一或第二象限角 且sin π3=sin ⎝⎛⎭⎫π-π3=32. ∵在[0,2π]上符合条件的角x =π3或x =2π3,∴x 的取值集合为⎩⎨⎧⎭⎬⎫π3,2π3.(3)当x ∈R 时,x 的取值集合为 {x |x =2k π+π3或x =2k π+2π3,k ∈Z }.反思与感悟 方程y =sin x =a ,|a |≤1的解集可写为{x |x =2k π+arcsin a ,或(2k +1)π-arcsin a ,k ∈Z }.也可化简为{x |x =k π+(-1)k arcsin a ,k ∈Z }.跟踪训练1 若sin α=13,试根据下列范围,利用符号arcsin x 表示角α.(1)若α为锐角,则α=________________; (2)若α为三角形内角,则α=________________; (3)若α∈[0,2π],则α=________________; (4)若α∈R ,则α=________________. 答案 (1)arcsin 13 (2)arcsin 13或π-arcsin 13(3)arcsin 13或π-arcsin 13(4)k π+(-1)k arcsin 13,k ∈Z探究点二 已知余弦值,求角思考1 阅读教材59页下半页,说出arccos a 的含义. 答 (1)当|a |≤1时,arccos a 表示一个角;(2)这个角在区间[0,π]内取值,即arccos a ∈[0,π]; (3)这个角的余弦值等于a ,即cos(arccos a )=a . 因此,a 的范围也必须是|a |≤1.思考2 请你根据符号arccos a 的含义写出下列式子的结果: arccos 12=π3;arccos ⎝⎛⎭⎫-12=23π; arccos22=π4;arccos ⎝⎛⎭⎫-22=34π; arccos1=0;arccos(-1)=π; arccos ⎝⎛⎭⎫-32=56π;arccos0=π2.例2 已知cos x =-13.(1)当x ∈[0,π]时,求x ; (2)当x ∈[0,2π]时,求x ; (3)当x ∈R 时,求x 的取值集合. 解 (1)∵cos x =-13,且x ∈[0,π],∴x =arccos ⎝⎛⎭⎫-13=π-arccos 13. (2)∵x ∈[0,2π]且cos x =-13<0.∴x 为第二象限角或第三象限角. ∴x =π-arccos 13或π+arccos 13.(3)当x ∈R 时,x 与π-arccos 13终边相同或者与π+arccos 13终边相同.∴x =2k π+π-arccos 13或x =2k π+π+arccos 13(k ∈Z ).∴x 的取值集合是⎩⎨⎧⎭⎬⎫x |x =(2k +1)π±arccos 13,k ∈Z .反思与感悟 方程cos x =a ,|a |≤1的解集可写成{x |x =2k π±arccos a ,k ∈Z }.跟踪训练2 已知cos α=12,若α∈[0,2π],则α的集合是________;若α∈R ,则α的集合是________.答案 ⎩⎨⎧⎭⎬⎫π3,53π⎩⎨⎧⎭⎬⎫α|α=2k π±π3,k ∈Z探究点三 已知正切值,求角思考1 对arctan a 的含义你是如何理解的? 答 (1)arctan a 表示一个角;(2)这个角在区间⎝⎛⎭⎫-π2,π2内,即arctan a ∈⎝⎛⎭⎫-π2,π2; (3)这个角的正切值是a ,根据正切函数的值域是R ,可知a ∈R ,即tan(arctan a )=a . 思考2 请你根据符号arctan a 的含义写出下列式子的结果: arctan1=π4;arctan(-1)=-π4;arctan 3=π3;arctan(-3)=-π3;arctan33=π6;arctan ⎝⎛⎭⎫-33=-π6; arctan0=0;tan(arctan 2)= 2.例3 (1)已知tan α=-2,且α∈⎝⎛⎭⎫-π2,π2,求α; (2)已知tan α=-2,且α∈[0,2π],求α; (3)已知tan α=-2,α∈R ,求α.解 (1)由正切函数在开区间⎝⎛⎭⎫-π2,π2上是增函数可知,符合条件tan α=-2的角只有一个,故α=arctan(-2).(2)∵tan α=-2<0,∴α是第二或第四象限角.又∵α∈[0,2π],由正切函数在区间⎝⎛⎦⎤π2,π、⎝⎛⎦⎤3π2,2π上是增函数,知符合tan α=-2的角有两个.∵tan(π+α)=tan(2π+α)=tan α=-2, 且arctan(-2)∈⎝⎛⎭⎫-π2,0, ∴α=π+arctan(-2)或α=2π+arctan(-2). (3)α∈R ,则α=k π+arctan(-2) (k ∈Z ).反思与感悟 方程tan x =a ,a ∈R 的解集为{x |x =k π+arctan a ,k ∈Z }.跟踪训练3 已知tan α=2,且α∈R ,则角α的集合是________.(用反正切表示) 答案 {}α|α=k π+arctan2,k ∈Z1.已知α是三角形的内角,cos α=12,则角α等于( )A.π6B.π3C.5π6或π6D.2π3或π3答案 B2.若sin x =14,x ∈⎝⎛⎭⎫π2,π,则x 等于( ) A.arcsin 14B.π-arcsin 14C.π2+arcsin 14D.-arcsin 14答案 B3.若cos x =13,x ∈⎝⎛⎭⎫-π2,0,则x =________. 答案 -arccos 134.arcsin(-1)+arctan 33=________. 答案 -π3[呈重点、现规律]1.理解符号arcsin x 、arccos x 、arctan x 的含义每个符号都要从以下三个方面去理解,以arcsin x 为例来说明. (1)arcsin x 表示一个角; (2)这个角的范围是⎣⎡⎦⎤-π2,π2; (3)这个角的正弦值是x ,所以|x |≤1. 例如:arcsin2,arcsin 3都是无意义的. 2.已知三角函数值求角的大致步骤 (1)由三角函数值的符号确定角的象限; (2)求出[0,2π)上的角;(3)根据终边相同的角写出所有的角.一、基础过关1.下列叙述错误的是( ) A.arctan y 表示一个⎝⎛⎭⎫-π2,π2内的角 B.若x =arcsin y ,|y |≤1,则sin x =y C.若tan x2=y ,则x =2arctan yD.arcsin y 、arccos y 中的y ∈[-1,1]答案 C2.若α是三角形内角,且sin α=12,则α等于( )A.30°B.30°或150°C.60°D.120°或60°答案 B解析 ∵sin30°=12,sin(180°-30°)=sin30°=12,∴α=30°或150°. 3.已知cos x =-32,π<x <2π,则x 等于( ) A.7π6 B.4π3 C.11π6 D.5π6 答案 A解析 符合条件cos x 0=32的锐角x 0=π6, 而cos ⎝⎛⎭⎫π+π6=-cos π6=-32,∴x =π+π6=7π6. 4.若tan x =-3,0<x <2π,则角x 等于( ) A.π3或2π3 B.2π3或4π3 C.4π3或5π3 D.2π3或5π3答案 D解析 ∵tan x =-3<0,∴x 为第二或第四象限角. 符合条件tan x 0=3的锐角x 0=π3.而tan ⎝⎛⎭⎫π-π3=-tan π3=-3, tan ⎝⎛⎭⎫2π-π3=-tan π3=-3, ∴x =π-π3=2π3或x =2π-π3=5π3.5.arcsin ⎝⎛⎭⎫sin 23π=________. 答案 π3解析 arcsin ⎝⎛⎭⎫sin 23π=arcsin 32=π3.6.直线2x +y -1=0的倾斜角是________(用反正切表示). 答案 π+arctan(-2)解析 ∵2x +y -1=0,∴y =-2x +1.设直线y =-2x +1的倾斜角为θ,则tan θ=-2, ∴θ为钝角,θ∈⎝⎛⎭⎫π2,π. ∵arctan(-2)∈⎝⎛⎭⎫-π2,0, ∴θ=π+arctan(-2).7.求值:arcsin 32-arccos ⎝⎛⎭⎫-12arctan (-3).解 arcsin32=π3,arccos ⎝⎛⎭⎫-12=2π3, arctan(-3)=-π3,∴原式=π3-2π3-π3=1.二、能力提升8.使得等式2cos x2=1成立的x 的集合是( )A.⎩⎨⎧⎭⎬⎫x |x =4k π+π3,k ∈ZB.⎩⎨⎧⎭⎬⎫x |x =4k π+π6,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x =4k π±23π,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x =2k π+π6,k ∈Z答案 C解析 cos x 2=12>0,x2为第一象限角或第四象限角.∴x 2与π3或-π3终边相同. ∴x 2=2k π±π3,k ∈Z , ∴x =4k π±23π,k ∈Z .9.直线x +2y +1=0的倾斜角为( ) A.arctan ⎝⎛⎭⎫-12 B.-arctan 12C.arcsin ⎝⎛⎭⎫-55 D.arccos ⎝⎛⎭⎫-255答案 D解析 A ,B ,C 均表示负锐角,只有D 选项中 arccos ⎝⎛⎭⎫-255表示钝角.故选D. 10.已知sin α=13,若π2<α<π,用反正弦符号表示α为________________.答案 π-arcsin 13解析 满足sin α=13的锐角为α0=arcsin 13.∵α∈⎝⎛⎭⎫π2,π且sin(π-α0)=sin α0=13, ∴α=π-α0=π-arcsin 13.11.用反三角函数的形式把下列各式中的x 表示出来. (1)cos x =-45 (π2<x <π);(2)sin x =-14 (-π2<x <π2);(3)3tan x +1=0 (0<x <π); (4)sin x =-14 (π<x <3π2).解 (1)arccos ⎝⎛⎭⎫-45 (2)arcsin ⎝⎛⎭⎫-14 (3)π-arctan 13 (4)π+arcsin 1412.利用反正切表示直线ax +by +c =0 (ab >0)的倾斜角.(结果含a 、b ) 解 ∵ab >0,ax +by +c =0. ∴y =-a b x -c b ,k =-ab .∵k =-ab<0,∴直线ax +by +c =0的倾斜角为钝角π-arctan ab .三、探究与拓展13.已知sin α2=-32,且α是第二象限的角,求角α.解 ∵α是第二象限的角,∴α2是第一或第三象限的角. ∵sin α2=-32<0,∴α2是第三象限的角, 在[0,2π]内找到满足条件的α2,∵sin π3=32,∴在[0,2π]内满足条件的角α2=π+π3=4π3.∴所有满足条件的α2=2k π+4π3 (k ∈Z ),即α=4k π+8π3 (k ∈Z ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年甘肃省天高二下学期学业水平测试数学试题
一.选择题(每题4分,共40分)
1. 若集合{}31|≤≤=x x A ,{}2|>=x x B ,则B A ⋂等于 ( )
A. {}32|≤<x x
B. {}1|≥x x
C.{}32|<≤x x
D.{}2|>x x
2.已知角α的终边经过点P(-1,0),则αCOS 的值为 ( )
A. 0
B. -1
C.22-
D.2
2
3.已知向量
=(-3,2),
=(2,m)且
⊥,则m= ( )
A.3
B.-3
C.34
D. - 3
4
4.定义域为R 的四个函数
中,奇函数的个数为 ( )
A. 4
B. 3
C. 2
D. 1 5.如图所示,算法流程图的输出结果为( )
(第5题图)
A.43
B.61
C.1211D .2425
6.下表是某厂1—4月份用水量(单位:百吨)的一组数据:
=-0.7x +a ,则a 等于( )
A .10.5
B .5.15
C .5.2
D .5.25
7.对于不同直线a,b,l 以及平面α,下列说法中正确的是( )
A.如果a//b,a//α,则b//α
B.如果l b l a ⊥⊥,,则a//b
C.如果a//b,b α⊥,则a//α
D.如果αα⊥⊥b a ,,则a//b
8.
的内角的对边分别为
,若
,
,
则等于( ) A.
B.2
C. D.
9.函数的零点个数为( )
A.0
B.1
C.2
D.3 10.满足线性约束条件的目标函数的最大值是 ( )
A.1
B.
C.2
D.3
二.填空题(每题4分,共20分)
11.某校有学生2000人,其中高三学生500人,为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为.
12. 若x <0,则的最大值为
13.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体外接球的体积为
14.从{1,2,3,4}中随机选取一个数为,从{1,2}中随机选取一个数为,则
的概率是
15.已知函数,则满足的的取值范围是_ __
三.解答题(每题8分,共40分) 16.已知等差数列,
(Ⅰ)求的通项公式;
(Ⅱ)令求数列
的前项和
.
17.对某个品牌的U盘进行寿命追踪调查,所得情况如下面频率分布直方图所示.
(1)图中纵坐标处刻度不清,根据图表所提供的数据还原;
(2)根据图表的数据按分层抽样,抽取个U盘,寿命为1030万次之间的应抽取几个;
(3)从(2)中抽出的寿命落在1030万次之间的元件中任取个元件,求事件“恰好有一个寿命为10 20万次,,一个寿命为2030万次”的概率.
18.如图所示,四棱锥中,底面为矩形,
,,点为的中点.
(Ⅰ)求证:;
(Ⅱ)求证:.
19.已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)求的最大值和最小值,以及取得最大值时的值.
20. 已知圆C:(∈R)的圆心在直线上. (1)求实数的值;
(2)求圆C与直线:(∈R)相交弦长的最小值.
数学答案
一.选择题 A B A C C D D D B C
二.填空题 50
三.解答题
16.(1)设数列的公差为,依题意得方程组
,解得所以的通项公式为.
(2)由得,所以是首项,公比为的等比数列.
于是得的前项和
17. 解:(1)
(2)10~30万次之间的U盘所占频率为
设10~30万次之间的U盘应抽取个,,
(3)10~20万次应抽取个,设为,
20~30万次应抽取个,设为,
寿命落在1030万次之间的元件中任取个元件,一切可能结果组成的基本事件空间为
“抽取的两个U盘恰好有一个寿命为1020万次,,一个寿命为2030万次”为事件,
,.
18.证明:(1)连交于,连
为矩形,为中点
,
∥,,
∥面.
(2)
,
为矩形,
, ,
,
为中点,
,
,
. 19.(1)
的
最小正周期为
.
(2)
此时,,即.
20.解:(1)圆C 的方程可化为,将圆心坐标(1,)代入直线方程中,
得
(2)∵直线l 的方程可化为(2x +y -7)m +(x +y -4)=0(m ∈R ).
∴l 恒过x +y -4=02x +y -7=0
的交点M (3,1). 由圆的性质可知,当l ⊥CM 时,弦长最短. 又|CM |==, ∴弦长为l =2=2=4.。