人教版高中物理总复习[力的合成与分解 知识点整理及重点题型梳理] 提高
高一物理必修一期末复习力的合成和分解知识点
高一物理必修一期末复习力的合成和分解知识点
高一物理必修一期末复习力的合成和分解知识
点
力的合成和分解是考试中的常考点,查字典物理网为您提供的力的合成和分解知识点,希望对你有帮助!
力的合成和分解
1、标量和矢量:
(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题.
(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则.
(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等.
2、力的合成与分解:
(1)合力与分力
(2)共点力的合成:
1、共点力
几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
(6)力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力).
易错现象:
1.对含静摩擦力的合成问题没有掌握其可变特性
2.不能按力的作用效果正确分解力
3.没有掌握正交分解的基本方法
高一物理必修一期末复习力的合成和分解知识点全部内容就是这些,更多内容请关注查字典物理网!。
力的合成与分解高中物理知识点
Word 文档1 / 1力的合成与分解高中物理知识点力是物理学中重要的组成部分,无论是初中还是高中物理阶段,力的学习都是重点。
为关怀学生们稳固复习,下面是我整理的,希望大家宠爱。
1)常见的力1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球外表附近)2.胡克定律F=kx {方向沿恢复形变方向,k :劲度系数(N/m),x :形变量(m)}3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN :正压力(N)}4.静摩擦力0≤f 静≤fm (与物体相对运动趋势方向相反,fm 为最大静摩擦力)5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上) 6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)7.电场力F=Eq (E :场强N/C ,q :电量C ,正电荷受的电场力与场强方向相同) 8.安培力F=BILsinθ (θ为B 与L 的夹角,当L⊥B 时:F=BIL ,B//L 时:F=0) 9.洛仑兹力f=qVBsinθ (θ为B 与V 的夹角,当V⊥B 时:f=qVB ,V//B 时:f=0) 注:(1)劲度系数k 由弹簧自身确定;(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与外表状况等确定;(3)fm 略大于μFN ,一般视为fm≈μFN; (4)其它相关内容:静摩擦力(大小、方向);(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解1.同始终线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1F2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x 轴之间的夹角tgβ=Fy/Fx) 注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值确定时,F1与F2的夹角(α角)越大,合力越小;(5)同始终线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
高一物理《力的合成与分解》习题与详解总结
高一物理《力的合成与分解》专题辅导知识要点梳理知识点一——合力与分力、共点力1、合力与分力几个力共同作用的效果与某一个力单独作用的效果相同,则这一个力就叫做那几个力的合力。
那几个力称为这一个力的分力2、共点力如果几个力同时作用在物体上的同一点或者它们的作用线相交于同一点,我们就把这几个力叫做共点力。
知识点二——力的合成1、同一直线上两个力的合成若两个力同方向, F =F1 +F2,方向与分力的方向相同若两个力反方向,,方向与分力大的方向相同2、不在同一直线上两个力的合成,满足平行四边形定则若两个分力大小分别为F1、F2,夹角为,则两个力合力的大小讨论:a.当θ=00时,F =F1 +F2b. 当θ=1800时,c. 当θ=900时,d. 当θ=1200时,且F1 =F2时,F = F1 =F2e.当θ在00∽1800内变化时,当θ增大时,F随之减小,θ减小时,F随之增大知识点三——力的分解1、求一个已知力的分力叫做力的分解。
力的分解是力的合成的逆运算。
力的分解同样也遵守平行四边形定则。
2、把一个力分解成两个分力,仅是一种等效替代关系,不能认为这两个分力有两个施力物体。
同时分力的作用点也一定要和已知力的作用点相同。
3、力的分解时,应该根据力的实际效果来确定它的分力,因为分力与合力只有在相同作用效果的前提下才能够相互代替。
因此力的分解的关键是找出力的作用效果。
常见的几种情况分析如下:(1)斜面上的物体的重力一方面使物体沿斜面下滑,另一方面使物体紧压斜面,因此重力一般分解为沿斜面向下和垂直于斜面向下的两个力F1、F2,如图所示。
(2)地面上物体受斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2,如图所示。
(3)用绳子挂在墙上的篮球受到的重力G产生了两个效果,一个效果将绳子拉紧,另一个效果使球压墙,所以球的重力G可分解为斜向下拉绳子的力F1和水平压墙的力F2,如图所示。
高一物理力的分解与合成知识点总结
高一物理力的分解与合成知识点总结力的分解与合成是高一物理学习中力学的基础内容,下面是店铺给大家带来的高一物理力的分解与合成知识点总结,希望对你有帮助。
高一物理力的分解知识点(1)力的分解求一个力的分力叫做力的分解。
力的分解同样遵循力的平行四边形定则。
(2)矢量和标量1)既有大小又有方向,相加时遵从平行四边形定则(或三角形定则)的物理量叫做矢量。
2)只有大小,没有方向,求和时按照算术法则相加的物理量叫做标量。
(3)力的正交分解法1)将一个力分解为相互垂直的两手分力的分解方法叫做力的正交分解法。
如图所示,将力F沿x轴和y轴两个方向分解,则2)力的正交分解的优点在于:借助数学中的直角坐标系对力进行描述,几何图形是直角三角形,关系简单、计算简便,因此在很多问题中,常把一个力分解为相互垂直的两个力。
特别是物体受多个力作用求合力时,把物体所受的不同方向的各个力都分解到相互垂直的两个方向上去,然后再分别求每个方向上的分力的代数和,这样就把复杂的矢量运算转化成了简单的代数运算,最后再求两个互成角的力的合力就简便多了。
高一物理力的合成知识点(1)合力与分力当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力。
(2)力的合成求几个力的合力的过程或求合力的方法,叫做力的合成。
(3)平行四边形定则两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
(4)共点力如果一个物体受到两个或更多力的作用,有些情况下这些力共同作用在同一个点上,或者虽不作用在同一个点上,但它们的延长线交于一点,这样的一组力叫做共点力。
(5)合力与分力的关系合力与分力是等效替代关系。
高一物理学习方法一、要善于观察,将实际与理论相结合物理学得比较好的同学,大多是勤于观察,善于观察的。
力的合成与分解知识点梳理
力的合成与分解知识点梳理力的合成与分解是物理学中的基础知识,它们描述了多个力的作用和分解方式。
在本篇文章中,我们将讨论力的合成与分解的概念、方法以及相关应用。
以下是力的合成与分解的知识点梳理:一、力的合成1. 概念:力的合成是指将多个力按照一定规则相加得到合力的过程。
多个力的合成可以产生一个等效的力,这个等效的力被称为合力。
2. 方法:a. 图解法:将力的大小和方向用箭头表示,在力的起点将箭头首尾相接,合力的箭头即为首尾相连的箭头。
b. 分解为分力:将一个力分解为两个或多个分力,再将这些分力按照一定规则合成,得到合力。
c. 使用平行四边形法则:根据平行四边形法则,将两个力的起点相连,构成一个平行四边形,合力的箭头即为对角线的箭头。
二、力的分解1. 概念:力的分解是将一个力分解为两个或多个分力的过程。
力的分解可以将复杂的力的作用转化为较简单的力的作用,使问题求解更简便。
2. 方法:a. 分解为垂直方向的分力:根据力在直角坐标系中的分解,将力分解为垂直方向的分力和水平方向的分力。
b. 分解为平行和垂直于斜面的分力:对一个斜面上作用的力进行分解时,可以将力分解为平行和垂直于斜面的分力,以便求解问题。
c. 使用三角函数:根据力的大小和夹角,使用三角函数(如正弦、余弦)将力分解为不同方向的分力。
三、应用1. 力的合成与分解在静力学中的应用:通过将力的作用分解为水平和垂直方向的分力,可以分析物体在平衡状态下的受力情况。
2. 力的合成与分解在动力学中的应用:通过合成力,可以计算物体在多个不同方向上作用力的结果,进而分析物体的运动状态。
3. 力的合成与分解在斜面上的应用:通过分解斜面上的力,可以确定平行和垂直方向的分力,从而计算物体在斜面上的受力和运动情况。
4. 力的合成与分解在物体平衡条件的判断中的应用:分解物体所受外力得到水平方向分力的合力为零,垂直方向分力的合力为零即可判断物体是否处于平衡状态。
综上所述,力的合成与分解是物理学中重要的概念,它们描述了多个力的作用方式和分解方法。
3.4 力的合成与分解 (人教版新教材)高中物理必修一第三章【知识点+练习】
第三章相互作用——力4 力的合成与分解知识点一合力与分力力的合成1.合力、分力.如果一个力作用在物体上产生的效果跟原来几个力的共同作用效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力.*注意:合力与分力是等效替代的关系.受力分析时不能同时考虑合力和分力,否则出现重复.2.力的合成:求几个力的合力的过程.3.平行四边形定则:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向.4.合力与分力间的大小关系.当两分力F1、F2大小一定时,(1)最大值:两力同向时合力最大,F=F1+F2,方向与两力同向;(2)最小值:两力方向相反时,合力最小,F=|F1-F2|,方向与两力中较大的力同向;(3)合力范围:两分力的夹角θ(0°≤θ≤180°)不确定时,合力大小随夹角θ的增大而减小,所以合力大小的范围是:|F1-F2|≤F≤F1+F2.知识点二力的分解1.力的分解:已知一个力求它的分力的过程.2.分解法则:力的分解是力的合成的逆运算,同样遵循平行四边形定则.3.分解依据:通常依据力的作用效果进行分解.4.一般把一个力沿水平方向和竖直方向分解或沿斜面方向和垂直斜面方向分解.5.一个合力可分解为唯一的一组分力的条件.(1)已知合力和两个分力的方向时,有唯一解.(2)已知合力和一个分力的大小和方向时,有唯一解.(3)已知合力F以及一个分力F1的方向和另一个分力F2的大小时,若F与F1的夹角为α,有下面几种可能:①当F sin α<F2<F时,有两解,如图甲所示②当F2=F sin α时,有唯一解,如图乙所示③当F2<F sin α时,无解,如图丙所示④当F2>F时,有唯一解,如图丁所示*按实际效果分解的几个实例.实例分析地面上物体受斜向上的拉力F,其效果为一方面使物体沿水平地面前进,另一方面向上提物体,因此可分解为水平向前的力F1和竖直向上的力F2.F1=F cos α,F2=F sin α质量为m的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑趋势的分力F1,二是使物体压紧斜面的分力F2·F1=mgsin α,F2=mgcos α质量为m的光滑小球被竖直挡板挡住而静止于斜面上时,其重力产生两个效果:一是使球压紧板的分力F1,二是使球压紧斜面的分力F2. F1=mgtan α,F2=mg cos α质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分力F1,二是使球拉紧悬线的分力F2. F1=mgtan α,F2=mg cos α质量为m的物体被OA、OB绳悬挂于O点,重力产生两个效果:对OA的拉力F1和对OB的拉力F2. F1=mgtan α,F2=mg cos α质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1;二是压缩BC的分力F2. F1=mgtan α,F2=mg cos α1.矢量:既有大小又有方向,相加时遵从平行四边形定则(或三角形定则)的物理量.2.标量:只有大小,没有方向,求和时按照算术法则相加的物理量.3.三角形定则:如图所示,三个矢量F1、F2和F构成一个三角形,其中首尾连接的矢量F1、F2为两个分矢量,从一个矢量的箭尾指向另一个矢量的箭头的矢量F为合矢量,矢量三角形三条边的长度和方向分别表示三个矢量的大小和方向.知识点三实验:验证力的平行四边形定则一、实验原理1.若用一个力F′或两个力F1和F2共同作用都能把橡皮条沿某一方向拉至相同长度,即力F′与F1、F2的共同作用效果相同,那么F′为F1、F2的合力.2.用弹簧测力计分别测出F′和F1、F2的大小,并记下它们的方向,作出F′和F1、F2的图示,以F1、F2的图示为邻边作平行四边形,其对角线即为用平行四边形定则求得的F1、F2的合力F.3.比较F′与F,若它们的长度和方向在误差允许的范围内相等,则可以证明平行四边形定则的正确性.二、实验器材方木板、白纸、弹簧测力计(两只)、橡皮条、细绳套、三角板、刻度尺、图钉(若干).三、实验步骤(1)用图钉把白纸钉在水平桌面上的方木板上.(2)用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套.(3)用两只弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向.(4)用铅笔和刻度尺从结点O沿两细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示.(5)只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳的方向,用刻度尺从O点按同样的标度沿记录的方向作出这只弹簧测力计的拉力F′的图示.(6)比较力F′与平行四边形定则求出的合力F在大小和方向上是否相同.(7)改变两个力F1与F2的大小和夹角,再重复实验两次.四、误差分析1.误差来源.除弹簧测力计本身的误差外,还有读数误差、作图误差等.2.减小误差的办法.(1)实验过程中读数时眼睛一定要正视弹簧测力计的刻度,要按有效数字和弹簧测力计的精度正确读数和记录.(2)作图时用刻度尺借助于三角板,使表示两力的对边一定要平行.(3)因两个分力F1、F2间的夹角θ越大,用平行四边形定则作出的合力F的误差ΔF就越大,所以,实验中不要把θ取得太大,但也不宜太小,以60°~120°之间为宜.五、注意事项1.使用弹簧测力计时应注意的问题.(1)弹簧测力计的选取方法将两只弹簧测力计调零后互钩水平对拉,若两只弹簧测力计在对拉过程中,读数相同,则可选;若读数不同,应另换,直至相同为止.(2)弹簧测力计不能在超出它的测量范围的情况下使用.(3)使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差).(4)被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦.(5)读数时应正对、平视刻度.2.验证力的平行四边形定则时应注意的问题.(1)不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的位置.(2)在同一次实验中,使橡皮条拉长时结点O的位置一定要相同.(保证作用效果相同)(3)不要用老化的橡皮条,检查方法是用一个弹簧测力计拉橡皮条,要反复做几次,使橡皮条拉到相同的长度看弹簧测力计读数有无变化.(4)细绳套应适当长一些,便于确定力的方向.不要直接沿细绳套的方向画直线,应在细绳套末端用铅笔画一个点,去掉细绳套后,再将所标点与O点连直线确定力的方向.(5)在同一次实验中,画力的图示所选定的标度要相同,并且要恰当选取标度,使所作力的图示稍大一些.(6)用两个弹簧测力计勾住细绳套互成角度地拉橡皮条时,其夹角不宜太小,也不宜太大,以60°到120°之间为宜.【例1】(多选)两个共点力F1、F2大小不同,它们的合力大小为F,则()A.F1、F2同时增大一倍,F也增大一倍B.F1、F2同时增加10 N,F也增加10 NC.F1增加10 N,F2减少10 N,F一定不变D.若F1、F2中的一个增大,F不一定增大【例2】把一个80 N的力F分解成两个分力F1、F2,其中力F1与F的夹角为30°,求:(1)当F2最小时,另一个分力F1的大小.(2)F2=50 N时F1的大小.【例3】(多选)已知力F的一个分力F1跟F成30°角,大小未知,另一个分力F2的大小为33F,方向未知,则F1的大小可能是()A.33F B.32F C.233F D.3F【例4】如图中,用绳AC和BC吊起一个重50 N的物体,两绳AC、BC与竖直方向的夹角分别为30°和45°,求绳AC和BC对物体的拉力.【例5】某学在做“互成角度的两个力的合成”的实验时,利用坐标纸记下了橡皮筋的结点位置O点以及两只弹簧测力计的拉力,如图(a)所示.(1)试在图(a)中作出无实验误差情况下F1和F2的合力图示,并用F表示此力.(2)图(b)所示是甲和乙两位同学在做以上实验时得到的结果,其中哪一个比较符合实验事实?(F′是用一只弹簧测力计拉时的图示)随堂练习1.(多选)关于合力,下列说法正确的是()A.一个力的作用效果如果与几个力共同作用产生的效果相同,这个力就叫那几个力的合力B.合力一定大于任何一个分力C.合力就是几个力的代数和D.合力小于任何一个分力是可能的2.同时作用在某物体上的两个方向相反的力,大小分别为6 N和8 N,当8 N的力逐渐减小到零的过程中,两力合力的大小()A.先减小,后增大B.先增大,后减小C.逐渐增大D.逐渐减小3.如图所示,为两个共点力的合力F随两分力的夹角θ变化的图象,则这两个分力的大小分别为()A.1 N和4 N B.2 N和3 N C.1 N和5 N D.2 N和4 N4.(多选)一个物体同时受到三个力作用,其大小分别是4 N、5 N、8 N,则其合力大小可以是()A.0 N B.10 N C.15 N D.20 N5.把一个力分解为两个力时()A.一个分力变大时,另一个分力一定要变小B.两个分力不能同时变大C.无论如何分解,两个分力不能同时小于这个力的一半D.无论如何分解,两个分力不能同时大于这个力的2倍6.如图所示,在同一平面内,大小分别为1 N、2 N、3 N、4 N、5 N、6 N的六个力共同作用于一点,其合力大小为()A.0 B.1 N C.3 N D.6 N7.某物体在n个共点力的作用下合力为零,若把其中一个力F1的方向沿顺时针方向转过90°,而保持其大小不变,其余力保持不变,则此时物体所受的合力大小为() A.F1 B.2F1C.2F1 D.08.如图所示,物体M在斜向右下方的推力F作用下,在水平地面上恰好做匀速运动,则推力F和物体M受到的摩擦力的合力方向()A.竖直向下B.竖直向上C.斜向下偏左D.斜向下偏右9.水平横梁一端A插在墙壁内,另一端装小滑轮B.轻绳的一端C固定于墙壁上,另一端跨过小滑轮后悬挂一质量m=10 kg的重物,∠CBA=30°,如图所示,则小滑轮受到轻绳的作用力为多大(取g=10 m/s2)?10.如图所示,在水平地面上放一质量为1.0 kg的木块,木块与地面间的动摩擦因数为0.6,在水平方向上对木块同时施加相互垂直的两个拉力F1、F2,已知F1=3.0 N,F2=4.0 N,取g=10 m/s2,则木块受到的摩擦力为多少?若将F2顺时针转90°,此时木块在水平方向上受的合力大小为多少?11.如设有五个力同时作用于质点P,它们的大小和方向相当于正六边形的两条边和三条对角线,如图所示,这五个力中的最小力的大小为F,则这五个力的合力等于()A.3F B.4F C.5F D.6F12.(多选)将质量为m的长方形木块放在水平桌面上,用与水平方向成α角的斜向右上方的力F拉木块,如图所示,则()A.力F的水平分力为F cos αB.力F的竖直分力为F sin α,它使物体m对桌面的压力比mg小C.力F的竖直分力为F sin α,它不影响物体对桌面的压力D.力F与木块重力mg的合力方向可以竖直向上13.F1、F2的合力为F,已知F1=20 N,F=28 N,那么F2的取值可能是()A.40 N B.70 N C.100 N D.6 N14.在同一平面内共点的四个力F1、F2、F3、F4的大小依次为19 N、40 N、30 N和15 N,方向如图所示,求它们的合力.15.在探究合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳.实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧测力计互成角度地拉橡皮条,另一次是用一个弹簧测力计通过细绳拉橡皮条.(1)实验对两次拉伸橡皮条的要求中,正确的是______.A.将橡皮条拉伸相同长度即可B.将橡皮条沿相同方向拉到相同长度C.将弹簧测力计都拉伸到相同刻度D.将橡皮条和绳的结点拉到相同位置(2)同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是________.A.两细绳必须等长B.弹簧测力计、细绳、橡皮条都应与木板平行C.用两弹簧测力计同时拉细绳时两弹簧测力计示数之差应尽可能大D.拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些第三章 相互作用——力4 力的合成与分解【例1】答案:AD解析:F 1、F 2同时增大一倍,F 也增大一倍,选项A 正确.F 1、F 2同时增加10 N ,F 不一定增加10 N ,选项B 错误.F 1增加10 N ,F 2减少10 N ,F 可能变化,选项C 错误.若F 1、F 2中的一个增大,F 不一定增大,选项D 正确. 【例2】答案:40 3 N (2)(403-30) N 或(403+30) N 解析:(1)当F 2最小时,如图甲所示,F 1和F 2垂直,此时F 1=F cos30°=80×32N =40 3 N. (2)根据图乙所示,F sin 30°=80 N×12=40 N<F 2,则F 1有两个值. F 1′=F cos 30°-F 22-(F ·sin 30°)2=(403-30) NF 1″=(403+30) N.【例3】答案:AC解析:因F 2=33F >F sin 30°,故对应的F 1的大小有两种可能. 如图所示,F 1的两个解分别对应于三角形的边长OC 和OD 的长度,由三角形的特点和对称性得CB =BD =F 22-⎝⎛⎭⎫F 22=36F ,所以F 1=32F ±36F ,A 、C 正确. 【例4】答案:50(3-1) N 252(3-1) N解析:此题可以用平行四边形定则求解,但因其夹角不是特殊角,计算麻烦,如果改用正交分解法则简便得多.以C 为原点建立直角坐标系,设x 轴水平,y 轴竖直,在图上标出F AC 和F BC 在x 轴和y 轴上的分力.F ACx =F AC sin 30°=12F AC , F ACy =F AC cos 30°=32F AC , F BCx =F BC sin 45°=22F BC , F BCy =F BCy cos 45°=22F BC . 在x 轴上,F ACx 与F BCx 大小相等:12F AC =22F BC ;① 在y 轴上,F ACy 与F BCy 的合力与重力相等:32F AC +22F BC =50 N ;② 联立①②得,绳BC 的拉力和绳AC 的拉力:F BC =25(6-2) N =252(3-1) N ,F AC =50(3-1) N.【例5】答案:(1)见解析图 (2)甲解析:(1)F 1和F 2的合力图示如图所示.(2)用平行四边形定则求出的合力可以与橡皮筋拉力的方向有偏差,但用一只弹簧测力计拉结点的拉力与橡皮筋拉力一定在同一直线上,故甲符合实验事实.随堂练习1、答案:AD解析:力的合成遵循力的平行四边形定则,力是矢量,既有大小,又有方向,所以求几个力的合力是求这几个力的矢量和,C 错,合力的大小可能大于任何一个分力,也可能小于任何一个分力,D 对.2、答案:A解析:当8 N 的力减小到6 N 时,两个力的合力最小为0,若再减小,两力的合力又将逐渐增大,两力的合力最大为6 N ,故A 正确.3、答案:B解析:两个分力之和为最大值,两个分力之差为最小值,即F 1+F 2=5 N ,F 1-F 2=1 N .解得F 1=3 N ,F 2=2 N 2,B 正确.4、答案:ABC解析:三力方向相同时合力有最大值,即4 N +5 N +8 N =17 N ,而F 1=4 N 和F 2=5 N 这两力合力F 的最大值为9 N ,最小值为1 N ,另一力为8 N ,且1 N<8 N<9 N ,取F 1和F 2适当夹角,可使其合力F 的大小为8 N ,再取F 3的方向与F 的方向相反,则F 1、F 2、F 3合力为零,此即为最小值,故三力合力的取值范围为0≤F ≤17 N ,选A 、B 、C.5、答案:C解析:设把一个力F 分解为F 1、F 2两个分力,当F 1、F 2在一条直线上且方向相反时,则有F =|F 1-F 2|,当F 1变大时,F 2也变大,A 、B 错.F 1、F 2可以同时大于F 的2倍,D 错.当将F 沿一条直线分解为两个方向相同的力F 1、F 2时,则有F =F 1+F 2,可知F 1、F 2不可能同时小于12F ,C 对. 6、答案:D解析:三对共线的分力分别求合力,大小均为3 N ,方向如图所示.夹角为120°的两个3 N 的力的合力为3 N ,且沿角平分线方向,故所给六个力的合力为6 N .D 正确.7、答案:B解析:物体受n 个共点力作用合力为零,则其中n -1个力的合力一定与剩下来的那个力等大反向,故除F 1以外的其他各力的合力的大小也为F 1,且与F 1反向,故当F 1转过90°时,合力应为2F 1.B 正确.8、答案:A解析:物体M 受四个力作用(如图所示),支持力F N 和重力G 的合力一定在竖直方向上,由平衡条件知,摩擦力F ′和推力F 的合力与支持力F N 和重力G 的合力必定等大反向,故F ′与F 的合力方向竖直向下.A 正确.9、答案:100 N解析:以滑轮与绳子的接触点B 为研究对象.悬挂重物的轻绳的拉力F =mg =100 N ,BC 段绳子在B 处有沿绳子斜向上的拉力、BD 段绳子在B 处有沿绳子竖直向下的拉力,大小都是100 N ,受力示意图如图所示∠CBD =120°,则∠CBE =∠DBE =60°,即△CBE 是等边三角形,故滑轮受到绳子的作用力大小为F 合=100 N.10、答案:5.0 N 1.0 N解析:由平行四边形定则可知,图中F 1与F 2的合力F =F 21+F 22=5.0 N .若木块滑动时,木块受到的滑动摩擦力大小为F ′=μF N =μmg =6.0 N .由于F <F ′,故木块处于静止状态,木块与地面间的摩擦力为静摩擦力,大小与F 相等,即为5.0 N.当F 2顺时针旋转90°时,F 1与F 2方向相同.它们的合力为F 1+F 2=7.0 N>6.0 N .此时木块运动受滑动摩擦力作用,木块受的合力为1.0 N.11、答案:D解析:根据平行四边形定则,F 1和F 4的合力为F 3,F 2和F 5的合力为F 3,所以五个力的合力等于3F 3,因为F 1=F ,根据几何关系知,F 3=2F ,所以五个力的合力大小为6F ,方向沿F 3方向,故选D 。
人教版高考物理一轮复习 第2章 相互作用 2力的合成与分解
力的合成与分解必备知识一、力的合成1.合力与分力:(1)定义:如果一个力产生的效果跟几个共点力共同作用产生的效果相同,这一个力就叫作那几个力的合力,原来那几个力叫作分力。
(2)关系:合力和分力是等效替代的关系。
如图,合力与分力产生的效果相同。
2.共点力:作用在一个物体上,作用线或作用线的延长线交于一点的几个力。
如图所示均是共点力。
3.力的合成:(1)定义:求几个力的合力的过程。
(2)运算法则。
①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向。
如图甲,F1、F2为分力,F为合力。
②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的有向线段为合矢量。
如图乙,F1、F2为分力,F为合力。
二、力的分解1.定义:求一个已知力的分力的过程。
2.遵循原则:平行四边形定则或三角形定则。
3.分解方法:(1)按力产生的效果分解。
(2)正交分解。
如图,圆球和挡板静止在斜面上,重力产生两个效果:①压紧斜面;②压紧挡板。
三、矢量和标量1.矢量:既有大小又有方向的量,相加时遵从平行四边形定则。
2.标量:只有大小没有方向的量,求和时按代数法则相加。
基础小题1.判断下列题目的正误。
(1)两个分力大小一定时,方向夹角θ越大,合力越小。
( )(2)合力一定时,两等大分力的夹角θ越大,两分力越大。
( )(3)1 N和2 N的合力一定等于3 N。
( )(4)合力作用在一个物体上,分力作用在两个物体上。
( )(5)合力一定大于每一个分力。
( )(6)互成角度的两个力的合力与分力间一定构成封闭的三角形。
( )(7)位移、速度、加速度、力和时间都是矢量。
( )提示: (1)√。
由数学关系知两个分力大小一定时,方向夹角θ越大,合力越小。
(2)√。
由数学关系知合力一定时,两等大分力的夹角θ越大,两分力越大。
(3)×。
1 N和2 N的合力范围在1~3 N。
人教版高中物理必修一《力的合成和分解》知识全解
《力的合成和分解》知识全解【教学目标】1.知道合力与分力的概念,体会等效替换的思想。
2.通过实验探究,得出力的合成和分解遵从的法则——平行四边形定则。
3.会利用作图和三角函数知识求解合力或者分力。
4.知道矢量相加遵从平行四边形定则,标量相加遵从算术法则。
能区别矢量和标量。
【内容解析】1.合力与分力如果一个力产生的效果和其他几个力产生的效果相同,这个力就叫那几个力的合力,那几个力就叫这个力的分力。
2.力的合成:求几个力的合力叫做力的合成。
(1)平行四边形定则:力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。
力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)三角形定则:平行四边形定则可简化成三角形定则。
由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零。
3.共点的两个力合力的大小范围:|F1-F2|≤F合≤F1+F2。
4.共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
5.力的分解:求一个力的分力叫力的分解。
(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力唯一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
(3)几种有条件的力的分解①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不唯一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能唯一,也可能不唯一。
6.力的合成与分解体现了用等效的方法研究物理问题。
合成与分解是为了研究问题的方便而引入的一种方法。
2024年高考物理总复习第一部分知识点梳理第二章相互作用第3讲力的合成与分解
第3讲 力的合成与分解整合教材·夯实必备知识一、力的合成(必修一第三章第4节) 1.合力与分力2.力的合成定义求几个力的合力的过程运算法则平行四边形定则用表示这两个分力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向。
三角 形定则 把两个矢量的首尾顺次连接起来,第一个矢量的起点到第二个矢量的终点的有向线段为合矢量。
二、力的分解(必修一第三章第4节)1.力的分解是力的合成的逆运算,遵循的法则:平行四边形定则或三角形定则。
2.分解方法(1)按力产生的效果分解;(2)正交分解法。
【质疑辨析】角度1合力与分力(1)合力和分力可以同时作用在一个物体上。
(×)(2)几个力的共同作用效果可以用一个力来替代。
(√)角度2平行四边形定则(3)两个力的合力一定比分力大。
(×)(4)当一个分力增大时,合力一定增大。
(×)(5)一个力只能分解为一对分力。
(×)(6)两个大小恒定的力F1、F2的合力的大小随它们夹角的增大而减小。
(√)(7)互成角度的两个力的合力与分力间一定构成封闭的三角形。
(√)精研考点·提升关键能力考点一共点力的合成(核心共研)【核心要点】1.求合力的方法作图法作出力的图示,结合平行四边形定则,用刻度尺量出表示合力的线段的长度,再结合标度算出合力大小计算法根据平行四边形定则作出力的示意图,然后利用勾股定理、三角函数、正弦定理等求出合力2.合力范围的确定(1)两个共点力的合力大小的范围:|F1-F2|≤F≤F1+F2。
①两个力的大小不变时,其合力随夹角的增大而减小。
②当两个力反向时,合力最小,为|F1-F2|;当两个力同向时,合力最大,为F1+F2。
(2)三个共点力的合力大小的范围①最大值:三个力同向时,其合力最大,为F max=F1+F2+F3。
②最小值:若任意两个力的大小之和大于或等于第三力,则三个力的合力最小值为零,否则合力最小值等于最大的力减去另外两个力。
2019最新人教版高一物理-力的合成和分解
力的合成和分解知识点一:力的合成1.合力与分力如果一个力作用在物体上与几个力共同作用在物体上产生的效果相同,那么这个力就是那几个力的合力,那几个力就是这个力的分力。
相同的效果包括使物体产生相同的形变或是使物体产生相同的加速度。
2.合力与分力的关系(1)合力与分力是一种“等效替代”的关系合力与分力是等效的含义是说,分力对物体共同作用的效果与合力单独作用在物体上产生的效果相同。
从这个角度来说合力与分力可以等效替换,即合力与分力具有等效性。
如我们可以用一只手提起一桶质量为m的水,此时施加的是一个竖直向上的力,也可以两个人抬起这桶水即施加两个互成角度的力(分力)代替这个力。
再比如,如图所示,物体在力F作用下处于静止状态,在力1F、2F共同作用下也能处于静止状态,即1F、2F共同作用的效果与力F单独作用的效果相同,于是F是F1、F2的合、2F是力F的分力,从作用效果上可以相互替换。
即对于上图而言,可以认为没有1F、力;F1F作用,而是有力F作用,替换后,物体的运动状态保持不变。
2(2)合力与分力不是同时存在的实际存在的是合力或分力。
为研究问题的方便,我们才把实际的合力分解,或把实际的分力合成。
这样进行受力分析时,合力与分力只能考虑其一,不能同时考虑,从这个角度看合力与分力是“有你无我,有我无你”的关系。
顺便说一下,对物体受力分析时.既不能增力,也不能丢力。
一般只分析性质力(按力的性质命名的力).不分析效果力(按力的效果命名的力.如动力、阻力、向心力等)。
如果既考虑了某一个力(合力),又考虑了它的分力(按效果分解的力).则物体受到的力就重复了,即为增力。
因此,对物体受力分析时.对合力与分力只能考虑其一,要避免重复考虑力。
(3)合力与分力具有同物性合成的诸力是作用在同一个物体上的力,作用于不同物体的力不能求合力,也就是说,只有共点的几个力才能谈它们的合力,所以合力与分力的受力物体是同一物体.(4)合力的存在具有无源性把一个物体受到的几个性质不同的分力合成时,合力没有施力物体。
高中物理复习必修一24知识讲解 力的合成与分解 (提高)
力的合成与分解【学习目标】1. 知道合力与分力的概念2. 知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形3. 知道共点力,知道平行四边形定则只适用于共点力4. 理解力的分解和分力的概念,知道力的分解是力的合成的逆运算5. 会用作图法求分力,会用直角三角形的知识计算分力6. 能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】要点一、力的合成要点诠释:1.合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。
②合力与分力的关系。
a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。
b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。
2.力的合成①定义:求几个力的合力的过程叫做力的合成。
②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。
3.平行四边形定则①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
说明:平行四边形定则是矢量运算的基本法则。
②应用平行四边形定则求合力的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。
要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。
2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
力的合成与分解归纳总结
力的合成与分解知识要点归纳一、力的合成1.合力与分力:如果几个力共同作用产生的效果与某一个力单独作用时的效果相同,则这一个力为那几个力的,那几个力为这一个力的.2.共点力:几个力都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫做共点力.3.力的合成:求几个力的的过程.4.平行四边形定则:两个力合成时,以表示这两个力的线段为作平行四边形,这两个邻边之间的就表示合力的大小和方向.二、力的分解1.力的分解:求一个力的的过程,力的分解与力的合成互为.2.矢量运算法则:(1)平行四边形定则(2)三角形定则:把两个矢量的首尾顺次连结起来,第一个矢量的首到第二个矢量的尾的为合矢量.3.力的分解的两种方法1)力的效果分解法①根据力的实际作用效果确定两个实际分力的方向;②再根据两个实际分力方向画出平行四边形;③最后由平行四边形和数学知识(如正弦定理、余弦定理、三角形相似等)求出两分力的大小.2)正交分解法①正交分解方法:把一个力分解为互相垂直的两个分力,特别是物体受多个力作用时,把物体受到的各力都分解到互相垂直的两个方向上去,然后分别求出每个方向上力的代数和.②利用正交分解法解题的步骤首先:正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标系的选择应使尽量多的力在坐标轴上.其次:正交分解各力,即分别将各力投影在坐标轴上,然后求各力在x 轴和y 轴上的分力的合力F x 和F y :F x =F 1x +F 2x +F 3x +…,F y =F 1y +F 2y +F 3y +…再次:求合力的大小F =F x 2+F y 2 ,确定合力的方向与x 轴夹角为θ=arctan F y F x. 4.将一个力分解的几种情况:①已知合力和一个分力的大小与方向:有唯一解②已知合力和两个分力的方向:有唯一解③已知合力和两个分力的大小(两分力不平行):当F1+F2<F 时无解;当F1+F2>F 时有两组解④已知一个分力F 1的方向和另一个分力F 2的大小,对力F 进行分解,如图4所示则有三种可能:(F 1与F 的夹角为θ) 当F 2<F sin θ时无解;当F 2=F sin θ或F 2≥F 时有一组解;当F sin θ<F 2<F 时有两组解.5.注意:(1)合力可能大于分力,可能等于分力,也可能小于分力的大小。
高三物理力合成与分解的复习知识点
高三物理力合成与分解的复习知识点
高三物理力合成与分解的复习知识点
1.合力与分力如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。
2.共点力的合成
⑴共点力几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
⑵力的合成方法求几个已知力的合力叫做力的合成。
a.若和在同一条直线上
① 同向:合力方向与、的.方向一致
② 反向:合力,方向与、这两个力中较大的那个力同向。
b. 互成角用力的平行四边形定则平行四边形定则:两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。
求F 、的合力公式: ( 为F1、F2的夹角)
注意:
(1) 力的合成和分解都均遵从平行四边行法则。
(2) 两个力的合力范围: F1-F2 F F1 +F2
(3) 合力可以大于分力、也可以小于分力、也可以等于分力
(4)两个分力成直角时,用勾股定理或三角函数。
高一物理力的合成与分解人教版知识精讲
高一物理力的合成与分解人教版二. 知识要点:理解力的合成和合力的概念。
掌握力的平行四边形定则。
会用作图法求共点力的合力,会用三角形知识计算合力。
知道合力大小与分力间夹角关系,知道矢量概念。
理解力的分解和分力概念。
理解力的分解是力的合成的逆运算,遵循力的平行四边形定则。
能根据力的实际作用效果进行力的分解。
会计算分力大小。
三. 学习中注意点:(一)力的合成、合力与分力1. 合力与分力:如果一个力作用在物体上,产生的效果,与另外几个力同时作用于这个物体上产生的效果相同,原来的一个力就是另外几个力的合力。
另外几个力叫分力。
合力是几个力的等效力,是互换的,不是共存的。
2. 共点力:几个力的作用点相同,或几个力的作用线相交于一个点,这样的力叫共点力。
3. 力的合成:求几个共点力的合力的过程叫力的合成。
力的合成就是在保证效果相同的前提下,进行力的替代,也就是对力进行化简,使力的作用效果明朗化。
现阶段只对共点(共面)力进行合成。
4. 平行四边形定则:两个共点力的合力与分力满足关系是:以分力为邻边做平行四边形,以共点顶向另一顶点做对角线,即为合力。
这种关系叫平行四边形定则。
5. 力的合成方法:几何作图法,计算法。
6. 多个力的合成先取两个力求合力,再与第三个力求合力,依次进行下去直到与最后一个分力求得的合力就是多个力的合力。
7. 力是矢量:有大小有方向遵循平行四边形定则。
凡矢量有大小有方向还要遵循平行四边形定则。
(二)力的分解1. 力的分解:由一个已知力求分力的过程叫力的分解。
2. 力的分解中分力与合力仍遵循平行四边形定则,是力的合成的逆运算。
3. 分解一个力时,对分力没有限制,可有无数组分力。
4. 分解力的步骤(1)根据力作用效果确定分力作用的方向,作出力的作用线。
(2)根据平行四边形定则,作出完整的平行四边形。
(3)根据数学知识计算分力5. 一个力分解为二个分力的几种情况(1)已知合力及两分力方向,求分力大小,有唯一定解。
高二物理《力的合成与分解》知识点总结
高二物理《力的合成与分解》知识点总结
一、共点力的合成
1. 合力的大小范围
(1)两个共点力的合成:|F1-F2|≤F合≤F1+F2,即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小;当两力同向时,合力最大。
(2)三个共点力的合成
①最大值:三个力共线且同向时,其合力最大,为F1+F2+F3.
②最小值:任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,则合力的最小值为最大的一个力减去另外两个较小的力的大小之和.
2.共点力合成的方法
(1)作图法.
(2)计算法.
3. 几种特殊情况的共点力的合成
二、力分解的两种常用方法
1. 效果分解法
按力的作用效果分解(思路图) 2. 正交分解法
(1)定义:将已知力按互相垂直的两个方向进行分解的方法.
(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(使尽量多的力分布在坐标轴上);在动力学中,往往以加速度方向和垂直加速度方向为坐标轴建立坐标系.
(3)方法:物体受到多个力F 1、F 2、F 3、…作用,求合力F 时,可把各力向相互垂直的x 轴、y 轴分解.
x 轴上的合力F x =F x 1+F x 2+F x 3+…
y 轴上的合力F y =F y 1+F y 2+F y 3+…
合力大小F =F 2x +F 2y
合力方向:与x 轴夹角为θ,则tan θ=F y F x
.。
人教版高中物理必修1:力的合成--归纳总结
知识点三:力的运算
如果以表示两 个共点力F1和F2 的线段为邻边作 平行四边形,那 么合力F的大小和 方向就可以用这 两个邻边之间的 对角线表示,这 叫做力的平行四 边形定则,如图 所示。
力的合成------归纳总结
ห้องสมุดไป่ตู้识点一:共点力
几个力如果 都作用在物体 的同一点,或 者它们的作用 线相交于同一 点,这几个力 叫做共点力。
知识点二:合力与分力
(1)概念:当一个力受到几个力的共同作用时,我们长长可以求出这样一 个力,这个力产生的效果和原来几个力的共同效果相同,这个力叫做那几 个力的合力,原来的力叫这个力的分力。
(2)二力合成时合力和分力的关系:
合力可能大于任何一个分力,也可能小于任何一个分力,也可能介于两个 分力之间
如果两个分力的大小不变,夹角越大,合力就越小;夹角越小,合力就越 大。
两个大小一定的力F1,F2,其合力的大小范围[F1-F2]<F<F1+F2
注意
合力与分力是 针对同一受力 物体而言的。
合力与分力是 等效替代关系, 合力的作用效 果与分力的总 作用效果相同。
2023年人教版高中物理复习第二章第2讲力的合成与分解
第2讲力的合成与分解【课程标准】通过实验,了解力的合成与分解,知道矢量和标量【素养目标】物理观念:知道合力、分力的概念,掌握平行四边形定则科学思维:能应用力的合成与分解的知识,分析实际问题一、力的合成1.合力与分力如果几个力共同作用产生的效果与一个力的作用效果相同,这一个力就叫作那几个力的合力,那几个力叫作这一个力的分力。
2.力的合成(1)定义:求几个力的合力的过程。
(2)运算法则①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向。
如图甲所示,F1、F2为分力,F为合力。
②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的有向线段为合矢量。
如图乙所示,F1、F2为分力,F为合力。
【命题·生活情境】如图是斜拉索大桥模型示意图,若每条拉索的拉力相等。
(1)相互对称的两条拉索对桥面拉力的合力方向向哪?提示:向上。
(2)随着拉索与承压塔的夹角增大,相互对称的两条拉索的合力越来越大,还是越来越小?提示:越来越小。
二、力的分解1.定义:求一个力的分力的过程。
2.遵循的法则(1)平行四边形定则。
(2)三角形定则。
3.分解方法(1)效果分解法。
(2)正交分解法4.力的分解的四种情况(1)已知合力和两个分力的方向求两个分力的大小,有唯一解。
(2)已知合力和一个分力求另一个分力,有唯一解。
(3)已知合力和两分力的大小(分力限定在某一平面内),并且F1-F2<F<F1+F2,有两组解。
(4)已知合力F和F1的大小、F2的方向(F2与合力的夹角为θ):①F1<F sin θ,无解;②F1=F sin θ,有唯一解;③F sin θ<F1<F,有两组解;④F1≥F,有唯一解。
【命题·科技情境】帆船比赛时,帆船可以逆风行驶,行驶原理如图所示。
(1)风对帆面的作用力的方向有什么特点?提示:垂直于帆面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中物理总复习知识点梳理重点题型(常考知识点)巩固练习力的合成与分解【考纲要求】1. 知道力的合成与分解、合力与分力、平行四边形定则;2. 会用作图法求共点力的合力;3. 理解合力的大小与分力夹角的关系;4. 会用作图法求分力,并且能用直角三角形及正交分解法求分力。
【考点梳理】考点一:合力与分力当一个物体受到几个力的共同作用时 ,我们常常可以求出这样一个力 ,这个力产生的效果跟原来几个 力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力.要点诠释:①合力与分力是针对同一受力物体而言.②一个力之所以是其他几个力的合力,或者其他几个力是这个力的分力,是因为这一个力的作用效果 与其他几个力共同作用的效果相当,合力与分力之间的关系是一种等效替代的关系. 考点二:共点力1.定义:一个物体受到的力作用于物体上的同一点或者它们的作用线交于一点,这样的一组力叫做共 点力.(我们这里讨论的共点力,仅限于同一平面的共点力)要点诠释:一个具体的物体,其各力的作用点并非完全在同一个点上,若这个物体的形状 大小对所研究的问题没 有影响的话,我们就认为物体所受到的力就是共点力.如图甲所示,我们可以认为拉力 F 、摩擦力 F 1 及支持力 F 2 都与重力 G 作用于同一点 O.如图乙所示,棒受到的力也是共点力.2.共点力的合成:遵循平行四边形定则.3.两个共点力的合力范围合力大小的取值范围为:F 1+F 2≥F≥|F 1-F 2|.在共点的两个力 F 1 与 F 2 大小一定的情况下,改变 F 1 与 F 2 方向之间的夹角 θ ,当 θ 角减小时,其合力F 逐渐增大;当 θ =0°时,合力最大 F=F 1+F 2,方向与 F 1 与 F 2 方向相同;当 θ 角增大时,其合力逐渐减小;当θ=180°时,合力最小 F=|F 1-F 2|,方向与较大的力方向相同.4.三个共点力的合力范围①最大值:当三个分力同向共线时,合力最大,即 F max =F 1+F 2+F 3.②最小值:a.当任意两个分力之和大于第三个分力时,其合力最小值为零.b.当最大的一个分力大于另外两个分力的算术和时 ,其最小合力等于最大的一个力减去另外两个力的算术和的绝对值.要点三、矢量相加的法则要点诠释:(1)平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向(如左图所示)。
(2)三角形定则:把两个矢量首尾相接从而求出合矢量,这个方法叫做三角形定则(如右图所示).要点四、力的分解的两种方法要点诠释:1.按力产生的实际效果进行分解,具体是:(1)根据力的实际作用效果确定两个实际分力的方向. (2)再根据两个实际分力方向画出平行四边形. (3)最后由平行四边形知识求出两分力的大小.如图所示,物体的重力 G 按产生的效果分解为两个分力,F 1 使物体下滑,F 2 使物体压向斜面.2.对力的正交分解法的理解和应用(1)正确选择直角坐标系,通常选择共点力的作用点为坐标原点,直角坐标x 、y 的选择可按下列原则 去确定:①应尽量使所求量(或未知量)“落”在坐标轴上,使得方程的解法简捷. ②沿物体运动方向或加速度方向设置一个坐标轴.(2)正交分解各力,即分别将各力投影到坐标轴上,分别求 x 轴和 y 轴上各力投影的合力 F x 和 F y . 其中 F =F +F +F +⋯x1x2x3xF =F +F +F +⋯y1y2y3y(3)求 F x 和 F y 的合力 F ,如图所示.(大小F=F2+F2,x y方向tanα=F/F.y x要点五、力的分解的唯一性与多解性要点诠释:两个力的合力唯一确定,但一个力的两个分力不一定唯一确定,即已知一条确定的对角线,可以作出无数个平行四边形,如果没有条件限制,一个已知力可以有无数对分力.若要得到确定的解,则须给出一些附加条件:(1)已知一个分力的大小和方向,力的分解也是唯一的.(2)已知一个分力F1的方向和另一个分力F2的大小,对力F进行分解,如图则有三种可能:F1与F的夹角为θ)①F2<F sinθ时无解;②F2=F sinθ或F2≥F时有一组解;③F sinθ<F2<F时有两组解.(3)已知两个不平行分力的大小(F1+F2>F).如图所示,分别以F的始端、末端为圆心,以F1、F2为半径作圆,两圆有两个交点,所以F分解为F1、F2有两种情况.(4)存在极值的几种情况:①已知合力F和一个分力F1的方向,另一个分力F2存在最小值.②已知合力F的方向和一个分力F1,另一个分力F2存在最小值.【典型例题】类型一、求合力的取值范围例1、物体同时受到同一平面内的三个共点力的作用,下列几组力的合力不可能为零的是(),A.5 N,7 N,8 NB.5 N,2 N,3 NC.1 N,5 N,10 ND.10 N,10 N,10 N【答案】C【解析】分析 A 、B 、C 、D 各组力中,前两力合力范围分别是:2 N≤F 合≤12 N,第三力在其范围之内:3 N≤F 合 ≤7 N,第三力在其合力范围之内;4 N≤F 合≤6 N,第三力不在其合力范围之内;0≤F 合≤20 N,第三力在其合力范围之内,故只有 C 中第三力不在前两力合力范围之内,C 中的三力合力不可能为零.【总结升华】共点的三个力的合力大小范围分析方法是:这三个力方向相同时合力最大,最大值等于这三个力大小之和;若这三个力中某一个力处在另外两个力的合力范围中,则这三个力的合力最小值是零.举一反三【变式】一个物体受三个共点力的作用,它们的大小分别为 F 1=7 N 、F 2=8 N 、F 3=9 N .求它们的合力的 取值范围?【答案】0≤F ≤24 N类型二、求合力的大小与方向例 2、(2015 深圳模拟)一个大人拉着载有两个小孩的小车(其拉杆可自由转动)沿水平地面匀速前进,则对小孩和车下列说法正确的是()A. 拉力的水平分力等于小孩和车所受的合力B. 拉力与摩擦力的合力大小等于重力大小C. 拉力与摩擦力的合力方向竖直向上D. 小孩和车所受的合力为零【答案】C 、D【解析】小孩和车整体受重力、支持力、拉力和摩擦力,根据共点力平衡条件拉力的水平分力等于小 孩和车所受的摩擦力,故选项 A 错误;小孩和车整体受重力、支持力、拉力和摩擦力,根据共点力平衡条件,拉力、摩擦力的合力与重力、支持力的合力平衡,重力、支持力的合力竖直向下,故拉力与摩擦力的合力方向竖直向上,故选项 B 错误,C 正确;小孩和车做匀速直线运动,故所受的合力为零,故选项D 正确。
【课程:力的合成与分解 例 2】例3、如左图在正六边形顶点A分别施以F1~F55个共点力,其中F3=10N,A点所受合力为;如图,在A点依次施以1N~6N,共6个共点力.且相邻两力之间夹角为600,则A点所合力为。
【答案】30N,方向与F3相同;0N【解析】对于左图,依据正六边形的性质及力的三角形作图法,不难看出,F、F、F可以组成一个封134闭三角形,即可求得F和F的合力必与F相同。
同理可求得F,F的合力也与F相同。
所求五个力的合143253力就等效为三个共点同向的F的合力,即所求五个力的合力大小为30N,方向沿F的方向(合力与合成33顺序无关)。
对于右图,先将同一直线上的三对力进行合成,可得三个合力均为3N且互成120°角,故总合力为零.【总结升华】巧用物理概念、物理规律和物理方法做出平行四边形去分析、研究、推理和论证,合理地选择合成的顺序就使解题思路过程变得极为简单明了、巧妙而富有创意。
类型三、按力的实际作用效果分解力例4、(2015银川模拟)关于两个力的合力与这两个力的关系说法中正确的是()A.合力比这两个力都大B.合力至少比这两力中较小的力要大C.合力可能比这两个力都小D.合力可能比这两个力都大【答案】C、D【解析】根据平行四边形定则知,因为对角线的长度可能比两邻边的长度长,也可能比两邻边的长度短,也可能与两邻边的长度相等,所以合力可能比分力大,可能比分力小,可能与分力相等,故选项C、D正确。
【总结提升】判断合力与分力关系的三点注意(1)合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势,合力可以等于分力,也可以大于分力,还可以小于分力。
(2)三个共点力的合力的最小值不一定等于两个较小力的和与第三个较大力之差。
(3)合力与分力是等效替代关系,在进行有关力的计算时,如果已计入了合力,就不能再计入分力;如果已计入了分力,就不能再计入合力。
举一反三力F1,二是使球拉紧悬线的分力F2.则:F1=mgtanα,F2=mg【变式】质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分cosα题型四、正交分解法的应用例5、质量为m的木块,在与水平夹角为θ的推力F作用下,沿水平地面做匀速运动,如图所示.已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力应为()A.μmgB.μ(mg+F sinθ)C.μ(mg-F sinθ)D.F cosθ【答案】BD【解析】木块匀速运动时受到四个力的作用:重力mg、支持力FN、摩擦力Ff、推力F,建立如图所示的坐标系,因木块做匀速运动,所有:F cosθ=FfFN=mg+F sinθ.又∵Ff=μFN∴Ff=μ(mg+F sinθ),故BD答案是正确的.【评价】在对实际问题的求解中,可以用合成法,也可以用分解法,还可以用正交分解法,要善于根据题目要求,灵活选择解题方法,一般来说,在研究多个共点力作用的力学问题时,选用正交分解法比较方便举一反三【变式1】如图所示,质量为m的等边三棱柱静止在水平放置的斜面上.已知三棱柱与斜面之间的动摩擦因数为μ,斜面的倾角为30°,则斜面对三棱柱的支持力与摩擦力的大小分别为()【答案】A【课程:力的合成与分解例6】【变式2】如图所示,有一个表面光滑、质量很小的截面是等腰三角形的尖劈,其倾角为θ,插在缝A、B 之间,在尖劈上加一个力F,则尖劈对缝的左侧压力大小为多少?【答案】F2sin2类型五、力的合成与分解的实际应用例6、如图所示,质量为m的物体用细绳OC悬挂在支架上的O点,轻杆OB可绕B点转动,求细绳OA中张力F的大小和轻杆OB受力N的大小.3T=【答案】F=mgN=mg c o tθsinθ【解析】由于悬挂物的质量为m,绳OC拉力的大小为mg,而轻杆能绕B点转动,所以轻杆在O点所受的压力N将沿杆的方向(如果不沿杆的方向杆就要转动),将绳OC的拉力沿杆和OA方向分解,可求得F=mg,N=mg c o tθ. sinθ【总结升华】在物体平衡中,有些题目是相似的,但实质是完全不同的,如审题时不认真,盲目地用相同的方法去求解就会出错,对于固定轻杆与转动轻杆来说,转动轻杆产生的弹力一定沿杆的方向,如果不沿杆的方向时就要转动;而固定轻杆产生的弹力不一定沿杆的方向,因为杆不可转动.举一反三【课程:力的合成与分解例4】【变式】求图中两种情况下,轻绳的拉力T和轻杆中的弹力N。