不等式的性质及一元二次不等式的解法讲义
1.1不等式的基本性质和一元二次不等式的解法
新课导入
前面已经了解了不等式的基本性 质,那么如何利用这些性质来接不等 式和证明不等式呢? 下面我们来看几个式子.....
x4 1) 3(x 1) (x 2) 14; 2 2 2) 6x 2 0. 4x
想一想上面两个式 子有什么特点,该如何 求解呢?
下面我们就进入今天 的内容,来看一下上面两 个式子有什么特点,以及 如何求解.....
a 6.开方(去算数根): > b > 0 n a > n b, 其中n为正整数,且n≥2. 7.a>b,c>d=>a+c>b+d. (本性质说明两个同向不等式相加,所得 的不等式和原不等式同向.) 8.a>b>0,c>d>0=>ac>bc. (本性质说明两边都是正数的同向不等式 两边分别相乘,所得的不等式和原不等式 同向.)
8000 + 8000 + (x -1) 1000 2
x,
继续解答……
即 解得 x2+15x-120<0;
-15 - 705 -15 + 705 <x< . 2 2
又由于每个阶段培训必须完成,x只能 取非负整数,所以最多可培训5个阶段.
课堂小结
1.含有一个未知数并且未知数最高次 数是二次的不等式,叫做一元一次不 等式. 2.含有一个未知数并且未知数最高次 数是二次的不等式,叫做一元二次不 等式.
考虑一下该如何解答......
解答
解:不等式两边同时乘以2得 (x-4)-6(x+1)<2(x+2)-28, 即-5x-10<2x-24, 移项整理,得-7x<-14, 两边同时乘以-1/7,不等号方向改变,得 X>2, 所以原不等式解集为{x|x>2}.
一元二次不等式的解集
一元二次不等式的解集一元二次不等式是指一个包含一个未知数的二次方程不等式。
解集指的是满足不等式条件的所有实数值的集合。
在本文中,我们将讨论一元二次不等式的性质、解法和解集的表示方法。
一、一元二次不等式的性质1. 一元二次不等式的基本形式为ax^2 + bx + c > 0或ax^2 + bx + c < 0,其中a、b、c为常数且a ≠ 0。
2. 当a > 0时,一元二次不等式的图像为开口向上的抛物线;当a < 0时,一元二次不等式的图像为开口向下的抛物线。
3. 一元二次不等式有零个、一个或两个解,解的个数取决于不等式的形式和系数的取值。
二、一元二次不等式的解法1. 通过图像法求解:通过绘制一元二次不等式的图像,可确定其解集的范围。
在绘制图像时,注意抛物线的开口方向和顶点的坐标。
2. 通过因式分解求解:对于特定的一元二次不等式,可以通过因式分解将其转化为多个一次因式相乘的形式,然后利用每个因式的符号确定不等式的解集。
3. 通过配方法求解:对于特定的一元二次不等式,可以通过配方法将其转化为一个平方差或完全平方式,然后利用平方差或完全平方式的性质求解不等式。
三、一元二次不等式解集的表示方法1. 解集的表示方法有三种常用形式:区间表示法、集合表示法和图像表示法。
a) 区间表示法:用区间形式表示解集,如(a, b)、[a, b]、(a, +∞)、(-∞, b]等。
b) 集合表示法:用集合的形式表示解集,如{x ∈ R | a < x < b}表示一个开区间。
c) 图像表示法:用图形的方式表示解集,通过绘制坐标轴上的区间来表示解集的范围。
2. 解集的界限问题:解集的上下界取决于不等式的形式和系数的取值。
对于开口向上的抛物线,解集的下界是抛物线的顶点坐标;对于开口向下的抛物线,解集的上界是抛物线的顶点坐标。
4. 解集的无解情况:有些一元二次不等式没有实数解,这意味着不等式在实数范围内不成立。
初中数学知识归纳一元二次不等式与解法
初中数学知识归纳一元二次不等式与解法初中数学知识归纳:一元二次不等式与解法一、引言初中数学学科中,一元二次不等式是一个重要的内容。
在解决实际问题和数学推理中,一元二次不等式经常被应用。
本文将对一元二次不等式的定义、性质以及解法进行详细的归纳与总结。
二、一元二次不等式的定义与性质一元二次不等式指的是包含未知数的平方项的不等式,其一般形式为:ax^2 + bx + c > 0 或 ax^2 + bx + c < 0其中,a、b、c为已知实数,且a ≠ 0。
1. 定义一元二次不等式是基于一元二次方程和不等式的概念而产生的。
不等式中的未知数仍然是x,与一元二次方程相同。
2. 性质(1)二次函数性质:一元二次不等式与一元二次方程在性质上有很多相似之处,其中关键是利用二次函数的凹凸性质进行分析。
(2)符号问题:处理不等式时需要确定不等号的方向,区别于一元二次方程需要使用等号。
三、解一元二次不等式的常用方法一元二次不等式的解法有两种常用的方法:图像法和区间法。
1. 图像法图像法基于二次函数的图像和不等式的定义,通过对二次函数图像的观察,从几何直觉的角度得出不等式的解集。
2. 区间法区间法利用了二次函数在不等式中的凹凸性质。
通过求解一元二次不等式的判别式和二次函数的极值点,将定义域划分成若干个区间,进而判定不等式的解集。
四、具体解题步骤与示例以下是一元二次不等式解题的一般步骤:1. 对齐系数,将不等式变形成标准形式(ax^2 + bx + c >0 或 ax^2 + bx + c <0)。
2. 利用图像法或区间法进行解题。
3. 在解集中找出满足题意的解。
解题示例:例题1:解不等式 x^2 + 6x > 0解答过程如下:1. 对齐系数,得到: x^2 + 6x > 02. 根据二次函数的性质,当 a > 0 时,二次函数开口向上,函数图像位于x轴上方。
因此,解集是实数集 R。
3. 综上所述,不等式 x^2 + 6x > 0 的解集为实数集 R。
一元二次不等式与基本不等式常见题型及讲解
一、引言一元二次不等式是高中数学中的重要知识点,也是考试中常见的题型之一。
掌握一元二次不等式的解法及基本不等式的运用,对于提高学生的数学水平和解题能力有着重要的作用。
本文将重点讲解一元二次不等式及基本不等式的常见题型及解题方法,希望能够帮助读者更好地理解和掌握这一知识点。
二、一元二次不等式的基本概念1. 一元二次不等式的定义一元二次不等式是形如ax^2+bx+c>0(或<0、≥0、≤0)的不等式,其中a、b、c为常数,x为未知数,且a≠0。
一元二次不等式的解就是使不等式成立的x的取值范围。
2. 一元二次不等式的常见形式一元二次不等式的常见形式包括ax^2+bx+c>0、ax^2+bx+c≥0、ax^2+bx+c<0和ax^2+bx+c≤0等,需要根据具体情况选择合适的解题方法来解决。
三、一元二次不等式的解法及常见题型1. 一元二次不等式的解法解一元二次不等式的常用方法有:利用一元二次函数的图像法、利用一元二次函数的根式关系法、利用配方法、利用因式分解法等。
需要根据具体不等式的形式和题目的要求选择合适的解题方法。
2. 一元二次不等式的常见题型及讲解(1) 一元二次不等式的根的情况讨论当一元二次不等式的根的情况为实数时,解法与一元二次方程类似,可以利用一元二次函数的图像法或根式关系法求解。
当根的情况为虚数时,需要利用配方法或因式分解法进行求解。
(2) 一元二次不等式的恒成立条件讨论对于一元二次不等式ax^2+bx+c>0(或<0、≥0、≤0),当a>0时,条件为Δ<0;当a<0时,条件为Δ>0。
根据恒成立条件的讨论,可以快速判断一元二次不等式的解的范围。
(3) 一元二次不等式的应用题针对一元二次不等式的应用题,需要根据具体问题建立相应的不等式模型,再利用所学的解题方法进行求解,并得出相应的结论。
四、基本不等式的概念及应用1. 基本不等式的定义基本不等式是指在一定条件下成立的不等式,常见的基本不等式有算术平均-几何平均不等式、柯西-施瓦兹不等式等。
一元二次不等式及解法(一)上课讲义
为
a 0
0
.
讲解范例:
变式. 1. 已知二次函数y=(m-2)x2+2(m-2)x+4 的值恒大于零,求m的取值范围.
2. 已知一元二次不等式(m-2)x2+2(m-2)x +4≤0 的解集为, 求m的取值范围.
课堂小结
求解一元二次不等式一般步骤:
1、变形:变为ax2+bx+c>0、即一端为零 且二次项系数化为正;
(2) x2-5x+6≤0 (4)-x2+2x-3>0
学点二 含参数的不等式的解法
解关于x的不等式x2-(a+1)x+a>0.
【分析】由于涉及参数字母,要分类讨论. 【解析】原不等式整理得(x-a)(x-1)>0.
学点三 一元二次不等式解集的逆向思维
已知关于x的不等式ax2+bx+c<0的解集是
2、计算判别式
3、当 0 时解方程,求根:
4、写解集:
解集规则:小于在中间,大于在两边。 (当a>0时)
恒成立问题
不等式ax2+bx+c>0对任意实数x恒成立
a0 0
不等式ax2+bx+c<0对任意实数x恒成立
a0Leabharlann 0此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
xx或2
,求xa,1b2的 值.
【分析】由于不等式的解集已知,那么-2,- 就应是方
程ax2+bx+c=0的两根.
1
2
讲解范例:
例4. 已知一元二次不等式 (m-2)x2+2(m-2)x+4>0的解集为R, 求m的取值范围.
结论:
不等式的性质及解法
不等式的性质及解法不等式是数学中的一种重要的数值关系表示形式,与等式相比,不等式更能反映数值大小之间的差异。
在实际问题中,我们经常会遇到需要确定数值范围的情况,而不等式的性质和解法则帮助我们进行准确的数值分析和解决问题。
一、不等式的基本性质1. 传递性:如果 a<b,b<c,则有 a<c。
这一性质表明不等式的关系可以在数轴上进行传递,简化了分析比较的步骤。
2. 加减性:如果 a<b,则有 a±c<b±c。
对于不等式两边同时加减同一个数,不等式的关系保持不变。
3. 乘除性:如果 a<b 并且 c>0,则有 ac<bc;如果 a<b 并且 c<0,则有ac>bc。
这一性质需要注意,当乘以负数时,不等式的关系需要取反。
4. 对称性:如果a<b,则有b>a。
不等式两边的大小关系可以互换。
二、一元不等式的解法1. 加减法解法:通过加减法将不等式转化为更简单的形式。
例如:对于不等式 2x+3>7,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
2. 乘除法解法:通过乘除法将不等式转化为更简单的形式。
同样以不等式 2x+3>7 为例,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。
3. 移项解法:利用不等式的基本性质,将所有项移到同一边,得到一个结果。
例如:对于不等式 3(x-2)>4x-7,我们可以先将右边的项移动到左边,得到 3x-6>4x-7,然后将 x 的系数移到一侧,得到 3x-4x>-7+6,化简得到 -x>-1,再乘以 -1,注意需要反转不等式的关系,得到x<1,即解集为 x<1。
4. 系数法解法:当不等式中存在系数时,我们可以通过判断系数的正负来确定解的范围。
例如:对于不等式 2x-3>0,我们观察到系数2>0,说明 x 的取值范围为正数,即解集为 x>3/2。
不等式的基本性质和解法
精锐教育学科教师辅导讲义讲义编号:学员编号: 年 级:高一 课时数:3 学员姓名: 辅导科目:数学 学科教师: 课 题 不等式的基本性质和解法 授课时间教学目标 1.不等式的基本性质能够灵活应用2.不等式的解法,包括一元二次不等式,分式不等式,绝对值不等式 重点、难点 一元二次不等式的解法考点及考试 要求一元二次不等式,绝对值不等式和分式不等式的解法教学内容一、知识要点:1.不等式的性质是证明不等式和解不等式的基础。
不等式的基本性质有: (1)对称性或反身性:a>b ⇔b<a ; (2)传递性:若a>b ,b>c ,则a>c ;(3)可加性:a>b ⇒a+c>b+c ,此法则又称为移项法则; (4)可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。
不等式运算性质:(1)同向相加:若a>b ,c>d ,则a+c>b+d ; (2)正数同向相乘:若a>b>0,c>d>0,则ac>bd 。
特例:(3)乘方法则:若a>b>0,n ∈N +,则n n b a >; (4)开方法则:若a>b>0,n ∈N +,则n1n1b a >;(5)倒数法则:若ab>0,a>b ,则b 1a 1<。
掌握不等式的性质,应注意:(1)条件与结论间的对应关系,如是“⇒”符号还是“⇔”符号; (2)不等式性质的重点是不等号方向,条件与不等号方向是紧密相连的例1:1)、5768--与的大小关系为 .2)、设1->n ,且,1≠n 则13+n 与n n +2的大小关系是 .3)已知,αβ满足11123αβαβ-+⎧⎨+⎩≤≤≤≤, 试求3αβ+的取值范围.例2.比较()21+a 与12+-a a 的大小。
例3.解关于x 的不等式m x x m +>+)2(。
7.1不等式的性质与一元二次不等式的解法
3
3
1 1 B.a<b D.lg(b-a)<0
总结:特殊值法是判断命题真假时
常用到的一个方法,说明一个命题 为假命题时,可以用特殊值法,但
不能用特殊值法肯定一个命题,只
能用所学的知识严密证明.
巩固练习
(2012 年广东汕头一模)如果 a∈R,且 a2+a<0, 那么a,a2,-a,-a2 的大小关系式为( D ) B.a2>-a>a>-a2 A.a2>a>-a2>-a C.-a>a2>a>-a2 D.-a>a2>-a2>a
1.a,b∈R,若 a-|b|>0,则下列不等式中正确的是( D ) A.b-a>0 C.a2-b2<0 B.a3+b3<0 D.b+a>0
解析:用特殊值法:取 a=1,b=0,可排除 A, B,C.
2.(2013 年广东深圳二模)设 0<a<b<1,则下列不等式 成立的是( D )
A.a >b C.ab>1
解析:(特殊值法)∵a∈R,且 a2+a<0,可得-1<a<0,不 1 1 1 1 2 2 妨令 a=-2,可得-a=2,a =4,-a =-4,故有-a>a2> -a2>a.故选 D.
题型1 一元二次不等式的解法
例 1 求不等式-x +8x-3>0 的解集. 解一元二次不等式的一般步骤是:
①化为标准形式;②确定判别式Δ的符号;③若Δ≥0,
x2+2x+a 即 >4,x∈[1,+∞)恒成立. x
∴x2-2x+a>0对a∈[-1,1]恒成立.
把g(a)=a+(x2-2x)看成a的一次函数,
则使g(a)>0对a∈[-1,1]恒成立的条件是
一元二次不等式及其解法教学讲义
一元二次不等式及其解法教学讲义ZHI SHI SHU LI知识梳理)1.一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0).(2)计算相应的判别式.(3)当Δ≥0时,求出相应的一元二次方程的根.(4)利用二次函数的图象与x轴的交点确定一元二次不等式的解集.2.三个二次之间的关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x>x2或x<x1}{x|x∈R且x≠x1}Rax2+bx+c<0 (a>0)的解集{x|x1<x<x2}∅∅ZHONG YAO JIE LUN重要结论)1.ax2+bx+c>0(a≠0)恒成立的充要条件是:a>0且b2-4ac<0(x∈R).2.ax2+bx+c<0(a≠0)恒成立的充要条件是:a<0且b2-4ac<0(x∈R).注意:在题目中没有指明不等式为二次不等式时,若二次项系数中含有参数,应先对二次项系数为0的情况进行分析,检验此时是否符合条件. 3.二次不等式解集的“边界值”是相应二次方程的根. 4.简单分式不等式的解法 (1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )·g (x )≥0(≤0)g (x )≠0. 5.简单的指数与对数不等式的解法 (1)若a >1,a f (x )>a g (x )⇔f (x )>g (x ); 若0<a <1,a f (x )>a g (x )⇔f (x )<g (x ).(2)若a >1,log a f (x )>log a g (x )⇔f (x )>g (x )>0; 若0<a <1,log a f (x )>log a g (x )⇔0<f (x )<g (x ).SHUANG JI ZI CE双基自测 )1.不等式(x -1)(2-x )≥0的解集为( A ) A .{x |1≤x ≤2} B .{x |x ≤1或x ≥2} C .{x |1<x <2}D .{x |x <1或x >2}[解析] 由(x -1)(2-x )≥0可知(x -2)(x -1)≤0,所以不等式的解集为{x |1≤x ≤2}.故选A . 2.不等式1-x2+x ≥0的解集为( B )A .[-2,1]B .(-2,1]C .(-∞,-2)∪(1,+∞)D .(-∞,-2]∪(1,+∞)[解析] 原不等式化为⎩⎪⎨⎪⎧(1-x )(2+x )≥0,2+x ≠0,即⎩⎪⎨⎪⎧(x -1)(x +2)≤0x +2≠0,所以-2<x ≤1.故选B . 3.(教材改编)不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是( D )A .10B .-10C .14D .-14[解析] 由题意知-12,13是ax 2+bx +2=0的两根,则a =-12,b =-2,所以a +b =-14.4.(2018·山东烟台期中)若集合M ={x |x 2+x -12≤0},N ={y |y =3x ,x ≤1},则集合{x |x ∈M 且x ∉N }等于( D ) A .(0,3] B .[-4,3] C .[-4,0)D .[-4,0][解析] M =[-4,3],N =(0,3], ∴{x |x ∈M 且x ∉N }=[-4,0],故选D .5.若不等式(a -3)x 2+2(a -3)x -4<0对一切x ∈R 恒成立,则实数a 取值的集合为( D ) A .(-∞,3) B .(-1,3) C .[-1,3]D .(-1,3] [解析] 当a =3时,-4<0恒成立;当a ≠3时,⎩⎪⎨⎪⎧a <3,Δ=4(a -3)2+16(a -3)<0,解得-1<a <3.所以-1<a ≤3.6.(2018·山东烟台联考)不等式x >1x的解集为(-1,0)∪(1,+∞).[解析] 当x >0时,原不等式等价于x 2>1,解得x >1;当x <0时,原不等式等价于x 2<1,解得-1<x <0.所以不等式x >1x 的解集为(-1,0)∪(1,+∞).考点1 一元二次不等式的解法——多维探究角度1 不含参数的不等式例1 解下列不等式 (1)-2x 2+x +3<0; (2)x 2-2x +2>0; (3)2x -13-4x≥1. [分析] (1)将二次项系数化为正数,变为2x 2-x -3>0,求方程2x 2-x -3=0的根,若无根,则解集为R ,若有根,则按“小于取中间,大于取两边”写出解集; (3)移项通分化为f (x )g (x )>0的形式,进而化为f (x )·g (x )>0求解.[解析] (1)化-2x 2+x +3<0为2x 2-x -3>0,∴(x +1)(2x -3)>0,即(x +1)(x -32)>0,∴x >32或x <-1,∴原不等式的解集为(-∞,-1)∪(32,+∞).(2)因为Δ<0,所以方程x 2-2x +2=0无实数解,而y =x 2-2x +2的图象开口向上,可得原不等式x 2-2x +2>0的解集为R .(3)化2x -13-4x ≥1为6x -43-4x ≥0,即3x -24x -3≤0,∴(3x -2)(4x -3)≤0,且x ≠34,即(x -23)(x -34)≤0(且x ≠34)∴原不等式的解集为{x |23≤x <34}.名师点拨 ☞解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 角度2 含参数的不等式例2 解下列关于x 的不等式: (1)ax 2-(a +1)x +1<0(a ∈R ); (2)x 2-2ax +2≤0(a ∈R );[分析] (1)因二次项系数含有字母,故需对其符号分类求解,即讨论a 与0的关系,并注意根的大小关系,即讨论1a 与1的关系,故需分a <0,a =0,0<a <1,a =1,a >1五种情况求解;(2)由于系数中含有字母,故需考虑对应的方程有无实根,以及有根时根的大小关系; [解析] (1)若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,则原不等式等价于(x -1a )(x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于(x -1a)(x -1)<0.①当a =1时,1a =1,(x -1a )(x -1)<0无解;②当a >1时,1a <1,解(x -1a )(x -1)<0得1a <x <1;③当0<a <1时,1a >1,解(x -1a )(x -1)<0得1<x <1a.综上所述:当a <0时,解集为{x |x <1a 或x >1};当a =0时,解集为{x |x >1};当0<a <1时,解集为{x |1<x <1a };当a =1时,解集为∅;当a >1时,解集为{x |1a <x <1}.(2)对于方程x 2-2ax +2=0,因为Δ=4a 2-8,所以当Δ<0,即-2<a <2时,x 2-2ax +2=0无实根.又二次函数y =x 2-2ax +2的图象开口向上,所以原不等式的解集为∅; 当Δ=0,即a =±2时,x 2-2ax +2=0有两个相等的实根, 当a =2时,原不等式的解集为{x |x =2}, 当a =-2时,原不等式的解集为{x |x =-2};当Δ>0,即a >2或a <-2时,x 2-2ax +2=0有两个不相等的实根,分别为x 1=a -a 2-2,x 2=a +a 2-2,且x 1<x 2,所以原不等式的解集为{x |a -a 2-2≤x ≤a +a 2-2}.综上,当a >2或a <-2时,解集为{x |a -a 2-2≤x ≤a +a 2-2};当a =2时,解集为{x |x =2};当a =-2时,解集为{x |x =-2};当-2<a <2时,解集为∅.名师点拨 ☞含参数的不等式的求解往往需要分类讨论(1)若二次项系数为常数,可先考虑分解因式,再对根的大小分类讨论(分点由x 1=x 2确定);若不易分解因式,且判别式符号确定,可考虑求根公式,以便写出解集,若判别式符号不能确定,则需对判别式分类讨论(分点由Δ=0确定).(2)若二次项系数为参数,则应先考虑二次项系数是否为零,然后讨论二次项系数大于零、小于零,以便确定解集形式.(3)解简单分式不等式是通过移项、通分化为整式不等式求解,要注意分母不能为零. (4)解简单的指数、对数不等式时,若底含有参数,则需对其是否大于1分类求解,注意对数的真数必须为正.〔变式训练1〕(1)(角度1)(2018·陕西部分学校摸底检测)已知集合U =Z ,集合A ={x ∈Z |3≤x <7},B ={x ∈Z |x 2-7x +10>0},则A ∩(∁U B )=( A ) A .{3,4,5} B .{2,3,4,5} C .{4,5}D .{2,3,4}(2)(角度1)不等式x -12x +1≤1的解集为{x |x >-12或x ≤-2}.(3)(角度2)解不等式x 2-(a +1)x +a <0(a ∈R )[解析] (1)∵A ={3,4,5,6},B ={x ∈Z |x >5或x <2},∴∁U B ={2,3,4,5},∴A ∩(∁U B )={3,4,5},故选A .(2)x -12x +1≤1⇔x -12x +1-1≤0⇔-x -22x +1≤0⇔x +22x +1≥0. x +22x +1≥0⇔⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0,解得{x |x >-12或x ≤-2}.(3)由x 2-(a +1)x +a =0,得(x -a )(x -1)=0, ∴x 1=a ,x 2=1,①当a >1时,x 2-(a +1)x +a <0的解集为{x |1<x <a }, ②当a =1时,x 2-(a +1)x +a <0的解集为∅, ③当a <1时,x 2-(a +1)x +a <0的解集为{x |a <x <1}.考点2 三个二次间的关系——师生共研例3 (1)(2018·重庆模拟)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( A ) A .52B .72C .154D .152(2)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( A ) A .(-235,+∞)B .(-235,1]C .(1,+∞)D .(-∞,-235][分析] (1)思路一:利用根与系数的关系求解.思路二:因为a >0,可解方程x 2-2ax -8a 2=0,得两根x 1,x 2,代入x 2-x 1=15求解;(2)令f (x )=x 2+ax -2,Δ=a 2+8>0恒成立,又两根之积为负值,所以只要f (1)≥0或f (1)<0且f (5)>0,于是得解;思路二:“正难则反”,求x 2+ax -2≤0在区间[1,5]上恒成立的a 的取值集合,只需f (5)≤0,再求其补集即可;思路三:分离参数.[解析] (1)解法一:由题意知x 1,x 2是方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.又x 2-x 1=15,∴(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=4a 2+32a 2=36a 2=152.∵a >0,∴a =156=52,故选A . 解法二:由x 2-2ax -8a 2=(x +2a )(x -4a )<0,∵a >0,∴不等式的解集为(-2a,4a ). 又不等式的解集为(x 1,x 2),∴x 1=-2a ,x 2=4a .∴x 2-x 1=4a -(-2a )=6a =15,∴a =52,故选A .(2)令f (x )=x 2+ax -2,则Δ=a 2+8>0,∴方程f (x )=0,有两个不等实根,又两根之积为负,∴方程有一正根和一负根. 解法一:不等式x 2+ax -2>0在区间[1,5]上有解,只要f (1)≥0或⎩⎨⎧f (1)<0,f (5)>0.解得a ≥1或-235<a <1. ∴a 的取值范围是(-235,+∞),故选A .解法二:不等式x 2+ax -2≤0在[1,5]上恒成立,只要f (5)≤0,即25+5a -2≤0,解得a ≤-235,∴不等式x 2+ax -2>0在区间(1,5]上有解的a 的取值范围是(-235,+∞). [引申]若不等式x 2+ax -2<0在区间[1,5]上有解,则a 的取值范围是(-∞,1).[解析] 由例3(2)的解析知,不等式x 2+ax -2<0在区间[1,5]上有解,a <2x -x ,x ∈[1,5]有解,显然g (x )=2x -x 在[1,5]上递减,g max (x )=g (1)=1,∴a <1.名师点拨 ☞已知不等式的解集,等于知道了与之对应方程的根,此时利用韦达定理或判别式即可求出参数的值或范围,为简化讨论注意数形结合,如本例(2)中对应的二次函数图象过点(0,-2). 〔变式训练2〕(1)已知不等式ax 2-bx -1≥0的解集是[-12,-13],则不等式x 2-bx -a <0的解集是( A )A .(2,3)B .(-∞,2)∪(3,+∞)C .(13,12)D .(-∞,13)∪(12,+∞)(2)(2018·九江模拟)若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( A ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞)D .(-∞,-6)[解析] (1)依题意,-12与-13是方程ax 2-bx -1=0的两根,则⎩⎨⎧b a =-12-13,-1a =-12×(-13),即⎩⎨⎧b a =-56,1a =-16,又a <0,不等式x 2-bx -a <0可化为1a x 2-ba x -1>0,即-16x 2+56x -1>0,即x 2-5x +6<0,解得2<x <3.故选A .(2)解法一:由函数f (x )=x 2-4x -2-a 图象的对称轴为x =2.∴不等式x 2-4x -2-a >0在区间(1,4)内有解⇔f (4)>0,即a <-2,故选A .解法二:(分离参数法)不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈(1,4),∴g (x )<g (4)=-2,∴a <-2.故选A .考点3 一元二次不等式恒成立问题——师生共研例4 已知f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求实数m 的取值范围; (3)若对于|m |≤1,f (x )<0恒成立,求实数x 的取值范围.[分析] (1)二次项系数含有字母m ,应分m =0和m ≠0讨论求解;(2)数形结合,分类讨论;(3)把二次不等式转化为含m 的一次不等式,根据一次函数的性质求解. [解析] (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0.所以m 的取值范围为(-4,0]. (2)要使f (x )<-m +5在[1,3]上恒成立, 只需mx 2-mx +m <6恒成立(x ∈[1,3]), 又因为x 2-x +1=(x -12)2+34>0,所以m <6x 2-x +1.令y =6x 2-x +1=6(x -12)2+34.因为t =(x -12)2+34在[1,3]上是增函数,所以y =6x 2-x +1在[1,3]上是减函数.因此函数的最小值y min =67.所以m 的取值范围是(-∞,67).(3)将不等式f (x )<0整理成关于m 的不等式为(x 2-x )m -1<0. 令g (m )=(x 2-x )m -1,m ∈[-1,1].则⎩⎨⎧g (-1)<0,g (1)<0即⎩⎪⎨⎪⎧-x 2+x -1<0,x 2-x -1<0,解得1-52<x <1+52,即x 的取值范围为(1-52,1+52).名师点拨 ☞一元二次不等式恒成立问题1.在R 上恒成立(1)一元二次不等式ax 2+bx +c >0(或≥0)对于一切x ∈R 恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0(或≤0). (2)一元二次不等式ax 2+bx +c <0(或≤0)对于一切x ∈R 恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0(或≤0). 2.在给定某区间上恒成立(1)当x ∈[m ,n ],f (x )=ax 2+bx +c ≥0恒成立,结合图象,只需f (x )min ≥0即可; (2)当x ∈[m ,n ],f (x )=ax 2+bx +c ≤0恒成立,只需f (x )max ≤0即可.3.解决恒成立问题一定要搞清谁是自变量,谁是参数.一般地,知道谁的范围,谁就是自变量,求谁的范围,谁就是参数.4.“不等式f (x )≥0有解(或解集不空)的参数m 的取值集合”是“f (x )<0恒成立的参数m 取值集合”的补集;“f (x )>0的解集为∅”即“f (x )≤0恒成立.” 注意:ax 2+bx +c >0恒成立⇔⎩⎨⎧ a =b =0c >0或⎩⎨⎧a >0Δ=b 2-4ac <0; ax 2+bx +c <0恒成立⇔⎩⎨⎧ a =b =0c <0或⎩⎨⎧a <0Δ=b 2-4ac <0.〔变式训练3〕(1)(2018·甘肃天水月考)若不等式ax 2+2ax -4<2x 2+4x 对任意实数x 均成立,则实数a 的取值范围是( B ) A .(-2,2)B .(-2,2]C .(-∞,-2)∪[2,+∞)D .(-∞,2](2)(2018·山西忻州第一中学模拟)已知关于x 的不等式x 2-4x ≥m 对任意的x ∈(0,1]恒成立,则有( A ) A .m ≤-3 B .m ≥-3 C .-3≤m <0D .m ≥-4(3)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( B ) A .{x |1<x <3} B .{x |x <1或x >3} C .{x |1<x <2}D .{x |x <1或x >2}[解析] (1)不等式ax 2+2ax -4<2x 2+4x ,可化为(a -2)x 2+2(a -2)x -4<0,当a -2=0,即a =2时,不等式恒成立,符合题意;当a -2≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧a -2<0,Δ<0,解得-2<a <2.所以a 的取值范围为(-2,2].故选B .(2)令f (x )=x 2-4x ,x ∈(0,1],∵f (x )图象的对称轴为直线x =2,∴f (x )在(0,1]上单调递减,∴当x =1时,f (x )取得最小值-3,∴m ≤-3,故选A .(3)记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B .。
高中数学知识点不等式的性质及解法
高中数学知识点不等式的性质及解法高中数学中,不等式的性质及解法是一个重要的知识点。
它涉及到不等式的基本性质、不等式的加减乘除、不等式的等价变形以及一元一次不等式、一元二次不等式等不等式类型的解法。
下面将详细介绍不等式的性质及解法。
一、不等式的性质1.两边加减同一个数不等号方向不变。
2.两边乘除同一个正数不等号方向不变,同一个负数不等号方向改变。
3.如果两个不等式成立,则它们的和、差、乘积、商仍然成立。
4.如果两个不等式的符号方向相反,求和时不等式方向不确定,求差时等式方向不确定,求积时反而求商时等式方向相反。
5.无论何时,两边加上相等的数,不等式的大小不变。
二、一元一次不等式对于一元一次不等式,常规的解法是将其转化为等价的不等式进行求解。
具体步骤如下:1. 化简:将不等式中的所有项移到一边,化简为标准形式ax+b<0或ax+b>0。
2.等价变形:根据不等式的性质,进行乘除法或加减法,将不等式变形为更简单的形式。
3.解不等式:根据等价变形后的不等式,确定x的取值范围。
三、一元二次不等式对于一元二次不等式,可以利用抛物线的性质进行求解。
具体分为以下几种情况:1.一元二次不等式的根在抛物线的两侧,此时,可以通过求解抛物线与x轴的交点来确定不等式的解集。
2.一元二次不等式的根在抛物线上,此时,可以通过根的位置确定抛物线在不等式中的符号。
3.一元二次不等式的根在抛物线的一侧,此时,可以根据抛物线的开口方向来确定不等式的解集。
四、综合应用在实际问题中,不等式的应用非常广泛,比如在经济学、物理学、生物学等领域中的一些实际问题往往可以转化为不等式进行求解。
这时候,除了要掌握不等式的基本性质和解法外,还需要注意问题的本质,合理进行变量的定义和范围的确定。
综上所述,不等式的性质及解法在高中数学中占据很重要的地位。
掌握不等式的基本性质,熟悉不等式的加减乘除运算,能够灵活运用不等式的等价变形以及一元一次不等式、一元二次不等式的解法,对于提高解题能力和培养数学思维都非常有帮助。
初中数学不等式的性质与解法知识点总结
初中数学不等式的性质与解法知识点总结在初中数学中,不等式是一个重要的概念,它涉及到比较大小的关系。
本文将对初中数学不等式的性质和解法进行总结和归纳,帮助读者更好地理解和掌握这一知识点。
一、不等式的基本性质不等式的基本性质是我们研究不等式的基础,以下为不等式的基本性质总结:1. 加减性质:若a>b,则a+c>b+c,a-c>b-c。
即不等式两边同时加(减)一个数,不等号方向不变。
2. 正数性质:若a>b且c>0,则ac>bc。
即不等式两边同时乘以一个正数,不等号方向不变。
3. 负数性质:若a>b且c<0,则ac<bc。
即不等式两边同时乘以一个负数,不等号方向改变。
4. 乘法性质:若a>b且c>d,则ac>bd。
即不等式两边同时乘以不等的两个数,不等号方向可能改变。
以上是不等式的一些基本性质,掌握这些性质对于后续解不等式问题非常重要。
二、一次不等式的解法一次不等式是指不等式中只含有一次幂的变量,下面将介绍一次不等式的解法。
1. 消去绝对值:若|x-a|<b,则-a<x<a。
若|x-a|>b,则x<-a或x>a。
2. 倍增倍减法:若ax+b>c,则x>(c-b)/a。
若ax+b<c,则x<(c-b)/a。
3. 区间法:对于一次不等式ax+b≥0或ax+b≤0,首先找到使ax+b=0的x值,分割数轴,解出x属于哪个区间。
对于不等号方向相反的情况,解法类似。
以上是一次不等式的解法,掌握这些方法可以帮助我们快速解决一次不等式的问题。
三、二次不等式的解法二次不等式是指不等式中含有二次项的变量,下面将介绍二次不等式的解法。
1. 因式分解法:将二次不等式转化为因式相乘的形式,然后求出各个因子的符号条件,最后得出解的范围。
2. 图像法:将二次不等式转化为对应的二次函数的图像,通过观察图像得出解的范围。
不等式的基本性质和一元二次不等式的解法
我们知道,二次函数322--=x x y 的图像是一条开口向上的抛物线,它与x 轴有两个交点,由方程0322=--x x 的解可得交点的横坐标分别是1-=x ,3=x ,容易看出,当31>-<x x 或时上述函数的图像在x 轴上方,0322>--x x ;当31<<-x 时,上述函数的图像在x 轴下方,即0322<--x x ,于是可得不等式解集为}31|{<<-x x 。
[说明]解法一中解两个一元一次不等式组中涉及的“或”和“且”的关系可用集合中的交集和并集来说明。
解法三利用二次函数的图象更加直观,清晰,是高中阶段解一元二次不等式的主要方法。
例1.利用二次函数图像解下列不等式。
(1)0322<--x x(2)0442>+-x x练习:解下列不等式:(1)2x 2-3x-2≥0 (2)-3x 2+x+1>0 (3)9x 2+6x+1>0 (4)4x-x 2<5 (5)2x 2+x+1≤0(二)一元二次不等式的解法一般的一元二次不等式可利用一元二次方程02=++c bx ax 与二次函数c bx ax y ++=2的有关性质求解,具体见下表:0>a ,ac b 42-=∆ 0>∆ 0=∆ 0<∆ 二次函数c bx ax y ++=2的图象一元二次方程 02=++c bx ax的根有两实根21x x x x ==或 有两个相等的实根ab x x x 221-===无实根一元二次不等不等式02>++c bx ax的解集}|{21x x x x x ><或}|{1x x x ≠Ryx0 -1 32|a a -<(a R ∈)20aa -<-。
专题2.1 不等式的性质及常见不等式解法(精讲)(解析版)
专题2.1 不等式的性质及常见不等式解法【考纲要求】1.不等关系:了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式:(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式.3.会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c 型不等式.4.掌握不等式||a|-|b||≤|a+b|≤|a|+|b|及其应用.5.培养学生的数学抽象、数学运算、数学建模、逻辑推理等核心数学素养.【知识清单】1.实数的大小(1)数轴上的任意两点中,右边点对应的实数比左边点对应的实数大.(2)对于任意两个实数a和b,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b.2.不等关系与不等式我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些符号的式子,叫做不等式.3.不等式的性质(1)性质1:如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)性质2:如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)性质3:如果a>b,那么a+c>b+c.(4)性质4:①如果a>b,c>0那么ac>bc.②如果a>b,c<0,那么ac<bc.(5)性质5:如果a>b,c>d,那么a+c>b+d.(6)性质6:如果a >b >0,c >d >0,那么ac >bd . (7)性质7:如果a >b >0,那么a n >b n ,(n ∈N ,n ≥2). (8)性质8:如果a >b >0,那么n a >nb ,(n ∈N ,n ≥2). 4.一元二次不等式的概念及形式(1)概念:我们把只含有一个未知数,并且知数的最高次数是2的不等式,称为一元二次不等式. (2)形式:①ax 2+bx +c >0(a ≠0); ②ax 2+bx +c ≥0(a ≠0); ③ax 2+bx +c <0(a ≠0); ④ax 2+bx +c ≤0(a ≠0).(3)一元二次不等式的解集的概念:一般地,使某个一元二次不等式成立的x 的值叫做这个不等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次不等式的解集. 5.分式不等式的解法定义:分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为__分式不等式__. f (x )g (x )>0⇔f (x )g (x )__>__0,f (x )g (x )<0⇔f (x )·g (x )__<__0. f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x ) ≥ 0,g (x )≠0. ⇔f (x )·g (x )__>__0或⎩⎪⎨⎪⎧ f (x )=0g (x )≠0.f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x ) ≤ 0,g (x )≠0⇔f (x )·g (x )__<__0或⎩⎪⎨⎪⎧f (x )=0g (x )≠0. 6.简单的高次不等式的解法高次不等式:不等式最高次项的次数高于2,这样的不等式称为高次不等式. 解法:穿根法①将f (x )最高次项系数化为正数;②将f (x )分解为若干个一次因式的积或二次不可分因式的积;③将每一个一次因式的根标在数轴上,自上而下,从右向左依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根穿过);④观察曲线显现出的f (x )的值的符号变化规律,写出不等式的解集. 7.不等式恒成立问题 1.一元二次不等式恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧ a >0Δ<0;(2)ax 2+bx +c ≥0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧ a >0Δ≤0;(3)ax 2+bx +c <0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧a <0Δ<0;(4)ax 2+bx +c ≤0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧a <0Δ≤0.2.含参数的一元二次不等式恒成立.若能够分离参数成k <f (x )或k >f (x )形式.则可以转化为函数值域求解. 设f (x )的最大值为M ,最小值为m .(1)k <f (x )恒成立⇔k <m ,k ≤f (x )恒成立⇔k ≤m . (2)k >f (x )恒成立⇔k >M ,k ≥f (x )恒成立⇔k ≥M . 8.绝对值不等式的解法1.形如|ax +b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解. 2.形如|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式 (1)绝对值不等式|x|>a 与|x|<a 的解集(2)|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法|ax +b|≤c ⇔-c≤ax +b≤c (c>0),|ax +b|≥c ⇔ax +b≥c 或ax +b≤-c(c>0). 9.绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab≥0时,等号成立.【考点梳理】考点一 :用不等式表示不等关系【典例1】某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本,若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元? 【答案】见解析【解析】提价后杂志的定价为x 元,则销售的总收入为(8-x -2.50.1×0.2)x 万元,那么不等关系“销售的收入不低于20万元”用不等式可以表示为:(8-x -2.50.1×0.2)x ≥20.【规律总结】用不等式(组)表示实际问题中不等关系的步骤:①审题.通读题目,分清楚已知量和待求量,设出待求量.找出体现不等关系的关键词:“至少”“至多”“不少于”“不多于”“超过”“不超过”等.②列不等式组:分析题意,找出已知量和待求量之间的约束条件,将各约束条件用不等式表示.【变式探究】某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.试写出满足上述所有不等关系的不等式. 【答案】见解析 【解析】分析:应先设出相应变量,找出其中的不等关系,即①两种钢管的总长度不能超过4 000 mm ;②截得600 mm 钢管的数量不能超过500 mm 钢管数量的3倍;③两种钢管的数量都不能为负.于是可列不等式组表示上述不等关系.详解:设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根,依题意,可得不等式组:⎩⎪⎨⎪⎧500x +600y ≤4 0003x ≥yx ≥0y ≥0,即⎩⎪⎨⎪⎧5x +6y ≤403x ≥y x ≥0y ≥0考点二:比较数或式子的大小【典例2】(1)比较x 2+y 2+1与2(x +y -1)的大小; (2)设a ∈R 且a ≠0,比较a 与1a 的大小.【答案】见解析【解析】 (1)x 2+y 2+1-2(x +y -1)=x 2-2x +1+y 2-2y +2=(x -1)2+(y -1)2+1>0, ∴x 2+y 2+1>2(x +y -1). (2)由a -1a =(a -1)(a +1)a当a =±1时,a =1a;当-1<a <0或a >1时,a >1a ;当a <-1或0<a <1时,a <1a.【领悟技法】 1.比较大小的常用方法 (1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、通分、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论. (3)函数的单调性法将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. 【变式探究】已知x <y <0,比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小. 【答案】见解析【解析】∵x <y <0,xy >0,x -y <0,∴(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=-2xy (x -y )>0, ∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ). 考点三:不等式性质的应用【典例3】(2020·黑龙江省佳木斯一中高一期中(理))对于任意实数a b c d ,,,,下列正确的结论为( ) A .若,0a b c >≠,则ac bc >; B .若a b >,则22ac bc >; C .若a b >,则11a b <; D .若0a b <<,则b a a b<. 【答案】D 【解析】A :根据不等式的基本性质可知:只有当0c >时,才能由a b >推出ac bc >,故本选项结论不正确;B :若0c时,由a b >推出22ac bc =,故本选项结论不正确;C :若3,0a b ==时,显然满足a b >,但是1b没有意义,故本选项结论不正确; D :22()()b a b a b a b a a b ab ab-+--==,因为0a b <<,所以0,0,0b a ab a b ->>+<, 因此0b a b aa b a b-<⇒<,所以本选项结论正确. 故选:D【典例4】 若a =ln33,b =ln44,c =ln55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 【答案】B【解析】方法一 易知a ,b ,c 都是正数, b a =3ln44ln3=log 8164<1,所以a >b ; b c =5ln44ln5=log 6251 024>1,所以b >c .即c <b <a . 方法二 对于函数y =f (x )=ln xx ,y ′=1-ln x x2, 易知当x >e 时,函数f (x )单调递减. 因为e <3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .【典例5】设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4”,则f (-2)的取值范围是 . 【答案】[5,10]【解析】方法一(待定系数法)设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数), 则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b ,于是得⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. 方法二(解方程组法)由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b , ⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.【规律总结】1.判断不等式的真假.(1)首先要注意不等式成立的条件,不要弱化条件.(2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.(3)若要判断某结论正确,应说明理由或进行证明,推理过程应紧扣有关定理、性质等,若要说明某结论错误,只需举一反例. 2.证明不等式(1)要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推证时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则. 3.求取值范围(1)建立待求范围的代数式与已知范围的代数式的关系,利用不等式的性质进行运算,求得待求的范围. (2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.4.掌握各性质的条件和结论.在各性质中,乘法性质的应用最易出错,即在不等式的两边同时乘(除)以一个数时,必须能确定该数是正数、负数或零,否则结论不确定. 【变式探究】1.(2020·陕西省西安中学高二期中(文))已知0a b <<,则下列不等式成立的是 ( ) A .22a b < B .2a ab <C .11a b< D .1ba< 【答案】D 【解析】22a b -=22)()0,,a b a b a b +->∴>(所以A 选项是错误的. 2a ab -=2()0,.a a b a ab ->∴>所以B 选项是错误的.11a b -=110,.b a ab a b ->∴>所以C 选项是错误的. 1b a -=0, 1.b a b a a -<∴<所以D 选项是正确的. D 故选:.2. (2020·江西省崇义中学高一开学考试(文))下列结论正确的是( ) A .若ac bc >,则a b >B .若88a b >,则a b >C .若a b >,0c <,则ac bc <D <a b >【答案】C 【解析】对于A 选项,若0c <,由ac bc >,可得a b <,A 选项错误;对于B 选项,取2a =-,1b =,则88a b >满足,但a b <,B 选项错误; 对于C 选项,若a b >,0c <,由不等式的性质可得ac bc <,C 选项正确;对于D a b >,D 选项错误.故选:C. 3.已知12<a <60,15<b <36,求a -b 及ab的取值范围.【错解】∵12<a <60,15<b <36,∴12-15<a -b <60-36,1215<a b <6036,∴-3<a -b <24,45<a b <53.【辨析】错解中直接将12<a <60,15<b <36相减得a -b 的取值范围,相除得ab 的取值范围而致错.【正解】∵15<b <36,∴-36<-b <-15.∴12-36<a -b <60-15, 即-24<a -b <45.又15<b <36,∴136<1b <115.又12<a <60,∴1236<a b <6015,即13<a b <4.综上,-24<a -b <45,13<ab <4.【易错警示】错用不等式的性质致错. 考点四:一元二次不等式的解法【典例6】(2020·全国高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D. 【规律方法】1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式. (3)对方程的根进行讨论,比较大小,以便写出解集. 【易错警示】忽视二次项系数的符号致误 【变式探究】1.(2019·全国高考真题(理))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .2. (2020·黑龙江省大庆实验中学高三一模(文))已知集合1|03x A x x -⎧⎫=≥⎨⎬-⎩⎭,集合{|15}B x N x =∈-≤≤,则A B =( )A .{0,1,4,5}B .{0,1,3,4,5}C .{1,0,1,4,5}-D .{1,3,4,5}【答案】A 【解析】 因为集合{1|033x A x x x x -⎧⎫=≥=⎨⎬-⎩⎭或}1x ≤, 集合{|15}{0,1,2,3,4,5}B x N x =∈-≤≤=,所以A B ={0,1,4,5}.故选:A考点五:绝对值不等式的解法【典例7】(2020·江苏省高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x <<所以解集为:2(2,)3-【典例8】(2020·周口市中英文学校高二月考(文))(1)求不等式|x -1|+|x +2|≥5的解集;(2)若关于x 的不等式|ax -2|<3的解集为51|33x x ⎧⎫-<<⎨⎬⎩⎭,求a 的值.【答案】(1) {x |x ≤-3或x ≥2} (2) a =-3 【解析】(1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3; 当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-1<ax <5. 当a >0时,15x a a -<< , 153a -=-,且513a =无解; 当a =0时,x ∈R ,与已知条件不符; 当a <0时,51x a a <<-,553a =-,且113a -=, 解得a =-3. 【规律方法】形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a|+|x -b|>c(c>0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a|+|x -b|≥|x-a -(x -b)|=|a -b|.(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解. 【变式探究】1.(2017天津,文2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥,则2x ≤,11x -≤,则111,02x x -≤-≤≤≤,{}{}022x x x x ≤≤⊂≤ ,据此可知:“20x -≥”是“11x -≤”的的必要的必要不充分条件,本题选择B 选项. 2.(2014·广东高考真题(理))不等式的解集为 .【答案】(][),32,-∞-⋃+∞. 【解析】令()12f x x x =-++,则()21,2{3,2121,1x x f x x x x --<-=-≤≤+>,(1)当2x <-时,由()5f x ≥得215x --≥,解得3x ≤-,此时有3x ≤-; (2)当21x -≤≤时,()3f x =,此时不等式无解;(3)当1x >时,由()5f x ≥得215x +≥,解得2x ≥,此时有2x ≥; 综上所述,不等式的解集为(][),32,-∞-⋃+∞.考点六:绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.【典例9】(2020·陕西省西安中学高二期中(理))已知不等式53m x x ≤-+-对一切x ∈R 恒成立,则实数m 的取值范围为( ) A .2m ≤B .2m ≥C .8m ≤-D .8m ≥-【答案】A【解析】()()-+-≥---=,∴根据题意可得2x x x x53532m≤.故选:A【典例10】(2018年理新课标I卷)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.【总结提升】1.两类含绝对值不等式的证明问题一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值符号转化为常见的不等式证明题,或利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.2.含绝对值不等式的应用中的数学思想(1)利用“零点分段法”求解,体现了分类讨论的思想;(2)利用函数的图象求解,体现了数形结合的思想.3.求f(x)=|x+a|+|x+b|和f(x)=|x+a|-|x+b|的最值的三种方法(1)转化法:转化为分段函数进而利用分段函数的性质求解.(2)利用绝对值三角不等式进行“求解”,但要注意两数的“差”还是“和”的绝对值为定值. (3)利用绝对值的几何意义. 【变式探究】1.(2020·宁夏回族自治区高三其他(理))已知函数()|21||2|f x x x =-+-. (1)若()4f x <,求实数x 的取值范围;(2)若对于任意实数x ,不等式()|21|f x a >-恒成立,求实数a 的值范围.【答案】(1) 17,33⎛⎫- ⎪⎝⎭;(2) 15,44⎛⎫- ⎪⎝⎭【解析】(1)由题,()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩;当12x ≤时,334x -+<,解得1132x -<≤;当122x <<时,14x +<恒成立,解得122x <<; 当2x ≥时,334x -<,解得723x ≤<.综上有3137x -<<.故实数x 的取值范围为17,33⎛⎫- ⎪⎝⎭(2)因为()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩,当12x ≤时,()1322f x f ⎛⎫≥= ⎪⎝⎭;当122x <<时,()332f x <<;当2x ≥时,()()23f x f ≥=. 故()f x 的最小值为32.故3212a -<,即332122a -<-<,解得1544a -<<.故实数a 的值范围为15,44⎛⎫-⎪⎝⎭2.已知函数f(x)=|x−1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(ba).【答案】(1) {x|x≤−5或x≥3} (2)见解析【解析】(1)f(x)+f(x+4)=|x−1|+|x+3|={−2x−2,x<−3, 4,−3≤x≤1, 2x+2,x>1,当x<−3时,由−2x−2≥8,解得x≤−5;当−3≤x≤1时,f(x)≥8不成立;当x>1时,由2x+2≥8,解得x≥3.所以不等式f(x)+f(x+4)≥8的解集为{x|x≤−5或x≥3}.(2)f(ab)>|a|f(ba),即|ab−1|>|a−b|.因为|a|<1,|b|<1,所以|ab−1|2−|a−b|2=(a2b2−2ab+1)−(a2−2ab+b2)=(a2−1)(b2−1)>0,所以|ab−1|>|a−b|,故所证不等式成立.。
高考数学一轮复习 第6章 不等式 第1讲 不等关系与不等式的性质及一元二次不等式讲义 理(含解析)-
第六章不等式第1讲不等关系与不等式的性质及一元二次不等式[考纲解读] 1.不等式性质是进行变形、证明、解不等式的依据,掌握不等式关系与性质及比较大小的常用方法:作差法与作商法.(重点)2.能从实际情景中抽象出一元二次不等式模型,通过函数图象了解一元二次不等式与相应的二次函数,一元二次方程之间的联系,能解一元二次不等式.(重点、难点)[考向预测] 从近三年高考情况来看,本讲是高考中的一个热点内容,但一般不会单独命题.预测2020年将会考查:利用不等式的性质判断结论的成立性,求参数的取值X围;一元二次不等式的解法,对含参数的二次不等式的分类讨论等.命题时常将不等式与函数的单调性相结合.试题一般以客观题的形式呈现,属中、低档题型.1.两个实数比较大小的依据2.不等式的基本性质3.必记结论 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d. (4)0<a <x <b 或a <x <b <0⇒1b <1x <1a.(5)若a >b >0,m >0,则b a <b +ma +m; b a >b -m a -m (b -m >0);a b >a +m b +m ; a b <a -m b -m(b -m >0). 4.一元二次函数的三种形式(1)一般式:□01y =ax 2+bx +c (a ≠0). (2)顶点式:□02y =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a ≠0). (3)两根式:□03y =a (x -x 1)(x -x 2)(a ≠0). 5.三个二次之间的关系1.概念辨析(1)a>b⇔ac2>bc2.( )(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( )(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( )(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()答案(1)×(2)√(3)×(4)×2.小题热身(1)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0] 答案 B解析 因为M ={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N =[0,4). (2)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0 答案 A解析 因为c <b <a ,且ac <0,所以a >0,c <0.b 的符号不确定,b -a <0,a -c >0,据此判断A 成立,B ,C ,D 不一定成立.(3)设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 答案 A解析 M -N =2a (a -2)-(a +1)(a -3)=a 2-2a +3=(a -1)2+2>0,故M >N . (4)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值X 围是________.答案 [-4,0]解析 当a =0时,f (x )=-1≤0成立, 当a ≠0时,若对∀x ∈R ,f (x )≤0,须有⎩⎪⎨⎪⎧a 2-4×a ×-1≤0,a <0,解得-4≤a <0.综上知,实数a 的取值X 围是[-4,0].题型 一 不等式性质的应用1.若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c答案 D 解析 解法一:⎭⎪⎬⎪⎫c <d <0⇒cd >0 c <d <0⇒⎭⎪⎬⎪⎫c cd <d cd <0⇒1d <1c <0⇒-1d >-1c >0 a >b >0⇒-a d >-b c ⇒a d <b c .故选D. 解法二:依题意取a =2,b =1,c =-2,d =-1, 代入验证得A ,B ,C 均错误,只有D 正确.故选D.2.已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,则S 3a 3与S 5a 5的大小关系为________.答案S 3a 3<S 5a 5解析 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5. 当q >0且q ≠1时,S 3a 3-S 5a 5=a 11-q 3a 1q 21-q -a 11-q 5a 1q 41-q =q 21-q 3-1-q 5q 41-q =-q -1q 4<0,所以S 3a 3<S 5a 5.综上可知S 3a 3<S 5a 5.3.已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4,求f (-2)的取值X 围.解 由题意知f (x )=ax 2+bx ,则f (-2)=4a -2b , 由f (-1)=a -b ,f (1)=a +b ,设存在实数x ,y ,使得4a -2b =x (a +b )+y (a -b ), 即4a -2b =(x +y )a +(x -y )b ,所以⎩⎪⎨⎪⎧x +y =4,x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =3,所以f (-2)=4a -2b =(a +b )+3(a -b ). 又3≤a +b ≤4,3≤3(a -b )≤6,所以6≤(a +b )+3(a -b )≤10, 即f (-2)的取值X 围是[6,10].1.判断不等式是否成立的方法(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.(2)在判断一个关于不等式的命题的真假时,可结合不等式的性质,对数函数、指数函数的性质进行判断.2.比较两个数(式)大小的两种方法3.求代数式的取值X 围利用不等式性质求某些代数式的取值X 围时,一般是利用整体思想,通过“一次性”不等关系的运算求得整体X 围,是避免错误的有效途径.如举例说明3.1.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式是( )A .①④B .②③C .①③D .②④ 答案 C解析 因为1a <1b <0,所以b <a <0,|b |>|a |,所以|a |+b <0,ln a 2<ln b 2,由a >b ,-1a>-1b 可推出a -1a >b -1b ,显然有1a +b <0<1ab,综上知,①③正确,②④错误. 2.若a >0,且a ≠7,则( ) A .77a a<7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a与7a a 7的大小不确定 答案 C解析 显然77a a>0,7a a 7>0,因为77a a7a a 7=⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫a 7a =⎝ ⎛⎭⎪⎫7a 7·⎝ ⎛⎭⎪⎫7a -a =⎝ ⎛⎭⎪⎫7a 7-a.当a >7时,0<7a <1,7-a <0,⎝ ⎛⎭⎪⎫7a 7-a>1,当0<a <7时,7a>1,7-a >0,⎝ ⎛⎭⎪⎫7a 7-a>1. 综上知77a a>7a a 7.3.若1<α<3,-4<β<2,则α-|β|的取值X 围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4,∴-4<-|β|≤0. ∴-3<α-|β|<3.题型 二 不等式的解法1.函数f (x )=1ln -x 2+4x -3的定义域是( )A .(-∞,1)∪(3,+∞) B.(1,3) C .(-∞,2)∪(2,+∞) D.(1,2)∪(2,3) 答案 D解析 由题意得⎩⎪⎨⎪⎧-x 2+4x -3>0,ln -x 2+4x -3≠0,即⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-4x +4≠0.解得1<x <3且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,3). 2.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 本题采用分类讨论思想. 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即0>a >-2,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≥2a或x ≤-1;当-2<a <0时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫2a≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为{x ⎪⎪⎪⎭⎬⎫-1≤x ≤2a .条件探究 把举例说明2中的不等式改为“ax 2-(a +1)x +1<0,a ∈R ”,如何解答? 解 若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,则原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a或x >1.若a >0,原不等式等价于⎝⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a=1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝⎛⎭⎪⎫x -1a (x -1)<0得1a<x <1;③当0<a <1时,1a>1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0得1<x <1a.综上所述,当a <0时,解集为{x ⎪⎪⎪⎭⎬⎫x <1a或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为{x ⎪⎪⎪⎭⎬⎫1<x <1a ;当a =1时,解集为∅;当a >1时,解集为{x ⎪⎪⎪⎭⎬⎫1a<x <1.1.解一元二次不等式的四个步骤2.分式不等式的解法求解分式不等式的关键是对原不等式进行恒等变形,转化为整式不等式(组)求解. (1)f xg x>0(<0)⇔f (x )·g (x )>0(<0);如巩固迁移2.(2)f xg x ≥0(≤0)⇔⎩⎪⎨⎪⎧f x ·g x ≥0≤0,g x ≠0.1.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152 答案 A解析 由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2.故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,得a =52,故选A.2.不等式2x +1x -5≥-1的解集为________.答案 {x ⎪⎪⎪⎭⎬⎫x ≤43或x >5解析 将原不等式移项通分得3x -4x -5≥0,等价于⎩⎪⎨⎪⎧3x -4x -5≥0,x -5≠0,解得x ≤43或x >5.∴原不等式的解集为{x ⎪⎪⎪⎭⎬⎫x ≤43或x >5.题型 三 二次不等式中的任意性与存在性角度1 任意性与存在性1.(1)若关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞),某某数a 的取值X 围; (2)若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,某某数a 的取值X 围. 解 (1)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a >0的解集为(-∞,+∞)⇔f (x )>0在(-∞,+∞)上恒成立⇔f (x )min >0,即f (x )min =-4a +a24>0,解得-4<a <0(或用Δ<0).(2)设f (x )=x 2-ax -a ,则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )≤-3在(-∞,+∞)上能成立⇔f (x )min ≤-3,即f (x )min =-4a +a24≤-3,解得a ≤-6或a ≥2.角度2 给定区间上的任意性问题2.(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值X 围是________.(2)设函数f (x )=mx 2-mxx ∈[1,3],f (x )<-m +5恒成立,求m 的取值X 围. 答案 (1)⎝ ⎛⎭⎪⎫-22,0 (2)见解析解析 (1)要满足f (x )=x 2+mx -1<0对于任意x ∈[m ,m +1]恒成立,只需⎩⎪⎨⎪⎧ f m <0,f m +1<0,即⎩⎪⎨⎪⎧ 2m 2-1<0,m +12+m m +1-1<0,解得-22<m <0.(2)要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:解法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3),即7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1),即m -6<0,所以m <6,所以m <0.综上所述,m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.解法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值X 围是{m ⎪⎪⎪⎭⎬⎫m <67.角度3 给定参数X 围的恒成立问题3.已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值X 围为()A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)答案 C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立,所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧ x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.故选C.形如f (x )≥0(f (x )≤0)恒成立问题的求解思路(1)x ∈R 的不等式确定参数的X 围时,结合二次函数的图象,利用判别式来求解. (2)x ∈[a ,b ]的不等式确定参数X 围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求参数的X 围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式求X 围.如举例说明2.(3)已知参数m ∈[a ,b ]的不等式确定x 的X 围,要注意变换主元,一般地,知道谁的X围,就选谁当主元,求谁的X 围,谁就是参数.如举例说明3.1.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值X 围是________.答案 ⎝ ⎛⎭⎪⎫-235,+∞ 解析 由Δ=a 2+8>0,知方程x 2+ax -2=0恒有两个不等实数根,又知两根之积为负,所以方程x 2+ax -2=0必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值X 围为⎝ ⎛⎭⎪⎫-235,+∞. 2.函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,某某数a 的取值X 围;(2)当x ∈[-2,2]时,f (x )≥a 恒成立,某某数a 的取值X 围; (3)当a ∈[4,6]时,f (x )≥0恒成立,某某数x 的取值X 围.解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴实数a 的取值X 围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图1,当g (x )的图象恒在x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2.②如图2,g (x )的图象与x 轴有交点,但当x ∈[-2,+∞)时,g (x )≥0, 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≤-2,g -2≥0,即⎩⎪⎨⎪⎧ a 2-43-a ≥0,-a 2≤-2,4-2a +3-a ≥0, 可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅. ③如图3,g (x )的图象与x 轴有交点,但当x ∈(-∞,2]时,g (x )≥0. 即⎩⎪⎨⎪⎧ Δ≥0,x =-a 2≥2,g 2≥0,即⎩⎪⎨⎪⎧a 2-43-a ≥0,-a 2≥2,7+a ≥0, 可得⎩⎪⎨⎪⎧ a ≥2或a ≤-6,a ≤-4,a ≥-7.∴-7≤a ≤-6.综上,实数a 的取值X 围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h 4≥0,h 6≥0,即⎩⎪⎨⎪⎧ x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值X 围是(-∞,-3-6]∪[-3+6,+∞).。
高一数学下册讲义 一元二次不等式的性质及解法
一元二次不等式的性质及解法一、不等式基本性质1.不等式的性质(1)对称性:a >b ⇔b <a ;(2)传递性:a >b ,b >c ⇔a >c ;(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇔a +c >b +d ;(4)可乘性:a >b ,c >0⇔ac >bc ;a >b ,c <0⇔ac <bc ;a >b >0,c >d >0⇔ac >bd ;(5)可乘方:a >b >0⇔a n >b n (n ⇔N ,n ≥2);(6)可开方:a >b >0⇔n a >n b (n ⇔N ,n ≥2);(7) a >b,ab>0⇔11a b < ;a >b >0,0<c<d⇔a b c d> . 【例1】判断下列命题的真假。
(1)若a >b ,那么ac >2bc 2。
() (2)若ac >2bc 2,那么a >b 。
() (3)若a >b ,c >d ,那么a -c >b -d 。
() (4)若c d a b <,那么ad bc <。
( )(5)若b a R b a >∈,,,那么n n b a >。
( )(6)若1,,<<∈b a R b a ,那么b a ->-11。
()【例4】给出下列命题:①a >b ①ac 2>bc 2;①a >|b |①a 2>b 2;①a >b ①a 3>b 3;①|a |>b ①a 2>b 2.其中正确的命题是 ( ).A .①①B .①①C .①①D .①①二、比较大小比较两式大小的方法常见的有两种:作差法、作商法作差法:第一步:作差;第二步:变形,常采用配方,因式分解等恒等变形手段;第三步:定号,重点是能确定是大于0,还是等于0,还是小于0.最后得结论.概括为“三步,—结论”,这里的“变形”一步最为关键.注1:有的问题直接作差不容易判断其符号,这时可根据两式的特点考虑先变形,到比较易于判断符号时,再作差,予以比较;注2:如果式中含有字母,不能定号,必须对字母根据式子具体特点分类讨论才能定号.此时要注意分类合理恰当.【例6】已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b,则M 、N 的大小关系是( ) A .M >N B .M <NC .M =ND .不能确定三、一元二次不等式解法1.一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集.【例1】解下列不等式(1)()()x x x 2531-<--; (2)()()21311+>+x x x ; (3)()()()233122+>-+x x x ; (4)2223133x x x ->+-; (5)()13112->+-x x x x .2.含参的一元二次不等式含参数的不等式应适当分类讨论。
不等式性质和解法
φ
【典型例题分析】
例1.解下列不等式:
(1) ;(2) ;(3) ;(4) .
解:(1)方程 的解为 .根据 的图象,可得原不等式
的解集是 .
(2)不等式两边同乘以 ,原不等式可化为 .
方程 的解为 .
根据 的图象,可得原不等式 的解集是 .
(3)方程 有两个相同的解 .
根据 的图象,可得原不等式 的解集为 .
范围是_________
解析 由f(2+x)=f(2-x)知x=2为对称轴,由于距对称轴较近的点的纵坐标较小,
∴|1-2x2-2|<|1+2x-x2-2|,∴-2<x<0
5.已知不等式 的解集为 求不等式 的解集.
解:由题意 ,即 .
代入不等式 得: .
即 , 所求不等式的解集为 .
6 一个厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元
例3.已知x>y,且y≠0,比较 与1的大小
解:
∵x>y,∴x-y>0
当y<0时, <0,即 <1
当y>0时, >0,即 >1
例4.已知 且 ,求证: (相除法则)
证:∵ ∴
变式训练1:根据下列 的取值范围,求 的取值范围.
(1) ; (2) 且 ; (3) 且 .
解:(1) ,∴ ,所以 的取值范围是 .
解:由题意可知:
(x2+1)2-(x4+x2+1)
=(x4+2x2+1)-(x4+x2+1)
=x4+2x2+1-x4-x2-1
=x2
∵x≠0∴x2>0
∴(x2+1)2-(x4+x2+1)>0
高中数学不等式的性质及一元二次不等式知识要点及例题讲解
不等式的性质及一元二次不等式考纲解读 1.利用不等式的性质判断不等式成立或比较大小;2.根据二次函数求解给定的一元二次不等式;3.利用三个“二次”间的关系求参数或不等式恒成立问题.[基础梳理]1.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇒a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥1). (8)开方法则:a >b >0nb (n ∈N ,n ≥2). 2.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b .(2)a <0<b ⇒1a <1b .(3)a >b >0,0<c <d ⇒a c >bd .3.两个实数比较大小的依据 (1)a -b >0⇔a >b . (2)a -b =0⇔a =b . (3)a -b <0⇔a <b .4.一元二次不等式与相应的二次函数及一元二次方程的关系有两个相等实根[三基自测]1.下列四个结论,正确的是( )①a >b ,c <d ⇒a -c >b -d ;②a >b >0,c <d <0⇒ac >bd ;③a >b >0⇒3a >3b ;④a >b >0⇒1a 2>1b 2.A .①②B .②③C .①④D .①③ 答案:D2.不等式x (9-x )<0的解集为( ) A .(0,9) B .(9,+∞)C .(-∞,0)D .(-∞,0)∪(9,+∞)答案:D3.(必修5·习题3.2B 组改编)若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________.答案:[13,+∞)4.(2017·高考全国卷Ⅲ改编)设f (x )=⎩⎪⎨⎪⎧x +1 x ≤0x 2 x >0,则f (x )≥1的解集为__________.答案:{0}∪[1,+∞)考点一 一元二次不等式的解法|方法突破[例1] (1)不等式-x 2-3x +4>0的解集为________.(用区间表示) (2)解不等式x 2-4ax -5a 2>0(a ≠0). [解析] (1)-x 2-3x +4>0⇒(x +4)(x -1)<0. 如图,作函数y =(x +4)(x -1)的图象, ∴当-4<x <1时,y <0. (2)由x 2-4ax -5a 2>0, 知(x -5a )(x +a )>0.由于a ≠0,故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{x |x <5a 或x >-a }; a >0时,解集为{x |x >5a 或x <-a }. [答案] (1)(-4,1) [方法提升][母题变式]1.将例(1)的不等式改为“-x 2-3x +4≤0”,其解集为________. 解析:由-x 2-3x +4≤0得x 2+3x -4≥0, 即(x +4)(x -1)≥0,∴x ≥1或x ≤-4. 答案:(-∞,-4]∪[1,+∞)2.将例(1)的不等式变为“x 2-3x +4>0”,其解集为________. 解析:令y =x 2-3x +4,∵Δ=(-3)2-4×4<0,y >0恒成立.∴x ∈R . 答案:R3.将例(2)变为“x 2-4ax -5a 2>0”,如何求解. 解析:由例(2)知,(1)若a =0,不等式为x 2>0解集为{x |x ≠0}, (2)当a >0,5a >-a ,解集为{x |x >5a 或x <-a }, (3)当a <0,5a <-a ,解集为{x |x <5a 或x >-a }.考点二 不等式恒成立问题|方法突破[例2] (1)(2018·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k的取值范围为( )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0](2)(2018·郑州调研)若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎤0,12都成立,则a 的最小值是________.(3)对于任意a ∈[-1,1],f (x )=x 2+(a -4)x +4-2a 的值恒大于0,那么x 的取值范围是________.[解析] (1)由题意可得⎩⎪⎨⎪⎧k <0,Δ=k 2-8k ×⎝⎛⎭⎫-38<0,解得-3<k <0,故选A. (2)法一:由于x >0,则由已知可得a ≥-x -1x在x ∈⎝⎛⎦⎤0,12上恒成立,而当x ∈⎝⎛⎦⎤0,12时,⎝⎛⎭⎫-x -1x max =-52,∴a ≥-52,故a 的最小值为-52. 法二:设f (x )=x 2+ax +1,则其对称轴为x =-a 2.①若-a 2≥12,即a ≤-1时,f (x )在⎝⎛⎦⎤0,12上单调递减,此时应有f ⎝⎛⎭⎫12≥0,从而-52≤a ≤-1.②若-a2<0,即a >0时,f (x )在⎝⎛⎦⎤0,12上单调递增,此时应有f (0)=1>0恒成立,故a >0. ③若0≤-a 2<12,即-1<a ≤0时,则应有f ⎝⎛⎭⎫-a 2=a 24-a 22+1=1-a 24≥0恒成立,故-1<a ≤0.综上,a 的最小值为-52.(3)令g (a )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4,由题意知g (-1)>0且g (1)>0,解得x <1或x >3.[答案] (1)A (2)-52 (3)(-∞,1)∪(3,+∞)[方法提升]一元二次不等式恒成立问题的破解方法[母题变式]在本例(1)中,改为“对于x ∈[1,2]上,2kx 2+kx -38<0恒成立”,求k 的取值范围.解析:k (2x 2+x )<38,当x ∈[1,2]时,3≤2x 2+x ≤10,∵k <38(2x 2+x )恒成立,380≤38(2x 2+x )≤18,∴k <380.考点三 比较大小问题|模型突破角度1 作差(商)法比较代数式的大小 [例3] 已知a >0,b >0,且a ≠b ,则( ) A .ab +1>a +b B .a 3+b 3>a 2b +ab 2 C .2a 3b >3a 2bD .a a b b <a b b a[解析] 选项A(作差法),ab +1-(a +b )=ab -a +(1-b )=a (b -1)+(1-b )=(a -1)(b -1),显然当a ,b 中有一个等于1时,(a -1)(b -1)=0,即ab +1=a +b ;故选项A 不正确. 选项B(作差法),a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2)=a 2(a -b )+b 2(b -a )=(a 2-b 2)(a -b )=(a -b )2(a +b ).因为a >0,b >0,a ≠b ,所以a +b >0,(a -b )2>0,故(a -b )2(a +b )>0,即a 3+b 3>a 2b +ab 2,故选项B 正确.[答案] B [模型解法]角度2 巧用不等式性质比较大小[例4] 若a >b ,则下列各式正确的是( ) A .a ·lg x >b ·lg x B .ax 2>bx 2 C .a 2>b 2D .a ·2x >b ·2x[解析] 已知a >b ,选项A ,由已知不等式两边同乘lg x 得到,由不等式的性质可知,当lg x >0时,a ·lg x >b ·lg x ;当lg x =0时,a ·lg x =b ·lg x ;当lg x <0时,a ·lg x <b ·lg x .故该选项不正确.选项B ,由已知不等式两边同乘x 2得到,由不等式的性质可知,当x 2>0时,ax 2>bx 2;当x 2=0时,ax 2=bx 2.故该选项不正确.选项C ,由已知不等式两边平方得到,由不等式的性质可知,当a >b >0时,a 2>b 2;当a >0>b 且|a |<|b |时,a 2<b 2.故该选项不正确.选项D ,由已知不等式两边同乘2x 得到,且2x >0,所以a ·2x >b ·2x .故该选项正确. [答案] D [模型解法]角度3 构造函数法比较代数式的大小[例5] 已知a =13ln 94,b =45ln 54,c =14ln 4,则( )A .a <b <cB .b <a <cC .c <a <bD .b <c <a[解析] a =13ln 94=13ln ⎝⎛⎭⎫322=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln 4=14×2ln 2=ln 22.故构造函数f (x )=ln x x ,则a =f ⎝⎛⎭⎫32,b =f ⎝⎛⎭⎫54,c =f (2). 因为f ′(x )=1x ×x -1×ln x x 2=1-ln xx 2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e)上单调递增;当x ∈(e ,+∞)时,f ′(x )<0,函数f (x )在(e ,+∞)上单调递减.因为54<32<2<e ,所以f ⎝⎛⎭⎫54<f ⎝⎛⎭⎫32<f (2),即b <a <c .故选B. [模型解法][高考类题]1.(2017·高考天津卷)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:依题意a =g (-log 25.1)=(-log 25.1)·f (-log 25.1)=log 25.1f (log 25.1)=g (log 25.1). 因为f (x )在R 上是增函数,可设0<x 1<x 2, 则f (x 1)<f (x 2).从而x 1f (x 1)<x 2f (x 2),即g (x 1)<g (x 2). 所以g (x )在(0,+∞)上亦为增函数. 又log 25.1>0,20.8>0,3>0, 且log 25.1<log 28=3,20.8<21<3, 而20.8<21=log 24<log 25.1,所以3>log 25.1>20.8>0,所以c >a >b .故选C. 答案:C2.(2017·高考山东卷)若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1b C .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b2a解析:法一:∵a >b >0,ab =1,∴log 2(a +b )>log 2(2ab )=1.∵b 2a =1a 2a =a -1·2-a ,令f (a )=a -1·2-a ,又∵b =1a ,a >b >0,∴a >1a,解得a >1.∴f ′(a )=-a -2·2-a -a -1·2-a ·ln 2=-a -2·2-a (1+a ln 2)<0, ∴f (a )在(1,+∞)上单调递减. ∴f (a )<f (1),即b 2a <12.∵a +1b =a +a =2a >a +b >log 2(a +b ),∴b 2a <log 2(a +b )<a +1b.故选B. 法二:∵a >b >0,ab =1,∴取a =2,b =12,此时a +1b =4,b 2a =18,log 2(a +b )=log 25-1≈1.3,∴b 2a <log 2(a +b )<a +1b .故选B. 答案:B1.[考点一](2014·高考大纲全国卷)不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}解析:由x (x +2)>0得x >0或x <-2;由|x |<1得-1<x <1,所以不等式组的解集为{x |0<x <1},故选C.答案:C2.[考点三](2016·高考北京卷)已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0 B .sin x -sin y >0 C.⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0D .ln x +ln y >0解析:函数y =⎝⎛⎭⎫12x在(0,+∞)上为减函数,∴当x >y >0时,⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0,故C 正确;函数y =1x 在(0,+∞)上为减函数,∴由x >y >0⇒1x <1y ⇒1x -1y<0,故A 错误;函数y =sin x 在(0,+∞)上不单调,当x >y >0时,不能比较sin x 与sin y 的大小,故B 错误;当x >0且y >0时,ln x +ln y >0⇔ln xy >0⇔xy >1,而x >y >0⇒/ xy >1,故D 错误.答案:C3.[考点二](2014·高考山东卷)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3解析:∵a x <a y,0<a <1, ∴x >y ,∴x 3>y 3. 答案:D4.[考点二、三](2014·高考四川卷)若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b cD.a d <b c解析:依题意取a =2,b =1,c =-2,d =-1, 代入验证得A 、B 、C 均错,只有D 正确. 答案:D。
第1章 1.1 不等式的基本性质和一元二次不等式的解法
上一 页
返回 首页
下一 页
[质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1: 解惑: 疑问 2: 解惑: 疑问 3: 解惑: _____________________________________________________ _______________________________________________________ _____________________________________________________ _______________________________________________________ ______________________________________________________ _______________________________________________________
上一 页
返回 首页
下一 页
[小组合作型] 比较大小 (1)已知x>3,比较x3+3与3x2+x的大小; (2)若m>0,试比较mm与2m的大小. 【精彩点拨】 (1)只需考查两者的差同0的大小关系;
(2)注意到2m>0,可求商比较大小,但要注意到用函数的性质.
上一 页
返回 首页
下一 页
【自主解答】
上一 页
返回 首页
下一 页
[基础· 初探] 教材整理 1 不等式的性质
1.对于任意两个实数 a,b,有且只有以下三种情况之一成立: a>b⇔ a-b>0 ;a<b⇔ a-b<0 ;a=b⇔a-b=0 .
上一 页
返回 首页
下一 页
一元二次不等式的解法与性质
一元二次不等式的解法与性质一元二次不等式是数学中常见的一类问题,解决这类问题需要掌握相关的解法和性质。
本文将介绍一元二次不等式的解法,并探讨其性质。
一、一元二次不等式的解法解一元二次不等式时,需要确定其判别式。
一元二次不等式的判别式用△表示,其计算方法与一元二次方程的判别式相同。
1. 当判别式△大于0时,一元二次不等式有两个不相等的实数解。
例如,对于不等式x^2 - 5x + 6 > 0,根据判别式的计算可得△ = 1。
由于△大于0,因此不等式有两个不相等的实数解。
2. 当判别式△等于0时,一元二次不等式有一个唯一的实数解。
例如,对于不等式x^2 - 4x + 4 > 0,根据判别式的计算可得△ = 0。
由于△等于0,因此不等式有一个唯一的实数解。
3. 当判别式△小于0时,一元二次不等式没有实数解。
例如,对于不等式x^2 - 2x + 3 > 0,根据判别式的计算可得△ = -8。
由于△小于0,因此不等式没有实数解。
通过判别式的计算,我们可以判断一元二次不等式的解的数量和性质。
二、一元二次不等式的性质一元二次不等式的性质与一元二次方程有些相似,但也有一些不同之处。
下面将讨论一些常见的一元二次不等式性质。
1. 平移性对于一元二次不等式,如果将不等号两边同时加上(或减去)一个常数c,不等式的解不变。
例如,对于不等式x^2 - 4x + 3 > 0,如果我们将不等式两边都加上1,得到x^2 - 4x + 4 > 1,不等式的解并没有发生改变。
2. 反号性对于一元二次不等式,如果将不等号两边同时取负,不等式的解也会改变。
例如,对于不等式x^2 - 4x + 3 > 0,如果我们将不等式两边都取负,得到-(x^2 - 4x + 3) < 0,此时不等式的解也会发生改变。
3. 区间性一元二次不等式的解可以表示为一个区间。
例如,不等式x^2 - 4x+ 3 > 0的解可以表示为(1, 3),其中1和3分别为不等式的两个不相等实数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)、对称性: >b b< (2)、传递性: >b,b>c >c
(3)、可加性: >b,c∈R +c>b+c
(4)、可乘性: >b,c>0 c>bc或 >b,c<0 c<bc
(5)、同向不等式相加: +c>b+d
(6)、 ×c>b×d>0(7)、 n>bn
(8)、 > (9)、
例1:设 、 、 是任意实数,且 > ,则下列结论一定成立的是( )
【解析】:D
2、求函数y= 的定义域()
A:(1,2)∪(2,3) B:(-∞,1)∪(3,+∞) C:(1,3) D:[1,3]
【解析】:C
3、不等式2x2-x-1>0的解集是()
A:( ,1) B:(1,+∞)
C:(-∞,1)∪(2,+∞) D:(-∞, )∪(1,+∞)
【解析】:D
4、已知集合A={x|3x+2>0},B={x|(x+1)(x-3)>0},则A∩B=()
例10:求解关于x的不等式:x2-5 x+ >0( ≠0)
【解析】:(x-2 )(x-3 )>0
当 >0时,x>3 或x<3
当 <0时,x>2 或x<3
变式练习1:求解关于x的不等式: x2-( +1)x+1<0( ≠0)
【解析】:( x-1)(x-1)<0
变式练习2: x2+2 x-3 >0
【解析】: ≠0
11、不等式组 的解集是___________。
【解析】:(0,1)
12、不等式 的解集为______________。
【解析】:(0, )
13、函数f(x)= 的定义域是___________。
【解析】:-1≤x<2或3<x≤4
14、如果关于x的不等式 的解集为(1,3),那么 =__________。
【解析】[-4,2][不等式f(x)≥-1⇔ 或 解得-4≤x≤0或0<x≤2,故不等式f(x)≥-1的解集是[-4,2].]
变式练习4:已知函数f(x)= ,则不等式f(x)≥x2的解集为()
A:[-1,1]B:[-2,2]C:[-2,1]D:[-1,2]
【解析】:A[法一:当x≤0时,x+2≥x2,∴-1≤x≤0;①
+ = = =
则当m=3时,代数式取最小值为8 C
(三)、分式不等式及高次不等式
原理: f(x)×g(x)>0 f(x)×g(x)<0
例7:求解下列关于x的不等式。
(1) (2) (3)
例8:求解下列关于x的不等式:x(x-3)( x-2)(x+1)>0
例9:求解下列关于x的不等式:(x-2)2×(x-3)3×(x+1)<0
【数轴根标法(口决:奇穿偶不穿,从上往下穿);(要求:因式分解之后每个括号里x的系数为正)】。
【答案】B
例4:设 = , = , = ,则 、 、 的大小关系是()
A: < < B: < < C: < < D: < <
【解析】:C = , = , =
变式练习1:设 = , = , = ,则 、 、 的大小关系是()
A: < < B: < < C: < < D: < <
【解析】: = < =1, = <0, = >1 B
变式练习2:设 = , = , =cos3,则 、 、 的大小关系是()
A: < < B: < < C: < < D: < <
【解析】:A
变式练习3:设 = ( >2), = (x∈R),则()
A: ≥ B: > C: < D: ≤
【解析】:A
变式练习4:设 = , = ,则下列各式正确的是( )
A: < < B: < <
【解析】:C
变式练习1:一元二次不等式x2- x+b>0的解集为{x︱x<2或x>3},则 +b=()
A:1 B:-1 C:11 D:12
【解析】:C
变式练习2:一元二次不等式 x2+bx+2>0的解集为{x︱-1<x<2},则不等式2x2+bx+ <0的解集为()
A:{x︱-1<x< }B:{x︱x<-1或x> }
例11:若f(x)= 的定义域为R,则实数k的取值范围是________。
【解析】由题意知,kx2-6kx+8≥0对任意实数x恒成立.
当k=0时,8≥0显然成立,当k≠0时,需满足:
解得0<k≤ ,综上,0≤k≤ .
变式练习1:已知关于x的不等式( -4)x2+( +2)x-1≥0的解集是空集,则实数 的取值范围________________。
A: B:
C: D:
【解析】:构造点A(x1,f(x1))、B(x2,f(x2)),则线段OA、OB的斜率是kOA= .由图形可以看出kOA>kOB,即 .答案:C
例3:设0< < ,且 + =1,则四个数 、 、2 、 2+ 2中最小的数是()
A: B: C:2 D: 2+ 2
【解析】由0<a<b及a+b=1,知0<a< ,a<2a,故只需比较a2+b2与a的大小即可.由0<a< ,知a2+b2-a=a2+(1-a)2-a=2a2-3a+1=(2a-1)(a-1)>0,故a最小.
【解析】:A
9、关于x的不等式x2-2 x-8 2<0 ( >0)的解集(x1,x2),且x2-x1=15,则 =()
A: B: C: D:
【解析】:A
10、不等式( -2)x2+2( -2)x-4<0对一切x∈R恒成立,则 的取值范围是()
A: B: C:(-2,2) D:(-∞,2)
【解析】:B
解一元二次不等式的步骤是:(1)把不等式化成a>0的形式。(2)判定△与0的关系。(3)求出相应方程的根。(4)根据函数图象写出不等式的解集。
二次函数 的图象
一元二次方程
有两相异实根
有两相等实根
无实根
R
口决:化正、求根、大于取两边(小于取中间)
例5:不等式-x2-3x+4>0的解集为________________。(用区间表示)
(2)任意两个实数都可以比较大小。
3、实数比较大小的方法:
(1)若 -b>0 >b;(2) -b<0 <b;(3) -b=0 =b
(2)当 >0,b>0;若 >1 >b;若 <1 <b;若 =1 =b
做差比较法法的一般步骤:
(1)作差;(2)变形,常采用的手段是因式分解和配方法,因式分解是将“差“化成“积”的形式,配方是将“差”化为一个或几个完全平方的“和”,也可两种手段并用;(3)定号,就是确定是大于0,还是等于0,或是小于0(与具体的值无关)(4) 得出结论。
【解析】:C
变式练习2:如果 > >0,则下列各不等式中:
① ;② 3>b3;③lg( 2+1)>lg( 2+1);④ > ;⑤sin >sin 。
一定成立的是____________(请把正确的答案序号全部填写在横线上)
【解析】①②③④
变式练习2:已知函数f(x)(0≤x≤1)的图象为一段圆弧(如右图),若0<x1<x2<1,则()
A: ×c> × B: ×c> × C: × 2> × 2D: × 2≥ × 2
【解析】:D
例2:已知b< ,d<c,那么下列结论一定成立的是( )
A: - < - B: - > -
C: + < + D: <
【解析】:C
变式练习1:若 、 、 ∈R, >b,则下列不等式成立的是( )
A: B: 2>b2C: D: ︱c︱>b︱c︱
A:(-∞,-1) B:(-1, ) C:( ,3) D:(3,+∞)
【解析】:C
5、若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是()
A:(-1,1) B:(-2,2) C:(-∞,2)∪(2,+∞) D:(-∞,-1)∪(1,+∞)
【解析】:C
6、已知 >1,则不等式x2-( +1)x+ <0的解集为()
C: < < D: < <
解析:a=sin15°+cos15°= sin60°,b=sin16°+cos16°= sin61°,所以a<b,排除C、D又a≠b,因为 >ab= sin60° sin61°= sin61°>b,故B正确.
二、一元二次不等式的解法
(一)一元二次不等式的解法:二次项系数是正数的二次函数、一元二次方程、一元二次不等式的主要结论与三者之间的关系如下:从函数的观点来看,一元二次不等式 x2+bx+c>0(a>0),就是二次函数y= x2+bx+c( >0)的图象在x轴上方部分的点横坐标x的集合;一元二次不等式 x2+bx+c<0( >0),就是二次函数y= x2+bx+c( >0)的图象在x轴下方部分的点横坐标x的集合。
3.1-3.2 不等式的性质及一元二次不等式的解法
一、不等关系与不等式
1、不等式的定义:用不等号(“≤”,“≥”,“<”,“>”,“≠”)表示不等关系的式子。用“<”,“>”连接的不等式叫严格不等式,用“≤”,“≥”连接的不等式叫非严格不等式。
2、实数的特征和实数大小的比较
(1)、特征:(1)任意实数的平方不小于0:即: ∈R,则 2≥0;
当x>0时,-x+2≥x2,∴0<x≤1.②由①②得原不等式的解集为{x|-1≤x≤1}.
法二:作出函数y=f(x)和函数y=x2的图像,如图,
由图知f(x)≥x2的解集为[-1,1].]
例6:二次不等式 x2+bx+1>0的解集为{x︱-1<x< },则 的值为()
A:-6 B:-2 C:2 D:6
C:{x︱-2<x<1}D:{பைடு நூலகம்︱x<-2或x>1}
【解析】:A
变式练习3:若不等式 x2+bx+1>0的解集是(- , ),则 ≥0的解集为______。
【解析】由题知- , 是方程ax2+bx+1=0的两根.
∴- × = ,- + =- ,∴a=-6,b=1.
把a=-6,b=1代入 ≥0得 ≥0,∴解集为 .