固体物质在水中的溶解度

固体物质在水中的溶解度
固体物质在水中的溶解度

固体物质在水中的溶解度

【学习目标】

1、了解固体物质溶解度的涵义。

2、会利用溶解性表或溶解度曲线,查阅相关物质的溶解性或溶解度,能依据给定的数据绘制溶解度曲线。

3、知道影响气体溶解度的一些...

【学习重点】溶解度的涵义、溶解度曲线

【学习难点】溶解度的涵义

【学习过程】

1.探究固体物质的溶解度

【讨论】学生讨论、辨析、纠正错误,认识固体物质溶解度的完整意义。

关键词:一定温度(指条件);100 g溶剂;饱和溶液;克(单位)。

[布置讨论题]"20 ℃时食盐溶解度是36 g"的含义是什么?

2.溶解度曲线

[讲解]在平面直角坐标系中溶解度的大小与温度有关。可以以横坐标表示温度,以纵坐标表示溶解度,画出物质的溶解度随温度变化的曲线,这种曲线叫做溶解度曲线。

[板书]溶解度随温度变化的曲线叫做溶解度曲线。[

展示教学挂图]

问:影响固体溶解度的主要因素是什么?表现在哪些方面?

答:温度。大多数固体溶解度随温度升高而增大,例如硝酸钠;少数固体溶解度受温度影响不大,例如氯化钠;极少数固体随温度升高溶

解度反而减小,例如氢氧化钙。

[布置学生讨论]从溶解度曲线中我们可以获取什么信息?

归纳:

a:溶解度曲线从溶解度曲线中可以查到有关物质在一定温度下的溶解度;可以比较相同温度下不同物质的溶解度以及各物质溶解度随温度变化的趋势等等。

B:从溶解度曲线可以看出,大多数固体物质的溶解度随温度的升高而增大,如硝酸铵、硝酸钾等;有些与温度的变化关系不大,如氯化钠。利用溶解度曲线提供的信息,可以对某些物质组成的混合物进行分离。

[讲解]对大多数物质来说,其溶解度都是随温度的升高而增大的,也有些固体物质,其溶解度是随着温度的升高而减小,氢氧化钙就是这样一种物质。

[展示教学挂图]氢氧化钙溶解度曲线

[板书]气体的溶解度:

通常用"1体积水中所能溶解气体的体积"来表示气体的溶解度。

气体的溶解度随温度的升高而减小,随压强的升高而增大。

[扩展资料]

固体物质的溶解度

1.概念在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂里的溶解度。如果不指明溶剂,通常所说的溶解度是指物质在水里的溶解度。例如,NaCl在20℃的

溶解度为36g,表示的意义就是:在20℃时,100g水中溶解36g氯化钠时溶液达到饱和状态。或者说,在20℃时,100g水最多能溶解36g氯化钠。

2.在理解固体溶解度概念时,要抓住的四个要点①"在一定温度下":因为每种固体物质的溶解度在一定温度下有一个对应的值,或者说固体物质的溶解度随温度变化而变化。所以给出某固体物质的溶解度时,必须标明温度。②"在100g溶剂里":溶解度的概念中,规定溶剂的质量为100g。③"饱和状态":所谓饱和状态,可以理解为在一定温度下,在100g溶剂里,溶质的溶解量的最大值。④"所溶解的质量":表明溶解度的单位是"克"。

3.影响溶解度的因素①溶质的性质;②溶剂的性质(见溶解性部分);③温度。在溶质和溶剂一定的情况下,温度是影响固体溶解度的重要因素。一般规律如下:大部分固体物质的溶解度随着温度的升高而增大(如硝酸钾);少数固体物质的溶解度受温度变化影响较小(如氯化钠);极少数固体物质的溶解度随着温度的升高而减小(如氢氧化钙)。

4.溶解度的表示方法溶解度随温度变化有两种表示方法:①列表法;②溶解度曲线。

气体物质的溶解度

气体溶解度是指该气体在压强为101kPa,一定温度时溶解在1体积水里达到饱和状态时的气体体积。例如在0℃时,氧气的溶解度为0.049,就是指在0℃,氧气压强为101kPa时,1体积水最多能溶解0.049体积氧气。

气体溶解度与温度和压强有关,随温度升高而减小,随压强增大而

增大。

溶解度曲线

1.溶解度曲线由于固体物质的溶解度随温度变化而变化,随温度一定而一定,这种变化可以用溶解度曲线来表示。我们用纵坐标表示溶解度,横坐标表示温度,绘出固体物质的溶解度随温度变化的曲线,这种曲线叫做溶解度曲线。

2.溶解度曲线的意义①表示同一种物质在不同温度时的溶解度;

③表示不同物质在同一温度时的溶解度,可以比较同一温度时,不同物质的溶解度的大小。若两种物质的溶解度曲线相交,则在该温度下两种物质的溶解度相等;③根据溶解度曲线可以确定从饱和溶液中析出晶体或进行混合物分离提纯的方法;④根据溶解度曲线能进行有关的计算。

溶解度曲线应用

1.查找指定温度时物质的溶解度,并根据溶解度判断溶解性。

2.比较相同温度时(或一定湿度范围内)不同物质溶解度的大小。

3.比较和确定物质的溶解度受温度影响的程度,并据此确定物质结晶或混合物分离提纯的方法。

4.确定溶液的状态(饱和与不饱和)。

[探究活动]

1.下表列出一些物质在不同温度下的溶解度。请你根据表中数据,在图中画出这两种物质的曲线。

物质0℃20℃40℃60℃80℃100℃

硝酸钾13.3 31.6 63.9 110 169 246

氯化钠36 36 36 37 39 40

2.现有10g硝酸钾和2g食盐的混合物,如何将它们分离开? 实验内容

可行性论证

实验记录

结论

水质--溶解性总固体的测定-生活饮用水标准检验方法-(GBT-5750.4-2006-8.1)-称量法-方法确认

水质溶解性总固体的测定生活饮用水标准检验方法(GB/T 5750.4-2006 8.1) 称量法方法确认 1 目的 通过精密度测试来验证水样中的溶解性总固体GB/T 5750.4-2006 8.1,判断本实验室的检测方法是否合格。 2适用范围 本标准试用于饮用水及水源水中溶解性总固体。 3 方法原理 3.1水样经过过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶性微粒等。 3.2 烘干温度一般采用105℃+3℃。但105℃的烘干温度不能彻底除去高矿化水样中盐类所含的结晶水。采用180℃+3℃的烘干温度,可得到较为准确的结果。 3.3 当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸湿性使称量不能恒定质量。此时可在水样中加入适量碳酸钠溶液而得到改进。 4分析方法 4.1 测量方法简述 溶解性总固体(在105℃+3℃烘干) 4.1.1将蒸发皿洗净,放在105℃+3℃烘箱内30min。取出,于干燥器内冷却30min。

4.1.2 在分析天平上称量,再次烘烤、称量,直至恒定质量(两次称量相差不超过0.0004 g ) 4.1.3 将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml 于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。 4.1.4 将蒸发皿置于水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105℃+3℃烘箱内,1h 后取出。干燥器内冷却30min ,称量。 4.1.5将称过质量的蒸发皿再放入105℃+3℃烘箱内30min ,干燥器内冷却30min ,称量,直至恒定质量。 4.2 溶解性总固体(在180℃+3℃烘干) 4.2.1按( 5.1)步骤将蒸发皿在180℃+3℃烘干并称重至恒定质量。 4.2.2吸取100mL 水样于蒸发皿中,精确加入2 5.0mL 碳酸钠溶液于蒸发皿内,混匀。同时做一个只加25.0mL 碳酸钠溶液的空白。计算水样结果时应减去碳酸钠空白的质量。 5. 计算 5.1 溶解性总固体的计算公式 V m m TDS 10001000)()(01??-=ρ 公式中: )(TDS ρ—水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L ) ; 0m —蒸发皿的质量,单位为克(g ); 1m —蒸发皿和溶解性总固体的质量,单位为克(g ); V —水样体积,单位为毫升(ml ) 。

初三化学:溶解度知识点归纳

初三化学:溶解度知识点归纳 1.固体物质的溶解度 (1)定义:一种物质溶解在另一种物质里的能力叫溶解性.溶解性的大小与溶质和溶剂 的性质有关.根据物质在20℃时溶解度的大小不同,把物质的溶解性通常用易溶、可溶、 微溶、难溶等概念粗略地来描述. (2)固体的溶解度概念:在一定温度下,某固体物质在100g溶剂里达到饱和状态时 所溶解的质量,叫做这种物质在这种溶剂里的溶解度. 在理解固体的溶解度概念时,要抓住五个要点: ①“在一定温度下”:因为每种固体物质的溶解度在一定温度下有一个对应的定值,但这定值是随温度变化而变化的,所以给某固体物质的溶解度时,必须指出在什么温度下的溶解度才有意义. ②“在100g溶剂里”:溶剂质量有规定的值,统一为100g,但并不是100g溶液,在 未指明溶剂时,一般是指水. ③“饱和状态”:所谓饱和状态,可以理解为,在一定温度下,在一定量的溶剂里,溶质的溶解达到了最大值. ④“所溶解的质量”:表明溶解度是有单位的,这个单位既不是度数(°),也不是质量分数(%),而是质量单位“g”. ⑤“在这种溶剂里”:就是说必须指明在哪种溶剂里,不能泛泛地谈溶剂.因为同一种物质在不同的溶剂里的溶解度是不相同的. (3)影响固体溶解度大小的因素 ①溶质、溶剂本身的性质.同一温度下溶质、溶剂不同,溶解度不同.

②温度的高低也是影响溶解度大小的一个重要因素.固体物质的溶解度随温度的不同而不同.大多数固态物质的溶解度随温度的升高而升高;少数物质(如氯化钠)的溶解度受温度的影响很小;也有极少数物质(如熟石灰)的溶解度随温度的升高而降低. (4)固体物质溶解度的计算 a根据:温度一定时,饱和溶液中溶质、溶剂的质量与饱和溶液质量成正比.

溶解性总固体

溶解性总固体:曾称总矿化度。指水中溶解组分的总量,包括溶解于水中的各种离子、分子、化合物的总量,但不包括悬浮物和溶解气体。 矿化度以克/升表示。一般测定矿化度是将一升水加热到105~110℃,使水全部蒸发,剩下的残渣质量即是水的矿化度。也可以将分析所得水中各种离子的含量相加,再减去hco3含量的二分之一求得。地下水按矿化度(M)的大小,一般分为:淡水,M<1克/升;微咸水,M=1~3克/升;咸水,M=3~10克/升; 盐水,M=10~50克/升;卤水,M>50克/升。地下水中所含主要盐分的类型常随矿化度的增减而变化。 中文的意思是溶解于水中的总固体含量,TDS计是针对此设计的计量器,可看出水中无机物或有机物的ppm值。但这只是初期性的检验,无法提供完全正确的资料及内含物是什么?若需要正确的内含物成分,仍以送检为准。检测水中总溶解固体值(TDS)即检验出在水中溶解的各类有机物或无机物的总量,使用单位为ppm或毫克/升(mg/l)。它的导电仪器能测出水中的可导电物质,如悬浮物、重金属和可导电离子。如何使用呢?(一)测量时的水温应维持在摄氏25度左右,切记,温度过高会使TDS值增加,影响正确性。(二)液晶屏幕所显示的数值即为TDS值,若TDS计显示100度数字,那代表溶于水中的物质含量正离子或负离子总数为100ppm(公差为±5ppm),数字愈高,表示水中的物质愈多。(三)北京市地区自来水平均在250ppm左右,RO纯水能减至30ppm 以下,当数值超过30ppm时,就必须考虑更换RO滤膜或请技术人员验修。当然TDS计也非万能,它也有其盲点与缺点:(一)TDS仅能测出水中的可导电物质,但无法测出细菌、病毒等物质。(二)单独依赖TDS水质测试来判断水质是否能生饮,并不是最正确的作法;经高温无法灭绝的细菌或病毒,必须透过更精密的仪器才能测出来。 工业循环冷却水中溶解性总固体含量的测量: 1 主题内容与适用范围 本标准规定了工业循环冷却水中溶解性固体的重量法测定方法。 本标准适用于溶解性固体不低于25mg/L 的水样。 2 引用标准 GB /T 6682 分析实验室用水规格和试验方法

不同物质在水中的溶解能力 教案

《不同物质在水中的溶解能力》 贾汪大吴湖里小学俞妙琴 教学目标:能通过实验比较出小苏打和盐,哪个在水中的溶解能力强。 通过简单的实验知道水中能溶解少量的气体。 教学重点:了解不同物质在水中的溶解能力不同。 实验材料:装50毫升水的烧杯2个、搅拌棒2个、食盐4份(每份2.5克)、小苏打4份(每份2.5克)、汽水1瓶、注射器1个。 【教学过程】 一、揭题示标 1.情景引入:哪些物质能溶解在水中。盐能溶解在水中,在一杯水中不断地加盐,盐会不断地溶解吗?(不会)一杯水中所能溶解盐的多少,这就是盐在水中的溶解能力。 2.(板书:溶解能力) 小苏打和盐在水中的溶解能力一样吗?这就是本节我们要探究的问题。(补充板书:不同物质在水中的溶解能力) 3.出示目标:(1)实验探究比较出小苏打和盐,哪个在水中的溶解能力强。 (2)通过简单的实验知道水中能溶解少量的气体。 二、自主探究

(一)比较小苏打和盐在水中的溶解能力 1.提出问题。我们要探究的问题是什么?(比较小苏打和盐在水中的溶解能力)。猜一猜,谁在水中的溶解能力强? 2.(学生猜测)我们要通过实验进行比较。 3.小组讨论:怎样进行实验?阅读29页实验方法,并回答: (1)盐和小苏打溶解在水中的比较实验中,相同点是什么?不同点是什么?(2)实验操作中,要注意什么。第一小份没有溶解完就加第二小份的做法对吗?加到什么时候为止? (3)如果杯底有剩余的,怎样估计剩余的? (4)提示:小组分工合作:一人放物质,另一人搅拌,其余人观察并作好记录。迅速有序完成后整理好器材,举手示意。 4.汇报交流。 5.自主探究。 6.汇报总结。盐和小苏打在水中的溶解能力一样吗? (二)气体也能溶解在水中 1.设问:气体能不能溶解在水中呢? 2.观察,老师摇晃一下汽水瓶,会有什么现象出现?过一会,又会怎样?你有什么猜想?(气体也能溶解在水中)。气体能不能溶解在水中呢?

溶解性总固体原始记录表格

仅供个人参考 XX市自来水公司水质监测站 溶解性总固体测定记录 样品处理方法: 检测人:校核人:

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. For personal use only in study and research; not for commercial use 以下无正文

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwende t werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

固体物质在水中的溶解度

固体物质在水中的溶解度 【学习目标】 1、了解固体物质溶解度的涵义。 2、会利用溶解性表或溶解度曲线,查阅相关物质的溶解性或溶解度,能依据给定的数据绘制溶解度曲线。 3、知道影响气体溶解度的一些... 【学习重点】溶解度的涵义、溶解度曲线 【学习难点】溶解度的涵义 【学习过程】 1.探究固体物质的溶解度 【讨论】学生讨论、辨析、纠正错误,认识固体物质溶解度的完整意义。 关键词:一定温度(指条件);100 g溶剂;饱和溶液;克(单位)。 [布置讨论题]"20 ℃时食盐溶解度是36 g"的含义是什么? 2.溶解度曲线 [讲解]在平面直角坐标系中溶解度的大小与温度有关。可以以横坐标表示温度,以纵坐标表示溶解度,画出物质的溶解度随温度变化的曲线,这种曲线叫做溶解度曲线。 [板书]溶解度随温度变化的曲线叫做溶解度曲线。[ 展示教学挂图] 问:影响固体溶解度的主要因素是什么?表现在哪些方面? 答:温度。大多数固体溶解度随温度升高而增大,例如硝酸钠;少数固体溶解度受温度影响不大,例如氯化钠;极少数固体随温度升高溶

解度反而减小,例如氢氧化钙。 [布置学生讨论]从溶解度曲线中我们可以获取什么信息? 归纳: a:溶解度曲线从溶解度曲线中可以查到有关物质在一定温度下的溶解度;可以比较相同温度下不同物质的溶解度以及各物质溶解度随温度变化的趋势等等。 B:从溶解度曲线可以看出,大多数固体物质的溶解度随温度的升高而增大,如硝酸铵、硝酸钾等;有些与温度的变化关系不大,如氯化钠。利用溶解度曲线提供的信息,可以对某些物质组成的混合物进行分离。 [讲解]对大多数物质来说,其溶解度都是随温度的升高而增大的,也有些固体物质,其溶解度是随着温度的升高而减小,氢氧化钙就是这样一种物质。 [展示教学挂图]氢氧化钙溶解度曲线 [板书]气体的溶解度: 通常用"1体积水中所能溶解气体的体积"来表示气体的溶解度。 气体的溶解度随温度的升高而减小,随压强的升高而增大。 [扩展资料] 固体物质的溶解度 1.概念在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂里的溶解度。如果不指明溶剂,通常所说的溶解度是指物质在水里的溶解度。例如,NaCl在20℃的

水质 溶解性总固体 作业

溶解性总固体的测定作业指导书 1适用范围 本标准规定了用称量法测定生活饮用水及其水源水的溶解性总固体。本法适用于测定生活饮用水及其水源水的溶解性总固体。 2 原理 2.1水样经过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶解微粒等。 2.2烘干温度一般采105±3℃。但105℃的烘干温度不能彻底除去高矿化度水样中盐类所含的结晶水。采用180±3017的烘干温度,可得到较为准确的结果。 2.3当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸潮性使称量不能恒重。此时可在水样中加入适量碳酸钠溶液而得到改进。 3 仪器 3.1 分析天平,感量0.1mg。 3.2 水浴锅。 3.3 电热恒温干燥箱。 3.4 瓷蒸发皿:100mL。 3.5 干燥器:用硅胶作干燥剂。 3.6 中速定量滤纸或滤膜(孔径0.45um)及相应滤器。 4 试剂 碳酸钠溶液(10g/L):称取10g无水碳酸钠(Na2CO3),溶于纯水中稀释1000mL。5分析步骤 5.1 溶解性总固体在105±3℃烘干。 5.1.1 将蒸发皿洗净,放在105±3℃烘箱内30min。取出放在干燥器内冷却30min。 5.1.2在分析天平上称其重量,再次烘烤,称量直至恒重(两次称重相差不超过0.0004g)。 5.1.3将水样上清液用滤器滤过。用无分度吸管吸取振荡均匀的滤过水样100ml 于蒸发皿内,如果水样的溶解性总固体过少时可增加水样体积。 5.1.4 将蒸发皿置干水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105±3℃烘箱内,1h后取出。放入干燥器内,冷却30min,称量。 5.1.5 将称过重量的蒸发皿再放入105±3℃烘箱内30min,再放入干燥器内冷却30min,称量直至恒重。 5.2 溶解性总固体在180±3℃烘干。 5.2.1按(5.1)步骤将蒸发皿在180±3℃烘干并称量至恒重。 5.2.2用无分度吸管吸取100mL水样于蒸发皿中,精确加加入 25.0m碳酸钠溶液于蒸发皿内,混匀。同时做一对只加25.0mlL碳酸钠溶液的空白。计算水样结果时应

固体物质的溶解度随温度变化的规律

固体物质的溶解度随温度变化的规律 Na(OH)的溶解度随温度的升高而变小 NaCL的溶解度随温度的升高而几乎不变KNO3等的溶解度随温度的升高而几乎变大 固体物质的溶解度随温度变化的情况可分为三类:(1)大部分固体物质溶解度随温度的升高而增大;(2)少数物质溶解度受温度的影响很小;(3)极少数物质溶解度随温度的升高而减小。 固体溶解度 固体物质的溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解的质量,用字母s表示,其单位是“g/100g水”。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。例如:在20℃时,100g水里最多能溶36g氯化钠(这时溶液达到饱和状态),我们就说在20℃时,氯化钠在水里的溶解度是36g。基本信息 中文名称固体溶解度 外因 温度、压强(气体) 内因 溶质和溶剂本身的性质 可溶 大于等于1g小于10g 提示 物质在水里的溶解度 定义 固体物质的溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解的质量,用字母s表示,其单位是"g/100g水"。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。例如:在20℃时,100g水里最多能溶36g氯化钠(这时溶液达到饱和状态),我们就说在20℃时,氯化钠在水里的溶解度是36g。 【提示】如果不指明溶剂,通常所说的溶解度是指物质在水里的溶解度。另外,溶解度不同于溶解速度。搅拌、振荡、粉碎颗粒等增大的是溶解速度,但不能增大溶解度。溶解度也不同于溶解的质量,溶剂的质量增加,能溶解度溶质质量也增加,但溶解度不会改变。 简介指固体物质在100g溶剂内达到饱和状态时溶解度质量。 物质的溶解性 溶解性溶解度(20℃) 易溶大于等于10g 可溶大于等于1g小于10g 微溶大于等于0.01g小于1g 难(不)溶不溶小于0.01g 影响物质溶解度的因素?内因:溶质和溶剂本身的性质。 外因:温度、压强(气体)。 主要影响固体的溶解度是温度。对于大多数固体,温度越高,固体的溶解度越大。教学目标:

固体物质在水中的溶解度(教案)

§3.2.6 固体物质在水中的溶解度 一.教学提示 “固体物质在水中的溶解度”是上教版九年级化学第一学期第三单元第二节第三课时的教学内容。在进行本单元的教学设计安排时,考虑到同学们对溶质的质量分数内容不陌生(多少有一些了解),所以对教学内容的次序,进行了适当调整。具体安排如下: 11周:§3.1.1水资源与水的组成研究(水污染、过滤、吸附、消毒等净化方法介绍) §3.1.2水的性质研究(物理性质、化学性质) §3.1.3物质在水中的分散(学习、交流三种分散体系、水溶液的某些性质) §3.1.4溶液的酸碱性(石蕊、酚酞、pH试纸的使用) 12周:§3.2.1溶液组成的判断(同时讲解练习) §3.2.2溶液组成的定量表示(用配制1%的食盐水为主线,学习质量分数概念、表示 方法、简单计算) §3.2.3溶液的稀释、配制(稀释原理、浓溶液配稀溶液的方法) §3.2.4学生实验 13周:§3.2.5影响物质溶解性的因素(溶解性概念、影响因素;饱和溶液、不饱和溶液概 念及转化) §3.2.6固体物质在水中的溶解度(概念、影响因素及溶解度曲线) §3.2.7溶解度曲线的运用(溶解度的计算,包括质量分数与溶解度的区别和联系)§3.2.8物质从溶液中析出(结晶、结晶水合物概念,几种典型的结晶水合物介绍)二.设计意图 本节课从比较两种盐的溶解性大小入手,引发并活跃学生思维,设计出合理方案,得出“溶解限量”的影响因素;通过对溶解限量限定因素的认识细化、对溶解限量实质的讨论分析,帮助学生建立固体溶解度的概念;通过对溶解度随温度变化情况的两种表示方法——表格法、坐标法的对比,让学生了解溶解度曲线的涵义,感悟数形结合思想的精妙。 三.学情分析 本次授课的初三(7)班,是我任教班级中基础最差的一个班,男生较女生多一些,化学学习特别优秀的有7位。经过三个月不到的时间的引导、训练、磨合,现在我们师生间的关系融洽,学生学习比较自觉,学习的积极性也比较高,每次的化学作业都能按时完成,学生的成绩在进步之中。一直以来《溶液》单元的教学是一个难点,学生的学习在这时会开始出现所谓的“分化”,所以在之前的质量分数、溶解性等内容的教学中,我尝试了“用学生已有的经验”同化并建构新的认知结构,组织好“活动与探究”,让学生体验学习过程。同时在建立溶质的质量分数的概念之后,对于有关的计算,把握好深度和广度,让学生信心满满地往下学。希望今天的课,在他们的积极“体验下”,能获得预期的效果。 四.教学目标

硬度和溶解性总固体

什么是硬度和溶解性总固体 硬度和溶解性总固体是水质科学术语。硬度是指溶于水中的钙、镁等盐类的总量,以每升多少毫克(mg/L)表示。水的硬度是由溶解于水中的钙、镁组成, 并折合成碳酸钙mg/L 作为计量单位。饮用水的硬度如果过高,烧开水时壶内会结垢,也影响口感;硬度过低容易腐蚀管道。我国的饮用水硬度标准最高限值为450mg/L。世界卫生组织为500 mg/L。大多数国家的饮用水硬度标准设在400?500 mg/L。一般把30 mg/L 以内的水叫做软水, 30?80 mg/ L为低硬度水,80?200 mg/ L为适宜硬度水,200?450 mg/ L为高硬度水,大于450 mg/L 为极硬度水。 溶解性总固体也就是TDS,TDS 为Total Dissolved Solids 的缩写。是溶解在水里的无机盐和有机物的总称。也就是溶解于水中的固体的总量。其主要成分有钙、镁、钠、钾离子和碳酸离子、碳酸氢离子、氯离子、硫酸离子和硝酸离子。水中的溶解固体主要是一些钙和镁,且不是可测得的污染物质。溶解性总固体、硫酸盐、总硬度三者之间没有必然的关系,但如果硫酸盐、总硬度中有一项高的话,溶解性总固体必然高。 TDS 概念是个舶来品,在美国、台湾水处理领域广泛使用。TDS 值的测量工具一般是用TDS 笔,其测量原理实际上是通过测量水的电导率从而间接反映出TDS 值。在物理意义上来说,水中溶解物越多,水的TDS 值就越大,水的导电性也越好,其电导率值也越大。自来水一般大概有100~200mg/L、RO 处 理后的水能减至30 mg/L或以下、蒸馏后的水只有1 mg/L或以下,人体所需的矿物质亦同时除去。自然水的TDS 受不同地区矿石含盐量的影响差异十分巨大,可从 300mg/L到多达6000mg/L。我国标准为1000mg/L以内。 溶解性总固体的量与饮用水的味觉直接有关。以下是不同TDS 浓度与饮用水的味道之间的关系:少于300mg/L,极好;300?600mg/L,好;600?900mg / L, 一般;900?1200mg/ L,差;大于1200mg/ L,无法饮用。 不管是水的总硬度还是溶解性总固体,国家标准主要考虑的是对供水网管的影响。而且在国家标准范围内对健康没有负面影响。硬水口感不太好,喝得不太舒服,开水壶容易结垢;水要是过软的话,会腐蚀管道。管道腐蚀以后,腐蚀出来的东西进入到水里,大家喝了,间接地对健康产生影响。从供水来讲,就要控制水不能太软了。同样,饮用水中过高的TDS 浓度,会造成口味不佳和水管、热水器、热水壶及家用器具的使用寿命减短。TDS 浓度过低,也会因为过分平淡无味而不受人们欢迎,同时也会对输水管道造成腐蚀。因此我国《生活饮用水卫生规范》中溶解性总固体的限制标准为1000mg/L 。

水中溶解性总固体测定方法探讨

水中溶解性总固体测定方法探讨 秦瑞春 (新疆哈密水务有限公司,哈密839000) 摘要:溶解性总固体含量是衡量杂用水水质好坏的重要指标之一。溶解性总固体测定方法中烘干温度有105℃和180℃两种,就两种烘干温度下的结果做了数据对比和分析,以及对碳酸钠的加入方式和加入量进行了讨论,旨在找出更准确的测定溶解性总固体的方法。 关键词:生活饮用水;溶解性总固体;烘干温度;碳酸钠 On Determination Method of Total Dissolved Domestic And Drinking Water Qin Ruichun (Xinjiang hami water co., LTD,Hami, XinJiang,839000) Abstract: the soluble total solid content is measure of mixed water one of the important indexes of water quality. The determination method of total soluble solids in the drying temperature is 105 ℃and 180 ℃, is the results of two kinds of drying temperature do data contrast and analysis, as well as the mode of the addition of sodium carbonate and discussed the dosage, aims to find out a more accurate method of determining total solid solubility. Key words: drinking water; Total soluble solids; Drying temperature; Sodium carbonate 前言 水样经过滤后,在一定温度下烘干所得的不可滤固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过过滤器的不溶性微粒等。溶解性总固体含量是衡量水质好坏的重要指标之一。 笔者依据GB/T5750.4(8.1)-2006生活饮用水标准检验方法:感官性状和物理指标称量法[1](以下简称《饮用水标准》),对水中溶解性总固体的测定方法进行研究。 1 试验准备 1.1试验条件的选择 上述两个标准中试验条件略有不同,将其不同之处及该试验采用的试验条件列于表1 表1 试验条件的选择 项目《饮用水标准》该试验采用的方法空白烘干时间/min 30 30 空白冷却时间/min 30 30 水样烘干时间/h 1 1 水样冷却时间/min 30 30 恒重允差值/g 0.0004 0.0005 称取0.05g碳酸钠粉末 碳酸钠加入量及加入方式100mL水样中加入25mL (10g/L)碳酸钠溶液 计算公式C=(m1-m0)×106/V(1)C=(m1-m0)×106/V(1)注:计算公式(1)中各符号的意义及单位见2.4;

初三化学:溶解度知识点归纳

初三化学:溶解度知识点归纳 1.固体物质的溶解度 (1)定义:一种物质溶解在另一种物质里的能力叫溶解性.溶解性的大小与溶质和溶剂的性质有关.根据物质在20℃时溶解度的大小不同,把物质的溶解性通常用易溶、可溶、微溶、难溶等概念粗略地来描述. (2)固体的溶解度概念:在一定温度下,某固体物质在100g溶剂里达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂里的溶解度. 在理解固体的溶解度概念时,要抓住五个要点: ①“在一定温度下”:因为每种固体物质的溶解度在一定温度下有一个对应的定值,但这定值是随温度变化而变化的,所以给某固体物质的溶解度时,必须指出在什么温度下的溶解度才有意义. ②“在100g溶剂里”:溶剂质量有规定的值,统一为100g,但并不是100g溶液,在未指明溶剂时,一般是指水. ③“饱和状态”:所谓饱和状态,可以理解为,在一定温度下,在一定量的溶剂里,溶质的溶解达到了最大值. ④“所溶解的质量”:表明溶解度是有单位的,这个单位既不是度数(°),也不是质量分数(%),而是质量单位“g”. ⑤“在这种溶剂里”:就是说必须指明在哪种溶剂里,不能泛泛地谈溶剂.因为同一种物质在不同的溶剂里的溶解度是不相同的. (3)影响固体溶解度大小的因素 ①溶质、溶剂本身的性质.同一温度下溶质、溶剂不同,溶解度不同.

②温度的高低也是影响溶解度大小的一个重要因素.固体物质的溶解度随温度的不同而不同.大多数固态物质的溶解度随温度的升高而升高;少数物质(如氯化钠)的溶解度受温度的影响很小;也有极少数物质(如熟石灰)的溶解度随温度的升高而降低. (4)固体物质溶解度的计算 a根据:温度一定时,饱和溶液中溶质、溶剂的质量与饱和溶液质量成正比.

溶解性总固体

溶解性总固体 一、名词定义 中文名称:溶解性总固体 英文名称:total dissoloved solids(rms) 别名:总矿化度 定义:曾称总矿化度。指水中溶解组分的总量,包括溶解于地下水中各种离子、分子、化合物的总量,但不包括悬浮物和溶解气体。 二、名词简介 溶解性总固体(TDS)是溶解在水里的无机盐和有机物的总称。其主要成分有钙、镁、钠、钾离子和碳酸离子、碳酸氢离子、氯离子、硫酸离子和硝酸离子。 矿化度的单位以g/L表示。一般测定矿化度是将1L水加热到l05~110℃,使水全部蒸发,剩下的残渣质量即是地下水的矿化度。地下水按矿化度(M)的大小,一般分为:淡水(M<1g/L);微成水(M=1~3g/L);咸水(M=3~10g/L);盐水(M=10~50g/L);卤水(M>50g/L)。地下水中所含主要盐分的类型常随矿化度的增减而变化。 TDS计是针对水中溶解性总固体设计的计量器,可看出水中无机物或有机物的ppm值。 它也有其盲点与缺点: 1.TDS仅能测出水中的可导电物质,但无法测出细菌、病毒等物质。 2.单独依赖TDS水质测试来判断水质是否能生饮,并不是最正确的作法;经高温无法灭绝的细菌或病毒,必须透过更精密的仪器才能测出来。 三、在环境污染中的表现形式及存在方式 水中的TDS来源于自然界、下水道、城市和农业污水以及工业废水。为了防止结冰在路面上铺洒的盐类也可增加水中TDS的量。自然来源的TDS受不同地区矿石含盐量的影响差异十分巨大,可从300mg/L到多则6000mg/L。 溶解性总固体的量与饮用水的味觉直接有关。以下列出了不同TDS浓度与饮用水的味道之间的关系:极好(少于300mg/L);好(300~600mg/L);一般(600~900mg/L);差(900~1200mg/L);无法饮用(大于1200mg /L)。同样,饮用水中TDS浓度过低,也会因为过分平淡无味而不受人们欢迎。 虽然各地情况并不完全相同,但总的来说饮用水中TDS含量小于1000mg/L时比较容易让人接受。因为过高的TDS浓度,会造成口味不佳和水管、热水器、热水壶及家用器具的使用寿命减短,因而引发居民的反感。同样饮用水中TDS浓度过低,也会因为过分平淡无味而不受人们欢迎,同时也会对输水管道造成腐蚀。因此我国《生活饮用水卫生规范》中溶解性总固体的限制标准为1000mg/L。在早期的研究中,曾报道饮用水中的TDS与癌症、冠状动脉疾病、动脉硬化和心血管疾病呈负相关。也有报道称饮用水中的TDS与死亡率亦呈负相关。已确认TDS中的组分,如氯化物、硫酸盐、镁、钙和碳酸盐会腐蚀输水管道或在管道中结垢。高质量浓度的TDS(>500mg/L)会减少水管、热水器、热水壶和诸如水壶、蒸汽熨斗等家庭用具的使用寿命。(刘平)

固体物质的溶解度曲线

固体物质的溶解度曲线 固体物质的溶解度曲线 三川初中董海江 2015年1月6日学习目标: 1、知道什么是饱和溶液和不饱和溶液,它们如何相互换。 2、知道什么是固体物质的溶解度。 3、掌握固体物质溶解度曲线的规律。 4、掌握溶解度和溶液中溶质的质量分数的关系。温故知新 1、什么是饱和溶液和不饱和溶液? 2、饱和溶液和不饱和溶液如何相互转换? 3、什么是固体物质的溶解度? 设疑自探: 看课本37页9-12、9-13,写出固体物质溶解度曲线的规律。 解疑合探: 1、下图是a 、b 两种固体物质的溶解度曲线。下列说法不正确的是 () A 、a 的溶解度大于b 的溶解度。 B 、在t ℃时,a 、b 的饱和溶液中溶质的质量分数相同。 C 、将t ℃时b 的饱和溶液升温至40℃,其溶液中浓度不变。 D 、10℃时,分别用100 g 水配制a 、b 的和溶液所需a 的质量小于b 的质量。 2、下图是甲乙两固体的溶解度曲线,下列说法正确的是() A 、甲的溶解度大于乙的溶解度

B 、t ℃时,甲、乙饱和溶液中溶质的质量分数相等。 C 、升高温度能使接近饱和的甲溶液变为饱和溶液。 D 、10℃时,分别用100水配置甲乙的饱和溶液, 3、下图是甲、乙两种固体的溶解度曲线,下列说法正确的是( ) A 、甲的溶解度等于乙的溶解度。 B 、升高温度可以将甲的不饱和溶液变为饱和溶液。 C 、20 ℃时,100 g乙的饱和溶液中溶质质量是30 g。 D 、40 ℃时,分别用100g 水配制甲、乙的饱和溶液,所需甲的质量大于乙的质量。 4、下图是某固体物质的溶解度曲线。 1、30℃时,该物质的溶解度为 g。 2、50℃时,将40g 该物质加入到l00g 水中,搅拌后得到的是(填“饱和”或“不饱和”) 溶液;将该溶液降温到20℃时可析出晶体 g。 5、如下图所示:t 2℃时分别将100gA 、B 的饱和溶液降温至t 1℃, 析出固体质量A B(填“>”、“<”或“=”)。 6、20℃时,分别将等质量的甲、乙两种固体物质加入到盛有10g 水的两支试管中,充分溶解后,可观察到如图1所示的现象。20℃时(填“甲”或“乙”)物质的溶液一定是饱和溶液。图2表示的是甲、乙两种物质在水中的溶解度曲线。要使甲试管中的剩余固体继续溶解,可采用的方法有、课代表畅谈收获:

溶解性总固体

溶解性总固体(称量法) (GB/T 5750.4-2006) 1 原理 1.1水样经过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过过滤器的不溶性微粒等。 1.2烘干温度一般采用1050C±30C。但1050C的烘干温度不能彻底除去高矿化水样中盐类所含的结晶水。采用1800C±30C的烘干温度,可得到较为准确的结果。 1.3当水样的溶解性总固体中含有多量的氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸湿性使称量不能恒定质量。此时可在水样中加入适量碳酸钠溶液而得到改进。 2 仪器 2.1分析天平,感量0.1mg。 2.2水浴锅。 2.3电恒温干燥箱。 2.4瓷蒸发皿,100ml。 2.5干燥器:用硅胶作干燥剂。 2.6中速定量滤纸或滤膜(孔径0.45um)及相应滤器。 3 试剂 碳酸钠溶液(10g/L):称取10g无水碳酸钠(Na2CO3),溶于纯水中,稀释至1000ml。 4分析步骤 4.1溶解性总固体在1050C±30C烘干。 4.1.1将蒸发皿洗净,放在1050C±30C烘箱内30min,取出,于干燥器内冷却30min。 4.1.2在分析天平上称量,再次烘烤,称量,直至恒定质量(两次称量相差不超过0.0004g)。 4.1.3将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。 4.1.4将蒸发皿置于水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入1050C±30C烘箱内,1h后取出。干燥器内冷却30min,称量。 4.1.5将称过质量的蒸发皿再放放1050C±30C烘箱内30min,干燥器内冷却30min称量,直至恒定质量。 4.2溶解性总固体在1800C±30C烘干 4.2.1将蒸发皿在1800C±30C烘干并称量至恒定质量。 4.2.2吸取100ml水样于蒸发皿中,精确加入2 5.0ml碳酸钠溶液于蒸发皿内,混匀。同时做一个只加25.0ml碳酸钠溶液的空白。计算水样结果时应减去碳酸空白的质量。 5计算 P(TDS)=(m1-m0)×1000×1000/V (1) P(TDS)—水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L); m0—蒸发皿的质量,单位为克(g); m1—蒸发皿和溶解性总固体的质量,单位为克(g); V—水样的体积,单位为毫升(ml)。 6精密度和准确度 279个实验室测定溶解性总固体为170.5mg/L的合成不酒瓶,105烘干,测定的相对标准偏差为4.9%,相对误差为2.0%;204个实验室测定同一合成不样,1800C烘干测定的相对标准差为5.4%,相对误差为0.4%。

物质在水中是怎样溶解的教学设计

《物质在水中是怎样溶解的》教学设计 一、教材依据 教科版四年级科学上册第二单元《溶解》的第2课《物质在水中是怎样溶解的》二、设计思路 本节课是《溶解》单元的第2课,主要研究物质在水中是怎样溶解的,选用溶解实验的典型材料“高锰酸钾”,让学生通过仔细观察、描述高锰酸钾溶解于水中的逐渐变化过程,想象食盐在水中溶解时可能出现的变化,形成“溶解”的描述性概念。通过进一步观察、比较食盐、沙、面粉和高锰酸钾在水中的不同状态,发现溶解与不溶解的主要区别和特征,加深对溶解现象的本质性理解,从而培养学生良好的科学品质和思维方式。在教学中主要采用了“实验观察”、“小组合作”等方法,帮助学生在自己感兴趣的活动中自主地愉快地探究学习。通过猜测、实验验证、比较分析、归纳整理的实验步骤,达到突出重点突破难点的教学目的。 小学四年级的学生对科学课的学习已经有了一定的基础,求知欲和参与科学活动的愿望明显增强,对实验课兴趣非常浓厚。但是在思维上明显存在逻辑性不强、考虑问题不深入细致的问题;同时实验操作能力有待提高。因此,我抓住学生的这些特点展开了教学活动。给学生充分的实验时间,让学生在实验的过程中对高锰酸钾在水中的溶解过程进行充分的观察,指导学生详细记录观察到的现象,引导学生对不同物质在水中的变化进行细致的比较分析,通过实验,培养他们的实践能力和观察能力。努力使学生不仅掌握高锰酸钾溶解于水中的逐渐变化的过程而且能用语言描述观察到的现象,进而了解到溶解的本质特征。使学生观察交流、探究发现、口语表达、动手操作等综合学习能力得到进一步提高和发展。 三、教学目标 科学概念:溶解是指物质均匀地、稳定地分散在水中,不会自行沉降,也不能用过滤的方法将物质从溶液中分离出来。 过程与方法:观察和描述高锰酸钾在水中的溶解过程,并想象食盐的溶解过程。通过进一步观察、比较食盐、沙、面粉和高锰酸钾在水中的不同状态,发现溶解与不溶解的主要区别和特征。

固体的溶解度及溶解度曲线

固体的溶解度及溶解度曲线 (2005)5.许多同学喜欢吃家庭腌制的小菜,腌制小菜的一般方法是:将食盐、香料等一起放入水中煮制得浓盐水,盐水冷却后放入洗净待腌制的鲜菜,腌制过程中还要不断打开缸盖晒缸并及时补充食盐,一段时间后,即得成品小菜。若室温时食盐的溶解度为36 g。关于小菜腌制过程中的下列说法,错误的是( ) A.煮制浓盐水时,10 kg水最多可得到浓盐水13.6 kg B.腌菜的过程中,原来的浓盐水会逐渐变稀 C.晒缸的目的一是防止腌菜腐败变质,二是促使水分蒸发以保持盐水的浓度 D.补充食盐的目的是保持盐水的浓度,以利于食盐往蔬菜中渗透(2006)4.(3分)氯化钠和硝酸钾两种物质的溶解度随温度(0~100 ①若两物质的溶解度相等,此时所对应的温度范围在 之间; ②20℃时,氯化钠饱和溶液的质量分数硝酸钾饱和溶液的质量分数(填“>”、“<”或“=”); ③某同学欲从含有少量氯化钠的硝酸钾中分离出硝酸钾,他应采取的方法是 。 (2007)16.右图是A、B两物质的溶解度曲 线,分别得到的下列信息中,正确的是 A.图中阴影部分表明A、B两溶液都是饱和 溶液 B.t1℃时,A、B两饱和溶液的溶质质量分数 相等 C. t2℃时,B物质的溶解度大于t1℃时A物 质的溶解度 D. t2℃时,等质量的A、B两饱和溶液降温到t1℃时析出溶质的质量相同

(2008)4.(4分)右图是A、B两种固体物质的溶解度 曲 线。请分析曲线中A、B两种物质溶解度随温度的变化 情况后,回答下面问题: (1)我们一般将20℃时溶解度大于l0g的物质称为 易溶物质,小于l0g的物质称为可溶物质。那么,B物质 应属于; (2)比较A、B两种物质的溶解度曲线,可看出A、 B两物质溶解性的共同点是; (3)有同学认为“同一温度时,可配得质量分数相同的A、B两种物质的饱和溶液”。你的观点是,理由是 (2009)(2)(5分)控制变量是科学探究的重要方法之一。小华同学实验中发现:把质量相等的不同物质放入同样一杯水中,有的溶解快,有的溶解多,有的溶解又快又多。是哪些因素影响着物质溶解的快慢与多少呢? 请你参考下表硝酸钾的溶解度随温度的变化关系,以硝酸钾为 影响因素: ②实施方案: ③通过实验得出。实验中,控制不变的因素是。(2010)17.室温下,称取氯化钠和碳酸钠各30g放入同一烧杯中,加入lOOg水充分搅拌后静置,得到二者的混合溶液。请参照氯化钠、碳酸钠两物质的溶解度表判断,以下结论不正确的是 A.20℃时,氯化钠的溶解度大于碳酸钠的溶解度 B.20℃时,未溶解固体是氯化钠和碳酸钠的混合物 C.30℃时,溶液中氯化钠和碳酸钠的质量分数相同 D.30℃时,溶液为氯化钠和碳酸钠的不饱和溶液

物质是怎样溶解在水中的

《物质是怎样溶解在水中的》说课稿 一、教学内容 1.说教材 本课是新课标科学四年级(上)第二单元的第二课,这一课选用溶解实验的典型材料——高锰酸钾,让学生通过仔细观察,描述高锰酸钾溶解于水的逐渐变化过程,想象食盐在水中溶解时可能出现的变化,形成“溶解”的描述性概念,加深对溶解现象的本质性理解。 2.教学目标 科学概念:溶解是指物质均匀地、稳定地分散在水中,不会自行沉降,也不能用过滤得方法将物质从溶液中分离出来。 过程与方法:观察和描述高锰酸钾在水中的溶解过程,并想象食盐的溶解过程。 情感、态度、价值观:认识到实验中细致观察的重要性。 3. 教学重难点 【教学重点】描述高锰酸钾溶解现象的主要特征。 【教学难点】理解溶解的现象这一过程。 4. 【教学准备】分组材料:装水烧杯、筷子、高锰酸钾、小药勺、食盐 二、教法和学法 说教法: 1、探究式实验教学法该教学法的教学模式是:设疑—观察(实验)—思考—总结—应用。通过实验、观察、探究得出科学结论。 2、互动式教学法在教师的讲解过程中,有学生的猜想、讨论、抢答,在实验过程中师生之间不停地进行“信息”交流,有助于学生注意力的集中和学习积极性的提高。 说学法: 1、探究学习:通过实验来对其实验现象的准确描述,培养学生的观察能力、语言表达能力和综合分析能力。 2、自主学习:指导学生以实际生活的经验和对教材的阅读,调动学生思维的积极性,使学生自主地获取知识。

三、教学过程 (一)观察食盐在水中的溶解 师:同学们喜欢吃糖吗? 师:那你们知道糖含在嘴里会发生什么变化呢?生:会慢慢的化了。 师:如果把糖和食盐放到水又会发生什么呢?(揭示课题:水是怎样溶解物质的 ) 师:同学们,老师手里拿的是什么?(教师出示食盐)生:是食盐。 师:那你们食盐在水中是怎样溶解的吗?(教师做食盐在水中溶解的实验) 1.让学生想象:食盐在水中的溶解过程。 2.让学生说一说自己的想法。 (二)观察高锰酸钾的溶解 1.教师讲解:为了清晰地观察到溶解的过程,我们用一种有颜色的物质来做溶解实验。教师出示高锰酸钾。(教师取放演示要规范,这是学生首次接触化学药品) 因为高锰酸钾具有腐蚀性,对组织有刺激性易污染皮肤致黑色。所以在取药品时不能用手直接取高锰酸钾,要用小药勺。 2.引导观察描述:高锰酸钾是一种什么样的物质?(外观呈黑紫色固体小颗粒) 3.做实验:在一个装水的烧杯内,轻轻地放入几小粒高锰酸钾,先静观高锰酸钾在水中的分散现象,然后用筷子轻轻搅拌一下水,继续观察水和高锰酸钾的变化。(注意学生对观察到的细节地描述)(高锰酸钾颗粒慢慢地变小,划出紫色的线条向四周扩散,然后均匀地分散在水中。形成紫红色的溶液) 4.学生汇报:高锰酸钾在进入水的前中后有什么样的变化?它在水中溶解了吗?它与食盐在水中的溶解有什么异同?

溶解性总固体

溶解性总固体 1. 适用范围 1.1 本标准适用于矿物质水、生活饮用水及其水源水中溶解性总固体的测定。 2. 技术依据 2.1 根据《中华人民共和国国家标准》生活饮用水标准检验方法。GB/T 5750.4—2006 8.1.5所规定的生活饮用水及其水源水中溶解性总固体的检测方法。(105℃干燥—重量法) 2.2 根据《中华人民共和国国家标准》饮用天然矿泉水标准检验方法。GB/T8538—2008 4.8.1 所规定的饮用天然矿泉水中溶解性总固体的检测方法。(105℃干燥—重量法) 2.3 TB—214电子分析天平(51060462)使用说明书干燥箱(2030308)使用说明书 3. 原理 3.1溶解性总固体是水中溶解的无机矿物成分的总量。水样经0.45μm滤膜过滤除去悬浮物,取一定体积滤液蒸干,在105℃的烘干温度下,所得的固体残渣称为溶解性总固体,包括不易挥发的溶解性盐类、有机物及能通过过滤器的不溶性微粒等。 4. 仪器 4.1 分析天平,感量0.1mg。 4.2 水浴锅。 4.3 点恒温干燥器。 4.4 瓷蒸发皿,100ml。 4.5 干燥器:用硅胶作干燥剂。 4.6中速定量滤纸或滤膜(孔径0.45μm)及相应滤器。 5. 分析步骤 5.1 将蒸发皿洗净,放在105℃+3℃烘箱内30min。取出,于干燥器内冷却30min。 5.2 在分析天平上称量,再次烘烤、称量,直至恒定质量(两次称量相差不超过0.0004 g)

5.3 将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。 5.4 将称过质量的蒸发皿再放入105℃+3℃烘箱内30min,干燥器内冷却30min,称量,直至恒定质量。 6. 计算 6.1 溶解性总固体的计算公式 ρ(TDS)=(m1-m0)*1000*1000/V 公式中: ρ(TDS)——————水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L);m0————————蒸发皿的质量,单位为克(g); m1————————蒸发皿和溶解性总固体的质量,单位为克(g); V ————————水样体积,单位为毫升(ml)。 7.注意事项 7.1检测过程中如遇异常情况和意外事故应立即关机及时科室负责人报告,科室负责人及时向中心领导报告。 7.2原始数据计算根据国家、地方、卫生部等规定的法律法规对结果进行修约。 7.3实验操作完毕后使用人员注意做好仪器维护工作。 8.附录检测原始数据CMJK-JL-227

相关文档
最新文档