(完整版)分块矩阵及其应用汇总,推荐文档

合集下载

分块矩阵的方法,技巧与应用

分块矩阵的方法,技巧与应用

分块矩阵的方法、技巧与应用内容摘要有时候,我们把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样。

特别在运算中,把这些小矩阵当作数一样处理。

这就是矩阵的分块。

设A 是一个m*n 矩阵111212122212n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦用若干横线将它分成s 块,若干竖线将它分成r 块,于是有*r s 的分块矩阵111212121212s s r r rs A A A A A A A A A A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦其中ij A 表示一个矩阵。

关键词矩阵,分块矩阵,逆矩阵,准对角矩阵1. 导言在理论研究及一些实际问题中,经常遇到阶数很高或结构特殊的矩阵。

对于这些矩阵,在运算时常常采用分块法,使大矩阵的运算化成小矩阵的运算。

分块矩阵可以用来降低较高级数的矩阵级数,使矩阵的结构更清晰明朗,从而使矩阵的相关计算简单化,而且还可以用于证明一些与矩阵有关的问题。

本文将主要介绍分块矩阵的一些初等变换的方法技巧,就分块矩阵的加法与数量乘法、乘法、转置、初等变换等运算性质,以及分块矩阵在矩阵求逆、行列式展开等方面进行一些基本研究。

2.1.分块矩阵的简介矩阵分块为矩阵运算带来便利,最常用的矩阵分块是2*2块A B C D ⎛⎫ ⎪⎝⎭, 其中A 为*m m 矩阵块,D 为*n n 矩阵块。

例:在矩阵21210000010012101101E A A E ⎛⎫ ⎪⎛⎫ ⎪== ⎪ ⎪-⎝⎭ ⎪⎝⎭中,2E 代表2级单位矩阵,而11211A -⎛⎫= ⎪⎝⎭,0000O ⎛⎫= ⎪⎝⎭在矩阵111221221032120124111153B B B B B ⎛⎫ ⎪-⎛⎫ ⎪== ⎪ ⎪-⎝⎭ ⎪-⎝⎭中,111012B ⎛⎫= ⎪-⎝⎭,123201B ⎛⎫= ⎪⎝⎭,211011B ⎛⎫= ⎪--⎝⎭ ,224120B ⎛⎫= ⎪⎝⎭.在计算AB 时,把A ,B 都看成事由这些小矩阵组成的,即按2阶矩阵来运算,于是21112111212212211121112220E B B B B AB A E B B A B B A B B ⎛⎫⎛⎫⎛⎫==⎪⎪⎪++⎝⎭⎝⎭⎝⎭其中11121121010111211341024021111A B B -⎛⎫⎛⎫⎛⎫+=+ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 11222123241110120304111332053A B B -⎛⎫⎛⎫⎛⎫+=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭把上述计算结果作为小块的元素代入,得到1032120124011153AB ⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭通常,矩阵分块可以简化矩阵的运算,实现运算的优化。

分块矩阵的初等变换及其应用

分块矩阵的初等变换及其应用

分块矩阵的初等变换及其应用
分块矩阵的初等变换是指对一个分块矩阵进行基本的矩阵变换,例如行交换、行加减等操作。

这些操作可以用来简化计算、求解线性方程组、矩阵的逆等。

对于分块矩阵,其基本的初等变换有以下几种:
1. 行交换:将矩阵中的两行交换位置,即交换它们在矩阵中的行号。

2. 行加减:将矩阵中的某一行加上(或减去)另一行的某一倍,得到新的行替换原来的行。

3. 列交换:将矩阵中的两列交换位置,即交换它们在矩阵中的列号。

4. 列加减:将矩阵中的某一列加上(或减去)另一列的某一倍,得到新的列替换原来的列。

这些初等变换可以用来求解线性方程组,例如将系数矩阵进行初等变换,得到一个简化的矩阵,再将方程组进行相应的变换,得到一个等价的方程组。

这个等价的方程组可以更容易地求解。

此外,分块矩阵的初等变换也可以用来求矩阵的逆,例如将待求逆的矩阵与单位矩阵组成增广矩阵,对其进行初等变换,使得待求逆的矩阵变为单位矩阵,此时增广矩阵的另一半就是所求的逆矩阵。

总之,分块矩阵的初等变换是求解线性方程组、求矩阵的逆等问题中不可或缺的工具。

- 1 -。

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其应用姓名:王红军 学号:200840510638 指导老师:李群摘要 分块矩阵是《高等代数》的一个重要内容。

为了研究一些问题的需要,适当地将矩阵进行分块,可以使矩阵的结构变得更加清楚,有关矩阵的很多问题也将迎刃而解。

关键词 分块矩阵 线性方程组 矩阵方程 逆矩阵 行列式计算 特征值 秩1.分块矩阵的概念及重要理论1.1分块矩阵的概念设A 是一个矩阵,我们将矩阵A 用若干条横线和若干条纵线按照某种需要将其划分为若干个小矩阵。

被这种分法分成若干个小矩阵的矩阵称为一个分块矩阵。

划分出的每个小矩阵称为A 的一个子块或子阵。

1.2分块矩阵的运算分块矩阵和一般矩阵一样,主要有四种运算:加法、数乘、乘法、转置。

但值得注意的是分块一定要满足一定的条件才可以实施加法和乘法运算。

1.3分块矩阵的初等变换分块矩阵有如下三种初等变换:(1)用一个可逆矩阵左(右)乘分块矩阵的某一行;(2)用一个非零的矩阵左(右)乘分块矩阵的某一行(列)加到另一行(列)上;(3)交换分块矩阵的两行或两列.1.4常见的分块方法(1)列分法A=(1a ,2a ,…,n a ) 其中i a (i=1,2,…,n )为A 的列向量;(2)行分法A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a 21 其中i a (i=1,2,…,n )为A 的列向量; (3)分成两块A=()21A A 其中1A ,2A 分别为A 的若干列;或者⎝⎛⎪⎪⎭⎫=21A A A 其中1A ,2A 分别为A 的若干列;(4)分成四块 ⎪⎪⎭⎫ ⎝⎛=4231A A A A A2.1分块矩阵与线性方程组2.1.1设n m A ⨯≠0,s n B ⨯的列向量组为1B ,2B ,…,S B 则有以下结论成立: AB=0⇔1B ,2B ,…,S B 都是齐次线性方程组AX=0的解证明:由题意AB=0(A 1B ,A 2B ,…,A S B )=0⇔A 1B =0,A 2B =0,…,A S B =0⇔1B ,2B ,…,S B 都是AX=0的解由上知我们可以利用分块矩阵的理论去解决齐次线性方程组的理论中的问题2..1.2已知A=2.1.3 设非齐次线性方程组2.2求解矩阵方程2.2.1 形如AX=B (A 为可逆矩阵)的矩阵方程易知解为X=1-A B ,计算格式如下:(A,B)→(E 1-A C) 2.2.2 形如XA=B (A 为可逆矩阵)的矩阵方程易知解为X=B 1-A ,计算格式如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡B A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1BA E 2.2.3 形如AXB=C (A 、B 分别为m 、n 阶可逆矩阵)的矩阵方程 易知解为X=1-A C 1-B ,计算格式如下:(A C )→(E 1-A C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-C A B 1 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11CB A E现在此基础上构造一个分块矩阵,将两步合为一步:⎪⎪⎭⎫ ⎝⎛O A B C →⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛--o E E CB A O E B C A m n m 11 例:求解下给矩阵方程。

高等代数小论文--分块矩阵及其应用

高等代数小论文--分块矩阵及其应用

高等代数期中论文课程高等代数专业班级数学0802 姓名徐锴学号 ******** 指导教师牛敏分块矩阵及其应用主要内容1.分块矩阵1.1. 分块矩阵的定义用纵线与横线将矩阵A 划分成若干较小的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡st s s t t A A A A A A A A A 212222111211 其中每个小矩阵 .),1;,1(t j s i A ij==叫做A 的一个子块;分成子块的矩阵叫做分快矩阵[2].1.2 运算规则()1 stij ij st ij st ij B A B A )()()(+=± ()2 tsT ji st Tij A A )()(= ()3 sp ij tp ij st ij C B A )()()(=,ij C =∑-==tk kjik t j s i B A 1),...1,,...1( ()4 stij st ij A k A k )()(=(k 是数量) 在用规则1)时,A 与B 的分块方法须完全相同;用性质3)时,A 的列的分法与B 的行的分法须相同.1.3分块矩阵的性质及其推论在行列式计算中 ,我们经常用到下面三条性质[3]:()1 若行列式中某行有公因子 ,则可提到行列式号外面;()2 把行列式中的某行乘上某一个非零数 ,加到另一行中去 ,其值不变; ()3 把行列式中的某两行互换位置 ,其值变号;利用矩阵的分块 ,我们可以把行列式的三条性质在分块矩阵中进行广.性质 1 设方阵A 是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 级方阵 .对于矩阵B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C MB MB MB A A A则B =MA证明 设s E 为s 级单位矩阵 ,则B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321000000C C C B B B A A A E M E s s =A E ME s s⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000 于是B =0000ssE ME A =s E M s E A =MA性质 2 设矩阵是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 阶方阵 .对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=321321321C C C MC B MC B MC B A A A D 则A =D证明 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s sE E E 000000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++321321321C C C MC B MC B MC B A A A 其中 s E 是s 级单位矩阵 ,对上式两边同时取行列式得A =D性质 3 设方阵A 和'A 写成如下形式A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A ,'A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C A A A B B B 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是 s ×t 矩阵,则|'A |=⎩⎨⎧-为奇数时,当为偶数时当s A s A |||,|证明 A 可由'A 中的1B ,2B ,3B 与1A ,2A ,3A 相应的两行对换而得到 ,而对换行列式的两行 , 行列式反号 ,故当s 为偶数时|'A |=A 当s 为奇时|'A |=-A可以证明 ,对于一般分块矩阵也具有类似性质.同时 ,这些性质不仅对行成立 ,对列也同样成立.下面举例说明这些性质在行列式计算和证明中的应用.推论 1 设A ,都是n 阶方阵,则有AB =A B ()2.6 证明 作2n 阶行列式C =EA AB由拉普拉斯展开定理得C =AB E =AB又由性质2并应用于列的情况,有E A AB0=E EB A AB AB --0=EB A -0=B A nn n --+++++++2)1(21)1( =B A 推论 2 设,A B 都是n 阶方阵,则有AB BA =B A B A -+ 证明 根据定性质2并应用于列的情况,有AB BA =A AB B B A ++=B A B B A ++0=B A B A -+ 例1 计算n 2阶行列式D =ab a b a b b a b a ba 000000000000000000000000解 令A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡a 00000a 0000a 0000aB =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000000000 b b b 则 D =ABBA=B A B A -+=a b a b b a b a 00000000 ab a b b aba 00000000 ---- =n b a )(+n b a )(-=nb a )(22-推论 3 设,B ,C ,D 都是n 阶方阵 ,其中A ≠0,并且AC =CA ,则有DC BA=CB AD - ()2.8 证明 根据性质2,因为1-A 存在,并注意到AC =CA ,用1C A --乘矩阵⎥⎦⎤⎢⎣⎡D C B A 的第一行后加到第二行中去得⎥⎦⎤⎢⎣⎡----B CA D B CA A 110 从而D C B A=110A C A B D C A B---- =A B CA D 1--=B ACA AD 1--B CAA AD 1--=CB AD- 把行列式的性质在分块矩阵中进行推广之后,我们又由这三个新的性质得到了三个结论.设A ,B ,C ,D 都是n 级方阵则有AB =A B ABBA =B A B A -+ 结论()2.6告诉我们,两个方阵的乘积的行列式等于这两个方阵的行列式的乘积.结论()2.7则说明,当一个行列式可以分成四个级数相等的方阵A ,B ,B ,A 时(即AB BA ), 2.1分块矩阵在矩阵的秩的相关证明中的应用定理 1 秩()AB≤秩()A ,且秩()AB ≤秩()B ,则秩()AB ≤min{秩A ,秩B }[4]证明 令s m C ⨯=n m A ⨯⋅s n B ⨯,A =()12,n aa a ,C =()12,s γγγ 则(s γγγ 21,)=()12,naa a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ns n n s s b b b b b bb b b212222111211 ∴nns s s s nn n n a b a b a b a b a b a b a b a b a b +++=+++=+++=22112222112212211111γγγ∴s γγγ 21,()1可由n a a a 21,()2线性表示 ∴秩()I ≤秩()I I ,即秩()C =秩()AB ≤秩()A令=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21,B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n βββ 21 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a aa a a212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nβββ 21即nmn m m s nn n n a a a a a a a a a βββηβββηβφβη+++=+++=+++=22112222112212211111∴m ηηη 21,()3可由nβββ 21,()4线性表示 ∴秩()III ≤秩()IV ,即秩()C=秩()AB ≤秩()B即秩()AB ≤()()m i n {A B }秩,秩 定理 2 设、都是n 级矩阵,若0A B =则秩()A +秩()B ≤n[5].证明 对分块如下:()12nB B B B = 由于0A B =即()120nA B A B A B = 即()01,2,,i A B i n == 说明的各列B 都是0A X =的解.从而秩()12nB B B ≤基础解系=n -秩()A 即秩()A+秩()B ≤n3.1 分块矩阵在求逆矩阵方面的应用命题1[10]设P =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中B 为r 阶方阵, C 为k 阶方阵,当B 与)(1A DB C --都是可逆矩阵时,则P 是可逆矩阵,并且1-P=⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C 特例 ()1 当A =0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡--0011B C . ()2 当A =0,D ≠0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----01111B C DB C ()3 当A ≠0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----1111AC B BC 证明 设P 可逆,且1-P =⎥⎦⎤⎢⎣⎡W Z Y X,其中Y 为k 阶方阵,Z 为r 阶的方阵.则应有 于是得到下面的等式(4.1)0(4.2)0(4.3)(4.4)k r X AY C E X BY D Z AW C Z BW DE +=⎧⎪+=⎪⎨+=⎪⎪+=⎩因为可逆,用1-B 右乘(3.2)式可得代入(3.1)式得Y -11)(---A DB C 则X =11)(----A DB C D 1-B . 用右乘(3.4)式可得=()r E W D -1-B =1-B -1W D B - 代入(3.3)式得W =1B A -11)(---A DB C则 可得Z =1-B +1B A -11)(---A DB C D 1-B .所以1-P=⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C . 命题2 设Q =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中A 为r 阶方阵,D 为k 阶方阵,当A 与(B CA D 1--)都是可逆矩阵时,则Q 是可逆矩阵,并且1-Q =1-⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡------+-------------1111111111111)()()()(B CA D CA B CA D B CA D B A CA B CA D B A A特例 (1) 当B =0,C =0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡--1100D A (2) 当B ≠0,C=0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D BD A A 1X Y D B-=(3) 当B =0,C ≠0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D CA D A 此结论参考命题1.例1 设M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------6000004000001001095201473,求1-M . 解 令=⎥⎦⎤⎢⎣⎡--5273,=⎥⎦⎤⎢⎣⎡--109014,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001.则很容易求得1-A =⎥⎦⎤⎢⎣⎡--3275,1-D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--6/10004/10001 且11---BD A =-⎥⎦⎤⎢⎣⎡--3275⎥⎦⎤⎢⎣⎡--109014⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001=⎥⎦⎤⎢⎣⎡---2/12/1196/74/543 由命题2可得,1-M =⎥⎦⎤⎢⎣⎡-----1111D O BD A A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------6/1000004/1000001002/12/119326/74/54375 3.2 分块矩阵在行列式计算式方面的应用在线性代数中 ,分块矩阵是一个十分重要的概念 ,它可以使矩阵的表示简单明了 ,使矩阵的运算得以简化. 而且还可以利用分块矩阵解决某些行列式的计算问题. 而事实上 ,利用分块矩阵方法计算行列式 ,时常会使行列式的计算变得简单 ,并能收到意想不到的效果[11]. 本节给出利用分块矩阵计算行列式的几种方法.引理 设矩阵H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A OOA O A A21或H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A AO A O OA21其中sA A A ,,,21 均为方阵,则 H =s A A A 21.3.2.1矩阵A 或B 可逆时行列式|H|的计算 命题 1 B A 、分别为m 与n 阶方阵. 证明 : (1)当可逆时 ,有BCD A =A D CA B 1-- (3.5) (2)当可逆时 ,有BCD A =C DB A 1--B (3.6) 证明 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D CA B D A B C D A E CA E 1100 由引理知,两边取行列式即得(3.5).()2 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡--E DB E 01⎥⎦⎤⎢⎣⎡B C D A =⎥⎦⎤⎢⎣⎡--B C C DB A 01两边取行列式即得(3.6).此命题可以用来解决一些级数较高的矩阵求逆问题,但在利用命题1时,要特别注意条件有矩阵或可逆,否则此命题不适用,下面给出此命题的应用.推论1 设,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵. 证明 B C DE m=CD B - ( 3.7) nE CD A =DC A - (3.8) 证明 只需要在命题1的(3.5)中令=m E , 即得(3.7);在(3.6)中令=n E ,即得(3.8). 推论2 ,C D 分别是n m ⨯和mn ⨯矩阵.证明 nm E CD E =CD E n -=DC E m - (3.9) 证明 在推论1的(3.7)中,令=n E ,在(3.8)中,令=m E ,即得(3.9)例3 计算下面2n 阶行列式n H 2=bcb c d a da()0a ≠解 令=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a ,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡b b,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c c ,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡dd为n 阶方阵.由于0a ≠,故为可逆方阵.又易知-D CA1-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------d ca b d ca b d ca b 111从而由命题1中()1得n H 2=AD C B=DCA B A 1-- =nn d ca b a )(1--=n cd ab )(-.例4 计算行列式()1);,,2,1,0(,00100100111121n i a a a a a i n=≠ ()2cb b b b a a a a nn3213211000100010001解 ()1 设=BC DA ,其中 =()0a ,=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a21,=T )1,,1,1( ,D =)1,,1,1( . 因为n i a i ,,2,1,0 =≠所以是可逆矩阵.又易知 A -C DB 1-=⎥⎦⎤⎢⎣⎡-∑=ni i a a 10/1从而由命题1中的结论()4.2得BC D A=1A DB CB -- =⎥⎦⎤⎢⎣⎡-∑=ni i n a a a a a 1021/1 (2)设Q =BC DE n,其中 B =(c ),C =),,,(21nb b b ,D =Tn a a a ),,(21 由于C D =),,,(21nb b b Tn a a a ),,(21 =∑=ni ii ba 1从而由推论1知,=BC DEn=B CD -=c -∑=ni ii ba 1.3.2.2矩阵,A B C D==时行列式|H|的计算 命题 2 ,A C 是两个n 阶方阵.则AC CA=|A+C||A-C| 证明 根据行列式的性质和定理,有AC CA =A A C C C A ++=C A C C A -+0 =A CA C +-. 例1 计算行列式.D =000xyzx zy y z x z y x解 这道题看似简单 ,但如果方法选择不好,做起来并不轻松. 这里设=⎥⎦⎤⎢⎣⎡00x x ,=⎥⎦⎤⎢⎣⎡y z z y 由命题2知D =ACCA=C A C A -+ =yzx z x y++yzx z x y ----=])(][)([2222z x y z x y --+- =))()()((z y x z y x z y x z y x ++--+-+-++行列式的计算是线性代数中的一个重要内容,本节就行列式的计算问题具体就形如H =BC DA (,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵)的类型的行列式计算进行了分析,其中将一个行列式分块成,,,ABCD 后,又细分为几种情况进行了讨论,依据不同的情况给出了不同的计算方法,在计算行列式时可根据这几种不同的情况具体问题具体对待,从而简化行列式的计算过程.在这一部分可见,利用分块矩阵计算行列式主要是靠分块矩阵来改变原来矩阵的级数从而达到简化计算过程,快速解决问题的目的.。

分块矩阵应用

分块矩阵应用

例如
A11 A = A 21 A 31
1 3
A12 A 22 A 32
A13 A 23 A 33
A 32 A 22 A12 A 33 A 23 A13
A14 A 24 A 34
A 34 A 24 = B1 A14
A 31 R ← R → A → A 21 A 11
(2)分块矩阵的某行左乘某矩阵 ,表示为 i。需要 )分块矩阵的某行左乘某矩阵P,表示为PR 注意的是矩阵P的列数要等于R 的子块行数。 注意的是矩阵P的列数要等于Ri的子块行数。 的列数要等于 (3)分块矩阵的某列右乘某矩阵 表示为 jQ )分块矩阵的某列右乘某矩阵Q, 表示为C (4)分块矩阵的的某行的对应子块左乘某矩阵加到分 ) 块矩阵的另一行对应的子块上, 表示为R 块矩阵的另一行对应的子块上 表示为 i+PRj (5)分块矩阵的的某列的对应子块右乘某矩阵加到分 ) 块矩阵的另一列对应的子块上, 表示为C 块矩阵的另一列对应的子块上 表示为 i + CjQ
E1 L 0 E = L 0 L 0
L 0 L 0 L 0 O L L L L L L Ei L 0 L 0 L L O L L L L 0 L Ej L 0 L L L L O L L 0 L 0 L Et
进行一次分块矩阵初等变换得到的分块矩阵称为 分块初等矩阵 以下我们用二阶分块初等矩阵来定义这些分块初等矩阵
A12 + A14Q A13 A 22 + A 24Q A 23 A 32 + A 34Q A 33
A14 A 24 = B 6 A 34
Q的列数等于第二列子块的列数,行数为第四列子块的列数 的列数等于第二列子块的列数, 的列数等于第二列子块的列数

分块矩阵word版本

分块矩阵word版本

A12 A22
X X
1 3
X X
2 4
A11
X1 A12 A22 X 3
X
3
A11
X 2 A12 A22 X 4
X
4
E 0
0 E
A11X1 A12 X 3 E
得到4个矩阵方程组
A11
X
2
A12 X 4
0
A22
X
3
0
A22 X 4 E
求解该方程组,得
X 4 A221 X3 0 X1 A1T1 X 2 A111 A12 A221
(2) (解略,请仿(1)方法自行求解)
2. 分块对角矩阵
设A1, A2, … , As均为方阵(不一定同阶),则称下 面的A为分块对角矩阵
A1
A
A2
As
如果矩阵A1, A2, … , As均可逆,则分块对角矩阵A 可逆,且其逆矩阵为
A11
A1
A21
As1
说明:分块对角阵的逆矩阵,与对角矩阵的逆矩
0
0
1 b
A1
A2
A3
a10
A4
,其中A2431
a0 01b
1b0
说明 (1). 矩阵分块时,同一个矩阵可以有不同的 分块方法,应根据需要进行选择。
2、矩阵分块一般形式
矩阵A = ( aij )m×n,在行方向分s块,列方向分t块, 称A为s×t分块矩阵,第k行l列子块Akl是mk×nl阶矩阵。
AtT
二、一些特殊的分块矩阵
1. 2阶分块上(下)三角形矩阵求逆
例2. 求下列2阶分块逆矩阵
(1) A A11
A12 A22
其中A11, A22可逆矩阵

分块矩阵及其应用

分块矩阵及其应用

分块矩阵及其应用【摘要】矩阵论是代数学中是一个重要的组成部分和主要的研究对象。

而分块矩阵可以降低较高级数的矩阵级数,使矩阵的结构更加清晰,从而使矩阵的相关计算简化,并且可以证明一些与矩阵有关的问题。

本文详细且全面论述了分块矩阵阵的概念、分块矩阵的运算和其初等变换,而且证明了矩阵的分块在高等代数中的应用,包括用分块矩阵证明矩阵秩的问题,用分块矩阵求行列式问题,用分块矩阵求逆矩阵的问题,分块矩阵相似的问题。

【关键词】:分块矩阵;矩阵的秩;逆矩阵;行列式目录1引言 (2)2矩阵分块的定义和性质 (2)2.1 矩阵分块的定义 (2)2.2 分块矩阵的运算 (2)2.3 分块矩阵的初等变换 (3)2.4 n阶准对角矩阵的性质 (3)3分块矩阵在高等代数中的应用 (4)3.1 分块矩阵在矩阵的秩的相关证明中的应用 (4)3.2 利用分块矩阵计算行列式 (7)3.3 分块矩阵在求逆矩阵方面的应用 (11)3.4 分块矩阵在解线性方程组方面的应用 (16)4总结 (19)参考文献 (20)1 引言矩阵是高等代数中的一个重要内容,也是高等数学的很多分支研究问题的工具。

在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,从而使问题的解决更简明。

比如当我们处理阶数较高或具有特殊结构的矩阵时,用处理一般低阶矩阵的方法,往往比较困难,为了研究问题的方便,也为了显示出矩阵中某些部分的特性,我们常把一个大型矩阵分成若干子块,把每个子块看作一个元素,从而构成一个分块矩阵,这是处理矩阵问题的重要技巧。

利用矩阵的分块,可以把高阶矩阵划分成阶数较低的“块”,然后对这些以“块”为元素的矩阵施行矩阵的运算。

本文就分块矩阵的加法、乘法、转置、初等变换等运算性质,及分块矩阵在证明矩阵相关秩的问题、矩阵求逆、行列式展开计算等方面的应用作了较为深入的研究。

矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于理解和掌握,而且能开拓思维,提高灵活应用知识解决问题的能力。

分块矩阵及其运算

分块矩阵及其运算
1 2 4 8 8 4 因A11 B22 2, A22 B22 3 4 6 2 12 16 2 0 0 所以AB 0 8 4 0 12 16
0 B22 性

线

= =
A C 1 矩阵D 也可逆, 并求D的逆阵D 0 B
线 性
则 XA I1 X A1 ,
WA 0 W 0, XC+ZB 0, 数
1
将X A1代入, 有ZB A1C , Z A1CB 1 , WC+YB I 2 , 将W 0代入 Y B , 所以
= =
1.4 分块矩阵及其运算
一般地, 若A1 , A2 , 则 X Ar X 1 1 A1
, Ar 均为可逆方阵(阶数不一定相同) A2 A1 为可逆阵, 且其逆阵为 1 Ar
7 1 14 2 AB 6 3 0 2
3k 2 2 4k 2 1 , A B 6 3 0 k 0 2 1 3 2 4 1 0 0 1
1 3 2 4 0 0 0 0
= =
1.4 分块矩阵及其运算
又如矩阵按列分块
a11 a A 21 am1 其中 j a12 a22 am 2 a1n a2 n 1 amn
线 性
2
n
代 数
a1 j a 2j , j 1, 2, amj
= =
1.4 分块矩阵及其运算
a11 a12 a1n b1 j b a a a 21 22 2n 2 j a m1 a m 2 a mn bmj A j

分块矩阵的原理和应用

分块矩阵的原理和应用

分块矩阵的原理和应用1. 原理分块矩阵是一种特殊的矩阵结构,将大型矩阵分割成更小的块状矩阵,以便进行更高效的运算和存储。

分块矩阵的原理主要包括以下几个方面:1.1 分块矩阵的定义分块矩阵由多个块状子矩阵组成,每个子矩阵都是相对较小的矩阵。

这些子矩阵可以是任意维度的矩阵,但通常都是方阵。

分块矩阵的维度取决于它所包含的子矩阵的维度和排列方式。

1.2 分块矩阵的运算分块矩阵可以进行各种矩阵运算,例如加法、减法和乘法等。

在进行这些运算时,可以利用分块矩阵的特殊结构,将运算过程分解为对各个子矩阵的运算,从而提高计算效率。

1.3 分块矩阵的存储分块矩阵的存储方式也与普通矩阵存储方式有所不同。

在分块矩阵中,每个子矩阵都被存储在一个相邻的内存块中,而各个子矩阵之间的存储空间可以是非连续的。

这种存储方式可以提高数据的局部性,进而提高计算效率。

2. 应用分块矩阵在科学计算和工程领域有广泛的应用,以下列举了一些常见的应用领域:2.1 计算机图形学在计算机图形学中,分块矩阵常用于表示和处理三维图形中的几何变换矩阵。

通过分块矩阵的运算,可以实现旋转、缩放和平移等常见的几何变换操作。

2.2 信号处理在信号处理中,分块矩阵常用于表示和处理信号的频谱信息。

通过分块矩阵的乘法运算,可以实现信号的卷积和相关等基本操作,进而实现滤波和频谱分析等应用。

2.3 优化算法在优化算法中,分块矩阵常用于表示优化问题的约束矩阵。

通过分块矩阵的运算,可以将大规模的优化问题分解为小规模的子问题,从而提高求解效率。

2.4 数据压缩在数据压缩领域,分块矩阵常用于表示和处理图像和视频数据。

通过分块矩阵的变换和压缩算法,可以实现图像和视频数据的无损或有损压缩,从而减小存储空间和传输带宽的需求。

3. 总结分块矩阵作为一种特殊的矩阵结构,在科学计算和工程领域有着广泛的应用。

它的原理包括定义、运算和存储等方面,通过合理利用分块矩阵的结构,可以提高计算效率和存储效率。

浅谈分块矩阵的性质及应用doc

浅谈分块矩阵的性质及应用doc

浅谈分块矩阵的性质及应用doc分块矩阵是由几个矩阵块组成的矩阵,它的出现主要是为了更好地解决某些复杂的数学问题。

在实际应用中,分块矩阵既可以用于表示线性系统,也可以用于表示迭代算法的计算过程。

本文将从性质和应用两个方面对分块矩阵进行浅谈。

1. 分块矩阵的性质分块矩阵的一些性质能够帮助我们更好的理解它的本质。

下面将介绍几个较为常见的性质。

(1) 直和分块矩阵:如果一个分块矩阵的所有矩阵块都是对角矩阵,那么我们称这个分块矩阵为直和分块矩阵。

直和分块矩阵与对角矩阵非常相似,都具有稳定的性质和巨大的计算优势。

(2) 块矩阵的转置:对于一个分块矩阵A,通常有以下转置公式:(A^T)_i,j=A_j,i。

也就是说,分块矩阵的转置相当于交换原矩阵的每一块。

(3) 块矩阵的乘法:设A和B是两个分块矩阵,当且仅当A的列数等于B的行数时,我们才可以进行矩阵乘法AB。

具体方法是将A中的每一块分别与B中的每一列乘起来,然后对结果进行相加。

另外还有两个性质需要注意。

首先,如果A和B都是直和分块矩阵,则它们的乘积也是直和分块矩阵。

其次,如果A和B都是分块对称矩阵,那么它们的乘积也是分块对称矩阵。

(1) 线性系统求解:分块矩阵可以用于求解大规模的线性系统,它的基本思想是将系统分成若干个小规模的子系统,利用线性代数中的基本定理,通过求解小系统的逆矩阵逐步求解全局矩阵的逆矩阵。

具体而言,我们可以将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。

然后,我们可以将原始线性系统Ax=b转化为一个新的线性系统(D^-1CB)x=D^-1b。

由于B和D都是对角矩阵,所以它们的逆矩阵很容易求得。

接下来,我们只需要在新的线性系统中解x即可。

(2) 特征值计算:分块矩阵也可以用于特征值问题的求解,尤其是在计算大规模稀疏矩阵的特征值时特别有效。

具体而言,我们可以采用分块对角化的方法,将原矩阵A分解为A=BCD,其中B和D都是对角矩阵,C是一般的矩阵。

分块矩阵及其应用汇总

分块矩阵及其应用汇总

分块矩阵及其应用徐健,数学计算机科学学院摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量,而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理.关键词:分块矩阵;行列式;方程组;矩阵的秩On Block Matrixes and its ApplicationsXu Jian, School of Mathematics and Computer ScienceAbstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc.Keywords Block matrix; Determinant; System of equations; Rank of a matrix1 引言我们在高等代数中接触到矩阵后,学习了矩阵的相关性质,但是对于一些复杂高阶矩阵,我们希望能将问题简化. 考虑将矩阵分割为若干块,并将矩阵的部分性质平移至分块矩阵中,这样的处理往往会使问题简化.定义1.11 分块矩阵是把一个大矩阵分割成若干“矩阵的矩阵”,如把m n ⨯矩阵分割为如下形式的矩阵:m nA ⨯=1111n m mn A A A A ⎛⎫⎪ ⎪ ⎪⎝⎭特别地,对于单位矩阵分块:n nE ⨯=11000000nn E E ⎛⎫ ⎪ ⎪ ⎪⎝⎭显然,这里我们认识的矩阵元素不再局限于数字,而是一个整体,这里的ijA所代表的是大矩阵囊括的小矩阵,而小矩阵一般是我们熟知的常见矩阵.依照以上设想,有关矩阵性质的一些问题,我们可以考虑用分块矩阵的思路来解决.2 分块矩阵2.1矩阵的相关概念在矩阵的学习中,我们学过一些最基本的概念,比如矩阵的行列式、矩阵的秩、矩阵的逆、初等变换、初等矩阵等等.事实上,我们发现:分块后的矩阵同样用到这些概念.定义2.1.1[2] n 级行列式111212122212n n n n nna a a a a a a a a 等于所有取自不同行不同列的n 个元素的乘积1212n j jnj a a a 的代数和,这一定义又可写成:111212122212n n n n nna a a a a a a a a =()()121212121n n nj j j j jnj j j ja a a τ-∑.定义 2.1.22向量组的极大无关组所含向量的个数称为这个向量组的的秩.所谓矩阵的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵列向量组的秩.定义2.1.32 n 级方阵称为可逆的,如果有n 级方阵B ,使得AB BA E ==(这里E 是n 级单位矩阵),那么B 就称为A 的逆矩阵,记为1A -. 定义2.1.43对分块矩阵施行下列三种初等变换:(1) 互换分块矩阵的某两行(列);(2) 用一个非奇异阵左(右)乘分块矩阵的某一行(列);(3) 用一个非零阵左(右)乘分块矩阵的某一行(列)加至另一行(列)上, 分别称上述三种初等行(列)变换为分块矩阵的初等行(列)变换.定义2.1.53 对m n +阶单位矩阵作22⨯分块,即m n I +=mn IO O I ⎛⎫ ⎪ ⎪⎝⎭,然后对其作相应的初等变换所得到的矩阵称为分块初等矩阵. 分块矩阵具有以下形式:(1) 分块初等对换阵nm I O OI ⎛⎫⎪ ⎪⎝⎭;(2) 分块初等倍乘阵0n P O I ⎛⎫ ⎪⎝⎭,0mI O Q ⎛⎫⎪⎝⎭;(3) 分块初等倍加阵1mn I R OI ⎛⎫⎪ ⎪⎝⎭,m n I O SI ⎛⎫⎪ ⎪⎝⎭; 其中P ,Q 分别是m 阶和n 阶可逆方阵,且1m nR R ⨯∈,n m S R ⨯∈为非零阵.2.2矩阵的运算性质矩阵的运算包括加法、乘法、数乘,这里主要讨论矩阵的运算性质:定义2.2.14 矩阵加法:设()=ij sn A a , ()=ij snB b 是两个同型矩阵,则矩阵()ij sn C c ==()ij ij sn a b +称为A 和B 的和,记为C A B =+.元素全为零的矩阵称为零矩阵,记为sn O ,可简单记为O ,对于矩阵A 、B ,有:(1) A O A += (2) ()0A A +-= (3) ()A B A B -=+- (4) ()()A B C A B C ++=++(5)A B B A +=+定义2.2.24 矩阵乘法:设()=ik sn A a ,()=kj nm B b 是两个不同型矩阵,那么矩阵()ij smC AB c ==,称为矩阵A 与B 的乘积,其中:11221nij i j i j in nj ik kj kc a b a b a b a b ==++=∑ 在乘积的定义中,我们要求第二个矩阵行数和第一个矩阵列数相等.特别地,矩阵的乘法和加法满足以下性质: (1) ()A B C AB AC +=+ (2) ()B C A BA CA +=+ (3) ()()AB D A BD =定义2.2.34矩阵数乘:111212122212n n s s sn ka ka ka ka ka ka kaka ka ⎛⎫⎪⎪⎪ ⎪ ⎪⎝⎭称为矩阵()ij sn A a =与数k 的数量乘积,记为kA ,有以下性质:(1) 1A A *=;(2) ()()k lA kl A =; (3) ()k A B kA kB +=+; (4) ()k l A kA lA +=+; (5) ()k A B kA kB +=+.2.3分块矩阵的初等变换性质我们对于分块矩阵,也有其运算性质:设A 、B 是m n ⨯矩阵,若对它们有相同的划分,也就有:加法:11111111t t s s st st A B A B A B A B A B ⎛⎫++ ⎪⎪+= ⎪ ⎪ ⎪++⎝⎭. 乘法:C AB =, 其中:11221nij i j i j in nj ik kj kC A B A B A B A B ==+++=∑.数乘:1111t s st kA kA kA kA kA ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭.总结了矩阵的运算性质,我们主要看看分块矩阵初等变换性质: 定义2.3.12 由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵. 初等矩阵都是方阵,包括以下三种变换:(1) 互换矩阵E 的i 行与j 行的位置; (2) 用数域P 中的非零数c 乘E 的i 行; (3) 把矩阵E 的j 行的k 倍加到i 行. 定义2.3.25将单位矩阵分块,并施行如下三种变换中的一种变换而得到的方阵称为分块初等矩阵:(1) 对调两块同阶的块所在的行或列; (2) 某一块乘以同阶的满秩方阵;(3) 某一块乘以一个矩阵后加到另一行上(假定这种运算可以进行).如:我们对分块矩阵A B C D ⎛⎫⎪⎝⎭进行相应变换,只要应用矩阵的计算性质,左乘对 应分块矩阵:m nO E E O ⎛⎫ ⎪ ⎪⎝⎭A B C D ⎛⎫ ⎪⎝⎭=C D A B ⎛⎫ ⎪⎝⎭n PO OE ⎛⎫ ⎪⎝⎭A B C D ⎛⎫ ⎪⎝⎭=PA PB C D ⎛⎫⎪⎝⎭m n E O P E ⎛⎫ ⎪ ⎪⎝⎭A B C D ⎛⎫ ⎪⎝⎭=A B C PA D PB ⎛⎫ ⎪++⎝⎭2.4矩阵的分块技巧对矩阵的分块不是唯一的,我们往往根据问题的不同进行不同的分块,分块的合适与否,都对问题的解决至关重要,最常见的有四种分块方法6:(1) 列向量分法,即()1,,n A αα=,其中j β为A 的列向量.(2) 行向量分法,即1m A ββ⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中j β为A 的行向量.(3) 分两块,即()12,A A A =,其中1A ,2A 分别为A 的各若干列作成.或⎛⎫= ⎪ ⎪⎝⎭12B A B ,其中1B ,2B 分别为A 的若干行作成.(4) 分四块,即1234C C A C C ⎛⎫= ⎪ ⎪⎝⎭.我们在进行分块时,希望分割的矩阵块尽可能是我们所熟悉的简单矩阵,于是,我们有必要熟悉一些常见的矩阵.2.5常见的矩阵块我们把高等代数中学习过的一些常见矩阵总结如下:(1)单位矩阵:对角线元素都为1,其余元素为0的n 阶方阵. (2)对角矩阵:对角线之外的元素都为0的n 阶方阵.(3)三角矩阵:对角线以上(或以下)元素全为0的n 阶方阵. (4)对称矩阵:满足矩阵A 的转置和A 相等. (5)若尔丹(Jordan )块:形如00010(,)000001J t λλλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭(6) 若尔丹形矩阵:由若干个若尔丹块组成的准对角矩阵, 其一般形状形如:12n A A A ⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭在复杂矩阵中,找到这些矩阵块,会使计算简化.3分块矩阵及其应用3.1行列式计算的应用定理3.1.12拉普拉斯(Laplace )定理:设在行列式D 中任意取定了k 个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式 D .事实上,行列式计算中的拉普拉斯定理就包括了矩阵分块的思想,它通过取k 级子式的方法,提取出矩阵内的矩阵块. 然而,在行列式计算中,行列式按行或列的展开更为常用. 这里,我们最常用到的是取列向量分块和行向量分块.例3.1.17:(爪形行列式)计算行列式:012111101001na a a a ,其中0(1,2,,)i a i n ≠=.解:设A DQ C B=,其中0()A a = 1na B a =,(1,1,,1)T C =,(1,1,,1)D =.因为0(1,2,,)i a i n ≠=,所以 B 是可逆矩阵.又易知: 1011ni i A DB C a a -=⎛⎫-=-⎪⎝⎭∑. 根据分块矩阵乘法:1100E AD A DCA E C B B CA D --⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭则:1112011nn i i A DA B CA D B A DB C a a a a a C B --=⎛⎫=-=-=- ⎪⎝⎭∑ 故:原行列式=12011nn i i a a a a a =⎛⎫- ⎪⎝⎭∑.例3.1.27:(对角行列式)计算行列式:2n adadH c bcb =.解:令a A a ⎛⎫ ⎪=⎪ ⎪⎝⎭,b B b ⎛⎫⎪= ⎪ ⎪⎝⎭,c C c ⎛⎫⎪= ⎪ ⎪⎝⎭,d D d ⎛⎫⎪= ⎪ ⎪⎝⎭为n 阶方阵. 由于0a ≠,故A 为可逆方阵.又易知:1B CA D --=111b ca d b ca db ca d ---⎛⎫-⎪-⎪ ⎪ ⎪-⎝⎭故112()()n n n n A DH A B CA D a b ca d ab cd C B--==-=-=-.例3.1.38:设A 、B 、C 、D 都是n 阶矩阵,证明当AC CA =时,A 可逆时,有A DAB CD C B=-证明:若A 可逆,110AD AE A D C B CB CA D OE --⎛⎫⎛⎫⎛⎫-= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭, 故:11A DA B CA D AB ACA D AB CD C B--=-=-=-. 注意到,这里计算分块矩阵行列式和计算一般数字矩阵行列式有所区别,不是简单的a dab cd c b=-,其矩阵块限制条件有所加强. 所以本例告诉我们,在矩阵分块以后,并非所有一般矩阵性质都可以应用到分块矩阵中.3.2线性方程组的应用对于线性方程组,我们有以下四种表述: (1)标准型:11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b ⎧+++=⎪+++=⎨⎪+++=⎩; (2)矩阵型:令ij m n A a ⨯⎡⎤=⎣⎦,'=12(,,,)n x x x x ,'=12(,,)m B b b b方程组可以表述为:Ax B =; (3)列向量型:令112111m a a a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,122222m a a a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,,12n n nmn a a a α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦则方程组又可以表述为:1122n n x x x B ααα+++=;(4)行向量型: ααα''''+++=1122n n x x x B .可见,矩阵分块为我们解方程组提供了新的思路.事实上,在求齐次线性方程组系数矩阵的秩时,在判断非齐次线性方程组是否有解时,行列向量组的合理应用,使得问题解决更加便捷、明了.例3.2.1:(齐次线性方程组)求解方程组:1234123412342202220430x x x x x x x x x x x x ⎧+++=⎪+--=⎨⎪---=⎩ 解:对系数矩阵施行行变换,并将结果用分块矩阵表示:21251023122112214212203640123114303640000E C A O O ⎛⎫-- ⎪⎪⎛⎫⎛⎫⎛⎫ ⎪⎪⎪=-----= ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎪ ⎪⎝⎭()2R A =,基础解系含422-=个. 而方程又满足:2112200E C O O αα⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 相应的可以取:25234231001C E ⎛⎫ ⎪⎪⎛⎫-⎪--= ⎪ ⎪⎝⎭ ⎪⎪ ⎪⎝⎭有通解:1122k k βββ=+,其中12210β⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,2534301β⎛⎫⎪ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭.例3.2.29:(非齐次线性方程组)求解方程组:1245123451234512345232133223452799616225x x x x x x x x x x x x x x x x x x x ⎧+-+=⎪--+-=⎪⎨-+-+=⎪⎪-+-+=⎩ 解:我们分别对于方程组的系数矩阵和增广矩阵求秩:()3r A =,而()4r A =, 故()()r A r A ≠. 从而方程组无解.事实上,我们可以利用分块矩阵叙述:经对分块矩阵45450b E ⎛⎫Λ-⎪ ⎪⎝⎭进行行列变换,都不能把最后一列变成0,所以该方程组无解.例3.2.3:证明:n 阶方阵A 的秩为n-1,则()=1rank A * 首先证明此例需要利用的一个引理:引理:()ij n n A a ⨯=,()ij n n B b ⨯=,()r A r =,0AB =,则()r B n r ≤- 证明:对矩阵B 进行列向量的分块,12,(,)n B B B B =,0AB =则有:0i AB =,i B 是0AX =的解. 而0AX =基础解系有n r -个解. 故:()r B n r ≤- 再证明本例:因为()1r A n =-,则0A =,A 至少有一个1n -级子式不为零,()1rank A *≥.而:0AA A E *==.利用引理得:()1rank A *≤,故()=1rank A *. 得证.3.3求矩阵逆的应用我们在求矩阵逆的时候包括很多方法:利用定义求逆、利用伴随矩阵求逆、利用初等变换求逆、混合采用初等行列变换求逆等等.这里我们统一用矩阵分块的思路来求矩阵的逆.例3.3.16:设A 、B 是n 阶方阵,若A B +与A B -可逆,试证明:A B B A ⎛⎫⎪⎝⎭可逆,并求其逆矩阵. 解:令AB D BA ⎛⎫=⎪⎝⎭,由假设知0A B +≠,0A B -≠.那么: 0A B A B B A BB D B A B A A A B++===+-0A B A B =+-≠.即D 可逆. 再令12134D D DD D -⎛⎫= ⎪ ⎪⎝⎭, 由1DD E -=,即:123400D D A B E BA D D E ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 可得:1312242400AD BD E BD AD AD BD BD AD E⎧+=⎪+=⎪⎨+=⎪⎪+=⎩将第一行和第二行相加、相减,得:113113()()D D A B D D A B --⎧+=+⎪⎨-=-⎪⎩ 解之得:1111()()2D A B A B --⎡⎤=++-⎣⎦,1121()()2D A B A B --⎡⎤=+--⎣⎦类似地:23D D =,41D D =. 所以:1111111111()()()()2()()()()A B A B A B A B A B BA AB A B A B A B ---------⎛⎫⎛⎫++-+--= ⎪⎪+--++-⎝⎭⎝⎭.例3.3.26:已知分块形矩阵0AB M C⎛⎫=⎪⎝⎭可逆,其中B 为p p ⨯块,C 为q q ⨯块,求证:B 与C 都可逆,并求1M -.解:由()01pqM B C ≠=-,则:0B ≠,0C ≠,即证B 、C 都可逆.这里用分块矩阵的广义初等变换来求逆:111000000pq A BE A BEBEAC C E E C EE ---⎛⎫⎛⎫⎛⎫-→→ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭11111111000000E B B AC E C E C EB B AC --------⎛⎫⎛⎫-→→⎪ ⎪-⎝⎭⎝⎭故:111110C MB B AC -----⎛⎫= ⎪-⎝⎭. 备注:本例和上例属于同一个类型的问题,但我们利用分块矩阵,可以有两种不同的方法来解决,待定系数法和广义初等变换都是求逆的有效方法.值得注意的是,在题目没有直接给出分块矩阵的情况时,我们要学会自己构造:例3.3.310:求矩阵101210325A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭的逆矩阵.解:构造矩阵:66101100101100210010012210325001022301100000100000010000010000001000001000A E D E O ⨯⎛⎫⎛⎫⎪⎪-- ⎪ ⎪ ⎪⎪⎛⎫---==→ ⎪⎪⎪⎝⎭ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭101101011000122100122100027210027211000001010001000001000000100000100⎛⎫⎛⎫ ⎪⎪---- ⎪ ⎪ ⎪⎪--→→ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 1001001001000102100102100017210027211100001010002012000011000001000100002⎛⎫ ⎪⎛⎫- ⎪ ⎪- ⎪- ⎪ ⎪ ⎪- ⎪→→ ⎪-⎪- ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭. 所以;1151101100222011210511172171001222A -⎛⎫⎛⎫---- ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭. 此方法在计算上并不简单,但是它把平常的单纯的一种变换变成了两种变换同时应用,把已知的可逆矩阵置于含单位矩阵的分块矩阵中,以此求逆矩阵,有时比较简单.3.4矩阵秩基本不等式矩阵理论中, 矩阵的秩是一个重要的概念,而矩阵经过运算后所得新矩阵的秩往往与原矩阵的秩有一定关系. 现把高等代数书中有关矩阵秩最基本的不等式总结如下:(1)矩阵和的秩不超过两矩阵秩的和.即:设A 、B 均为m n ⨯矩阵,则:()r ()()r A B A r B +≤+.(2)矩阵乘积的秩不超过各因子的秩.即:设A 是m n ⨯矩阵 ,B 是n s ⨯矩阵,则:{}()min (),()r AB r A r B ≤.(3)()()0A B r r A r B C ⎛⎫≥+ ⎪⎝⎭.(4)1ij m A r A A ⎛⎫⎪≥⎪ ⎪⎝⎭.再来介绍由分块矩阵证明导出的两个基本不等式 例3.4.111:(薛尔弗斯特不等式)设()ij s nA a ⨯=,()ij n mB b ⨯=,证明:()()()rank AB rank A rank B n ≥+-证明:由分块矩阵的乘积00000n nn ns m E E B E B E A E E A AB ⎛⎫⎛⎫-⎛⎫⎛⎫= ⎪⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭知:()()()0nn E B rank rank E rank AB n rank AB A ⎛⎫=+-=+⎪⎝⎭. 但,()()00n n E B B E rank rank rank A rank B AA ⎛⎫⎛⎫=≥+⎪ ⎪⎝⎭⎝⎭. 故:()()()n rank AB rank A rank B +≥+得证.备注:在矩阵秩不等式的证明过程中,我们往往会构造如下的分块矩阵:(1) 矩阵不等式中含两个不同矩阵:构造00A B ⎛⎫⎪⎝⎭;(2) 矩阵不等式中含有两个不同矩阵及阶数:构造0A E B ⎛⎫ ⎪⎝⎭或者0AE B ⎛⎫⎪⎝⎭.具体分块矩阵的元素则要看题目所给的条件.例3.4.26:(Frobenius 不等式)设A 、B 、C 是任意3个矩阵,乘积ABC 有意义,证明:()()()()r ABC r AB r BC r B ≥+-证明:设B 是n m ⨯矩阵,()r B r = 那么存在n 阶可逆阵P ,m 阶可逆阵Q ,使000r E B P Q ⎛⎫=⎪⎝⎭.把P 、Q 适当分块:(),P M S =,NQ T ⎛⎫=⎪⎝⎭, 由上式有: ()0,00r E N B M S MN T ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭. 故:()()()()r ABC r AMNC r AM r NC r =≥+- ()()()r AMN r MNC r B ≥+-()()()r AB r BC r B =+-.得证.3.5矩阵秩不等式证明的应用矩阵基本不等式的证明思路,在一般不等式中也常常用到, 以下例题是对矩阵秩不等式的推广及其应用:例3.5.111:设A 为m k ⨯矩阵,B 为k n ⨯矩阵,则证明:{}()+rank(B)-k rank(AB)min (),()rank A rank A rank B ≤≤证明:先证明右边的不等式,由:()0()()0knE B A A AB E =;⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭00km E B B AB A E , 可得:()rank (0)()()rank A A rank A AB rank AB ==≥; ⎛⎫⎛⎫==≥ ⎪ ⎪⎝⎭⎝⎭()()0B B rank B rank rank rank AB AB .再证左边的不等式.注意到下列事实:00000mkkk k n E A E B A AB E B E E E ⎛⎫⎛⎫--⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭则:000kk A AB rank rank E B E ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭于是:0()rank ()rank ()()()k k A rank A B rank AB rank E rank AB k E B ⎛⎫+≤=-+=+⎪⎝⎭从而: ()()()rank A rank B k rank AB +-≤.这里也是用到构造矩阵的方法.例3.5.26:设n 阶矩阵A 、B 可交换,证明:()()()()rank A B rank A rank B rank AB +≤+- 解:利用分块初等变换,有:A O AB A BB O B O B BB ⎛⎫⎛⎫⎛⎫+→→ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 因为AB BA =,所以:E OA B B A B B BA B BB O AB ⎛⎫⎛⎫⎛⎫++= ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭. 于是,有:()()A BB A B B rank A rank B rank rank BB OAB ⎛⎫⎛⎫+++=≥⎪ ⎪-⎝⎭⎝⎭()()rank A B rank AB ≥++.即:()()()()rank A B rank A rank B rank AB +≤+-. 得证.例3.5.3:设A 是n 阶方阵,且2()()r A r A =,证明:对任意自然数k ,有()()k r A r A =证:构造分块矩阵22A O O A ⎛⎫⎪⎝⎭,由Frobenius 不等式: 22332232()+r ()()()A O A A O A r A A r r r r A r A AA A O A O ⎛⎫⎛⎫⎛⎫--≤===+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 由:2()()r A r A =所以,322()()()r A r A A r A =*≤. 故:23r ()()A r A =.由此可推得:3445()(),()(),r A r A r A r A ==.故:对任意自然数k , 有:()()k r A r A =.3.6综合应用在掌握了分块矩阵的技巧之后,可以由其导出的一个重要的定理:特征多项式的降阶定理,以下主要讨论该定理及其结论的应用.例3.6.16:(特征多项式的降阶定理)设A 是m n ⨯矩阵,B 是n m ⨯矩阵. 证明:AB 的特征多项式()AB f λ与BA 的特征多项式()BA f λ有如下的关系:()()n m AB BA f f λλλλ=.证:先要把上式改写为:n m m n E AB E BA λλλλ-=-.用构造法,设0λ≠,令:1n mE BH AE λ=. 对11010n n n n m m E BE E B A E AE E AB λλλ⎛⎫⎛⎫ ⎪⎛⎫ ⎪⎪=⎪ ⎪ ⎪-⎪ ⎪⎝⎭- ⎪⎝⎭⎝⎭两边取行列式得: 11()m m m H E AB E AB λλλ=-=-. 再对11100nnnn mm E E B E BA B A E A E E λλλ⎛⎫⎛⎫⎛⎫- ⎪ ⎪= ⎪⎪⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭⎝⎭两边取行列式得:11()n n n H E BA E BA λλλ=-=-.故:11n m nmE BA E AB λλλλ-=-m n n m E BA E AB λλλλ-=-.上述等式是假设了0λ≠,但是两边均为λ的n m +次多项式,有无穷多个值使它们成立(0)λ≠,从而一定是恒等式,即证. 这个等式也称为薛尔弗斯特(Sylvester )公式. 以下例题是定理的应用.例 3.6.26:设A 为m n ⨯矩阵,B 为n m ⨯矩阵,证明:AB 与BA 有相同的非零特征值.证:由定理:m n n m E BA E AB λλλλ-=-. 设m 12s ()()()m s E AB λλλλλλλλ--=---,其中120m λλλ≠,即AB 有s 个非零特征值:12,,,s λλλ, 由上面两式,那么有:n-s 12()()()n s E BA λλλλλλλλ-=---即证BA 也只有s 个非零特征值:12,,,s λλλ.例3.6.36:设A 、B 分别是m n ⨯和n m ⨯矩阵,证明:trAB trBA =.解:由上例知,若1()()m s m s E AB a a λλλλ--=--其中120s a a a ≠.则AB 的全部特征值为111,,,0s s s m a a λλλλ+=====,且:1(-)()n s n s E BA a a λλλλ--=-.即BA 的全部特征值为:11221,,,0s n a a ττττ+=====.从而 1si itrAB a trBA ===∑.可见,在一些问题中,直接利用特征多项式的降阶定理会更加方便处理,这里则要求我们对分块矩阵的了解更加深刻.结论本文主要通过“分块矩阵、分块矩阵及其应用”两个部分,分别简单介绍了分块矩阵的性质概念、导出的定理结论和相关应用.主要是将分块矩阵的技巧和推广做了一个内容的总结.本文简单的将矩阵工具应用于计算行列式、解决线性方程组、求矩阵的逆、证明矩阵秩的相关定理等,对应不同问题也举了几个重要的应用以及它们的综合应用.将以前出现的矩阵思想整体化,并对相关知识也做了一个系统的复习.最后,本文还有一些不足之处,有待于进一步的改善和提高.参考文献[1]上海交通大学线性代数编写组. 线性代数[M]. 高等教育出版社, 1982.[2]北京大学. 高等代数{M}. 高等教育出版社, 1998.[3]高百俊. 分块矩阵的初等变换及其应用[J]. 伊犁师范学院学报, 2007(4):14-18.[4]张红玉, 魏慧敏. 矩阵的研究[M]. 山西人民出版社, 2010.[5]雷英果. 分块初等方阵及其应用[J].工科数学, 1998, 14(4):150-154.[6]钱吉林. 高等代数题解精粹(第二版)[M]. 中央民族大学出版社, 2010.[7]王莲花, 李念伟, 梁志新. 分块矩阵在行列式计算中的应用[J]. 河南教育学院学报(自然科学版), 2005, 14(3):12-15.[8]张贤科, 许甫华. 高等代数学[M]. 清华大学出版社, 1998:91-96.[9]杨子胥. 高等代数习题集[M]. 山东科学技术出版社, 1981.[10]鲁翠仙. 分块矩阵在求矩阵逆的应用[D]. 云南:云南大学数学系数学研究所, 2009:14-15.[11]刘丁酉. 高等代数习题精解[M].中国科学技术大学出版社, 1999.。

分块矩阵及其应用

分块矩阵及其应用
分块矩阵及其应用
指导老师:
专业: 姓名:
概述
本文先介绍了分块矩阵的概念、运算,几类特殊的分块矩阵, 接着讨论了分块矩阵的初等变换,介绍了分块初等矩阵及其性质, 最后举例说明了分块矩阵在高等代数中的很多计算和证明问题中 的应用。
3. 两种特殊的分块矩阵 (1) 分块对角矩阵 设A为n阶方阵,若A的分块矩阵在非主对角线上的子块皆为零 矩阵,在主对角线上存在非零子矩阵,则称A为分块对角矩阵。 (2) 分块上(下)三角形矩阵 设A为n阶方阵,若A的分块矩阵的主对角线左下(右上)方的 子矩阵均为零矩阵,则称A为上(下)三角形矩阵。 4. 分块矩阵的初等变换 以下三种变换称为分块矩阵A的初等行变换: (1)对调A的某两行; (2)用一个可逆阵K左乘或右乘A的某一行的所有子矩阵; (3)将A的某一行的所有子块矩阵左乘或右乘一个矩阵K再加到另 一行的对应子矩阵上去。 分块矩阵的初等行变换和初等列变换合称为分块矩阵的初等变换。
谢谢观看
7.在证明矩阵秩的问题中的应用 以下是需要证明的ห้องสมุดไป่ตู้题: (1)秩
A O O B
=秩A+秩B。
(2)设A,B都是m×n矩阵,则秩(A+B)≤秩A+秩B。 (3)设A,B都是n阶方阵,则秩(AB+A+B)≤秩A+秩B。
A B ≤秩A+秩B。 (4)设A,B都是m×n矩阵,则秩(A+B)≤秩
(5)设A,B,C都是n阶方阵,则秩AB+秩BC≤秩B+秩ABC。
(6)设A,B都是n阶方阵,则秩(AB-E)≤秩(A-E)+秩(A-E)。
论文的不足
分块矩阵是数学在多个领域中的研究工具,与其相关的 内容很多,由于本人知识水平有限,时间有限,所以很多内 容不能一一列举。

第3节 分块矩阵(全)

第3节 分块矩阵(全)

A12 A22
这是2阶 方阵吗?
a11 a12 A11 a21 a22
为A的子块
A21 a31 a32
A22 a33 a34
矩阵形式上成为以这些子块为元素的分块矩阵。
将一个矩阵分成分块矩阵的方法很多,分块时要注意矩阵的 特点。

1 0 A 0 0 0 0 0 1 2 1 0 2 3 E3 0 1 3 4 O 23 0 0 2 0 0 0 0 2
对于分块对角矩阵,可求得
A A1 A2 As
由此可知 A 0 的充分必要条件是 Ai 0 ( i=1,2,…, s)。从而可知分块对角矩阵A可逆的充分必要条件是 Ai(i=1, 2,…,s)均可逆。并且,当A可逆时,有 A11 1 A2 1 A 1 As
T A11 T T A12 A T A 1t
A12 A22 As 2
A1t A2 t Ast
T A21 T A22


T A2 t
AsT1 AsT2 T Ast
分块矩阵A的转置,不仅要把分块矩阵A的每一行变为同序 号的列,还要把A的每一个子块 Aij 取转置。
1 0 4 2
0 0 E 0 A1 1
0 1 B11 1 B21 0
O E
1 0 1 2 B 1 0 1 1
E B22

E AB A1 O B11 E B21 E B11 B22 A1 B11 B21
例2
设5阶方阵

高等代数第七节分块矩阵

高等代数第七节分块矩阵

0 1 b
,
a 0 0 0
B
1 0
a 0
0 b
0 0
0 0 1 b
求 A B, ABA.
解 将 A, B分块
a 1 0 0
A
0 0
0
a 0 0
0 b 1
0 1 b
A1 0
0 ,
A2
a
A1
0
其中
b
A2
1
1 , a 1 ; b
a
B
1 0
0
0 a 0 0
0 0 b 1
0
0 0
*
(
)
A A* 0
(A )
;
0 B B *
B B* 0
(B )
0 A A*
A B* 0
(C )
0 B A*
B A* 0
(D )
0 A B *
分析:根据伴随矩阵公式CC* C E;C* C C 1,由已知分别求C
与C 1即可
2.应用于矩阵的一些运算
解 :C * C C 1, C A 0
Q1B
B1 B2
,B1是u n矩阵,B2是k
u n矩阵,

R AB R PAQ Q1B
R
Iu O
O O
B1 B2
R
B1 O
R
B1
3.矩阵秩的不等式证明
另一方面,
RB R
Q1B
R
B1 B2
由秩的不等式性质:
R AB R B1 ≥R B R B2
A2
B2
b 1
1 b b 1
0 2b b 2
1 , 2b

研究矩阵分块的方法及应用

研究矩阵分块的方法及应用

研究矩阵分块的方法及应用矩阵分块(Matrix Partition)是一种将一个大矩阵分割成若干个块或子矩阵的方法。

这种方法在许多数学和工程应用中非常有用,因为它可以简化复杂的矩阵运算,并提供更高效的算法和快速的计算。

矩阵分块的方法具有广泛的应用,包括线性代数、微积分、信号处理、图像处理、统计学、优化等领域。

矩阵分块的方法可以根据不同的目的和要求采用不同的策略和分块方式。

一般来说,矩阵分块的方法分为两种类型:按行分块和按列分块。

按行分块是将矩阵按照横向划分为若干行向量子矩阵,而按列分块则是将矩阵按照纵向划分为若干列向量子矩阵。

除了按行和按列划分外,还可以将矩阵按照主对角线、次对角线、对称轴等方式进行分块。

矩阵分块的方法可以大大简化复杂的矩阵运算,使得问题的求解更加直观和高效。

一种常见的应用是矩阵乘法。

对于两个大型矩阵相乘的情况,采用普通的矩阵乘法算法的计算复杂度很高,但通过将大矩阵分块成若干小块矩阵,可以采用并行计算的方式,提高计算效率。

另一个常见的应用是矩阵求逆。

对于大型矩阵求逆的计算复杂度很高,并且可能出现数值不稳定的问题。

通过将大矩阵分块成若干小块矩阵,可以使用分块逆矩阵的方法来计算整体矩阵的逆矩阵,从而提高计算的稳定性和效率。

矩阵分块的方法还广泛应用于图像处理和信号处理领域。

在这些领域中,矩阵表示图像或信号的数据,通过将大矩阵分块为若干小块,可以对局部区域进行处理,从而实现对整体数据的处理和分析。

例如,对图像进行滤波操作时,可以将图像分为若干小块,分别进行滤波处理,然后将处理后的小块矩阵合并成一个大矩阵,从而得到滤波后的图像。

此外,矩阵分块的方法还可以应用于线性代数的求解和优化问题。

例如,在解线性方程组时,可以将系数矩阵和右侧向量分块,从而将问题分解为多个小规模的子问题,通过求解这些子问题,最终获得整个线性方程组的解。

类似地,在优化问题中,可以通过将大矩阵分块为若干小块,将复杂的优化问题分解为多个简单的子问题,从而更高效地求解问题。

高二数学矩阵的分块(与“矩阵”相关文档)共20张PPT

高二数学矩阵的分块(与“矩阵”相关文档)共20张PPT

(4) 分块矩阵的转置

A
A 11
A 1s
,
A rs
A rs
注: 大块小块一起转。

AT A A1211
A12 A22
(5) 分块对角矩阵

AT
AT 11
AT
1s
.
A
T
T r 1
A rs
A A1233T
AT 11
AT 12
AT 13
A
T 21
AT 22
AT 23
设 A为n阶矩阵,若 A的分块矩阵只有对角线上

A1B11B21 1 11 2 1 10 2 1 1 0 1
3 41 0 2 4, 0 2 1 1 1 1
第9页,共20页。
于是
A B B 11
E
A 1B 11 B 21 A 1B 22
1 0 1 0
1 2
4 4
0 3
1 3
.
1 1 3 1
第10页,共20页。

a
A
0 1
0
1 a 0 1
0 0 b 1
0 0 1 b
B 1 B 2 ,
B 3
第2页,共20页。

a
A
0
0 0
10 a0 11 11
0
0 bb
B 1 B 2 B 3
a 1 0 0
A
0 1
0
a 0 1
0 b 1
0 1 b
C1 C3
C2 , C4
a 1 0 0
1r
11
1r
有非零子块,其余子块都为零矩阵,且非零子块
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分块矩阵及其应用徐健,数学计算机科学学院摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量,而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理.关键词:分块矩阵;行列式;方程组;矩阵的秩On Block Matrixes and its ApplicationsXu Jian, School of Mathematics and Computer ScienceAbstract In the higher algebra, block matrix is a generalization of matrix content.In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc.Keywords Block matrix; Determinant; System of equations; Rank of a matrix11 ⎪1 引 言我们在高等代数中接触到矩阵后,学习了矩阵的相关性质,但是对于一些复杂高阶矩阵,我们希望能将问题简化. 考虑将矩阵分割为若干块,并将矩阵的部分性质平移至分块矩阵中,这样的处理往往会使问题简化.定义 1.1 [1] 分块矩阵是把一个大矩阵分割成若干“矩阵的矩阵”,如把 m ⨯ n 矩阵分割为如下形式的矩阵:⎛A 11A ⎫ 1n ⎪A m ⨯n = ⎪A m 1 A m n特别地,对于单位矩阵分块:⎝ ⎭ ⎛E 0 0 ⎫ ⎪ E n ⨯n = 0 0 0 ⎪ 0 E ⎝n n ⎭ 显然,这里我们认识的矩阵元素不再局限于数字,而是一个整体,这里的A 所代表的是大矩阵囊括的小矩阵,而小矩阵一般是我们熟知的常见矩阵.ij依照以上设想,有关矩阵性质的一些问题,我们可以考虑用分块矩阵的思路来解决.2.1 矩阵的相关概念2 分块矩阵在矩阵的学习中,我们学过一些最基本的概念,比如矩阵的行列式、矩阵 的秩、矩阵的逆、初等变换、初等矩阵等等.事实上,我们发现:分块后的矩阵同样用到这些概念.a 11 定义 2.1.1[2]n 级行列式a 21a 12 a 22 a 1n a 2n等于所有取自不同行不同列的a n 1 a n 2a nn 个元素的乘积a 1j a 2ja n j的代数和,这一定义又可写成:12na 11 a 21 a 12a 22a 1na 2n =(-1) (j 1j 2 j n )a aa .a n 1 a n 2a n∑j 1j 2 j n1j 1 2j 2n j n[2]定义 2.1.2向量组的极大无关组所含向量的个数称为这个向量组的的秩.所O I ⎪ ⎪ ⎪1谓矩阵的行秩就是指矩阵的行向量组的秩;矩阵的列秩就是矩阵列向量组的秩. 定义 2.1.3 [2] n 级方阵称为可逆的,如果有n 级方阵 B ,使得A B = A -1 .BA = E (这里 E 是n 级单位矩阵),那么B 就称为 A 的逆矩阵,记为定义 2.1.4 [3] 对分块矩阵施行下列三种初等变换: (1) 互换分块矩阵的某两行(列);(2) 用一个非奇异阵左(右)乘分块矩阵的某一行(列);(3) 用一个非零阵左(右)乘分块矩阵的某一行(列)加至另一行(列)上, 分别称上述三种初等行(列)变换为分块矩阵的初等行(列)变换. 定义 2.1.5 [3] m + n 2 ⨯ 2 ⎛I m O ⎫对 阶单位矩阵作 分块,即I m +n = O I ⎪ ,然后⎝ n ⎭对其作相应的初等变换所得到的矩阵称为分块初等矩阵. 分块矩阵具有以下形式:(1) 分块初等对换阵⎛I n O ;⎫ ⎝ m ⎭⎛P O ⎫ ⎛I m O ⎫(2) 分块初等倍乘阵 0 I ⎪ , ⎪ ;⎝ n ⎭ (3) 分块初等倍加阵⎛I m R 1 ⎫ O I ⎝ 0 Q ⎭ ,⎛I m O ⎫ ; S I ⎝ n ⎭ ⎝ n ⎭其中 P , Q 分别是m 阶和n 阶可逆方阵,且R ∈ R m ⨯n ,S ∈ R n ⨯m为非零阵.2.2 矩阵的运算性质矩阵的运算包括加法、乘法、数乘,这里主要讨论矩阵的运算性质: 定义 2.2.1 [4] 矩阵加法:设A = (a ) , B = (b ) 是两个同型矩阵,ij snij sn则矩阵C = (c i j )= (a i j+ b i j )称为 A 和 B 的和,记为C = A + B .元素全为零的矩阵称为零矩阵,记为O s n ,可简单记为O,对于矩阵 A 、 B ,有:(1) A + O = A(2) A + ( -A ) = 0(3) A - B = A + ( -B )(4) ( A + B ) + C = A + ( B + C )snsnn11 (5)A + B = 定义 2.2.2 [4] B + A矩阵乘法:设A = (a ) ,B = (b ) 是两个不同型矩阵,i k s nk j n m那么矩阵C = A B =(c i j ),称为矩阵 A 与 B 的乘积,其中:smc i j = a i 1b 1j + a i 2b 2j+ a i n b n j= ∑a i k b k jk =1在乘积的定义中,我们要求第二个矩阵行数和第一个矩阵列数相等.特别地,矩阵的乘法和加法满足以下性质:(1) A ( B + C ) = A B + A C(2) ( B + C )A = B A + C A(3) (A B )D =A (B D )⎛k a 11 k a 1k a 1 ⎫定义 2.2.3 [4] 矩阵数乘: k a 21k ak a 2n ⎪ ⎪A = (a ) 与 数 22 ⎪称为矩阵 ⎪⎪ ij sn k a k a k a ⎝ s 1 s 2 s n ⎭k 的数量乘积,记为kA ,有以下性质:(1) 1 * A = A ;(2) k(l A ) = (k l )A ;(3) k ( A + B )= kA + kB ;(4) (k + l )A = kA +lA ; (5) k (A + B ) = kA +kB .2.3 分块矩阵的初等变换性质我们对于分块矩阵,也有其运算性质:设 A 、 B 是m ⨯ n 矩阵,若对它们有相同的划分,也就有:⎛A 11 + B A 1t + B 1t ⎫ ⎪ 加法:A + B = ⎪ . ⎪ A + B A + B ⎪ ⎝ s 1 s 1 st st ⎭乘法:C = A B , 其中:∑ ⎪ 1 C i j = A i 1B 1j + A i 2B 2j+ + A i n B n j⎛k A 11k A 1 ⎫⎪ n= A i k B k j .k =1数乘:k A =⎪ .⎪ k Ak A⎝s 1 s t ⎭总结了矩阵的运算性质,我们主要看看分块矩阵初等变换性质:定义 2.3.1 [2] 由单位矩阵 E 经过一次初等变换得到的矩阵称为初等矩阵. 初等矩阵都是方阵,包括以下三种变换:(1) 互换矩阵 E 的i 行与 j 行的位置; (2) 用数域 P 中的非零数c 乘 E 的i 行; (3) 把矩阵 E 的 j 行的k 倍加到i 行.定义 2.3.2 [5] 将单位矩阵分块,并施行如下三种变换中的一种变换而得到的方阵称为分块初等矩阵:(1) 对调两块同阶的块所在的行或列; (2) 某一块乘以同阶的满秩方阵;(3) 某一块乘以一个矩阵后加到另一行上(假定这种运算可以进行).如:我们对分块矩阵⎛ A B ⎫进行相应变换,只要应用矩阵的计算性质,左乘对⎝C D ⎭ 应分块矩阵: ⎛ O E m ⎫ ⎛ A B ⎫ ⎪⎪⎛C D ⎫ ⎪ ⎝E n O ⎭ ⎝C D ⎭⎝ A B ⎭ ⎛P O ⎫ ⎛ A B ⎫ ⎛P A = P B ⎫ O E ⎪C D ⎪ ⎪⎝ n ⎭ ⎝⎭ ⎝ C D ⎭ ⎛E m O ⎫ ⎛ A B ⎫ ⎛ = A B⎫P E ⎪C D ⎪ ⎪C + P AD + P B⎝ n ⎭ ⎝⎭ ⎝ ⎭2.4 矩阵的分块技巧对矩阵的分块不是唯一的,我们往往根据问题的不同进行不同的分块,分块的合适与否,都对问题的解决至关重要,最常见的有四种分块方法[6] :(1) 列向量分法,即A =(1,⎛ ⎫ ⎪, n ),其中j 为 A 的列向量.(2) 行向量分法,即A = ⎪ ,其中j 为 A 的行向量.⎪ ⎝ m ⎭=1⎪ (3)分两块,即A = (A 1, A 2 ),其中A 1 ,A 2 分别为A 的各若干列作成.或 A = ⎛B ⎫ ,其中B ,B 分别为 A 的若干行作成. B ⎪1 2 ⎝ 2 ⎭⎛C 1 C 2 ⎫(4) 分四块,即A =C C ⎪ .⎝ 3 4 ⎭我们在进行分块时,希望分割的矩阵块尽可能是我们所熟悉的简单矩阵,于是,我们有必要熟悉一些常见的矩阵.2.5 常见的矩阵块我们把高等代数中学习过的一些常见矩阵总结如下: (1) 单位矩阵:对角线元素都为1,其余元素为0 的n 阶方阵. (2) 对角矩阵:对角线之外的元素都为0 的n 阶方阵. (3) 三角矩阵:对角线以上(或以下)元素全为0 的n 阶方阵. (4) 对称矩阵:满足矩阵 A 的转置和 A 相等. (5) 若尔丹(Jordan )块:形如⎛ 0 1 0 0 ⎫ 0 ⎪J ( ,t ) ⎪= ⎪0 0 ⎪ 0 0 0 1 ⎝ ⎭(6) 若尔丹形矩阵:由若干个若尔丹块组成的准对角矩阵, 其一般形状形如:⎛A 1 ⎫⎪ A 2⎪ ⎪ ⎪A ⎪ ⎝n ⎭在复杂矩阵中,找到这些矩阵块,会使计算简化.3.1 行列式计算的应用3 分块矩阵及其应用定理 3.1.1 [2] 拉普拉斯(Laplace )定理:设在行列式 D 中任意取定了k 个 行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式 D .事实上,行列式计算中的拉普拉斯定理就包括了矩阵分块的思想,它通过取k 级子式的方法,提取出矩阵内的矩阵块. 然而,在行列式计算中,行列式a ⎪ a 按行或列的展开更为常用. 这里,我们最常用到的是取列向量分块和行向量分块.例 3.1.1 [7] :(爪形行列式)计算行列式:a 01 1 1 1 a 10 0 1 0 a 2 0 ,其中a i ≠ 0(i = 1, 2, , n ) .1 0 0 a n解:设Q =A D ,其中A = (a )C B a 1 B =,C = ( 1, 1, , 1)T ,D = ( 1, 1, , 1) .a n因为a i ≠ 0(i = 1, 2, , n ) ,所以 B 是可逆矩阵.-1⎛n 1 ⎫又易知: A - D B C = a 0 - ∑ ⎪ . ⎝ i =1 i ⎭根据分块矩阵乘法: ⎛ E0 ⎫ ⎛ A D ⎫ --1 ⎪ ⎪= ⎛A D ⎫-1 ⎝ C A E ⎭ ⎝C B ⎭ ⎝ 0 B - C A D ⎭A D -1 -1 ⎛ n 1 ⎫则:= AB - C A D =B A - D BC = a a a a-∑ a ⎪C B⎛n 1 ⎫ 12n 0⎝i =1 i ⎭故:原行列式=a 1a 2 a n a 0 - ∑ ⎪ . ⎝ i =1 i ⎭例 3.1.2 [7] :(对角行列式)计算行列式:adH 2n= a d.c bcb解:令⎪ a x A =⎛a ⎫⎪ ,B = ⎛b ⎫⎪ ,C = ⎛ c ⎫ ⎛ ,D = d ⎫⎪ ⎪ ⎪ ⎪ ⎪ a ⎪ b ⎪ c ⎪ d ⎪ ⎝ ⎭ 为n 阶方阵. 由于a ≠ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 0,故 A 为可逆方阵.⎛ b - c a -1d⎫⎪ 又易知:B - C A -1D =⎝ b - c a -1d ⎪ b - -1 ⎪ ca d ⎭故 H 2n= A D = C BAB - C A -1D = a n (b - c a -1d )n= (a b - c d )n .例 3.1.3 [8] :设 A 、 B 、C 、 D 都是n 阶矩阵,证明当 AC = CA 时, A 可逆时,有A D= A B - C DC B⎛ A D ⎫ ⎛E -A 1D-⎛ A 0 ⎪ ⎫,证明:若 A 可逆,⎪ ⎪ =-1 ⎝C B ⎭ ⎝OE ⎭ ⎝C B - C A D ⎭A D故:=C BAB - C A -1D = A B - A C A-1D = A B - C D .注意到,这里计算分块矩阵行列式和计算一般数字矩阵行列式有所区别,不是简单的a d c b= a b - c d ,其矩阵块限制条件有所加强. 所以本例告诉我们,在矩阵分块以后,并非所有一般矩阵性质都可以应用到分块矩阵中.3.2 线性方程组的应用对于线性方程组,我们有以下四种表述: (1) 标准型:⎧a 11x 1 + a 12x 2+ + ax = b ⎪ 1nn 1⎨ax + ax + + a x = b ; ⎪a 21 x 1+ 22 2 + + 2n n a x = b ⎩ m1 1 m2 2 m n n m (2) 矩阵型:令A = ⎣a i j ⎦m ⨯n,x = (x 1, x 2, , x n )' ,B = (b 1, b 2, b m )' 方程组可以表述为: Ax = B ;(3) 列向量型:令2⎢a ⎥ ⎝O O⎪ ⎪ ⎪ ⎡a 11 ⎤ ⎢21 ⎥⎡a 12 ⎤⎥ 22 ⎡a 1n ⎤ ⎢ ⎥ = , 1 ⎢ ⎥ 2 = , , ⎢ ⎥= ⎢a 2n ⎥ n ⎢ ⎥ ⎢ ⎥ ⎣a m 1 ⎦ ⎢ ⎥ ⎣a m 2 ⎦ ⎢ ⎥ ⎣a m n ⎦则方程组又可以表述为:x 11 + x22+ + x nn = B ;(4)行向量型: x ' + x ' + + x' = B ' .1 12 2n n可见,矩阵分块为我们解方程组提供了新的思路.事实上,在求齐次线性方程组系数矩阵的秩时,在判断非齐次线性方程组是否有解时,行列向量组的合理应用,使得问题解决更加便捷、明了.例 3.2.1:(齐次线性方程组)求解方程组:⎧ x 1 + 2x 2 2x ⎪ + x + 2x 3 - 2x + x 4 = 0 - 2x = 0 ⎨ 1 x -2x - 4x 3 - 3x 4=0 ⎩ 1 2 3 4 解:对系数矩阵施行行变换,并将结果用分块矩阵表示:⎛1 0 -25 ⎫ - 3⎪ ⎛ 1 2 2 1 ⎪⎫ ⎛ 1 2 2 1 ⎪⎫4 ⎪ ⎛E C ⎫ A = 2 1 -2 -2 0 -3 -6 -4 0 1 2 ⎪ = 2 ⎪ ⎪1 -1 -4 -3⎪ 0 -3 -6 -4⎪ 3 ⎪ 12 ⎭ ⎝ ⎭ ⎝ ⎭ 0 0 0 0 ⎪⎪ ⎝ ⎭R ( A ) = 2,基础解系含4 - 2 = 2 个.而方程又满足:相应的可以取:⎛E 2 C ⎫ ⎛1 ⎫ = ⎛ 0⎫⎪ ,⎝O 1 O 2 ⎭ ⎝2 ⎭⎝ 0⎭⎛ 5 ⎫ 2 3 ⎪ ⎛ -C ⎫⎪⎝ E 2 ⎭⎪ = -2 4 ⎪3 ⎪1 0 ⎪ ⎝ 0 1 ⎭-⎪ 0 3 ⎪⎭⎛ 2 ⎫ ⎛ 5 ⎫3 ⎪有通解: = k + k,其中= -2⎪1, =- ⎪ 4 ⎪ . 1 12 21 ⎪2 ⎪ ⎪ ⎝ 0 ⎭⎪ 1 ⎪ ⎝ ⎭例 3.2.2 [9] :(非齐次线性方程组)求解方程组:⎧⎪ x 1 + 2x 2- 3x 4 + 2x 5 = 1 x - x - 3x + x - 3x = 2 ⎪ ⎨ 1 2 3 4 52x - 3x + 4x - 5x + 2x = 7 ⎪ 9x ⎩ 1= 25 解:我们分别对于方程组的系数矩阵和增广矩阵求秩:r ( A ) = 3,而r ( A ) = 4 , 故r ( A ) ≠ r ( A) . 从而方程组无解. ⎛ Λ45 -b ⎫事实上,我们可以利用分块矩阵叙述:经对分块矩阵 ⎝ E变换,都不能把最后一列变成0 ,所以该方程组无解.例 3.2.3:证明: n 阶方阵 A 的秩为n- 1,则r a n k ( A* )=1首先证明此例需要利用的一个引理: 4进行行列0 引理:A = (a i j )n ⨯n ,B = (b i j )n ⨯n ,r( A ) = r ,A B =0 ,则r ( B ) ≤ n - r证明:对矩阵 B 进行列向量的分块,B = (B 1, B 2, B n ) ,A B = 0 则有:A B i= 0 ,B i 是AX = 0 的解. 而A X =0 基础解系有n - r 个解.故:r ( B ) ≤ n - r 再证明本例: 因为r ( A )= n - 1,则 A = 0 ,A 至少有一个n -1级子式不为零,r a n k ( A* ) ≥ 1.而:A * =AE = 0 .利用引理得:r a n k ( A * ) ≤ 1,故r a n k ( A )=*.51 - 9 x +2 6x - 163 x4 + 2x 52 3 4 5⎝⎪ 1 2= ⎪ ⎪ 得证.3.3 求矩阵逆的应用我们在求矩阵逆的时候包括很多方法:利用定义求逆、利用伴随矩阵求逆、 利用初等变换求逆、混合采用初等行列变换求逆等等.这里我们统一用矩阵分块的思路来求矩阵的逆.例 3.3.1 [6] :设 A 、 B 是n 阶方阵,若 A + B 与 A - B 可逆,试证明: ⎛ A B ⎫可逆,并求其逆矩阵. B A ⎭ ⎪ 解:令D = ⎛ A B ⎫,由假设知 A + B ≠ 0 , A - B ≠ 0B A ⎪ .那么:D =A B⎝ ⎭A +B B =A + BB= A + B A - B ≠ 0 .B AB + A AA - B即 D 可逆. 再令D -1 ⎛D 1= D 2⎫ , 由D -1 = E ,即:可得:D D ⎝ 3 4 ⎭⎛ A B ⎫ ⎛D D ⎫ ⎛E 0 ⎫ ⎪ ⎪⎪ ⎝B A ⎭ ⎝D 3D 4 ⎭ ⎝ 0E ⎭⎪⎧A D 1 + B D 3 = E B D + A D = 0⎪12⎨A D +B D = 0 B D 2 + A D 4 = E ⎩ 2 4将第一行和第二行相加、相减,得:⎪D + D = ( A + B )-1 ⎨1 3⎩D 1 - D 3= ( A - B )-1 解之得:D = 1 ⎡( A + B )-1 + ( A - B )-1 ,D = 1⎡( A + B )-1 - ( A - B )-11 2 ⎣⎦ 2 2 ⎣⎦类似地:D 2所以: = D 3 ,D 4= D 1 .⎛ A B ⎫-11 ⎛( A + B )-1 + ( A - B )-1 ( A + B )-1 - ( A - B )-1 ⎫⎪ = 2 -1 -1 -1-1 ⎪ . ⎝B A ⎭ ⎝( A + B ) - ( A - B )( A + B ) + ( A - B ) ⎭ =⎝⎭ ⎝ - ⎪⎪ ⎪0 例 3.3.2 [6] :已知分块形矩阵M = ⎛ A B ⎫可逆,其中 B 为p ⨯ p 块, C 为C 0 ⎪ ⎝ ⎭q ⨯ q 块,求证: B 与C 都可逆,并求M-1 . 解:由0 ≠M = (-1)p qBC ,则: B ≠0 , C ≠ 0 ,即证 B 、C 都可逆.这里用分块矩阵的广义初等变换来求逆: ⎛ A B E p0 ⎫ → ⎛ A B E 0 ⎫ → ⎛ 0B E -AC -1 ⎫⎪ ⎪ -1 ⎪ -1⎝C 0 0 Eq ⎭ ⎝E 0 0 C ⎭ ⎝E 0 0 E ⎭→ ⎛ 0 E B -1-B -1A C -1 ⎫ → ⎛E 0 0 C-1 ⎫E 0 0 C-1⎪ 0 E B -1-B -1A C -1 ⎪ ⎭-1⎛C -1 ⎫故 :M = B -1-B -1A C-1 ⎪ . ⎝⎭备注:本例和上例属于同一个类型的问题,但我们利用分块矩阵,可以有两种不同的方法来解决,待定系数法和广义初等变换都是求逆的有效方法.值得注意的是,在题目没有直接给出分块矩阵的情况时,我们要学会自己构造:⎛ 1 0 1 ⎫ 例 3.3.3 [10] :求矩阵A = 2 1 0 ⎪的逆矩阵.⎝ ⎭ 解:构造矩阵:⎛ 10 1 1 00⎫⎪⎛ 1 0 1 1 0 0⎫⎪2 0 0 1 -2 -2 1 0 D = ⎛ A E ⎫= -3 1 0 0 1 2 -5 0 0 1⎪ → 0 2 -2 3 0 1⎪ ⎪⎪ ⎪ ⎝E O ⎭6⨯6 1 0 0 0 00 1 0 0 0 0⎪ 1 0 0 0 0 0⎪ 0⎪ 0 1 0 0 0 0⎪0 0 1 0 0 0 0 1 0 0 0 ⎝ ⎭ ⎝ ⎭⎛ 1 0⎫⎪ 00 1⎪ →1 0⎪ ⎛ 1 0 1 1 0 0⎫ 0 1 -2 -2 1 0 0 1⎪ → 1 0⎪⎪ ⎪ 0 0⎪ 0 0⎪ 00⎪ 0 0⎪ ⎝⎭ ⎝ ⎭ 0 1 1 0 1 -2 -2 1 0 2 7 -2 0 0 0 0 1 0 0 0 0 1 0 00 2 7 -2 0 -1 0 0 1 0 0 0 0 1 0 0- - ⎪ ⎝ ⎭ ⎝ ⎭1 ⎛ 1 0 0 1 0 0⎫⎪0 1 0 2 1 0 ⎛ 10 0 1 0 0⎪⎫ 0 1 0 2 1 0 0 0 17 -2 1⎪0 0 2 7 -2 1⎪1 ⎪→ ⎪ → 10 - 0 0 0⎪ .1 0 -1 0 0 0⎪2⎪ 0 1 2 0 0 0⎪ 00 10 01 0 0 0⎪0 0 1 0 0 0⎪⎝所以;⎭⎪⎝2⎭⎛1 0 1 ⎫ ⎛ 5 1 ⎫- 2 ⎪⎛ 1 0 0⎫ - 2 -1 - 2 ⎪ A -1 = 0 1 1 ⎪ -2 1 0⎪ = 5 -1 1 ⎪ . ⎪ ⎪ ⎪ 1 ⎪ 7 -2 17 1 ⎪ 0 0 2 ⎪ ⎝ ⎭ 2 -1 2 ⎪ 此方法在计算上并不简单,但是它把平常的单纯的一种变换变成了两种变换同时应用,把已知的可逆矩阵置于含单位矩阵的分块矩阵中,以此求逆矩阵, 有时比较简单.3.4 矩阵秩基本不等式矩阵理论中, 矩阵的秩是一个重要的概念,而矩阵经过运算后所得新矩阵 的秩往往与原矩阵的秩有一定关系. 现把高等代数书中有关矩阵秩最基本的不等式总结如下:(1)矩阵和的秩不超过两矩阵秩的和.即:设 A 、 B 均为m ⨯ n 矩阵,则:r ( A + B ) ≤ r(A ) + r ( B ) .(2)矩阵乘积的秩不超过各因子的秩.即:设 A 是m ⨯ n 矩阵 , B 是n ⨯ s 矩(3)r ⎛A B ⎫阵,则:r ( A B ) ≤≥ r ( A ) + r ( B ) . m i n {r ( A ) , r ( B )}.(4)r ⎝ 0 C ⎭ ⎪ ⎛A ⎫ ⎪⎪ ≥ A i j .A ⎪ ⎝ m ⎭再来介绍由分块矩阵证明导出的两个基本不等式例 3.4.1[11] :(薛尔弗斯特不等式)设A = (a ) ,B = (b ) ,证明:ij s ⨯nij n ⨯mr a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) - n⎪ 证明:由分块矩阵的乘积⎛ E n 0⎪ ⎫ ⎛E B ⎫ ⎪⎛E n -B ⎫⎛E n 0 ⎫ -A E A n0 0 E ⎪ = ⎪0 - ⎝ s ⎭ ⎝ ⎭ ⎝ 知:m ⎭⎝ A B ⎭ r a n k⎛E n B⎫ = r a n k (E ) + r a n k ( -A B ) = n + r a n k ( A B )A 0 ⎪n.⎝ ⎭但,r a n k⎛E nB ⎫ A 0⎪= r a n k⎛B E n ⎫ ≥ r a n k ( A ) + r a n k ( B ) ⎪故:得证.⎝⎭ ⎝ 0 A ⎭.n + r a n k ( A B )≥ r a n k ( A ) + r a n k ( B )备注:在矩阵秩不等式的证明过程中,我们往往会构造如下的分块矩阵: (1) 矩阵不等式中含两个不同矩阵:构造 ⎛A 0 ⎫⎪;⎝ 0 B ⎭(2) 矩阵不等式中含有两个不同矩阵及阶数:构造⎛ A E ⎫ ⎪ 或者 ⎛ A 0 ⎫ ⎪.⎝ 0 B ⎭ ⎝E B ⎭具体分块矩阵的元素则要看题目所给的条件.例 3.4.2 [6] :(Frobenius 不等式)设 A 、 B 、C 是任意3 个矩阵,乘积ABC 有意义,证明:r ( A B C ) ≥ r ( A B ) + r ( B C ) - r ( B )证明:设 B 是n ⨯ m 矩阵,r ( B ) = r那么存在n 阶可逆阵 P , m 阶可逆阵Q ,使B = ⎛Er0⎫ P ⎪ Q .⎝ 0 0⎭把 P 、Q 适当分块:P = (M , S ),Q =⎛N ⎫, 由上式有: T ⎝ ⎭故:r ( A B C )= r ( A M N C ) B = (M , S )⎛E r0⎫ ⎛N ⎫ = M N .⎪ ⎪ ⎝ 0 0⎭ ⎝T ⎭≥ r ( A M ) + r ( N C ) - r0 ≥ r ( A M N ) + r ( M N C ) - r ( B )得证.= r ( A B ) + r ( B C ) - r ( B ) .3.5 矩阵秩不等式证明的应用矩阵基本不等式的证明思路,在一般不等式中也常常用到, 以下例题是对矩阵秩不等式的推广及其应用:例 3.5.1[11] :设 A 为m ⨯ k 矩阵, B 为k ⨯ n 矩阵,则证明:r a n k ( A )+r ank( B ) - k≤ r ank( AB) ≤ m i n {r a n k ( A ) , r a n k ( B )}证明:先证明右边的不等式,由:(A 0)(E k0 B ) = ( A A B ) ;E n可得:⎛E k A E 0⎪ ⎫ ⎛B ⎪⎫ = ⎛ B A B ⎫⎪ ,⎝m ⎭ ⎝ ⎭⎝ ⎭r a n k ( A ) =r ank( A 0) = r a n k ( A A B ) ≥ r a n k ( A B ) ;r a n k ( B ) = r a n k ⎛ B ⎫ = r a n k ⎛ B ⎫≥ r a n k ( A B ) .⎪ ⎪⎝ 0 ⎭ ⎝AB ⎭ 再证左边的不等式.注意到下列事实:⎛E m -A ⎫ ⎛ A 0 ⎫ ⎛E ⎪k -B ⎫ = ⎛ 0 -A B ⎫⎪ 0 E ⎪E B 0E⎪ E 0 ⎝k ⎭ ⎝ k 则:⎭ ⎝ n ⎭⎝ k ⎭0 ⎫⎛ 0r a n k ⎛ A ⎪ = r a n k-A B ⎫ ⎪于是:⎝E kB ⎭ ⎝E k0 ⎭⎛ A 0 ⎫r a n k ( A ) + r ank ( B ) ≤r ank ⎪ = r a n k ( -A B ) + r a n k (E k )= r a n k ( A B ) + k⎝E kB ⎭ 从而: r a n k ( A ) + r a n k ( B ) - k ≤ r a n k ( A B ) .这里也是用到构造矩阵的方法.例 3.5.2 [6] :设n 阶矩阵 A 、 B 可交换,证明:r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B )→ → , ⎝ ⎭ 解:利用分块初等变换,有:⎛A O ⎫ ⎛A B ⎫ ⎛A + B B ⎫⎪ ⎪⎪ ⎝O B ⎭ ⎝O B ⎭ ⎝ B B ⎭ 因为 AB = BA ,所以:⎛ E O ⎫ ⎛A + B B ⎫ = ⎛A + B B ⎫ .B -A - ⎪ B ⎪ O- ⎪B B A B ⎝ 于是,有:⎭ ⎝ ⎭ ⎝ ⎭r a n k ( A ) + r a n k ( B )= r a n k⎛A + B B ⎫≥ r a n k ⎛A + B B ⎫B ⎪⎝ B ⎭ ⎝ ⎪O-A B ⎭即:r a n k ( A + B )得证.≥ r a n k ( A + B ) + r a n k ( A B ) .≤ r a n k ( A ) + r a n k ( B ) - r a n k ( A B ) .例 3.5.3:设 A 是n 阶方阵,且r ( A ) = r ( A 2 ,证明:对任意自然数k ,有r ( A k ) = r ( A )⎛A 2O ⎫证:构造分块矩阵 O A 2 ⎪,由 Frobenius 不等式: 2 2 2 ⎛A O ⎫ ⎛A 2 -A 3 ⎫ ⎛O -A 3 ⎫ 3 r ( A )+r( A ) ≤ r ⎪ = r A A 2 A O ⎪ = r A O ⎪ = r ( A ) + r ( A ) . 由:r ( A ) = r ( A 2 ) ⎝ ⎭ ⎝ ⎭ ⎝ ⎭所以,r ( A3 ) = r ( A 2 * A )≤ r ( A2 ) .故: r(A 2 ) = r ( A 3 .由此可推得:r ( A3) = r ( A 4) , r ( A4) = r ( A5 ) , .故:对任意自然数k , 有:r ( A k ) = r ( A ) .3.6 综合应用在掌握了分块矩阵的技巧之后,可以由其导出的一个重要的定理:特征多项式的降阶定理,以下主要讨论该定理及其结论的应用.例 3.6.1 [6] :(特征多项式的降阶定理)设 A 是m ⨯n 矩阵, B 是n ⨯ m 矩阵. 证明: AB 的特征多项式f A B ( ) 与 BA 的特征多项式f B A( ) 有如下的关系:nm1 2 s证:先要把上式改写为:n f () =m f () .A BB AnE -m A B =mEE 1 Bn - B A .用构造法,设 ≠ 0 ,令: H =n.A E m⎛1 ⎫ ⎛E 1 B ⎫对 ⎛E n 0⎪ ⎫ E n B ⎪= n ⎪ ⎝ -A E⎪⎪ 1 ⎪ 两边取行列式得: n ⎭ A E⎝ m ⎭ 0 E - ⎝A B ⎪⎭ H = E -1 A B = 1 m E - A B .⎛E 1 B ⎫ ⎛E nm 0 ⎫⎛ 1( ) m1 B ⎫ 再对 n ⎪ -A E ⎪ E - B A ⎪ 两边取行列式得: ⎪ ⎪ = n⎪⎝ A E m ⎭⎝ n ⎭ ⎝ H = E -0 1B A = E m ⎭ 1 n E - B A .故: 1nE n- B A =1Em mn- A B() nmE n - B A = nE m - A B .上述等式是假设了 ≠ 0 ,但是两边均为的n + m 次多项式,有无穷多个值使它们成立(0)≠ ,从而一定是恒等式,即证.这个等式也称为薛尔弗斯特(Sylvester )公式. 以下例题是定理的应用. 例 3.6.2 [6] :设 A 为m ⨯ n 矩阵, B 为n ⨯ m 矩阵,证明: AB 与 BA 有相同的非零特征值.证:由定理:m E - B A = n E - A B .设 E m- A B = m -s (- ) ( - ) ( - ) ,其中12 m ≠么有:0 ,即 AB 有s 个非零特征值:1, 2, , s , 由上面两式,那nE - B A = ( - 1) ( - ) 2 (- )n- s s即证 BA 也只有s 个非零特征值:1, 2, , s .m∑ 例 3.6.3 [6] :设 A 、 B 分别是m ⨯n 和n ⨯ m 矩阵,证明:t r A B = t r B A .解:由上例知,若E - A B = m -s ( - a ) ( - a )m1s其中a 1a 2 a s ≠ 0. 则 AB 的全部特征值为1 = a 1, , s= a s , s +1= = m = 0 ,且:E - B A = n -s ( - a ) ( - a ) .n1s即 BA 的全部特征值为:1 = a 1,2 = a2, ,s +1= = n = 0 .从而 t r A B =sa ii=1=t r B A .可见,在一些问题中,直接利用特征多项式的降阶定理会更加方便处理,这里则要求我们对分块矩阵的了解更加深刻.结论本文主要通过“分块矩阵、分块矩阵及其应用”两个部分,分别简单介绍了分块矩阵的性质概念、导出的定理结论和相关应用.主要是将分块矩阵的技巧和推广做了一个内容的总结.本文简单的将矩阵工具应用于计算行列式、解决线性方程组、求矩阵的逆、证明矩阵秩的相关定理等,对应不同问题也举了几个重要的应用以及它们的综合应用.将以前出现的矩阵思想整体化,并对相关知识也做了一个系统的复习.最后,本文还有一些不足之处,有待于进一步的改善和提高.参考文献[1] 上海交通大学线性代数编写组. 线性代数[M]. 高等教育出版社, 1982. [2] 北京大学. 高等代数{M}. 高等教育出版社, 1998.[3] 高百俊. 分块矩阵的初等变换及其应用[J]. 伊犁师范学院学报, 2007(4):14-18.[4]张红玉, 魏慧敏. 矩阵的研究[M]. ft 西人民出版社, 2010.[5]雷英果. 分块初等方阵及其应用[J].工科数学, 1998, 14(4):150-154. [6]钱吉林. 高等代数题解精粹(第二版)[M]. 中央民族大学出版社, 2010.[7] 王莲花, 李念伟, 梁志新. 分块矩阵在行列式计算中的应用[J]. 河南教育学院学报(自然科学版), 2005, 14(3):12-15.[8] 张贤科, 许甫华. 高等代数学[M]. 清华大学出版社, 1998:91-96.[9]杨子胥. 高等代数习题集[M]. ft东科学技术出版社, 1981.[10]鲁翠仙. 分块矩阵在求矩阵逆的应用[D]. 云南:云南大学数学系数学研究所,2009:14-15.[11]刘丁酉. 高等代数习题精解[M].中国科学技术大学出版社, 1999.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

相关文档
最新文档