OTDR的使用及曲线分析
OTDR操作、曲线分析、参数解析
![OTDR操作、曲线分析、参数解析](https://img.taocdn.com/s3/m/8a0faa28cfc789eb172dc814.png)
OTDR的英文全称是Optical Time Domain Reflectometer,中文意思为光时域反射仪。
OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。
一、ODTR的基本原理要想真正明白OTDR的原理,首先我们必须明白它的光学原理和工原理。
能够准确的区分瑞利散射和菲尼尔反射。
(一)光学原理瑞利散射:是光纤的一种固有损耗,是指光波在光纤传输时,遇到一些比光波波长小的微粒而向四周散射,导致光功率减小的现象。
瑞利散射光有以下特征:波长与入射光波的波长相同,它的光功率与此点的入射光功率成正比。
菲尼尔反射:就是光在从一种介质(光纤)传到另一种介质(空气)中时,被沿原介质(光纤)反射回来。
在什么情况下可能产生瑞利散射和菲尼尔反射?瑞利散射:如同大气中的颗粒散射了光,使天空变成蓝色一样。
瑞利散射的能量大小与波长的四次方的倒数成正比,大约比入射光功率低60dB,即入射光功率的0.0001%。
所以波长越短散射越强,波长越长散射越弱.还需要注意的是能够产生背向瑞利散射的点遍布整段光纤,是连续的。
菲尼尔反射就是我们平常所理解的光反射,是指光在从一种介质(光纤)传到另一种介质(空气)中时,被沿原介质(光纤)以入射时相同的角度反射回来。
需要注意的是菲涅尔反射是离散的,由光纤上个别的点位置产生。
而反射回来的光强度可达到入射光强度的4%。
(一个灰尘的直径是10-100UM,一个光纤的直径只有9UM左右。
)工作原理OTDR测试是通过发射光脉冲到光纤内,然后在OTDR端口接收返回的信息来进行。
当光脉冲在光纤内传输时,会由于光纤本身的性质,连接器,接合点,弯曲或其它类似的事件而产生散射,反射。
其中一部分的散射和反射就会返回到OTDR中。
返回的有用信息由OTDR的探测器来测量,它们就作为光纤内不同位置上的时间或曲线片断。
OTDR的使用及曲线分析解读
![OTDR的使用及曲线分析解读](https://img.taocdn.com/s3/m/13e5d687b0717fd5360cdc47.png)
2019/2/27
OTDR的常规使用
设置3
• 事件阀值 • 告警阀值
非反射性损耗 反射性损耗 回损 光纤损耗
接续损耗 回损 光纤远端 行业标准一般为 0.08dB
全损耗 全回损 平均损耗
2019/2/27 16
OTDR的常规使用
1、接续门限值:
接头损耗作为事件的门限值。所有接头中,其
损耗凡超过该门限值的即称为事件(即不合格接
11
内容提要
1、OTDR的相关介绍 2、OTDR的工作原理 3、OTDR的常规使用 4、光纤断点定位与误差分析 5、OTDR日常维护 6、其他应该注意事项
2019/2/27
12
OTDR的常规使用
三种方式
自动方式:当需要概览整条线路的状况时,采用自动方式,它只需要 设置折射率、波长最基本的参数,其它由仪表在测试中自 动设定,按下自动测试(测试)键,整条曲线和事件表都 会被显示,测试时间短,速度快,操作简单,宜在查找故 障的段落和部位时使用 手动方式:需要对几个主要的参数全部进行设置,主要用于对测试曲 线上的事件进行详细分析,一般通过变换、移动游标,放 大曲线的某一段落等功能对事件进行准确定位,提高测试 的分辨率,增加测试的精度,在光纤线路的实际测试中常 被采用。 实时方式:实时方式是对曲线不断的扫描刷新,由于曲线在 不断的跳动和变化,所以较少使用。
件在轨迹上产生一个倾角。通常为熔接接头
OTDR判断被测试光纤中反射事件的门限值。在测试过程中,凡有超过该 值的反射点即称为事件点。
射主要是瑞利散射,其损耗的大小与波长的4次方成反比,即随着波长的增加, 损耗迅速下降,瑞利散射的方向是分布与整个立体角的,其中一部分返回到 光纤的注入端,形成连续的后向散射回波,成为背向散射光或称为后向散射 光。光纤中某一点的后向回波可以反映出光纤中光功率的分布情况,椐此可 以测试出光纤的损耗。
OTDR使用全攻略
![OTDR使用全攻略](https://img.taocdn.com/s3/m/ac26e453312b3169a451a4f8.png)
OTDR使用全攻略一/OTDR的使用用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。
人工设置测量参数包括:(1)波长选择(λ):因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。
(2)脉宽(Pulse Width):脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。
脉宽周期通常以ns来表示。
(3)测量范围(Range):OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。
最佳测量范围为待测光纤长度1.5~2倍距离之间。
(4)平均时间:由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。
例如,3min的获得取将比1min的获得取提高0.8dB的动态。
但超过10min的获得取时间对信噪比的改善并不大。
一般平均时间不超过3min。
(5)光纤参数:光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。
折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。
这两个参数通常由光纤生产厂家给出。
参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。
2经验与技巧(1)光纤质量的简单判别:正常情况下,OTDR测试的光线曲线主体(单盘或几盘光缆)斜率基本一致,若某一段斜率较大,则表明此段衰减较大;若曲线主体为不规则形状,斜率起伏较大,弯曲或呈弧状,则表明光纤质量严重劣化,不符合通信要求。
(2)波长的选择和单双向测试:1550波长测试距离更远,1550nm比1310nm光纤对弯曲更敏感,1550nm比1310nm单位长度衰减更小、1310nm比1550nm测的熔接或连接器损耗更高。
OTDR操作攻略
![OTDR操作攻略](https://img.taocdn.com/s3/m/3a997f340b4c2e3f5727638c.png)
OTDR操作攻略OTDR操作攻略1.OTDR的使用用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。
人工设置测量参数包括:(1)波长选择(λ):因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。
(2)脉宽(Pulse Width):脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。
脉宽周期通常以ns来表示。
(3)测量范围(Range):OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。
最佳测量范围为待测光纤长度1.5~2倍距离之间。
(4)平均时间:由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。
例如,3min的获得取将比1min的获得取提高0.8dB的动态。
但超过10min的获得取时间对信噪比的改善并不大。
一般平均时间不超过3min。
(5)光纤参数:光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。
折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。
这两个参数通常由光纤生产厂家给出。
参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。
2.经验与技巧(1)光纤质量的简单判别:正常情况下,OTDR测试的光线曲线主体(单盘或几盘光缆)斜率基本一致,若某一段斜率较大,则表明此段衰减较大;若曲线主体为不规则形状,斜率起伏较大,弯曲或呈弧状,则表明光纤质量严重劣化,不符合通信要求。
(2)波长的选择和单双向测试:1550波长测试距离更远,1550nm比1310nm光纤对弯曲更敏感,1550nm比1310nm单位长度衰减更小、1310nm比1550nm测的熔接或连接器损耗更高。
OTDR的使用
![OTDR的使用](https://img.taocdn.com/s3/m/47731bdba58da0116c174958.png)
3.曲线分析 3.曲线分析
参数设置好后,OTDR即可发送光脉冲并 接收由光纤链路散射和反射回来的光, 对光电探测器的输出取样,得到OTDR曲 线,对曲线进行分析即可了解光纤质量。
2. 设置测量参数
(2)脉宽(Pulse Width): 脉宽越长,动态测量范围越大,测量距 离更长,但在OTDR曲线波形中产生盲区 更大;短脉冲注入光平低,但可减小盲 区。脉宽周期通常以ns来表示。
2. 设置测量参数
(3)测量范围(Range): OTDR测量范围是指OTDR获取数据取样 的最大距离,此参数的选择决定了取样 分辨率的大小。最佳测量范围为待测光 纤长度1.5~2倍距离之间。
(7)附加光纤的使用: 附加光纤是一段用于连接OTDR与待测光纤、长300~ 2000m的光纤,其主要作用为:前端盲区处理和终端 连接器插入测量。 一般来说,OTDR与待测光纤间的连接器引起的盲区最 大。在光纤实际测量中,在OTDR与待测光纤间加接一 段过渡光纤,使前端盲区落在过渡光纤内,而待测光 纤始端落在OTDR曲线的线性稳定区。光纤系统始端连 接器插入损耗可通过OTDR加一段过渡光纤来测量。如 要测量首、尾两端连接器的插入损耗,可在每端都加 一过渡光纤。
4.经验与技巧 4.经验与技巧
(3)接头清洁: 光纤活接头接入OTDR前,必须认真清洗, 包括OTDR的输出接头和被测活接头,否 则插入损耗太大、测量不可靠、曲线多 噪音甚至使测量不能进行,它还可能损 坏OTDR。避免用酒精以外的其它清洗剂 或折射率匹配液,因为它们可使光纤连 接器内粘合剂溶解。
OTDR常见曲线分析解读
![OTDR常见曲线分析解读](https://img.taocdn.com/s3/m/6219c4da700abb68a982fb47.png)
盲区分为衰减盲区和事件盲区 衰减盲区:从反射点开始至接收机恢复到后向散射电平约0.5dB范围内 的这段距离,这段距离就是OTDR能再次测试衰减和损耗的点.
仿真反射峰
DB/DIV
D
0.5dB
M/DIV
式中:D的长度就为衰减盲区的长度
事件盲区:从OTDR接收到反射点到开始到OTDR恢复到最高反射点 1.5DB以下这段距离,在这以后才能发现是否还有第二个反射点,但还 不能测试衰减.
光纤衰减的测试
第一个菲涅尔反射峰后沿
第二个菲涅尔反射峰前沿
DB/DIV
尾纤 A B
M/DIV
方法:将光标A置于第一个菲涅尔反射峰后沿,曲线平滑的起点,将光标B置于第
二个菲涅尔反射峰前沿,光标A与光标B间显示型的后向散射信号曲线
DB/DIV
对策:在这种情况下改变光纤测试量程、脉宽、重新做端面,再测试如
“小山峰”消失则为原因(2),如不消失则为原因(1)
现象:在光纤纤连接器、耦合器、熔接点处产生一个明显的增益;
原因:模场直径不匹配造成的;
对策:测试衰减和接头损耗必须双向测试,取平均值
现象:曲线斜率正常,光纤均匀性合格,但两端光纤衰减系数相差很大
图(b)
正增益现象处理
正增益
正增益是由于在熔接点之后的光纤比熔接点之前的光纤产生更多的后向散 光而形成的。事实上,光纤在这一熔接点上是熔接损耗的。常出现在不同模场
直径或不同后向散射系数的光纤的熔接过程中,因此,需要在两个方向测量并
对结果取平均值作为该熔接损耗。
现象:1310nm光纤曲线平滑,光纤衰减斜率基本正常,衰减指标
正常,但1550nm光纤衰减斜率严重不良,衰减指标严重偏高; 原因:束管内余长过长,光纤弯曲半径过小;
如何使用OTDR进行光缆光纤测试和测试曲线分析
![如何使用OTDR进行光缆光纤测试和测试曲线分析](https://img.taocdn.com/s3/m/6c13b631590216fc700abb68a98271fe910eafcf.png)
如何使⽤OTDR进⾏光缆光纤测试和测试曲线分析⼀、光缆测试简介1.1 光缆传输损耗特性:①单模光缆的传输损耗典型值约为1310 nm传输损耗:≤0.36dB/km1550 nm传输损耗:≤0.22dB/km②光纤传输损耗分为:固有损耗和⾮固有损耗。
固有损耗:是光纤中传输的光波的散射与吸收所产⽣的损耗,是光纤材料本⾝的特性决定。
⾮固有损耗:包括杂质吸收损耗、散射损耗、光纤弯曲损耗和结构不规则损耗。
③光纤死接头衰耗≤0.08dB,光纤活接头衰耗≤0.5dB1.2 测试仪器:光缆⼯程常⽤的测量仪表包括:光源、光功率计、光时域反射仪(OTDR)、接地电阻测试仪、⾦属护套对地故障特测仪、误码分析仪等。
⼆、DTDR介绍打开今⽇头条,查看更多图⽚2.1 OTDR的功能:1、观察整个光纤线路2、定位端点和断点3、定位接头点(“故障点”)4、测试接头损耗5、测试端到端损耗6、测试反射值7、测试回波损耗8、建⽴事件点与地标的相对关系9、建⽴光纤数据⽂件10、数据归档2.2 测试范围:测试范围是指距离或显⽰范围。
对这⼀参数的设置意味着告诉(设置)OTDR应该在屏幕上显⽰多长距离。
为了显⽰整个光纤曲线,设置时这⼀范围必须⼤于被测光纤长度。
测试范围相对于被测光纤长度也不要差异太⼤,否则将会影响到有效分辨率。
同时,过⼤的测试范围还将导致过⼤⽽⽆效的测试数据⽂件,造成存贮空间的浪费。
2.3 波长:对同⼀根光纤,不同波长下进⾏的测试会得到不同的损耗结果。
测试波长越长,对光纤弯曲越敏感。
1550nm下测试的接头损耗⼤于在1310nm处的测试值。
下图中,第⼀个熔接点存在弯曲问题,⽽另外的熔接点在两个测试波长下状态近似,这表明光纤未受⼒。
2.4 平均平均(有时也称为扫描)可降低测试结果曲线的噪声⽔平,提⾼判读精度。
测试时,可以设定扫描次数为快, 中, 慢等三挡或⼀个特定的时间长度。
长的平均时间使你能够获得较好的结果曲线。
如果使⽤较短的测试脉宽或测试较长的光缆区段,就应该选择较长的平均时间。
光纤测试仪器OTDR简介和常规曲线分析
![光纤测试仪器OTDR简介和常规曲线分析](https://img.taocdn.com/s3/m/8cb4ea466bd97f192379e91e.png)
测试仪器OTDR简介和常规曲线分析一、OTDR英文:Optical Time Domain Reflectomenten中文:1、光时域反射测试仪 (照英文译)2、背向散射测试仪(按其原理命名)二、全球主要厂家美国PK(PhotonKinetics)、日本安立(ANRITSU)、美国激光精密(GN Nettest)、爱立信(Ericsson)、EXFO等三、衡量OTDR的性能指标a、衡量OTDR的性能指标--动态范围b、动态范围:在满足给定误码的条件下,光端机输入连接器,能接收最大的光功率与最小光功率电平值(接收灵敏度)之差。
c、动态范围越大,所能测试距离越长四、OTDR的功能a、测试光纤的长度;b、测试光纤的衰减系数(波长850nm、1310nm、1550nm、1625nm);c、测试光纤的接头损耗;d、测试光纤的衰减均匀性;e、测试光纤可能有的异常情况(如有台阶,曲线异常等);f、测试光纤的回波损耗(ORL);g、测试光纤的背向散射(BKSCTR COEFF);五、OTDR 的基本原理-瑞利散射、菲涅尔反射a 、瑞利散射:光波在光纤中传输,沿途受到直径比光波长还小的散射粒子的散射;瑞利散射具有与短波长的1/λ4成反比的性质,即:a r =A/λ4,式中比例系数A 与玻璃结构、玻璃组成有关b 、菲涅尔反射:光波在两种折射率不同的煤质界面会形成反射,其反射能量约占总能量4%;六、基本原理图注:LD-半导体激光器,LED-面发光二极管七、 典型的后向散射信号曲线a 、 输入端的Fresnel 反射区(即盲区)b 、 恒定斜率区、c 、 由局部缺陷、接续或耦合引起的不连续性、d 、 光纤缺陷、二次反射余波等引起的反射、DB/DIV M/DIVe 、 输出端的Fresnel 反射、八、 曲线说明:1、 盲区:决定OTDR 所能测到最短距离和最接近距离,是由于活接头的反射引起OTDR 接收机饱和所至,盲区通常发生在OTDR 面板前的活接头反射,但也可以在光纤的其它地方发生;一般OTDR 盲区为100m 。
OTDR测试原理及曲线分析
![OTDR测试原理及曲线分析](https://img.taocdn.com/s3/m/667256a90242a8956bece4b5.png)
资料条款的最终解释权属于长飞公司YOFC_10007_WPOTDR 测试原理及曲线分析李龙孙杨晨1.引言光时域反射仪(OTDR :Optical Time-Domain Reflectometer ),是光纤测试,特别是在网络建设的实际施工布线中经常使用的仪器。
OTDR 可以测试(成缆前后)光纤的衰减系数、光纤长度、衰减均匀性、点不连续性、物理缺陷和接头损耗等参数,特别适合于对通信网络中的光纤光缆链路进行检测,它既可以定位光纤链路中的连接点(含热熔接、机械冷连接、活动连接等)的位置并测试其损耗,又可以在链路发生故障时,迅速查找原因并定位故障位置。
2.测试原理OTDR 通过采集和测量因瑞利散射而被光纤自身背向散射回来的光功率来进行相关的测试。
OTDR 将光脉冲注入到待测光纤中后,因为瑞利散射,注入的光脉冲在光纤长度方向上的每一点上都被散射(所有方向),其中一部分光会背向返回到OTDR 的探测单元,OTDR 会采集和测量此背向散射光。
在光纤链路上的某一点,其背向散射的光功率P(z)可以通过公式(1)[1]计算:22102()10(())z i w P z CP MFD z αλτ-=(1)其中,λ为注入光的波长,C 为比例系数(与多种因素有关,比如光纤的玻璃材料),z 为此点距离原点的距离,MFD(z)为光纤在此点处的模场直径,P i 为OTDR 的脉冲功率,τw 为脉冲的宽度,α为光纤的衰减系数。
从公式(1)可以看出,P(z)的大小是受到光纤模场直径的影响的。
一般情况下,P(z)采用对数坐标表示,所以OTDR 的测试曲线一般为直线,其斜率反映了光纤的衰减系数。
2.1衰减系数的测试[2]使用OTDR 测试光纤或光缆的衰减系数的步骤如下:2.1.1光纤连接将被试光纤连接到OTDR 上,或连接到盲区光纤的一端(盲区光纤也可称为尾纤,在测试过程中用于避免OTDR 盲区的影响),盲区光纤的另一端连接到OTDR 上。
otdr的使用方法
![otdr的使用方法](https://img.taocdn.com/s3/m/4800c74c8f9951e79b89680203d8ce2f006665fc.png)
otdr的使用方法【实用版3篇】《otdr的使用方法》篇1OTDR(Optical Time Domain Reflectometer,光时域反射仪)是一种用于测量光纤长度、传输衰减、接头衰减和故障定位等参数的精密光电一体化仪表。
使用OTDR 进行光纤测量可以分为三步:参数设置、数据获取和曲线分析。
参数设置是人工设置测量参数,包括波长选择、脉宽、测试公里数和测试次数等。
其中,波长选择应遵循与系统传输通信波长相对应的原则;脉宽越长,动态测量范围越大,测量距离更长,但在OTDR 曲线波形中产生盲区更大;测试公里数应根据光缆的长度进行设置,一般设置为实际距离的115% 左右;测试次数可以根据需要进行设置。
数据获取是通过OTDR 测试仪向光纤中注入脉冲光信号,并记录返回的反射信号,从而获取光纤中的信息。
在获取数据时,应将OTDR 测试仪连接到光纤的两端,并将测试仪的参数设置为合适的值。
曲线分析是对获取的数据进行分析,以得出光纤的长度、传输衰减、接头衰减和故障定位等参数。
曲线分析可以采用自动测试状态,也可以采用手动测试状态。
在自动测试状态下,OTDR 测试仪会自动选择合适的参数,并生成相应的曲线;在手动测试状态下,需要手动设置参数,并生成曲线。
总之,使用OTDR 测试仪进行光纤测量需要进行参数设置、数据获取和曲线分析三个步骤,需要根据实际情况进行选择和设置,以获得准确的测量结果。
《otdr的使用方法》篇2OTDR(Optical Time Domain Reflectometer,光时域反射仪)是一种用于测量光纤长度、传输衰减、接头衰减和故障定位等参数的精密光电一体化仪表。
使用OTDR 进行光纤测量可以分为三步:参数设置、数据获取和曲线分析。
参数设置是使用OTDR 的第一步。
人工设置测量参数包括波长选择、脉宽、测试公里数和测试次数等。
其中,波长选择应遵循与系统传输通信波长相对应的原则;脉宽越长,动态测量范围越大,测量距离更长,但在OTDR 曲线波形中产生盲区更大;测试公里数应根据光缆的长度进行设置,一般设置为实际距离的115% 左右;测试次数可以根据需要进行设置。
OTDR常见曲线分析大全--测试人员必备
![OTDR常见曲线分析大全--测试人员必备](https://img.taocdn.com/s3/m/ebc3850ca5e9856a5712602d.png)
OTDR常见曲线分析大全--测试人员必备长度测量一般采用两点法,,将受测光纤与尾纤一端相接,尾纤一端连到OTDR上,调整出显示尾纤和受测光纤的后向散射峰。
其曲线见图方法:将光标A置于第一个菲涅尔反射峰前沿,将光标B置于第二个菲涅尔反射峰前沿,光标A与光标B之间的相对距离差就为被测光纤长度。
光纤衰减的测试方法:将光标A置于第一个菲涅尔反射峰后沿,曲线平滑的起点,将光标B置于第二个菲涅尔反射峰前沿,光标A与光标B间显示衰减系数就是光纤A、B间衰减系数,但非整根光纤的衰减系数。
典型的后向散射信号曲线a、输入端的Fresnel反射区(即盲区)b、恒定斜率区c、局部缺陷、接续或耦合引起的不连续性d、光纤缺陷、二次反射余波等引起的反射e、输出端的Fresnel反射盲区:决定OTDR所能测到最短距离和最接近距离,是由于活接头的反射引起OTDR接收机饱和所至,盲区通常发生在OTDR面板前的活接头反射,但也可以在光纤的其它地方发生,一般OTDR盲区为100m。
盲区分为衰减盲区和事件盲区衰减盲区:从反射点开始至接收机恢复到后向散射电平约0.5dB范围内的这段距离,这段距离就是OTDR能再次测试衰减和损耗的点.式中:D的长度就为衰减盲区的长度事件盲区:从OTDR接收到反射点到开始到OTDR恢复到最高反射点1.5DB以下这段距离,在这以后才能发现是否还有第二个反射点,但还不能测试衰减.式中:D1的长度就为事件盲区的长度。
影响盲区的因素:a、入射光的脉冲宽度、b、反射光的脉冲宽度、c、入射光的脉冲后端形状、d、所用脉冲越小,盲区越大。
消除盲区的方法:加尾纤(过渡纤),最好2KM以上接头损耗的测量方法:将光标定于曲线的转折处如图位置,然后选择测接头损耗功能键,便可测得接头损耗。
外部因素引起的可能曲线变化这里的外部因素指施加于光缆并传递至光纤的张力及侧向受力,还有温度的变化。
这些都会造成曲线弓形弯曲。
外部因素引起的弓形弯曲在外力作用下使曲线斜率改变。
OTDR使用经验与技巧
![OTDR使用经验与技巧](https://img.taocdn.com/s3/m/eafef007a9114431b90d6c85ec3a87c241288a41.png)
OTDR使用经验与技巧1 OTDR的使用用OTDR进行光纤测量可分为三步:参数设置、数据获取和曲线分析。
人工设置测量参数包括:(1)波长选择(λ):因不同的波长对应不同的光线特性(包括衰减、微弯等),测试波长一般遵循与系统传输通信波长相对应的原则,即系统开放1550波长,则测试波长为1550nm。
(2)脉宽(Pulse Width):脉宽越长,动态测量范围越大,测量距离更长,但在OTDR曲线波形中产生盲区更大;短脉冲注入光平低,但可减小盲区。
脉宽周期通常以ns来表示。
(3)测量范围(Range):OTDR测量范围是指OTDR获取数据取样的最大距离,此参数的选择决定了取样分辨率的大小。
最佳测量范围为待测光纤长度1.5~2倍距离之间。
(4)平均时间:由于后向散射光信号极其微弱,一般采用统计平均的方法来提高信噪比,平均时间越长,信噪比越高。
例如,3min的获得取将比1min的获得取提高0.8dB的动态。
但超过10min的获得取时间对信噪比的改善并不大。
一般平均时间不超过3min。
(5)光纤参数:光纤参数的设置包括折射率n和后向散射系数n和后向散射系数η的设置。
折射率参数与距离测量有关,后向散射系数则影响反射与回波损耗的测量结果。
这两个参数通常由光纤生产厂家给出。
参数设置好后,OTDR即可发送光脉冲并接收由光纤链路散射和反射回来的光,对光电探测器的输出取样,得到OTDR曲线,对曲线进行分析即可了解光纤质量。
2 经验与技巧(1)光纤质量的简单判别:正常情况下,OTDR测试的光线曲线主体(单盘或几盘光缆)斜率基本一致,若某一段斜率较大,则表明此段衰减较大;若曲线主体为不规则形状,斜率起伏较大,弯曲或呈弧状,则表明光纤质量严重劣化,不符合通信要求。
(2)波长的选择和单双向测试:1550波长测试距离更远,1550nm比1310nm光纤对弯曲更敏感,1550nm比1310nm单位长度衰减更小、1310nm比1550nm测的熔接或连接器损耗更高。
OTDR测试原理与常见测试曲线简析
![OTDR测试原理与常见测试曲线简析](https://img.taocdn.com/s3/m/213a2c1e5f0e7cd184253631.png)
(-,光时域反射仪)是光纤测试特别是在网络建设的实际施工布线中经常使用的仪器�可以测试(成缆前后)光纤的衰减系数�光纤长度�衰减均匀性�点不连续性�物理缺陷和接头损耗等参数,特别适合于对通信网络中的光纤光缆链路进行检测,它既可以定位光纤链路中的连接点(含热熔接�机械冷连接�活动连接等)的位置并测试其损耗,又可以在链路发生故障时,迅速查找原因并定位故障位置�为方便读者,现将其工作原理与部分测试曲线作简要分析�1O TD R 测试原理测试是通过发射光脉冲到光纤内,然后在端口接收返回的信息来进行�当光脉冲在光纤内传输时,会由于光纤本身的性质�连接器�接合点�弯曲或其它类似的事件而产生散射�反射�其中一部分的散射和反射就会返回到中�返回的有用信息由的探测器来测量,它们就作为光纤内不同位置上的时间或曲线片断�从发射信号到返回信号所用的时间,再确定光在玻璃物质中的速度,就可以计算出距离�以下的公式就说明了是如何测量距离的�(�)/2(���)上式中,�是光在真空中的速度,而�是信号发射后到接收到信号(双程)的总时间(两值相乘除以2后就是单程的距离)�因为光在玻璃中要比在真空中的速度慢,所以为了精确地测量距离,被测的光纤必须要指明折射率(���)����由光纤生产商来标明�使用瑞利散射和菲涅尔反射来表征光纤的特性�瑞利散射是由于光信号沿着光纤产生无规律的散射而形成的�����测量回到����端口的一部分散射光�这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度�形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信号都有所损耗�给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强�瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强�也就是说用1310��信号产生的轨迹会比1550��信号所产生的轨迹的瑞利背向散射高�在高波长区(超过1500��),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大�因此,1550��秦双华江苏省涟水广播电视台摘要:本文对O T D R 测试原理及常见测试曲线作简要分析,在故障维修中根据测试曲线的不同特点就能准确判断光纤是否断裂�弯曲直径是否过小�熔接点是否有缺陷�光纤的衰减系数�光纤长度�衰减均匀性�点不连续性�物理缺陷和接头损耗等参数及障碍点具体位置等等�关键词:O T D R 测试原理测试曲线菲涅尔反射峰是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长�很自然,这些现象也会影响到�作为10波长的,它也具有低的衰减性能,因此可以进行长距离的测试�而作为高衰减的110或1波长,的测试距离就必然受到限制,因为测试设备需要在轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中�另一方面,菲涅尔反射是离散的反射,它是由整条光纤中的个别点引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙�在这些点上,会有很强的背向散射光被反射回来�因此,就是利用菲涅尔反射的信息来定位连接点�光纤终端或断点�换句话说,的工作原理就类似于一个雷达�它先对光纤发出一个信号,然后观察从某一点上返回来的是什么信息�这个过程会重复地进行,然后将这些结果进行平均并以轨迹的形式来显示,这个轨迹就描绘了在整段光纤内信号的强弱(或光纤的状态)�图1说明了-的一些基本组成�-一个最重要的性能,就是能从原有事物中进行辨别,大型的,就有能力完全�自动地识别出光纤的范围�这种新的能力大部分是源于使用了高级的分析软件,这种软件对的采样进行审查并创建一个事件表�这个事件表显示了所有与轨迹有关的数据,如故障类型�到故障点的距离�衰减�回损和熔接损耗�-的性能紧紧地依赖于分析软件,从而具有精确地识别事件的能力�2O T D R 常见测试曲线简析(1)正常曲线:远端处出现强烈的菲涅尔反射峰,提示为该处光纤端面与光纤垂直,该处应为成端点,不应是断点�如有故障可能是终端活动接头问题�如图所示�()光纤存在跳接点曲线:例如:涟水广播电视中心至北集站机房的纤芯,途经徐集站机房用尾纤跳接去北集站,所以在测试这样的纤芯时,就会出现像如图中这样的曲线图�当然也会有例外的情况,总之,能够出现反射峰,很多情况是因为末端的光纤端面是平整光滑的�端面越平整,反射峰越高�例如在一次中断割接当中,当光缆割断以后,测试的曲线应该如光路存在断点图,但当你再测试时,在原来的断点位置出现反射峰的话,那说明现场的抢修人员很有可能已经把该纤芯的端面做好了�()异常情况曲线:这种情况,有可能是����的尾纤没有插好,或者光脉冲根本打不出去,再有就是断点位置比较近,����设置的测量距离�脉冲设置又比较大,看起来就像光没有打出去一样�出现这种情况是:�要检查尾纤连接情况;�就是把����的设置改一下,把测试距离�脉冲调到适当位置�如果还是这种情况的话,可以判断:�尾纤有问题;�����上的适配器问题;�断点十分近,����不足以测试出距离来�如果是尾纤问题,只要换一根尾纤就知道,不行的话就要擦洗适配器�或串接一根���假纤就能解决了�如图�所示�()非反射事件曲线:这种情况比较多见,曲线中图�正常曲线图图�光纤存在跳接点曲线图图1组成方框图图4异常曲线图间出现一个明显的台阶,多数为该纤芯打折,弯曲半径过小,受到外界损伤等因素�曲线中的这个台阶是比较大的一个损耗点,也可以称为事件点,曲线在该点向下掉,称为非反射事件,如果曲线在该点向上翘的话,那就是反射事件了,这时,该点的损耗点就成了负值,但并不是说它的损耗小了,这是一种伪增益现象,造成这种现象的原因是由于接头两侧光纤的背向散射系数不一样,接头后光纤背向散射系数大于前段光纤背向散射系数,而从另一端测则情况正好相反,折射率不同也有可能产生增益现象�所以要想避免这种情况,只要用双向测试法就可以了�如图5所示�(5)光纤存在断点曲线:这种情况一定要引起注意�曲线在末端没有任何反射峰就掉下去了,如果知道纤芯原来的距离,在没有到达纤芯原来的距离,曲线就掉下去了,这就说明光纤在曲线掉下去的地方断了,或者也有可能是光纤在那里打了个折�我们经常用这个原理,在线路上排障的时候,把不能确定的纤芯打折,然后测试人员利用����实时监测功能,按照图中的曲线有无变化来判断纤芯�如图6所示�(6)测试光纤距离过长曲线:在测试长距离的光纤时,所不能打到的距离所产生的曲线,或者是的测试距离远小于实际纤芯长度所产生的曲线�如果是这种情况,就要把����的测试距离量程设置适当,以达到全程测试的目的�如图7所示�(7)光纤裂缝曲线:远端出现一个向上的小突起,又与反射峰明显不同的情况,说明该处发生了介质突变,但又非成端情况,提示该处出现了光纤裂缝,造成损耗增大�如图8所示�(8)典型测试曲线图如图9所示�说明:�������������:前端连接器�������:熔接点,光纤的熔接点缺陷容易造成轨迹图中散射曲线的突然跌落�:弯曲�弯曲直径过小,光就会不再遵循全反射,而是有部分从纤衣射出,造成轨迹图中散射曲线的突然跌落�以上是我们在使用����测试时经常看到的测试曲线并作简要分析,供读者参考�在故障维修中根据测试曲线特点就能准确判断光纤是否断裂�弯曲直径是否过小�熔接点是否有缺陷及障碍点具体位置等�测试人员要灵活应用����测试,不断提高操作图5非反射事件曲线图图6光纤存在断点曲线图图7光纤过长曲线图图8光纤裂缝曲线图(上接第102页)以充分利用数字电视的资源,发挥好各地译制中心和网络整合的优势,更好地满足各族群众日益增长的精神文化需要�多语言多字幕实现的可行性�必要性:()多语言多字幕播出形式已经在少数卫星节目收视中得到应用,卫星接收机的遥控器可以实现切换选择多种语言字幕�()全国各省�自治区网络整合联网后�新疆数字电视整转工作基本完成,实现了一省一网,信号源集中统一的平台已经形成,有条件实现本省少数民族语言节目的多语种多字幕播出�()迎接三网融合后的挑战,三网融合后用户的争夺已是必然,本地中国电信等运营商已经开始实施光纤到户工程,巴州年开始新建楼房的用户家庭全部实现了光纤到户,老旧楼房也在同时改造中,在今后年左右时间将实现城区全部用户光纤到户�广电在这方面优势显然不足,但节目是广电的强项,节目的特色也是保持用户稳定的一个重要因素�()实现本省的少数民族语言节目的多语言多字幕播出,可以极大丰富少数民族电视节目的内容,各地译制中心在做好影视译制的同时可以发挥更大的作用�实现多语言多字幕的难题:()现有数字电视播出系统没有开展该项业务,需要软�硬件的开发�()数字机顶盒没有多语言多字幕接收和遥控器切换功能,在不更换机顶盒前提下,单纯软件升级能否实现多语言多字幕播出切换尚不清楚�()遥控器没有多语言多字幕切换键,是更换遥控器还是使用其他的功能键代替实现�多语言多字幕播出是笔者个人的一些设想,实现起来肯定会有很多困难�但数字电视多语言多字幕业务的开展,广电可以充分发挥自身优势,以内容取胜赢得观众,多语言多字幕播出在少数民族地区应该说是一个亮点,在吸引用户,丰富少数民族语言节目,促进民族和谐,促进中外文化交流,稳定�建设边疆都会发挥积极的作用��技能与分析判断水平,才能更好地应对现实工作中有关光链路系统的各类繁杂情况,实现有效测量�准确判断�快速定位,及时排除�参考文献�韩伟,丁士堉�光纤有线电视技术����北京�广播电视出版社,�����陈韬�光纤测试原理及测量仪表使用����北京,人民邮电出版社,�����刘继贤�浅谈光纤的损耗����中国有线电视,����,(�﹚:������图典型测试曲线图�����������������。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OTDR的工作原理
工作原理:
OTDR在电路的控制之下,按照设定的参数向光口发射光脉冲信 号,之后OTDR不断的按照一定的时间间隔从光口接收从光纤中反 射回的光信号,分别按照瑞利背向散射(测试光钎的损耗)和菲涅 尔反射(测试光钎的反射)的原理对光纤进行相应的测试。
瑞利散射:由于光纤本身的缺陷,制作工艺和石英玻璃材料组分的不均匀 性,使光在光 纤中传输将产生; 菲涅尔反射:由于机械连接和断裂等原因将造成光在光纤中产生,由 光纤沿线各点反射回的微弱的光信号经光定向耦合器到仪 器的接收端,通过光电转换器,低噪声放大器,数字图象 信号处理等过程,实现图表、曲线扫迹在屏幕上显现。
2012-6-24
22
OTDR的常规使用
7、背向散射:
此处背向散射的数据应为被测光纤背向散射的数据。 该数据与被测光纤背向散射实际值的偏差将直接影响到 OTDR对被测光纤损耗的测试精度。因此,该背向散射数 据的设置应与被测光纤实际的背向散射相一致。 背向散射的默认值为: SM(单摸):1550nm为–83.0dB、1310nm为–80.0dB、 MM (多模):1300nm为–74.0dB、850nm为–67.0dB、
31
OTDR的常规使用
7、发光受阻图形
此图无背向散射图形显示,说明仪表发光部分 故障或成端部分如:尾纤、法兰盘故障等。
2012-6-24 32
OTDR的常规使用
8、跳纤图形
每一次跳纤,在图形上都会形成一个反射峰。 设置的距离过短
2012-6-24 33
OTDR的常规使用
9、仪表发光受损图形
注意箭头所指的弧线部分,说明激光器受损 或光接口不清洁。正常情况下应该是直角。
2012-6-24 34
谢谢大家
• • • •
2012-6-24
21
OTDR的常规使用
6、折射率:
此处折射率的数据应为被测光纤折射率的数据。 该数据与被测光纤折射率实际值的偏差将直接影响 到OTDR对被测光纤距离的测试精度。因此,该折 射率数据的设置应与被测光纤实际的折射率相一致。 默认值为:
SM(单模):1550nm为1.468100,1310nm为:1.467500, MM(多模)1300nm为1.487000,850nm为1.496000。
7
OTDR的工作原理
• 掌握OTDR的工作原理有助于使用 • 有助于仪表维护 • 有助于分析测试误差
• 特别提示:当不能确定被测试光纤是
否有业务时,应先用光功率计或光纤 识别器测试是否有业务运行,以免损 坏OTDR或其它相关设备。
8
2012-6-24
OTDR的工作原理
概述
OTDR是光缆工程施工和光缆线路维护 工作中最重要的测试仪器,它能将长100多公 里光纤的完好情况和故障状态,以一定斜率直 线(曲线)的形式清晰的显示在几英寸的液晶 屏上。根据事件表的数据,能迅速的查找确定 故障点的位置和判断障碍的性质及类别,对分 析光纤的主要特性参数能提供准确的数据。
2012-6-24
10
OTDR的工作原理
• ⑴ 损耗:Rayleigh Backscatter(瑞利背向散射) • =5Log(P0×W×S)-10ax(loge) • 式中: • P0:发射的光功率(瓦) • W:传输的脉冲宽度(秒) • S:光纤的反射系数(瓦/焦耳) • a:光纤的衰减系数(奈踣/米) • 1奈踣=8.686dB • x: 光纤距离 • 散射是光线遇到微小粒子或不均匀结构时发生的一种光学现象。这种散
距离为: • 当λ =1310nm,L=40/0.35=114KM • 当λ =1550nm,L=39/0.25=156KM
2012-6-24
6
内容提要
1、OTDR的相关介绍 2、OTDR的工作原理 3、OTDR的常规使用 4、光纤断点定位与误差分析 5、OTDR日常维护 6、其他应该注意事项
2012-6-24
2012-6-24
4
OTDR的相关介绍
• OTDR的发展 • 外国品牌:安捷伦(Agilent)、安立
(ANRITSU)、EXFO、、韦夫泰克WAVETEK、 安藤等
• 国内品牌:41所(AV6411型 OTDR)
2012-6-24
5
OTDR的相关介绍
• 选择 • 如选择40/39dB动态范围的,那么它的测试
点)。
在电信部门为:双向平均损耗为0.08dB。
。
2012-6-24 17
OTDR的常规使用
2、接续门限值(第二极):
光纤冷接器作为连接器的连接损耗门限值。 一般清况下,超过该值,OTDR即认为光纤已到末 端。
2012-6-24
18
OTDR的常规使用
3、反射、非反射:
事件是光纤中引起轨迹从直线偏移的变动。可以分析为反射或非 反射。 反射事件:当一些脉冲能量被反射,例如在连接器上,反射事件发生。 反射事件在轨迹中产生尖峰信号(有一个急剧的上升和下降) 非反射事件:在光纤中有一些损耗但没有光反射的部分发生。非反射事
2012-6-24
13
OTDR的常规使用
测试项目: 1. 光纤接续点的接头损耗 2. 了解沿光纤长度的损耗分布 3. 光纤链路的全程损耗和回波损耗等 4. 光纤断点的位置
2012-6-24
14
OTDR的常规使用
设置1 设置2
• • • •
模式 事件 采样点 分辨率
• • • • • • •
波长 距离范围 脉宽 折射率 平均化单位 平均化值 背向散射电平
15
2012-6-24
OTDR的常规使用
设置3
• 事件阀值 • 告警阀值
非反射性损耗 反射性损耗 回损 光纤损耗
接续损耗 回损 光纤远端 行业标准一般为 0.08dB
全损耗 全回损 平均损耗
2012-6-24 16
OTDR的常规使用
1、接续门限值:
接头损耗作为事件的门限值。所有接头中,其
损耗凡超过该门限值的即称为事件(即不合格接
OTDR的常规使用
5、严重受损图形
如箭头所示,此图有多个衰减事件,严重影响 光纤传输质量,应找出原因,进行整治。
2012-6-24 30
OTDR的常规使用
6、成端故障图形
2012-6-24
此图反映出成端无正常反射峰,说明有几个问题: 1。法兰盘故障 2。光缆纤芯故障 3。尾纤故障 4。光纤已断裂
2012-6-24
24
OTDR的常规使用
• 轨迹分析
1、正常轨迹 2、脉冲设置较小 3、阻断图形 4、衰减图形 5、严重受损图形 6、成端故障图形 7、发光受阻图形 8、跳纤图形 9、仪表发光受损图形
2012-6-24
25
OTDR的常规使用
1、正常轨迹
这是一条比较完好的纤芯背向散射图形。
2012-6-24 26
件在轨迹上产生一个倾角。通常为熔接接头
OTDR判断被测试光纤中反射事件的门限值。在测试过程中,凡有超过该 值的反射点即称为事件点。
2012-6-24
19
OTDR的常规使用
4、距离/分辨率:
对被测光纤设置的测试距离和采样点的间隔。 距离的设定原则为:大于被测光纤实际距离的1.5 到2.0倍,以保证分析软件提供一个曲线端点之后 足够清洁的噪声区。分辨率的设定原则见上表
(OTDR的使用及曲线分析)
2010年4月12日
培训内容
一、光缆线路维护配备的仪表使用方 法及日常维护Βιβλιοθήκη 2012-6-242
内容提要
1、OTDR的相关介绍 2、OTDR的工作原理 3、OTDR的常规使用
2012-6-24
3
内容提要
1、OTDR的相关介绍 2、OTDR的工作原理 3、OTDR的常规使用 4、光纤断点定位与误差分析 5、OTDR日常维护 6、其他应该注意事项
OTDR的常规使用
2、脉冲设置较小
由于脉冲的设置较小,电平噪声十分明显。
2012-6-24 27
OTDR的常规使用
3、阻断图形
此图反映出光缆已经发生阻断
2012-6-24
28
OTDR的常规使用
4、衰减图形
类似台阶的图形就是一个衰减事件,台阶 幅度越大说明光纤衰减量就越大。
2012-6-24 29
• •
2012-6-24
23
OTDR的常规使用
8、平均时间
OTDR每当向被测光纤发出一个光脉冲后,即按照一 定的时间间隔对由被测光纤返回的背向散射的光信号进行 采样。但由于在每一个采样点上均有噪声信号,因此将严 重的影响到测试的准确度。根据噪声信号的随机特性,为 了极大的减小噪声信号对测试准确度的影响,OTDR采用 了反复发送光脉冲、反复进行采样计算的测试方法,最后 将每一采样点反复采样的数据进行求和并取平均值,以此 对噪声信号进行抑制。这就要求OTDR要有一定的测试平 均时间,平均时间越长,OTDR对噪声信号的抑制性能越 好,损耗测试的精度也就越高。 一般情况下,平均时间应在1分左右为好。
射主要是瑞利散射,其损耗的大小与波长的4次方成反比,即随着波长的增加, 损耗迅速下降,瑞利散射的方向是分布与整个立体角的,其中一部分返回到 光纤的注入端,形成连续的后向散射回波,成为背向散射光或称为后向散射 光。光纤中某一点的后向回波可以反映出光纤中光功率的分布情况,椐此可 以测试出光纤的损耗。
2012-6-24
11
内容提要
1、OTDR的相关介绍 2、OTDR的工作原理 3、OTDR的常规使用 4、光纤断点定位与误差分析 5、OTDR日常维护 6、其他应该注意事项
2012-6-24
12
OTDR的常规使用
三种方式
自动方式:当需要概览整条线路的状况时,采用自动方式,它只需要 设置折射率、波长最基本的参数,其它由仪表在测试中自 动设定,按下自动测试(测试)键,整条曲线和事件表都 会被显示,测试时间短,速度快,操作简单,宜在查找故 障的段落和部位时使用 手动方式:需要对几个主要的参数全部进行设置,主要用于对测试曲 线上的事件进行详细分析,一般通过变换、移动游标,放 大曲线的某一段落等功能对事件进行准确定位,提高测试 的分辨率,增加测试的精度,在光纤线路的实际测试中常 被采用。 实时方式:实时方式是对曲线不断的扫描刷新,由于曲线在 不断的跳动和变化,所以较少使用。