翅片换热器热系数

合集下载

板翅式换热计算

板翅式换热计算

板翅换热器计算空气几何参数翅片高H mm10.3翅片厚度δmm0.2翅片间距s mm 1.7内距x S-δmm 1.5内高y H-δmm10.1单元有效长Le m1单元有效宽Be mm720当量直径de2xy/(x+y)mm 2.612068966每层通道横截面Ai B/S*x*y m20.006416471每层通道传热面Fi2(x+y)BL/s m29.825882353二次传面比F2/F y/(x+y)0.870689655热物性参数进口温度t′C32出口温度t"C33平均温度tpj C32.5温差^t C47对数温差Δt C15.99107225混流系数0.98传热温差Δtlm15.67125081密度ρkg/m3 1.1557标况密度ρN kg/m3 1.293定压比热Cp kJ/(kgC) 1.005导热系数λW/(mC)0.00269动力粘度μkg/(ms)0.000018725普朗特数Pr Cpμ/λ 6.995771375标况流量V Nm3/h2706.5通道质量流量G kg/(sm2)22.3流速w m/s19.29566496标况流速wN Nm/s17.24671307流体通道数n VρN/(3600GAi)7通道取用2传热计算翅片定性尺寸b H/2m0.0103雷诺数Re deG/μ3110.768381传热因子lnj-4.483948079柯尔朋数j H exp(lnj)0.011288756摩擦因子f0.052308849膜换热系数αjPr-2/3CpG w/(m2C)69.1660984铝翅导热系数λf w/(mC)236翅片效率m√2α/λδ1/m54.13655772mb0.557606544压缩空气30.321.72.71720 2.0863636360.00165243.168 0.613636364803557.531.0681.2931.0050.00288 0.000019925 6.95299479254.1320 18.7265917615.46790411锯齿翅片Re=(300~ 7500)1lnj=-2.64136e ^-2(lnRe)^ 3+0.5558 43(lnRe) ^2-4.09241( lnRe)+6. 21681lnf=0.13 2856(lnRe)^2-2.28042( lnRe)+6. 796340.0015多孔翅片Re=(400~ 10000)2094.21695lnj=-9.544151 e^-2(lnRe)^ 3+2.1376 07(lnRe) ^2-15.92678 (lnRe)+3 4.57583-4.385406988lnf=-6.736098 e-2(lnRe)^ 3+1.5651 91(lnRe) ^2-12.31399 (lnRe)+2 8.798060.012457817平直翅片Re=(400~ 10000)0.056526416lnj=0.10 3109(lnRe)^2-1.91091( lnRe)+3. 21168.73691956lnf=0.10 6566(lnRe)^2-2.12158( lnRe)+5. 8250544.06496218 0.066097443。

不同翅片形式管翅式换热器流动换热性能比较

不同翅片形式管翅式换热器流动换热性能比较

不同翅片形式管翅式换热器流动换热性能比较摘要:随着制冷空调行业的发展,人们已经把注意力集中在高效、节能节材的紧凑式换热器的开发上,而翅片管式换热器正是制冷、空调领域中所广泛采用的一种换热器形式。

对于它的研究不仅有利于提高换热器的换热效率及其整体性能,而且对改进翅片换热器的设计型式,推出更加节能、节材的紧凑式换热器有着重要的指导意义。

由于翅片管式换热器在翅片结构形式和几何尺寸的不同,造成其换热性能和阻力性能上的极大差异。

本文概述目前国内外空调制冷行业中的普遍采用的几种不同翅片类型(平直翅片、波纹翅片、开缝翅片、百叶窗形翅片)的换热及压降实验关联式及其影响因素,对不同翅片形式的管翅式换热器的换热及压降特性的实验关联式进行总结,并对不同翅片的流动换热性能进行了比较。

正确地选用实验关联式及性能指标,将对翅片管式换热器的优化设计及其制造提供可靠的依据。

关键词:翅片形式;管翅式;换热器;关联式;流动换热性能Study on heat transfer and flow characteristics of fin-and-tube heat exchangers with various fintypesAbstract:With the development of refrigeration and air conditioning, high efficiency, energy saving and material saving compact type of heat exchanger is development, as one kind of compact heat exchanger, fin-and-tube heat exchanger has a wide application in future. It is necessary to develop compact heat exchanger which is more energy saving and material saving to improve the heat exchanger thermal efficiency and the overall performance of heat transfer.This paper summaries the heat transfer and pressure drop correlations of different fin surfaces, and the corresponding influencing factors. The heat transfer and friction characteristic of these kinds of fin types are compared, and the results show the difference of these fin types. The appropriate correlation and evaluation criterion will provide reliable foundation to the design and optimization of compact heat exchangers.Key words:Fin-and-tube heat exchanger; Heat transfer and flow characteristics; Experimental correlations; Comparison目录1 绪论 (2)1.1课题背景及研究意义 (3)1.2管翅式换热器简介 (3)1.3管翅式换热器的特点 (4)1.4 管翅式换热器的换热过程 (4)1.5研究现状 (5)1.5.1国外实验及模拟研究进展 (5)1.5.2国内研究现状和数值模拟 (6)1.5.3管翅式换热器及发展趋势 (8)1.6 管翅式换热器的不同形式的翅片研究现状 (9)2影响翅片换热和压降性能的主要结构因素 (11)2.1翅片间距对换热特性和压降特性的影响 (12)2.2管排数对换热特性和压降特性的影响 (12)2.3管径对换热特性和压降特性的影响 (13)2.4管间距对换热特性和压降特性的影响 (13)3.不同翅片经验关系式总结及比较 (14)3.1 平直翅片经验关系式的总结 (14)3.2 波纹翅片经验关系式的总结 (18)3.3 百叶窗翅片经验关系式的总结 (23)3.4 开缝翅片经验关系式的总结 (26)4.四种翅片经验关系式比较 (31)结论 (38)参考文献 (40)致谢 (44)1 绪论1.1课题背景及研究意义换热器是国民生产中的重要设备,其应用遍及动力、冶金、化工、炼油、建筑、机械制造、食品、医药及航空等各工业部门。

翅片管换热器传热计算

翅片管换热器传热计算

翅片管换热器传热计算摘要:换热器传热壁两侧流体的传热膜系数相差较大时,换热器的总传热系数将主要取决于较小的流体的传热系数,为了提高换热器的传热能力,可在传热膜系数小的一侧加翅片管。

影响翅片管表面强化传热的主要因素是翅片高度、翅片节距以及翅片材料的导热系数等,而翅片管翅根直径、管束的纵向节距和横向节距对翅片侧流体的流动阻力的影响很大。

翅片侧流体通过管排的压力降与翅片管纵向管排数成正比,而当纵向管排数大于4排时,管排数量对传热系数没有明显影响。

关键词:翅片效率;努塞尔数;传热系数;压力降换热器传热壁两侧流体的传热膜系数相差较大时,换热器的总传热系数将主要取决于较小的流体的传热系数。

为了提高换热器的传热能力,可在传热膜系数小的一侧加翅片。

如一侧流体是传热膜系数较小的气体,另一侧是传热膜系数较大的液体,这时就可以在传热膜系数较小的气体一侧加装翅片。

1计算条件一台翅片管换热器,管程走导热油,设计温度278℃。

壳程走空气,温度从20℃升到180℃,空气的流量为60kg/s,壳程的压降控制在600Pa以下。

2计算方法2.1计算翅片管的传热面积和流动通道翅片的表面积翅片之间的管表面积翅片管总表面积A=AF+AW=5242.8589+359.68682=5602.5457 m2由于P<x,则穿过nt根管的最小流动面积为:Smin=2ntL(x-P3)=2×26×6.8×(0.1369356-0.0917878)=15.964262m22.2计算翅片管的传热系数Vmax=M/(Sminρ)=60/(15.964262×0.9)=4.1759944m/sRe=VmaxDrρ/μ=4.1759944×0.038×0.9/0.000022=6491.7731Pr=cpμ/λ=1021.6×0.000022/0.031=0.7250065由于l/Dr=0.018/0.038=0.47,翅片管为高翅管,则努塞尔数:管排平均传热系数2.3翅片管传热方程管壁温度与流体温度的温差:换热器需要的换热量:Q=MCp(T2-T1)=60×1021.6×(180-20)=9807360 J/sQ计>Q,换热器满足要求。

翅片式换热器计算

翅片式换热器计算
0.31369 m^2 197.9734073
3.25 m/s 1.1465 5.606430964 6.4277731 23.64301807 0.003290895 153.6100197 1.0194925 m^3/s 3670.173 m^3/h 17.10596081
换热量的计算 风侧换热量
求解tw 47.7
66.53893573 248.5431069 10.78591376 239.4472855
1948.854032
内螺纹修正系数
固定参数 固定参数 固定参数
总的换热量
假定
222.6884456 2.038985
风侧换热量
cp(kJ/(kg*K)) 1.005 1.005
λ×102(W/(m*K)) 2.67 2.76
设计基本参数 冷凝温度
盘管基本参数 管排数 每排管的管数量 每英寸的翅片数量 每根铜管的长度
换热器结构计算 传热管直径do 传热管壁厚δ 流动方向管间距s1 排间距s2 片厚δ 翅片间距Sf 翅片根部外沿直径db 每米翅片侧外表面积af 每米翅片间基管外表面积ab 每米翅片侧总表面积aof 铜管内径di 每米长管内面积ai 每米长管外面积ao 每米管平均直径处的表面积 肋化系数τ 肋通系数α 迎风风速w 净面比ε 最窄截面风速Wmax 空气侧表面传热系数 沿气流方向翅片长度b 当量直径de 雷诺系数Re b/de A c n m α0
C m ψ n λ α0
50 ℃
9 rows 19 条 13 FIN 0.65 m
0.009525 m 0.00035 m 0.0254 m 0.02200 m 0.000115 m 0.00195 m 0.009755 m 0.495457975 m^2 0.02882783 m^2 0.524285806 m^2 0.008825 m 0.027724555 m^2 0.0306307 m^2 0.0291706 18.91052215 20.64117345

煤油翅片管换热器设计计算

煤油翅片管换热器设计计算

30
初选壳侧传热系数
31
估算壳侧传热面积
32
管子材料及规格
33
基管外径
34
基管内径
35
管程内煤油的流速
36
管程所需流通截面
37
每程总管数
△tm

K′ W∕(m2·℃)
F′
m2
mm
do
m
di
m
ω2
m/s
At
m2
n

38
所需管程数
Np
-

算 39
每根管长
l
m
传 40
管子排列方式
-
热 41
管中心距
s
mm
面 42
62
迎风面积
AF
m2
63
设计迎风面积
64
管内实际流速
65
风机校正系数
AF′
m2
ω t2
m/s
Φ
-
66
管外对流换热系数
ho
W/(㎡·℃)
67


计 算
68
69
煤油的雷诺数
Re
-
管内对流换热系数
hi
W/(㎡·℃)
污垢热阻
Rfi,Rfo ㎡·℃/W
70
管壁热阻
Rw
㎡·℃/W
71
校核传热系数
72
传热系数绝对误差
由表2.2 由表2.2 sp=scos30° sn=ssin30° 查表3.7 图3.69选择 nt=n/N 查表3.12 F=(F'f+F'b)η *l*n*Np δF=(F0-F')/F0

风冷翅片式换热器计算

风冷翅片式换热器计算

K=
33.00000
输入
最高冷凝温度℃
tkmax=
65.00000
二、冷凝器热力计算求解
冷凝器热负荷KW
Qk=
184.20000
风冷冷凝器传热面积m2
F=
666.86859
冷凝风量kg/s
Gk=
19.29301
冷凝风量m3/h
Gk=
83345.79733
三、风冷冷凝器基本尺寸参数
换热器器水平管间距m
A=
0.02170
换热器垂直管间距m
B=
0.02500
换热管管径m
D=
0.01000
换热管内径m
D1=
0.00900
片 单距 根换m 热管空气侧换热面积
d=
m2/m
Fd=
0.00200 0.51860
输入
单根换热管氟侧换热面积m2/m
Fn=
0.02826
单根换热管氟侧通流面积m2
Fds=
0.00006
风冷冷凝器换热参数计算
一、冷凝热计算输入参数
压缩机型号
输入
制冷量KW
Qo=
139.50000
输入
压缩机输入功率KW
Ni=
44.70000
输入
压缩机排气量kg/h
Gk=
输入
冷凝温度℃
tk=
49.00000
蒸发温度℃
to=
3.50000
过热度℃
tr=
3.50000
过冷度℃
tg=
5.00000
室外环境干球温度℃
换热管肋化系数
τ=
18.35103
二、换热器物理参数计算

翅片换热器传热系数

翅片换热器传热系数

翅片换热器传热系数翅片换热器是一种常见的传热设备,用于实现固体和气体或液体的传热。

它的传热效果受到多种因素的影响,其中一个重要的因素就是传热系数。

本文将详细介绍翅片换热器传热系数的相关知识,包括传热系数的定义、影响传热系数的因素和提高传热系数的方法等。

一、传热系数的定义传热系数是指在单位时间内,单位面积的热量传递到介质中所需要的温度差。

在翅片换热器中,传热系数是描述热量从翅片表面经过翅片墙面和流体边界层传递到流体中的能力。

二、影响传热系数的因素1.翅片的形状和尺寸:翅片的形状和尺寸对传热系数有很大的影响。

翅片的面积越大,传热系数越大;翅片的长度越短,传热系数越小。

此外,翅片的形状也会影响传热系数,一般来说,翅片的形状越复杂,传热系数越大。

2.材料的热导率:材料的热导率决定了热量传递的能力。

热导率越高,传热系数越大。

3.流体的性质:流体的性质对传热系数也有很大的影响。

流体的热导率、密度和黏度等物理性质将直接影响传热系数。

一般来说,流体的热导率越大,传热系数越大;流体的密度越小,传热系数越大。

此外,流体的流速也会对传热系数产生影响,流速越大,传热系数越大。

4.温度差:温度差是传热的驱动力,温度差越大,传热系数越大。

三、提高传热系数的方法1.选择合适的翅片形状和尺寸:选择合适的翅片形状和尺寸是提高传热系数的关键。

一般来说,翅片的形状越复杂,表面积越大,传热系数越大。

此外,选择合适的翅片长度也是提高传热系数的重要手段。

2.优化翅片材料:选择高热导率的材料可以有效提高传热系数。

例如,铜和铝等金属具有较高的热导率,可以用于制造翅片。

3.提高流体的流速:提高流体的流速是提高传热系数的有效方法之一、通过增加流体的流速,可以增加传热表面的对流传热,从而提高传热系数。

4.优化流体的物理性质:选择具有较高热导率、较小密度和较小黏度的流体可以提高传热系数。

此外,增加流体的温度也可以提高传热系数。

五、总结翅片换热器传热系数是实现有效传热的关键因素之一、影响传热系数的因素包括翅片的形状和尺寸、材料的热导率、流体的性质和温度差等。

翅片式换热器计算

翅片式换热器计算
1.186 -0.222 0.2225 0.569 0.0276 472.2718053
ቤተ መጻሕፍቲ ባይዱ凝器进出口空气参数 Q0 系数φ0 Qk 室外干球温度ta1 进出口温差 出风温度ta2
空气平均温度
对数平均温差θm 比热容Cpa 运动粘度ν 热导率 密度ρ 冷凝器外表面效率 铝翅片热导率 肋片当量高度h 翅片特性参数m 翅片效率ηf 冷凝器外表面效率ηo 管内换热系数 物性集合系数B 传热系数 总传热系数 r0 rb 铜管导热率 第一系数 第二系数 第三系数 Ko 传热面积Aof 换热量
0.31369 m^2 197.9734073
3.25 m/s 1.1465 5.606430964 6.4277731 23.64301807 0.003290895 153.6100197 1.0194925 m^3/s 3670.173 m^3/h 17.10596081
换热量的计算 风侧换热量
a*106(m2/s) 22.9 24.3
μ*106(kg/(m*s)) 18.6 19.1
ν*106(m2/s) 16
16.96
Pr
0.701 0.699
计算风速 迎风面积 翅片宽度b 假定风速 35度时空气密度ρa 最窄截面风速Wmax ρa*Wmax (ρa*Wmax)1.7 最窄截面当量直径 静压 单片盘管单元的风量 风机风量 校核气温差
15 1.318 19.77
35 ℃ 19 ℃ 16 ℃ 25.5 ℃ -23.22 ℃ 1.005 0.000015568 0.026295 1.1465
3.25 m/s 0.579691433 5.606430964 m/s
0.197973407 m 0.003290895 m 1185.134493 60.15792878 0.010278544 1.075567722 0.84704233 -0.185189241 16.60481175 21.91835151

翅片换热器传热系数

翅片换热器传热系数

翅片换热器传热系数翅片换热器是一种常见的传热设备,用于增加传热表面积,提高传热效率。

传热系数是评价传热性能的重要参数之一,在翅片换热器设计和优化中起着关键的作用。

本文将详细介绍翅片换热器传热系数的定义、影响因素以及传热系数的计算方法。

翅片换热器传热系数受到多种因素的影响,包括流体性质、流体流速、翅片形状和尺寸等。

首先,流体性质对传热系数有很大的影响。

传热介质的热导率和动力粘度决定了能量传递的速率,因此直接影响传热系数的大小。

其次,流体流速也是影响传热系数的重要因素。

当流体流速增加时,流体与翅片之间的对流传热增强,导致传热系数的增加。

此外,翅片的形状和尺寸也影响传热系数。

翅片的形状决定了翅片与流体之间的传热面积和流动阻力,而翅片的尺寸则决定了翅片之间的间隙大小,直接影响传热效果。

计算翅片换热器传热系数的方法有很多,常用的方法包括经验公式法、数值模拟法和试验测量法。

经验公式法是一种简单而实用的方法,可以用于初步估算传热系数。

常用公式包括Dittus-Boelter公式、Sieder-Tate公式和Gnielinski公式等。

这些公式根据研究者对流动形式和传热机制的理解,通过分析实验数据得到的经验公式,适用于不同的工况和翅片形状。

数值模拟法是一种计算机辅助的方法,可以通过数学模型对流动和传热进行模拟,得到传热系数的数值结果。

这种方法能够更准确地预测传热性能,但需要进行复杂的计算和模拟。

试验测量法是一种直接测量传热系数的方法,通过在实验设备中进行传热实验,测量流体的温度差和传热功率来计算传热系数。

这种方法最为准确,但成本较高且需要一定的实验设备和技术支持。

综上所述,翅片换热器传热系数是衡量传热性能的重要参数,其大小受到多种因素的影响。

通过合理选择流体、优化翅片形状和尺寸等措施,可以提高传热系数,进而提高翅片换热器的传热效率。

在实际应用中,需要综合考虑传热效率、成本和设备运行要求等因素,进行合理的设计和选择。

《JBT 7659.4-2013 翅片式换热器》中换热系数是如何计算的

《JBT 7659.4-2013 翅片式换热器》中换热系数是如何计算的

第3页 共3页
HYC 汇一能控
技术资料
k= Φ A∆ t
(2)
要算出翅片式换热器的换热系数 k,就要先算出换热量Φ、换热面积 A、换
热温差Δt。
换热量:通常采用空气焓差法与液体制冷剂流量计法分别测量出空气侧换
热量与制冷剂侧换热量,二者平均值为换热器的换热量。在实际测量中,JB/T
7659.4-2013 表 2 中的迎面风速是通过风量测量装置的辅助风机变频调节来实
HYC 汇一能控
技术资料
《JB/T 7659.4-2013 翅片式换热器》中换 热系数是如何计算的
文 / 合肥汇一能源科技有限公司
摘 要:JB/T 7659.4-2013 中对翅片式换热器的换热系数有要求,本文阐述了 换热系数的计算方法,以及换热系数的意义。 关键词:翅片式换热器 换热系数
0 概述 在空调用翅片式换热器的标准《JB/T 7659.4-2013 氟代烃类制冷装置用辅
传热系数的大小不仅取决于参与传热过程的两种流体的种类,还与过程本 身有关(如冷、热流体流速的大小,有无相变等)。
换热系数可以校核换热器设计是否合理,例如 JB/T 7659.4-2013 表 1 的要 求,其实就是在校核换热器的设计。
合肥汇一能源科技有限公司
邮箱:hycontrols@
Δt=1℃、传热面积 A=1 ㎡时的热流量的值;本质上,它是表征传热过程强烈程 度的标尺,传热过程越强,传热系数越大,反之则越弱。其实它还表征换热成
合肥汇一能源科技有限公司
邮箱:hycontrols@
第2页 共3页
HYC 汇一能控
技术资料
本,在换热量不变时,换热系数越大,则温差与传热面积的乘积越小,而温差 体现传热的容易程度,传热面积一定程度上表示材料的成本。

扁管翅片换热器肋侧换热系数定义用特征温度

扁管翅片换热器肋侧换热系数定义用特征温度
丁f ( 2一 + ) e T3 △ , f一 / , f一 T4 () 5
式 中 : 为流体 的密度 ; I D 为动力 黏度 系数 ; 为 定压 比热 容 ; 为导 热 系数.
式中:

为对 数平 均温 差 ,
一 {t一 tt 一 ( ( o ̄ o) £
为 出 口修正
攻 方 向.
到 以上 目标 , 采用两种数值方法计算扁管翅片式换 热 器 的肋侧换 热 系数 : 合方 法 与非耦合 方 法. 合 耦 耦 计算是将整个换热器分为 8 部分, 在流体与固体壁 面接触的边界上采用耦合关联条件进行分 区求解 , 而非耦合计算只对肋侧空气流动进行求解. 将数值 结果 与实 验值 进行 比较 , 出一 个 最 佳 的定 义 换 热 找 系数 的特征温度, 为数值方法获得正确的、 可用于换 热器 设计 的肋 侧换 热系数 提供 指导性 依据 .
出口边界设定与耦合方法相 同, 而管壁温及肋片温 度按等壁温情况处理 , 管内水侧部分则不予考虑 , 将 其温度设定为 T w一 8 。 8 C肋侧换热系数可定义为
h 一 ( ~ a / n / 7 — T ) T a ) (" w f
r r
动; 流动 和传 热是稳 态 的 ; 考虑 流体 中 的黏 性耗 散 不 与 质量 力. 据 以上假 设 , 面写 出求解 各个 区域时 根 下
数值模拟单元, 两片相邻肋片间距为 一 20m . m,
肋 片 厚 度 为 一 0 0 .8mm, 究 单 元 总 长 L 一 研
6 . m, 6 0m 扁管的几何尺寸为宽度 ( 包括管壁)a: : : 2 5 . 2mm, 度 ( 括 管壁 ) 长 包 6= 1. 2mm, 壁厚 85 管 一 03 m, .5 m 管壁材料 为铜 , 导热系数 为 3 8 其 9

换翅片换热器热力计算书

换翅片换热器热力计算书

1.924069 1.924069 1.9222507
4.174
1.05851E-05 1.05851E-05 1.05509E-05 7.12580E-04
2.21460E-02 2.21460E-02 2.20938E-02
0.6282
993.6
7.71400E-07
4.754
0.005808 0.009855
0.988096452 0.987956217 0.990459285 0.011903548 0.012043783 0.009540715 28.46774847 28.46217765 28.56273939
1.033276753 1.033577471 1.027784607
2.91737E-02 2.91729E-02 2.91359E-02
干空气的相对成分 kg/kg
水蒸气的相对成分 kg/kg
湿空气气体常数 kJ/(kg.k)
湿空气中干空气容积成分
湿空气中水蒸气容积成分
湿空气的假湿拟空分气子的量定k压g/k比m热ol
kg/(kJ.K)
湿空气的导热系数 W/(m.K)
湿空气的动力粘度 Pa.s
湿空气的密度 kg/m3
计算是否有水析出 冷却器出口含湿量 kg/kg
二级 576 288 748
三级 540 270 748
838
838
788
3.348048 3.348048 3.348048
0.167744 0.167744 0.133248
2.252466432 2.252466432 1.789254144
1.095581568 1.095581568 1.558793856

翅片式换热器介绍

翅片式换热器介绍
翅片式换热器介绍
• 引言 • 翅片式换热器的基本原理 • 翅片式换热器的种类与特点 • 翅片式换热器的性能参数 • 翅片式换热器的应用实例 • 结论
01
引言
翅片式换热器的重要性
01
02
03
提高换热效率
翅片式换热器通过增加换 热面积,提高了换热效率, 降低了能耗。
减小换热器体积
翅片式换热器具有紧凑的 结构,减小了换热器的体 积,方便了设备的安装和 维护。
总结词
轻便、耐腐蚀、价格低廉
详细描述
塑料翅片式换热器采用塑料材料(如聚乙烯、聚丙烯、聚氯乙烯等)制成,具有质量轻、耐腐蚀、价格低廉等特 点。由于其材质的特殊性,塑料翅片式换热器在某些特定领域具有独特的优势,如食品、医药、水处理等领域。
其他翅片式换热器
总结词
特殊用途、特定场合
详细描述
除了金属和塑料翅片式换热器之外,还有一些其他材质和特殊用途的翅片式换热器,如陶瓷翅片式换 热器和复合翅片式换热器等。这些换热器在特定场合和特定需求下具有独特的优势,如高温、高压、 高腐蚀等恶劣工况下使用。
强化传热效果
翅片式换热器通过强化传 热,减小了传热温差,提 高了换热器的可靠性和稳 定性。
翅片式换热器的应用领域
01
02
03
04
制冷空调行业
翅片式换热器广泛应用于制冷 空调系统中,如冷库、空调机
等。
化工行业
翅片式换热器在化工行业中用 于各种化学反应的热量交换和
冷却。
石油化工行业
翅片式换热器在石油化工行业 中用于油品的冷却和热量回收
成本较高
翅片式换热器的制造成本 较高,尤其是一些特殊材 料和高精度加工的换热器。
不易清洗

翅片管换热系数

翅片管换热系数

翅片管换热系数1. 什么是翅片管换热系数?翅片管换热系数是描述翅片管换热性能的一个重要参数。

换热系数是指在单位时间内,单位面积的热量传递量与温度差之间的比值。

对于翅片管换热器而言,翅片管换热系数是指翅片管内部与外部之间的热传导和对流换热效果的综合指标。

2. 翅片管换热系数的影响因素翅片管换热系数受到多种因素的影响,下面将对一些主要因素进行介绍。

2.1 翅片形状和尺寸翅片的形状和尺寸对换热系数有较大的影响。

通常情况下,翅片的面积越大,换热系数越高。

此外,翅片形状的选择也会对换热系数产生影响。

常见的翅片形状有矩形、梯形等,不同形状的翅片在不同工况下的换热效果也有所差异。

2.2 流体流速流体流速是影响翅片管换热系数的重要因素之一。

当流体流速增加时,流体与翅片管之间的对流换热效果增强,换热系数也会相应增加。

因此,在设计翅片管换热器时,需要根据流体流速的要求来确定翅片的尺寸和形状。

2.3 翅片材料和表面处理翅片的材料选择和表面处理也会对换热系数产生影响。

一般来说,热导率较高的材料可以提高翅片管的换热系数。

此外,通过对翅片表面进行特殊处理,如增加表面粗糙度或涂覆特殊涂层,也可以提高换热系数。

2.4 温度差温度差是影响翅片管换热系数的另一个重要因素。

温度差越大,换热系数越高。

因此,在实际应用中,需要根据具体的工况来选择合适的翅片管,以获得较高的换热系数。

3. 计算翅片管换热系数的方法计算翅片管换热系数是翅片管换热器设计的重要一环。

下面介绍两种常用的计算方法。

3.1 理论计算方法理论计算方法是通过数学模型和理论公式来计算翅片管换热系数。

这种方法需要根据具体的翅片管结构和工况条件,建立相应的数学模型,并利用热传导和流体力学的基本原理进行计算。

理论计算方法通常精度较高,但需要较多的计算和理论基础。

3.2 实验测定方法实验测定方法是通过实际试验来测定翅片管换热系数。

这种方法通常需要搭建实验装置,在实验室或现场进行试验。

翅片管及翅片管换热器

翅片管及翅片管换热器

翅片管的材料范围很广,有碳钢、不锈钢、铝及铝合金、 锡及铜合金、钛、蒙乃尔合金等,有时还采用双金属翅片以 节约贵重金属,同时又能适应耐腐蚀性等工艺要求。 翅片管换热器中管束两端没有翅片且外径较大,故与光 管一样可与管板焊接或胀接,必要时也可装设折流扳,装折 流板处应制成没有翅片的平直段。由于翅片管应用广、材料 和制造方法多样,工业发达国家都已标准化、系列化,并有 专门的研究机构和制造厂。
翅片管
和 翅片管换热器
翅片管是一种带肋的壁面,在动力、化工等工业中有广 泛的应用,许多螺旋型换热面或螺纹管也都可看作是翅片管。 它对扩展换热面积和促进湍流有显著作用,无论对单相对流 换热还是相变对流换热都具有很大作用。翅片管换热器的结 构与一般管壳式换热器基本相同。只是用翅片管代替了光管 作为传热面,由于传热加强、结构紧凑,故可做成紧凑式换 热器;翅片管换热器也经常用于加热或冷却管外气体,而在 管内通以蒸汽或水,例如空冷器、锅炉省煤器、暖气片等。
四、翅片设计中有关参数的确定
1.肋片高度h 前已提到,并非任何条件下加高翅片部是有利的,理论 上可以证明,各种形状翅片都存在一个最佳高度。经验表明: 当传热壁面两侧的α值相差2~5倍时,采用低翅型螺纹管比 较合适,造价比光管只增加25~30%;当两侧α值相差十倍 以上时可考虑用高翅片,此时翅片传热面积较大。
一、翅片管的结构
有纵向和径向(横向)两类翅片,其它类型都是这两类 的变形,例如大螺旋角翅片管、螺纹管等,前者接近纵向, 后者接近横向。肋片可在管内、管外或内外兼有。肋片管按 制造方法不同可分为整体翅片、焊接翅片和机械连接翅片。 几种带纵向肋片和径向肋片的翅片管如图所示。
横 向
纵 向
整体翅片由铸造、机械加工或轧制而成,肋片与管子一 体,无接触热阻,强度高,耐热震和机械震动,因而传热、 机械和热膨胀等性能较好,但制造成本提高,对低翅片比较 适用;焊接翅片用钎焊或氩弧焊等工艺制造,现代焊接技术 可使不同材料的翅片与母体管连接在一起并将其扭弯成各种 形状。焊接翅片管由于制造简易、经济且具有较好的传热性 能和机械性能,已在工业上广为应用。

翅片式换热器的设计及计算

翅片式换热器的设计及计算

制冷剂系统翅片式换热器设计及计算制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。

之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。

按照传热过程,换热器传热量的计算公式为:Q=KoFΔtm (W)Q—单位传热量,WKo—传热系数,W/(m2.C)F—传热面积,m2Δtm—对数平均温差,CΔtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。

Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。

传热系数K值的计算公式为:K=1/(1/α1+δ/λ+1/α2)但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为:Kof--以外表面为计算基准的传热系数,W/(m2.C)αi—管内侧换热系数,W/(m2.C)γi—管内侧污垢系数,m2.C/kWδ,δu—管壁厚度,霜层或水膜厚度,mλ,λu—铜管,霜或水导热率,W/m.Cξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C)Fof—外表面积,m2Fi—内表面积,m2Fr—铜管外表面积,m2Ff—肋片表面积,m2ηf—肋片效率,公式分析:从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。

因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。

翅片换热器传热系数

翅片换热器传热系数

翅片换热器传热系数ABRAHAM LAPIN and W. FRED SCHURIGI Polytechnic Institute of Brooklyn, Brooklyn 1, N. Y.许多方程来源于实验数据,同时提出了有交叉流动的热交换器的设计。

对关于换热器行数的总传热影响,进行了图示作为参考.翅片管在热交换器中的使用有了迅速增长。

当内部传热系数比外面的系数极大时,它经常被实际增加一定数量的外表面来为低外系数进行补偿。

许多研究人员都对翅片管的传热进行研究。

因为对可能的翅片类型的安排有非常大的数量,大多数研究都局限于特定条件。

实验设备与程序设备金属板材风管横截面为 30x12 3/4 英寸。

上部是固定的,但较低的部分,可提高或降低容纳一个可变数目的排。

这下部分(进口)进行拟合有5英寸空气校正叶片可助均匀分布的空气线圈。

传热表面(台风的空气调节股份有限公司)。

每个单元有八个翅片管manifolded 在一起以并行方式进行。

5 / 8英寸 0.dx0.025英寸铜管11/2英寸 0.dx0.018英寸轧花8每英寸,30英寸翅翅片长度Ao/Ai=16.30,Ao=2.44平方英尺翅片管直径= 2.41.248平方英尺,空气流面积最小这些铝管的用途,则被关在一个长方形的30×12 3/4英寸的帧。

一个3/4设备橡胶障板安放在沿一侧的框架。

翅片管相邻本遮光罩一个侧和框架本身上另一边。

该框架结构允许一个交错管的安排通过简单地转弯连续排对单位180度的另一个。

一台吹风机提供空气供给在逆流而上空调管道内结束。

测量 水流量用校准过的转子流量计。

空气流量是用一个托马斯米测量,其中包括四个帧开口用1.134 镍铬合金 欧姆/英尺,有一个总电阻每一个约25欧姆。

流动的空气用仪表测量通过一系列的圆盘和圆环折流板顺流混合。

温度进行了测量精确温度计刻度为0.1 C 。

每一个温度计的位置了经过精心挑选的,确保读出正确的总体温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

翅片换热器传热系数
ABRAHAM LAPIN and W. FRED SCHURIG
I Polytechnic Institute of Brooklyn, Brooklyn 1, N. Y.
许多方程来源于实验数据,同时提出了有交叉流动的热交换器的设计。

对关于换热器行数
的总传热影响,进行了图示作为参考.
翅片管在热交换器中的使用有了迅速增长。

当内部传热系数比外面的系数极大时,它经常被实际增加一定数量的外表面来为低外系数进行补偿。

许多研究人员都对翅片管的传热进行研究。

因为对可能的翅片类型的安排有非常大的数量,大多数研究都局限于特定条件。

实验设备与程序
设备金属板材风管横截面为 30x12 3/4 英寸。

上部是固定的,但较低的部分,可提高或降低
容纳一个可变数目的排。

这下部分(进口)进行拟合有5英寸空气校正叶片可助均匀分布的空气线圈。

传热表面(台风的空气调节股份有限公司)。

每个单元有八个翅片管manifolded 在一起以并行方式进行。

5 / 8英寸 0.dx0.025英寸铜管
11/2英寸 0.dx0.018英寸轧花
8每英寸,30英寸翅翅片长度
Ao/Ai=16.30,Ao=2.44平方英尺
翅片管直径= 2.4
1.248平方英尺,空气流面积最小
这些铝管的用途,则被关在一个长方形的30×12 3/4英寸的帧。

一个3/4设备橡胶障板安放在沿
一侧的框架。

翅片管相邻本遮光罩一个侧和框架本身上另一边。

该框架结构允许一个交错管的安排通过简单地转弯连续排对单位180度的另一个。

一台吹风机提供空气供给在逆流而上空调管道内结束。

测量 水流量用校准过的转子流量计。

空气流量是用一个托马斯米测量,其中包括四个帧开口用1.134 镍铬合金 欧姆/英尺,有一个总电阻每一个约25欧姆。

流动的空气用仪表测量通过一系列的圆盘和圆环折流板顺流混合。

温度进行了测量精确温度计刻度为0.1 C 。

每一个温度计的位置了经过精心挑选的,确保读出正确的总体温度。

一系列的运行是由1到8步骤在一个单元中。

这在试管被水平和安排一个三角形的场地:1 1/2-inch 水平和垂直距离管-Le. 1.5X1.677英寸,三角形场地。

所有的管道都是相连的,所以只有一个水程。

水联系之间是这样的空气和水逆向流动。

程序 热水用泵送进管中,同时冷空气穿过翅片。

水流量和温度维持在恒定的9000(磅/小时)和50度,它给出一种管程雷诺数超过20000。

管外的空气流速各在1100 - 5000英镑每小时之间,给人们提供了一种基于最小的通流面积3至15英尺/秒。

在室温下空气进入导管。

两个完全独立的流动进行着。

所有实验结果可再生的有4%。

一系列等温压力损耗测量使用一至八行被独立的传热。

流动的空气温度通过翅片管时68度。

和流量从1200到4500磅每小时。

给雷诺数范围2200到8500。

压力损失用一个倾斜的水压计测量。

计算和结果
p 12p 2l m WC (T - T ) = c (t - t ) =UA t ω∆
12p 2l ()
c (t - t )p m m WC T T U A t A t ω-==∆∆
111'11i i si i av so o o o
L UA h A h A kA h A h A =++++ 111'11U o o o i i si i av so o A A A L h A h A k A h h =++++
0.80.3
0.0225()(Re)(Pr)i h k D =
0.8
0.2
(10.01)160()i i t V h d +=
11fouling factor o si i so A h A h +=
av L'A = resistance of tube wall k A
eff o f A =A'+eA
11tanh a e a =
12
111a = L (h/6kb )
Re Pr b c Nu a =
hD ()()k p b c C DG a k μμ=
Re
b o h a =
2A De=B π 111'11U o o o o i i av si i so A A A L h h A k A h A h =----
211()t p A F LMTD U c t t ω⨯⨯=⨯-
110o si i so A h A h +=
o av
A L' = 0.000468 hr. sq. ft.k A F./B.t u. negligible ≈
eff o A = A ' + A ι
21(')11()o f o o p i i
A A LMTD A h wc t t h A +⨯=--
1116.30o i h U h =- 表I 显示计算结果。

图1和2代表三到六行的所有数据。

图3所示的是一个外薄膜热传递系数vs 的图。

空气雷诺数一到八行。

实际资料没有图,以消除混淆。

最好的直线如图3通过选择点的方法获得。

表Ⅱ总结了图3线条的方程。

压力损失的结果可以概括如下:当2200 <Re < 5000 ,f = 0.075±20%和当5000 <Re< 8500,f = 0.075±7%。

讨论的结果
理想的情况是,雷诺指数在表达式h0=aReb 应该从0增加到1随着湍流从0(1 00%流线型)增加100%。

在实际的情况下,然而,指数b 通常大于0和小于1。

这项工作的结果被证明了如图3和表Ⅱ。

b 从0.46到 0.95分别从一到八行。

因此每排有些湍流;然而,即使在更高空气流动最大湍流也不可能得到的。

湍流逐渐随着行数的增加而增加。

当达到八行时,湍流即使是在低端也完整。

传热系数在低雷诺数随着越来越多的行数减小(图3和4)。

这个异常可能是由于这样的事实:尽管扰动的程度不同,相同的水力半径仍被用于所有情况。

液压半径只有在湍流流动时可靠。

使用一个取决于扰动程度的变量修正因素可有效消除这种异常现象。

然而,与詹姆逊相关的翅片管等效直径在图3或
表Ⅱ公式使用将得到正确的设计。

结论
交错行数对于空气通过表面延伸管(翅片管)流动时的平均外热传递系数的影响已经进行了实验验证。

当传热系数被称为雷诺数的函数,雷诺数提高的幂数和比值常数随著行数变化。

一个通用的相关性已被发展出来。

外面的传热有关系数、雷诺数、行数:1(0.390.07)00.13(0.630.01)Re N N h N -+=-
这个方程最大的偏离是35%,平均偏差±4.5%。

在图3所示曲线或列于表Ⅱ的方程可用于作为设计目标。

虽然这种工作的结果适用已用过的翅片管的类型和有效的实验范围(1600 <
Re < 11000),但只要翅片管直径的比例以2或8到10鳍每英寸,人们相信类似的结果将会获得其他类型和尺寸的翅片,。

作者感谢台风的空气空调有限公司,公司、布鲁克林. N. Y.,在这项工作中传热面上的供应, 布鲁克林职业技术学院的实验室的化学工程工作人员一直的帮助, 和D. E.马克对这篇文章出版之前的建设性观点。

相关文档
最新文档