雷达信号分析与处理第三章

合集下载

《雷达信号分析》课件

《雷达信号分析》课件

系统测试与性能评估
总结词
测试、性能
详细描述
该部分主要介绍了系统的测试方法和性能评估,包括测试环境、测试内容、测试结果等,并对系统的 性能进行了全面的评估,为后续的系统优化和改进提供了依据。
THANKS
[ 感谢观看 ]
总结词
军事侦查与目标识别是雷达信号处理的重要 应用领域之一,通过处理雷达回波信号,提 取目标特征,实现目标的快速、准确识别。
详细描述
雷达系统通过发射电磁波,遇到目标后反射 回来被接收,经过信号处理提取出目标的距 离、速度、方位等参数,以及目标的形状、 尺寸等特征。这些信息对于军事侦查和目标 识别具有重要意义,可以帮助指挥官做出快
CHAPTER 06
案例分析:某型雷达信号处理系统 设计
系统概述与需求分析
总结词
概述、需求
详细描述
该部分主要介绍了某型雷达信号处理系统的基本情况,包括系统功能、应用场 景等,并对系统的需求进行了详细的分析,为后续的系统设计提供了依据。
系统架构与模块设计
总结词
架构、模块
详细描述
该部分主要介绍了系统的整体架构和 各个模块的设计,包括信号输入、处 理、输出等模块,以及各模块之间的 连接和交互方式,为后续的系统实现 提供了基础。
小波变换
总结词
多尺度分析
详细描述
小波变换是一种多尺度、多分辨率的信号处理方法,适合分析非平稳信号。它能够同时 在时域和频域对信号进行分析,揭示信号在不同尺度上的特征,广泛应用于雷达信号的
降噪、目标识别和运动目标跟踪等领域。
神经网络算法
总结词
自适应算法
详细描述
神经网络算法是一种模拟人脑神经元工作方 式的自适应算法,能够通过学习自动提取输 入数据的内在规律和模式。在雷达信号处理 中,神经网络可以用于自动目标识别、干扰 抑制、高分辨成像等方面。

《雷达信号分析》课件

《雷达信号分析》课件
《雷达信号分析》 PPT课件
contents
目录
• 雷达信号概述 • 雷达信号处理基础 • 雷达信号处理算法 • 雷达信号处理系统设计 • 雷达信号处理技术前沿
01
雷达信号概述
雷达信号的定义
01
02
03
雷达信号
由雷达设备发射的电磁波 信号,用于探测、跟踪和 识别目标。
雷达信号的特性
具有特定的频率、波形和 发射方式,能够穿透不同 的介质和环境条件。
监视等操作。
雷达信号处理系统的性能评估
性能评估指标
包括系统稳定性、实时性、精度和可靠性等。
测试与验证
通过实际测试和模拟实验,对雷达信号处理系统的各项性能指标进行评估和验 证。
05
雷达信号处理技术前沿
雷达信号处理的智能化技术
总结词
雷达信号处理的智能化技术是当前研究的热点,通过人工智能和机器学习等方法,实现对雷达信号的自动分析和 处理,提高雷达的探测性能和目标识别能力。
详细描述
雷达信号处理的抗干扰技术包括频域滤波、时域滤波、极化滤波等多种方法。这些技术能够有效地滤 除干扰信号,提取出有用的目标信息,提高雷达的探测精度和可靠性。同时,抗干扰技术还能够降低 雷达系统的复杂性和成本,具有广泛的应用前景。
雷达信号处理的实时处理技术
总结词
实时处理技术是雷达信号处理的另一个 重要方向,通过高效的算法和硬件实现 ,实现对雷达信号的快速处理和分析。
中值滤波算法
将信号按大小排序,用中值代替异常值,适用于去除脉冲噪声。
卡尔曼滤波算法
利用状态方程和观测方程对信号进行最优估计,适用于跟踪和预 测。
雷达信号的压缩算法
离散余弦变换(DCT)
将信号从时域转换到频域,去除冗余信息,减小数据量。

信号分析与处理第3章习题答案[山东大学]

信号分析与处理第3章习题答案[山东大学]

j 2 n
j 2 n
n
j 2 = X (e )
1
j 3-3 已知 X(e ) =
| ω | < ω0
0
j 求 X(e ) 的傅里叶反变换
ω0≤ | ω | ≤π
1 解:x(n) = 2
= =
X (e


j
)e jn d
1 2
e

0
0
jn
d
1 0 e jn | 0 2jn
n 0
3
3
nk ne j 2N
2
∴ X (0) cos
n 0 3
ne j 0 1 0 1 0 0
2
X (1) cos
n 0 3
n ne j 2 1 0 1 0 2
2
X (2) cos
n 0
ne j n 1 0 1 0 0
n 0 3
j n 2

1 (2 j ) 1 3 j 2 j
X (2) x(n)e j n 1 (2) (1) (3) 5
n 0 3
X (3) x(n)e
n 0
j
3 n 2
1 2 j 1 (3 j ) 2 j
n
x(2n)e

m 2n
m
x(m)e


jm

2
jm jm 1 2 2 m取整数 [ x(m)e (1) m x(m)e ] 2 m jm j 1 1 2 2 m x ( m ) e x ( m ) ( e ) = + 2 m 2 m

第三章雷达信号模型及信号处理

第三章雷达信号模型及信号处理
Suppose that we want to measure the position and speed of an object -- for example a car going through a radar speed trap. Naively, we assume that (at a particular moment in time) the car has a definite position and speed, and how accurately t l we can measure these th values l d depends d on the th quality lit of f our measuring i equipment i t -- if we improve i th the precision of our measuring equipment, we will get a result that is closer to the true value. In particular, we would assume that how precisely we measure the speed of the car does not affect its position, and vice versa. In 1927, 1927 German physicist Werner Heisenberg proved that these assumptions are not correct. correct Quantum mechanics shows that certain pairs of physical properties, like position and speed, cannot both be known to arbitrary precision. That is, the more precisely one property is known, the less precisely the other can be known. This statement is known as the uncertainty principle (or Heisenberg's uncertainty principle). The uncertainty principle isn't a statement about the accuracy of our measuring equipment, equipment but about the nature of the system itself -- our naive assumption that the car had a definite position and speed was incorrect. On a scale of cars and people, these uncertainties are too small to notice, but when dealing with atoms and electrons they become critical. yp principle p shows mathematically y that the p product of the uncertainty y in the p position and momentum of The uncertainty a particle (momentum is velocity multiplied by mass) could never be less than a certain value, and that this value was related to Planck's constant.

雷达信号分析与处理.共45页PPT

雷达信号分析与处理.共45页PPT

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
Байду номын сангаас
雷达信号分析与处理.
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿

雷达信号与数据处理整理多媒体

雷达信号与数据处理整理多媒体

雷达信号与数据处理整理多媒体雷达信号与数据处理是雷达系统中非常重要的一环。

雷达系统通过发射电磁波并接收回波来探测目标的位置和特征。

这些回波信号经过一系列的处理和整理才能被有效地利用。

雷达信号的处理涉及到一系列的步骤,其中最关键的就是波形处理。

波形处理通常包括目标检测、参数估计和目标识别等步骤。

目标检测通过比较接收到的信号强度和背景噪声的水平来确定是否存在目标。

参数估计则通过分析回波信号的特征来估计目标的距离、速度、方位角等参数。

目标识别则是根据目标的一些特征来对其进行分类和识别。

在波形处理之后,还需要对信号进行成像处理。

雷达信号经过成像处理可以获得目标的空间分布图像,从而更直观地观测目标。

成像处理通常包括距离像、速度像和方位角像等。

距离像用来表示目标与雷达的距离关系,速度像用来表示目标的运动状态,方位角像用来表示目标的方向。

除了信号处理外,雷达数据的整理也是非常重要的一步。

雷达系统通常会产生大量的数据,这些数据包含了丰富的信息,但同时也会存在大量的冗余和噪声。

数据整理主要包括数据去噪、数据压缩和数据融合等步骤。

数据去噪通过消除噪声信号来提高数据质量。

数据压缩则是将数据进行编码压缩,以减少数据量和传输带宽。

数据融合则是将多个雷达的数据进行融合,以提高目标探测和跟踪的精度。

整理后的数据可以被用于目标检测、目标跟踪和目标识别等应用。

在目标检测中,可以通过分析数据来确定目标是否存在,并给出目标的位置和特征等信息。

在目标跟踪中,可以通过分析数据的变化趋势来预测目标的位置和运动轨迹。

在目标识别中,可以通过分析数据的特征来对目标进行分类和识别。

综上所述,雷达信号与数据处理是雷达系统中非常重要的一环。

它们通过一系列的处理和整理步骤,将原始的雷达信号和数据转化为可用于目标探测、跟踪和识别的信息。

这些处理和整理步骤的优化和改进对于提高雷达系统性能和应用效果具有重要意义。

雷达信号与数据处理在现代雷达系统中起着至关重要的作用。

雷达信号与数据处理整理多媒体

雷达信号与数据处理整理多媒体
杂波信号往往比目标回波信号强的多。杂波是另一种不需要的目标。
(3)雷达脉冲压缩技术
窄脉冲宽度可提高距离分辨率,但影响平均功率而降低了测量距离。 发射大时宽带宽积(Bt)信号,可以提高雷达的距离分辨率,同时提
高发射信号的平均功率,即那个地发射脉冲的峰值功率。
接收时对大时宽进行进行匹配滤波,可使接收信号回波信号变窄,成 为脉冲压缩。
雷达可分为陆基、机载、星载或舰载雷达系统; 按雷达波形分,可分为:连续波(CW)雷达、脉冲 (PW)雷达。
2.2 距离
简化的脉冲雷达框图
时间 控制
发射机/调制器 信号处理器
双工器 接收机
发射接收脉冲串
发射脉冲
脉冲1
IPP
τ
脉冲2
脉冲3
接收脉冲
△t τ 脉冲1回波
脉冲2回波
脉冲3回波
时间
IPP:通常被标为PRI脉冲重复间隔
(6)雷达成像技术
机载或星载雷达,距离和方位的高分辨成像。 距离分辨率,通过脉冲压缩技术实现;方位分辨率通过合成孔径技术
实现。 移动雷达,如SAR;地面雷达,ISAR。
(7)雷达目标的识别和分类
目标识别,判别目标类型。
主要通过信号处理实现。
(8)雷达抗电子干扰技术
无源干扰:箔条,可利用抑制气象杂波的方法。
雷达信息显示包括各种原始回波和处理回波的显示; 雷达回波显示与雷达整机控制设计为一体,通过画面显示、重要目
标三维放大显示等,辅助目标识别。
(7)雷达数据处理系统设计技术
输入/输出接口设计; 系统处理能力设计; 核心算法设计; 显示与控制一体化设计; 人-机接口与人性化界面设计; 系统各设备集成设计等。
ERP PJ GJ LJ

《雷达信号分析》PPT课件

《雷达信号分析》PPT课件

2
t 2 dt
三、单载频矩形脉冲信号: 2 2 T 2
3
26
§3.4 信号的非线性相位特性
对测量精度的影响
(t) 0,具有非线性相位。
时间相位常数: 2 t ' (t)a2 (t)dt 2 t ' (t) u(t) 2 dt
2
[a(t)] dt
u(t) 2 dt
2
2 0
2E N0
1 [1
(
0
)2 ]
2
2 0
1
2E [1 (
N0
0
)2 ]
结论:① ②
27
例1: u(t) rect( t )e jkt2
T
t T
(t ) k t 2 ' (t ) 2k t
2
t ' (t)a 2 (t)dt
2
T /2
t(2kt)dt
T / 2
2kT2
2
[a(t)] dt
20
经过推导有:
Sr (t)
[t
2v t
]e
j
2f0 [t
2vt C
]
C
[t ]e j 2f0 e j 2 ( f0 fd )t
1
2v , C
fd
2v C
f0
2v
运动目标的影响:① 压缩/展宽;②多普勒偏差。
考虑到 1, f0 f有d :
S r (t) [t ]e j 2 ( f0 fd )(t )
4
7 相干脉冲串信号
7.1相干脉冲串信号 7.2 均匀脉冲串信号的频谱 7.3 均匀脉冲串信号的模糊函数 *7.4 均匀脉冲串信号的性能 *7.5 均匀脉冲串信号的处理方法 *7.6 其它形式脉冲串信号简介

信号检测与估计理论(3)第三章 克拉美-罗下限

信号检测与估计理论(3)第三章 克拉美-罗下限

假设信号是正弦信号,s[n; f0 ] = Acos(2π f0n + φ)
0<
f0
<
1 2
其幅值和相位已知,估计 f 0 的CRLB。根据式(3-14)有
var( fˆ0 ) ≥ N −1
σ2
∑ A2 [2π n sin(2π f0 + φ )]2
n=0
(3-15)
图3-3给出了CRLB与频率的关系,这里信噪比SN为 A2 σ 2 = 1,
Aˆ = x[0] 是一个无偏估计,且方差为 σ 2,因此,随 着 σ 2的减少,估计的准确性得到提高。
3.1 估计的准确性
对于2个不同方差的PDF,它们是给定x[0]下的关 于A的函数。
pi ( x[0]; A) =
1
2πσ
2 i
exp ⎡⎢− ⎣
1

2 i
(x[0] −
A)
2
⎤ ⎥

i=(1 2) (3-1)
3-1(a)范围宽。
3.1 估计的准确性
对于给定的x,PDF看作未知参量的函数时,PDF称为似然函 数。图3-1中可以看出似然函数的锐度(sharpness)决定着估 计的精度。
为了证明这一点,用峰值处的2阶导数的负数来有效地测量这 个锐度。这就是似然函数的曲率。我们考虑图3-1中的PDF的自 然对数
var(θˆ) ≥
1

E
⎡ ⎢⎣

2
ln p(x;θ ∂θ 2
)
⎤ ⎥⎦
(3-6)
3.2 克拉美-罗下界(CRLB)
这里导数值是真值 θ 下的值。对所有可能
的 θ ,对于某个函数g和I,当且仅当

第三章 SAR基本原理

第三章 SAR基本原理

Fp(%) 0.0 1.5 6.0 13.4 23.4 35.7 50.0 65.8 82.6 100.0
雷达图像的透视收缩,实际上是电磁波能量集中的表现,前坡的收缩比后坡严 重,所以前坡的图像要比后坡“亮”,当整个坡度收缩成一点,图像最“亮”。
顶底位移(Layover)
• 顶底位移是透视收缩的一种极端情况,它发生在入射角小于局部地形 倾斜角时。
• In imagery, radar shadows occur in the down-range direction behind tall objects. They are a good indicator of radar illumination direction if annotation is missing or incomplete.
阴影(shadow)
• Radar shadows in imagery indicate those areas on the ground surface not illuminated by the radar. Since no return signal is received, radar shadows appear very dark in tone on the imagery.
2007,12
Radarsat-2,
C Qud Pol
10
工作频段的选择
• Application factors: – Radar wavelength should be matched to the size of the surface features that
we wish to discriminate • – e.g. Ice discrimination, small features, use X-band • – e.g. Geology mapping, large features, use L-band • – e.g. Foliage penetration, better at low frequencies,use P-band In general, C-band is a good compromise • System factors: – Low frequencies: • More difficult processing • Need larger antennas and feeds • Simpler electronics – High frequencies: • Need more power • More difficult electronics • Good component availability at X-band Note that many research SARs have multiple frequency bands

脉冲多普勒雷达

脉冲多普勒雷达

Rm a xVm a x

c
8
λ是雷达波长,c为光速。λ越大,不模糊距离和速度的乘积就越大, 但要增加雷达的体积和成本,还有其他限制,因而是不现实的。
(2)解距离模糊
(a)重频参差解距离模糊
雷 频达率以下重读复出频的率模f糊r1、距f离交不替同工,作可,以如据果此发计生算了出距实离际模距糊离,。在解两距个离重复模 糊有两个限制:
(4)无杂波区
适当选择雷达脉冲重复频率使地面杂波不连续不重叠,形成无杂波 区.在无杂波区域,只有接收机噪声,没有地面杂波,有利于发 现该区域的运动目标.
2.脉冲重复频率的选择
根据技术要求和用途(如要求雷达在无杂波区检测目标还是满足无模糊测速), 也可以根据战术要求选择高,中,低脉冲重复频率段.
结果:
回波
目标 扫描轨迹
回波
扫描角度
图3.8 圆锥扫描示意
扫描角度
βx 波程差l
y
x 图3.9 单脉冲跟踪示意
目标方位βx与波程差l和信号相位差θ的关系:
l x sin x
(3-9)
l 360(度)
( 3-10)
x

arcsin
360 x

( 3-11)
同样可以求得y方向的方位角βy。 在PD雷达中实现单脉冲体制是非常困难的:性能优良的杂波滤波器
f
(c)用fsa1时钟复采样的数字信号延拓频谱
图3.12采样信号频谱延拓与频谱模糊的产生
同样由于目标回波的多普勒频移可能大于若干脉冲重复频率,使测
量到的多普勒频率与实际多普勒频率不一定相等,同一频率读数对
应的目标真实速度有多种可能值的现象叫做测速模糊。未经解模糊 肯定的读数速度叫做模糊速度。

03-3第三章-雷达在智能网联汽车中的应用

03-3第三章-雷达在智能网联汽车中的应用
• 侧方扫描是稀疏的,但不是完全忽略侧面稀疏扫 描,在十字路口可以加强侧面扫描。
• 机械激光雷达只能以恒定的速度旋转,不能进行 如此精细的操作。
• 固态激光雷达通常分为相控阵、Flash和MEMS三 种类型
激光雷达的功用
• (1)相控阵固态激光雷达
• 固态激光雷达采用相控阵原理实现,完全消除了机械 结构,通过调整发射阵中各发射单元的相位差来改变 激光的出射角。光学相控阵通常由其相位的电子束扫 描控制,因此也被称为电子扫描技术。
激光雷达的功用
• (3)MEMS固态激光雷达
• MEMS固态激光雷达是指将所有机械部件集成到一个 芯片中,通过半导体工艺生产的MEMS。它消除了机 械旋转结构,从根本上降低了激光雷达的成本。
激光雷达的功用
• 固态激光雷达可以探测150米的距离。响应速度快, 控制电压低,扫描角度大,价格低。
• 根据线束数量,固态激光雷达可分为单线激光雷达和 多线激光雷达。顾名思义,单行激光雷达扫描一次只 能产生一条扫描线,得到的数据是二维数据,因此无 法区分目标物体的三维信息。
信号处理 模数转换
激光器
光束控制
探测器 制冷
主处理器
发射光学 天线
接收光学 天线
距离信息
速度信息
角度信息
目标图像信息
目标物体
伺服系统 通信系统 屏幕系统
激光雷达的功用
• 请说说汽车激光雷达的三维立体图像是怎么形成的?
激光雷达的功用
• 实时激光雷达一般分为16线、32线和64线,雷达测 距的精度非常重要,以16线激光雷达为例,它具有2° 角分辨率,如果行人在50米以外,只有一条激光脉冲 线。显然不能区分行人的轮廓。它也可以在白天利用 摄像头进行分辨。但如果是在夜间,激光雷达难以单 独识别,毫米波雷达只能识别障碍物,对热敏信息无 法识别。

2024版第三章第五节探地雷达技术ppt课件

2024版第三章第五节探地雷达技术ppt课件
型。
结果输出与可视化
将处理结果以图表、图像等形 式输出,并进行可视化展示。
04
CATALOGUE
探地雷达在不同领域中的应用实例
工程地质勘察中应用
地质构造探测
利用探地雷达技术,可以非破坏 性地探测地下的岩层、断层、裂 缝等地质构造,为工程建设提供
重要的地质信息。
地下水位监测
通过探地雷达技术,可以实时监测 地下水位的动态变化,为水利工程、 城市排水等提供数据支持。
结合探地雷达技术和文物保护理 念,可以对历史文化遗址进行科
学合理的保护和利用。
05
CATALOGUE
探地雷达技术发展趋势与挑战
技术创新点及未来发展方向
全极化探地雷达技术
利用不同极化方式提高探测精度 和分辨率,减少环境干扰。
三维成像技术
结合先进的信号处理和图像处理 算法,实现地下目标的三维可视 化。
根据特征分析结果,计算 相关特征参数,如反射系 数、波速等。
地质结构推断与异常识别
01
02
03
04
地质结构推断
结合地质资料和反射波特征参 数,推断地下目标体的地质结
构。
异常识别
根据反射波特征参数和地质结 构推断结果,识别地下目标体
的异常区域。
异常分类与定性
对识别出的异常进行分类和定 性分析,确定异常的性质和类
接收机
接收来自地下的反射信号,并进行放大、滤波等处理。为提高 接收效果,常采用多通道接收技术,同时接收多个不同频率、 不同极化的信号。
天线类型及性能参数
天线类型
根据探测需求和场地条件,可选择不同类型的天线,如偶极子天线、喇叭天线、阵列天线等。其中,偶极 子天线适用于浅层高分辨率探测;喇叭天线适用于深层探测;阵列天线则可提高信号接收的定向性和抗干 扰能力。

雷达信号处理

雷达信号处理

雷达信号处理技术与系统设计第一章绪论1.1 论文的背景及其意义近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。

雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。

区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。

固定杂波的中心频率位于零频,很容易设计滤波器将其消除。

但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。

最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。

后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。

为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。

CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。

第二章 雷达信号数字脉冲压缩技术2.1 引言雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。

根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。

脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。

这种情况在实际工作中是不允许的。

采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。

气象雷达信号分析与处理

气象雷达信号分析与处理

气象雷达信号分析与处理雷达是一种通过电磁信号来探测物体位置、速度等信息的仪器,广泛应用于气象、军事、航空等领域。

气象雷达是一种用于测量降水、云层等气象现象的雷达。

在气象预报和灾害防范中,气象雷达的作用尤为重要。

本文将从气象雷达信号分析与处理的角度,介绍气象雷达的基本原理、信号处理以及应用。

一、气象雷达的基本原理气象雷达是基于电磁波与物体相互作用的原理来检测大气中物体的位置和速度信息。

雷达系统通常由发射机、天线、接收机和处理器组成。

首先,雷达发射机产生电磁波,并由天线发射到空气中。

当电磁波遇到空气中的物体时,一部分电磁波会被反射回来,被接收机接收。

接收机会将接收到的信号送到处理器进行处理,最终生成气象雷达图像。

气象雷达信号依据雷达回波的反射程度,可以得到大气中各种物体的位置、速度和特征等信息。

气象雷达的位置估计是基于雷达波与物体间的相互反射。

物体会吸收部分电波,在物体和雷达间的电磁波的传输过程中,电波会得到反射,再返回雷达。

通过计算雷达波的传播时间与其发射时的电磁波信号,可以得到被探测物体的位置信息。

气象雷达还可以通过测量相邻两个时刻间天空中物体的位置变化,得到物体的速度信息。

此外,气象雷达还可以依据回波信号的强度来推断降雨强度、云层特征等。

二、气象雷达信号处理对于气象雷达信号处理,常见的方法有降采样、抗干扰、回波强度计算、雷暴监测等。

1. 降采样降采样指降低雷达数据的数据量,在不影响信息准确性的前提下减少计算量。

一方面,数据流量大,导致数据传输、处理和存储等成本大幅增加。

另一方面,大数据量也增大了数据处理难度,无论是数据快速转化还是数据有效性检测,处理时间都将增加。

因此,降采样可以有效提高数据处理效率。

2. 抗干扰在数据传输过程中,会有各种因素造成的干扰,降低数据质量。

为了避免和消除干扰,需要对数据进行抗干扰处理。

抗干扰处理方法主要包括滤波器设计、峰值检测、回波信号质量评估等。

3. 回波强度计算回波强度是气象雷达监测效果的一个重要指标,通常用于描述大气中各种物体的反射能力和其与雷达在物理上的关系。

雷达原理复习总结

雷达原理复习总结

第一章 绪论(重点)1、雷达的基本概念雷达概念(Radar),雷达的任务是什么,从雷达回波中可以提取目标的哪些有用信息,通过什么方式获取这些信息雷达概念:Radio Detection and Ranging 的缩写。

无线电探测和测距,无线电定位。

雷达的任务:雷达检测,目标定位,目标跟踪,目标成像,目标识别。

从雷达回波中可以提取目标的有用信息,获取方式: 目标信息 雷达提取 空间位置 距离 R=Ct/2 回波延时 方位 天线扫描 仰角速度 多普勒频移尺寸和形状 回波延时、多普勒频移2、目标距离的测量测量原理、距离测量分辨率、最大不模糊距离测量原理:通过接收信号的时间延迟进行测距 R=Ct/2 (t:滞后时间) 距离测量分辨率最大不模糊距离3、目标角度的测量角度分辨率角度分辨率:位于同一距离上的两个目标在方位角平面或仰角平面上可被区分的最小角度4、雷达的基本组成哪几个主要部分,各部分的功能是什么同步设备(Synchronizer):雷达整机工作的频率和时间标准。

发射机(Transmitter):产生大功率射频脉冲。

收发转换开关(Duplexer): 收发共用一副天线必需,完成天线与发射机和接收机连通之间的切换。

天线(Antenna):将发射信号向空间定向辐射,并接收目标回波。

接收机(Receiver):把回波信号放大,检波后用于目标检测、显示或其它雷达信号处理。

显示器(Scope):显示目标回波,指示目标位置。

天线控制(伺服)装置:控制天线波束在空间扫描。

电源第二章 雷达发射机1、雷达发射机的任务雷达发射机的任务:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。

2、雷达发射机的主要质量指标雷达发射机的主要质量指标:工作频率或波段,输出功率,总效率,信号形式,信号稳定度3、雷达发射机的分类雷达发射机的分类:1、按调制方式: ①连续波发射机 ②脉冲发射机2、按工作波段:①短波②米波③分米波④厘米波⑤毫米波3、按产生信号方式 :①单级振荡式 ②主振放大式4、按功率放大使用器件: ①真空管发射机 ②固态发射机4、单级振荡式和主振放大式发射机组成, 以及各自的优缺点。

雷达原理第三章-雷达接收机

雷达原理第三章-雷达接收机

雷达接收机的组成
3. 失真
混频——频谱线性搬移——非线性器件——平方项 非线性器件——高次方项——产生组合频率——干扰、失真
(1)干扰哨声
特征:接收机音频出现哨叫 混频输入:仅有有用射频 f R F
f R F 非线性 器件
本振
中频
f IF
滤波器
主中频: fIFfRFfLO (二次方项)
组合频率 pfRF qfLO fIF F 付波道中频
一、 超外差式雷达接收机的组成 主要组成部分是:
按照雷达接收机中回波信号的频率变换过程,可以将超外差 式雷达接收机划分为高频、中频和视频三部分。
高频部分指接收机的微波电路,又称雷达接收机的高端,包 括接收机保护电路、低噪声高频放大器、混频器和本机振荡器。
中频部分指中频放大器、匹配滤波器、检波器。 视频部分为视频放大器等信号频率为视频的电路。第二混频 器及相关电路包含在中频放大器中。
3.视频部分: 检波:包络检波,同步(频)检波(正交两路), 相位检波。 放大:线形放大,对数放大,动态范围。
雷达接收机的组成
(一)关于低噪声放大器
低噪声放大器(Low Noise Amplifier,简称LNA)是射频接 收机前端的主要部分。
它主要有以下几个特点:
1、处于接收机的前端就要求它的噪声系数越小越好。 为了抑制后面几级噪声对系统的影响,还要求有一定的 增益,为了不使后级器件过载,产生非线性失真它的增 益又不能太大。在此放大器在工作频段内应该是绝对稳 定的。
1.高频部分:
T/R 及保护器:发射机工作时,使接收机输入端短路, 并对大信号限幅保护。 低噪声高放:提高灵敏度,降低接收机噪声系数,热 噪声增益。 Mixer,LD,AFC(自动频率微调):保证本振频率 与发射频率差频为中频,实现变频。

第三章 第五节 探地雷达技术

第三章 第五节 探地雷达技术

(一)探地雷达在工程地质勘察中的应用 大型工程建筑对地基质量要求很高,当地
下工程地质条件横向变化较大时,常规的钻 探工作由于只能获得点上的资料,无法满足 基础工程施工对地质条件的要求,而探地雷 达由于能对地下剖面进行连续扫描,因而在 工程地质勘察中得到了广泛的应用。
1、基岩面的探地雷达探测 高层建筑对地基的附加应力影响深、范 围广,对地基土的承载力要求高。当场地的 地基土层软弱,而在其下不太深处又有较密 实的基岩持力层时,常常采用进入基岩的桩 基础,在基岩面起伏剧烈地区,详细描述基 岩面的起伏对桩基础设计有重要意义。
图3.5.4 相距0.5m的五个天线聚焦后的天线辐射方向极化图
三、探地雷达的数据处理与成果表达 (一)探地雷达的数据处理方法 探地雷达数据处理的目的是对原始雷达记 录进行初步加工处理,目标是压制随机的和 规则的干扰,以最大可能的分辨率在探地雷 达图像剖面上显示反射波,提取反射波的各 种有用参数 (包括振幅、波形、频率等),使实 测的雷达资料更便于计算机处理解释。
250、500、800、1000 MHz
生产商 Geophysical
Survey Systems, Inc
Snsor & Software
Inc.
MALA GEOSCIENCE
四、探地雷达的应用 探地雷达是一种高分辨率探测技术,可以 对浅层地质问题进行详细填图,也可以对地下 浅部埋藏的目的体进行无损检测。由于电子技 术与数字处理技术的发展,使探地雷达的分辨 率与探测深度大大提高,探地雷达已在工程地 质勘察、灾害地质调查、地基基础施工质量检 测、考古调查、管线探测、公路工程质量检测 等多个领域中得到了广泛应用。下面介绍探地 雷达在两个领域中的应用。
探地雷达所用的电磁波有一较宽的频谱, 频段远大于一般的地面电磁法,属于分米波。 图3·5·1为探地雷达探测原理图,发射天线 和接收天线紧靠地面,由发射机发射的短脉冲 电磁波经发射天线辐射传入大地,电磁波在地 下传播过程中遇到介质的分界面后便被反射或 折射,反射回地面并被接收天线接收的电磁波 ,我们称为回波。显然,根据回波讯号及其传 播时间便可判断电性界面的存在及其埋深。

第三章SAR基本原理

第三章SAR基本原理

第三章SAR基本原理
SAR(synthetic aperture radar)是一种用于正激射模拟的雷达技术,它可以将原本分散的微弱的接收信号集中处理,从而产生一系列强大
的信号,以提供更清晰的图像。

SAR的原理可以追溯到20世纪50年代末期,在研究者Richard S. Yeh发明的一般雷达图像重建(GRIR)理论框
架的基础上。

SAR的工作机制是利用合成孔径技术,通过位移移动探测器与目标之
间的位置来收集像素,这些位移对应于探测器穿过探测区域的路径。

这使
得SAR可以模拟一个相对大的发射天线,从而能够提供更高灵敏度而不损
失空间分辨率。

由于雷达发射信号和目标的反射特性,SAR技术可以得到非常详细的
图像信息来识别目标物体的特性。

SAR可以在不受对准技术限制的情况下,获得极高分辨率的。

它可以精确定位和追踪目标,可以显示目标在空间上
的位置,还可以测量目标的大小,分析其结构和形状,以及用于实时目标
跟踪。

SAR的一个重要应用是大气层探测,它可以分析大气中的水汽,云团
等气体含量,从而掌握天气状况变化。

此外,SAR还可以用于水文监测,
地形特征分析,城市发展控制等。

因此,SAR技术可以提高雷达图像的准
确性和质量,为科学研究和工程实施提供便利。

最后,SAR在多种领域的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12
第三章 雷达测量精度和分辨力
3.3 雷达测速精度
一、分析条件和方法 条件:①距离已知;②存在噪声;③相位为零;④视频情况; ⑤忽略其它因 素。 方法:均方差 B 2 2 二、分析结果 0 s f r ( f ) df

测速精度的均方根值

1 2E N0

(3.29)
回波信号
r (t ) a(t )e j (t ) j 2 t
为了找出测距精度, 使 Re Rr ( , ) Rn ( ) 最大

(1)假设目标的多普勒固定在一个比较小的 值,对 微分并令其等于 1 零,求得的时间位置为 1 (3.33) Re R ( 1 , 1 ) Rn ( 1 ) 0
j 2 f ( t ) 延迟时间 的发射波形 s(t ) (t )e 0
回波加噪声的混合波形 r (t ) sr (t ) na (t )
sr (t ) r (t )e j 2 f0t
na (t ) n(t )e j 2 f0t
7
第三章 雷达测量精度和分辨力
[ t ]e j 2 f0 e j 2 ( f0 fd )t
1
2v 2v 2v , fd f0 C C
运动目标的影响:① 压缩/展宽;②多普勒偏差。 说明: 1, f d f o , v c, BT c (声纳等除外)
2v
Sr (t ) [t ]e j 2 ( f0 fd )(t )
1、精度:测量单个目标参数的准确程度; 分辨力:区分两个或两个以上目标的能力。 (发射波形决定的最大理论精度和固有分辨力)

2、分析的前提:最佳处理系统、窄带信号、点目标
3、目的:用波形参量度量精度和分辨力 ( 均方根带宽, 均方根时宽,时间相位常数,有效相 关带宽,有效相关时宽 )
3
第三章 雷达测量精度和分辨力

2.非线性相位特性需要对测量精度进行修正,此时的测量精度除了与均方 根带宽(时宽)有关外,还与均方根带宽时宽之积、时间相位常数有关; 3. 无非线性相位项时,测量精度不存在耦合,最大理论精度由均方根带宽 (时宽)决定。

18
第三章 雷达测量精度和分辨力
2 t u (t ) rect ( )e jkt 例3.3:求 T 解: 2
(t )

2 Ro c
R0
sr (t ) [t (t )]e j 2 f0 [t (t )]
2 R(t ) 2vt c c
点目标 vt
R(t)
4
第三章 雷达测量精度和分辨力
经过推导有:
vt 2vt j 2 f0 [t 2C ] S r (t ) [t ]e C [ t ]e j 2 ( f0 f d )(t )
第三章 雷达测量精度和分辨力
第三章
雷达测量精度和分辨力
3.1 “点目标”回波的数学模型 3.2 雷达测距精度 3.3 雷达测速精度 3.4 信号的非线性相位特性对测量精度的影响 3.5 雷达不定原理 3.6 距离分辨力 3.7 速度分辨力
2
第三章 雷达测量精度和分辨力

为研究分析各种复杂信号的性能提供了理论基 础,也是优化雷达波形设计的基础。
与信号特性有关
与噪声特性有关
8
第三章 雷达测量精度和分辨力
1.由于互相关函数中载频引起的多值性,考虑其包络最大,即

Re[ Rr (1 ) Rn (1 )] 取最大值,此时 Re[ R ' ( 1 ) R 'n ( 1 )] 0
r
2.将 Re[ Rur u ( )]
三、具体分析结果
s(t ) r (t ) dt
2 2 0
T
s(t ) dt r (t ) dt [s* (t )r (t ) s(t )r * (t )]dt
2 2 0 0 0
T
T
T
2E Wr 2Re[ s* (t )r (t )dt ]
5
第三章 雷达测量精度和分辨力

3.2 雷达测距精度
0
无噪声时回波波形
回波 回波+噪声
0
t
t
噪声对回波波形的扰动
6
第三章 雷达测量精度和分辨力
一、概念:延迟时间测量准确度。 二、分析条件和方法 条件:①速度已知;②存在噪声;③相位为零;④视频情况; ⑤忽略其它因素。 方法:均方差准则(延迟时间 的发射波形与回波加噪声的混合 波形之间构成均方差)

16


第三章 雷达测量精度和分辨力
(5)因为 a(t )的能谱是频率的偶函数,因此
Re Rr (0, 1 ) 21 t (t )a 2 (t )dt



(6) 1
Re Rn ( 1 ) 1 (2 ) t (t )a 2 (t )dt Rr (0, 0)
2 2

2
df
2

2 T 2 f 2 ft
2

df
T
0
2
2
2
2 B 2
B
f
2
sin ft df ft
2

Hale Waihona Puke 2 B 2Bsin ft df ft
1 BT sin BT 2[ T SiBT cos BT 1
X 0
]
3.1 复习:“点目标”回波的数学模型 点目标:目标尺寸远小于雷达分辨单元。 分析条件:①传播无衰减;②不考虑天线方向性(回波强度
不变);③径向速度为正。 1、静止点目标 s(t ) (t )e j 2f 0t 发射信号: j 2f 0 ( t ) 回波信号: s r (t ) (t )e 2、运动点目标
BT
Si( x)
sin u du u
11
第三章 雷达测量精度和分辨力
矩形信号频谱
( f )
14
( 0T )2与BT的关系
0T
2
12 10 8 6
B 2
0
B 2
f
4 2 0 1
2
2
3
4
5
6
7
0T
2 BT
BT
02
2B T
信号的均方根带宽和信号的频谱带宽是不等的
测量精度的修正: 1 1 2 2 2E 2 2E 2 (3.50) 02 [1 ( ) ] (3.49) 02 [1 ( ) ] N 0 N0 0 结论: 0 1.信号 (t ) 0 且具有非线性相位,此时测距精度与测速精度之间有耦合, 其耦合程度由时间相位常数 决定,其取值与信号的时域特性有直接关系。
'
' '' 在 0 展开成泰勒级数:Re[ Ru u ( )] R ( 0 )( 0 )
r r
3.代入可得
(1 0 )
Re Rn (1 ) Rr ( 0 )
( 1 0 ) rms
' {Re[ Rnu ( 1 )]}rms R '' r ( 0 )
均方根时宽
2 t 2 t 2 dt 2 2 t dt
2
(3.30)
13
第三章 雷达测量精度和分辨力
例3.2 求单载频矩形脉冲信号的均方根时宽 T T t 解: t rect t
T
2 2
2( )

t T的时间相位常数
(t ) k t
2
' (t ) 2k t
t (2 kt )dt dt 4 2 kt 3
T /2 T /2 T /2

2 t ' (t )a 2 (t )dt





2
T /2
T /2 T /2

[a(t )] dt


2 kT 2

r


(2)将互相关函数 Rr ( 1 , 1 )在 0 点展成泰勒级数,
Re Rr ( , 1 ) Re Rr (0, 1) R r (0, 1)
(3.35)
15
第三章 雷达测量精度和分辨力

(3)(3.35)式代入(3.33)式,并对求解可得
3
T /2
3t T /2
1/ 2
9
第三章 雷达测量精度和分辨力

均方根带宽:
0
2
2 2 f 2 f 2 df

(3. 25)




f df
2
1

测距的均方根误差:
0
2E N0
2
(3. 26)

四、结论: ① 与均方根带宽成反比,与信噪比成反比; ②信噪比一定,不同发射信号具有不同 ,不同 0 ; ③ 与频域特性有关,与其时域特性无直接关系; ④ 是比较各种信号形式能给出最大理论精度的依据; ⑤ 0 与信号带宽、有效相关带宽不同。
1
Re Rr (0, 1 ) Rn (1) Rr (0, 0)

(4)求Re R (0, 1) 的表达式
r
Rr ( , )
a(t )a(t) j (t )a(t
相关文档
最新文档