重积分及其计算和多重积分
重积分的积分性质和计算规则
重积分的积分性质和计算规则重积分是高等数学中的一种重要概念,指对于一个二元函数而言,将其在一个二维区域上进行积分的过程。
与单积分类似,重积分也有其特定的积分性质和计算规则。
本文将详细介绍重积分的这些性质和规则,以帮助读者更好地理解和应用重积分的相关知识。
一、积分性质1. 线性性质:重积分具有线性性,即对于常数c与两个可积函数f(x,y)和g(x,y),有如下式子成立:∬ (c*f(x,y) + g(x,y)) dxdy = c * ∬ f(x,y) dxdy + ∬g(x,y)dxdy2. 可积性与非负性:如果函数f(x,y)在一个有限二维区域上是可积的,那么它在该区域上的积分一定存在;而如果函数g(x,y)在该区域上非负,则其积分也是非负的。
3. 积分次序可交换:如果二元函数f(x,y)在一个矩形区域上是可积的,则对于该区域内的任意两个积分限定,这两个积分的次序可以任意交换而不影响结果,即:∬ f(x,y) dxdy = ∬ ( ∬f(x,y)dy ) dx = ∬(∬f(x,y) dx)dy二、计算规则1. Fubini定理:Fubini定理是重积分中的一个重要定理,可以将对二元函数在一个区域上的重积分转化为两个一元函数相应区域上的积分,即:∬f(x,y)dxdy = ∫a∫b f(x,y)dxdy = ∫b∫a f(x,y)dydx = ∫a∫b f(x,y)dydx其中f(x,y)为被积函数,a和b分别为区域在x和y轴上的积分限。
2. 直角坐标系下的计算规则:在直角坐标系下,重积分可以用二重积分的形式表示,即:∬f(x,y)dxdy = ∫c∫d f(x,y)dxdy其中 c 和 d 分别为区域在x和y轴上的积分限,这个积分区域可以是矩形、梯形、三角形等形状。
在进行计算时,通常需先用对x或y的积分公式进行计算,再对另一个变量进行积分。
3. 极坐标系下的计算规则:在极坐标系下,重积分可以用二重积分的极坐标形式表示,即:∬f(x,y)dxdy = ∫α∫β f(r*cosθ,r*sinθ)rdrdθ其中α和β为对应极角的积分限,r是到极点的距离,θ是到x轴的角度。
重积分及其计算和多重积分
三重积分和多重积分方法在第三节中我们讨论了二重积分,本节将之推广到一般的n 维空间中去.类似于第三节,我们先定义一个R 3中集合的可求体积性. 同样可以给出一列类似的结论. 读者自己推广. 这里将不再赘述. 一、 引例设一个物体在空间R 3中占领了一个有界可求体积的区域V ,它的点密度为()z y x f ,,,现在要求这个物体的质量.假设密度函数是有界的连续函数,可以将区域V 分割为若干个可求体积的小区域n V V V ,...,,21,其体积分别是n V V V ∆∆∆,...,,21,直径分别是n d d d ,...,,21,即},||sup{|i i V Q W WQ d ∈=, (i =1,2,…,n ), |WQ|表示W, Q 两点的距离.设},...,,m ax {21n d d d =λ,则当λ很小时,()z y x f ,,在i V 上的变化也很小.可以用这个小区域上的任意一点()i i i z y x ,,的密度()i i i z y x f ,,来近似整个小区域上的密度,这样我们可以求得这个小的立体的质量近似为,所有这样的小的立体的质量之和即为这个物体的质量的一个近似值.即.当0→λ时,这个和式的极限存在,就是物体的质量.即()i i i i ni V z y x f M ∆=∑=→,,lim 1λ.从上面的讨论可以看出,整个求质量的过程和求曲顶柱体的体积是类似的,都是先分割,再求和,最后取极限.所以我们也可以得到下面一类积分. 二、 三重积分的定义设()z y x f ,,是空间3R 中的一个有界可求体积的闭区域V 上的有界函数,将V 任意分割为若干个可求体积的小闭区域n V V V ,...,,21,这个分割也称为V 的分划,记为P : n V V V ,...,,21. Φ=⋂ooj i V V (空, j i ≠),其体积分别是n V V V ∆∆∆,...,,21,直径分别是n d d d ,...,,21.设},...,,m ax {21n d d d =λ,或记为||P ||. 在每个小区域中任意取一点()i i i i V z y x ∈,,,作和()iiiini V z y x f ∆∑=,,1(称为Riemann 和),若当0→λ时,这个和式的极限存在,则称其极限为函数()z y x f ,,在区域V 上的三重积分,记为()⎰⎰⎰VdV z y x f ,,.并称函数()z y x f ,,在区域V 上可积.()z y x f ,,称为被积函数,x,y,z 称为积分变量., V 称为积分区域.特别地,在直角坐标系下,可以记为()⎰⎰⎰Vdxdydz z y x f ,,.我们同样可以引入Darboux 大,小和来判别可积, 也有同样的结论(略).1. 若()z y x f ,,是有界闭区域V 上的连续函数,则函数()z y x f ,,在区域V 上可积.2. 若()z y x f ,,=1时,⎰⎰⎰=VV dxdydz 的体积.3. 若()z y x f ,,在有界闭区域V 上的间断点集合是0体积时, ()z y x f ,,在V 可积. 三重积分有着与二重积分类似的性质.下面简单叙述一下.1.可积函数的和(或差)及积仍可积. 和(差)的积分等于积分的和(差). 2.可积函数的函数k 倍仍可积. 其积分等于该函数积分的k 倍. 3.设Ω是可求体积的有界闭区域,()z y x f,,在Ω上可积,Ω分为两个无共同内点的可求体积的闭区域21,ΩΩ之并,则()z y x f ,,在21,ΩΩ上可积,并有()()()V d z y x f V d z y x f V d z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+=21,,,,,,.等等.三、三重积分的计算方法同二重积分一样, 我们这里给出三重积分的计算方法,理论上的证明读者自己完成..1. 利用直角坐标系计算三重积分先给一个结论.定理 若函数()z y x f ,,是长方体V =[a,b ]×[c,d ]×[e,h ]上的可积, 记D=[c,d ]×[e,h ], 对任意x ∈[a,b ], 二重积分()⎰⎰=Ddydz z y x f x I ,,)(存在, 则 ()⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛=ba D ba dx dydz z y x f dx x I ,,)( (记为()⎰⎰⎰D ba dydz z y x f dx ,,)也存在, 且()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰==hed cb aDb aVdz z y x f dy dx dydz z y x f dx V d z y x f ,,,,,,.这时右边称为三次积分或累次积分, 即三重积分化为三次积分.证明 分别中[a,b ], [c,d ], [e,h ] 插入若干个分点b x x x x a n =<<<<=ΛΛ210;d y y y y c m =<<<<=ΛΛ210;h z z z z e s =<<<<=ΛΛ210作平面i x x =, j y y =, k z z =,(i =0,1,2,…,n; ,j i =0,1,2,…,m; k =0,1,2,…,s,)得到V 的一个分划P . 令 ],,[],[],[111k k j j i i ijk z z y y x x v ---⨯⨯=(i =1,2,…,n; ,j i =1,2,…,m;k =1,2,…,s,),ijk M ,ijk m 分别是()z y x f ,,在ijk v 上的上, 下确界.那么在],[],[11k k j j jk z z y y D --⨯=上有k j ijkD ik j ijk z y Mdydz z y f z y m jk∆∆≤≤∆∆⎰⎰),,(ξ其中Δx i ,= x i - x i -1 , Δy j ,= y j - y j -1 , Δz k ,= z k - z k -1 , (i =1,2,…,n; ,j i =1,2,…,m; k =1,2,…,s,).)(),,(),,(,iDik j D iI dydz z y f dydz z y f jkξξξ==⎰⎰∑⎰⎰∑∑∑∆∆∆≤∆≤∆∆∆=kj i k j i ijkni i i kj i k j i ijkz y x Mx I z y x m,,1,,)(ξ因可积,所以当||P ||趋于0时,Darboux 大,小和趋于同一数,即三重积分. 故定理得证.如果V 如右图, e ≤z ≤h, z=z 与V 面积为D z ,不难得到,若函数()z y x f ,,在V 上的可积, 那么()()⎰⎰⎰⎰⎰⎰=zD heVdxdy z y x f dz V d z y x f ,,,,.下面给出一般三重积分的具体计算方法,理论证明读者可参照二重积分自己完成.设函数),,(z y x f 在有界闭区域Ω上连续,我们先讨论一种比较特殊的情况.()()()()},,,,|,,{21y x z z y x z D y x z y x ≤≤∈=Ω,其中xy D 为Ω在xoy 平面上的投影,且()()})(,|,{21x y y x y b x a y x D xy ≤≤≤≤=.如图12.我们现在z 轴上做积分,暂时将y x ,看成是常数.把函数()z y x f ,,看作是z 的函数,将它在区间()()],,,[21y x z y x z 上积分得到()()()⎰y x z y x z dz z y x f ,,21,,.显然这个结果是y x ,的函数,再把这个结果在平面区域xy D 上做二重积分()()()dxdy dz z y x f y x z y x z D xy⎪⎭⎫ ⎝⎛⎰⎰⎰,,21,,. 在利用二重积分的计算公式便可以得到所要的结果.若平面区域xy D 可以用不等式()()x y y x y b x a 21,≤≤≤≤表示,则()⎰⎰⎰ΩdV z y x f ,,()()()()()⎰⎰⎰=y x z y x z x y x y badz z y x f dy dx ,,2121,,.这个公式也将三重积分化为了三次积分.如果积分区域是其他的情形,可以用类似的方法计算. 例1计算三重积分⎰⎰⎰ΩxdV ,其中Ω是由三个坐标面和平面1=++z y x 所围的立体区域.解 积分区域如图所示,可以用不等式表示为y x z x y x --≤≤-≤≤≤≤10,10,10,所以积分可以化为()()241413181121112341021010101010=+-=-=--==⎰⎰⎰⎰⎰⎰⎰⎰⎰----Ωx x x dx x x dyy x x dx xdzdy dx xdV xyx x四、三重积分的积分变换和二重积分的积分变换一样,有如下的结果:定理 设V 是uvw 空间R 3中的有界可求体积的闭区域,T :x =x (u,v,w ), y =y (u,v,w ), z =z (u,v,w ),是V 到xyz 空间R 3中的一一映射,它们有一阶连续偏导数,并且V w v u zz v z u z z yv y uyz x v x ux w v u z y x ∈≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂),,(,0),,(),,( (称为Jacobi). 如果f (x,y,z ) 是T (V )上的可积函数,那么dudvdw w v u z y x w v u z w v u y w v u x f dxdydz z y x f VV T ⎰⎰⎰⎰⎰⎰∂∂=),,(),,()),,(),,,(),,,((),,()(在R 3中有两种重要的变换柱面坐标和球面坐标.1. 利用柱面坐标计算三重积分 前面我们可以看到,由于积分区域与被积函数的特点,二重积分可以用极坐标来计算.同样对于三重积分可以用柱面坐标和球面坐标计算.我们先讨论用柱面坐标来计算三重积分.设空间中有一点()z y x M ,,,其在坐标面xoy 上的投影点'M 的极坐标为()θ,r ,这样三个数θ,,r z 就称为点M 的柱面坐标(如图12-4-4).这里规定三个变量的变化范围是⎪⎩⎪⎨⎧+∞≤≤∞-≤≤+∞≤≤zrπθ2,注意到,当=r常数时,表示以z轴为中心轴的一个柱面.当θ=常数时,表示通过z轴,与平面xoy的夹角为θ的半平面.当=z常数时,表示平行于平面xoy,与平面xoy距离为z的平面.空间的点的直角坐标与柱面坐标之间的关系, 即是R3到R3的映射:⎪⎩⎪⎨⎧===zzryrxθθsincos.所以其Jacobi为,1cossinsincos),,(),,(rrrzrzyx=-=∂∂θθθθθ故容易得到: 如果f(x,y,z) 是R3中的有界可求体积的闭区域V上的可积函数,则()()⎰⎰⎰⎰⎰⎰=VVdzrdrdzrrfdVzyxfθθθ,sin,cos,,,其中,变换前后区域都用V表示.我们也可以从几何直观的意义来描述这个公式的由来.用三组坐标面311,,CzCCr===θ将积分区域划分为若干个小区域,考虑其中有代表性的区域,如图12-4-5所示的区域可以看成是由底面圆半径为drrr+和两个圆柱面,极角为θθθd+和的两个半平面,以及高度为dzzz+和的两个平面所围成的.它可以近似的看作一个柱体,其底面的面积为θrdrd,高为dz.所以其体积为柱面坐标下的体积元素,即dzrdrddVθ=.图12-4-6图12-4-7M ’再利用两种坐标系之间的关系,可以得到()()⎰⎰⎰⎰⎰⎰=VVdz rdrd z r r f dV z y x f θθθ,sin ,cos ,,.在柱面坐标下的三重积分的计算也是化为三次积分. 例2计算三重积分()⎰⎰⎰Ω+dV y x22,其中Ω是由椭圆抛物面()224y x z +=和平面4=z 所围成的区域.解 如图所示,积分区域Ω在坐标面xoy 上的投影是一个圆心在原点的单位圆.所以{}44,20,102≤≤≤≤≤≤=Ωz r r πθ.于是()()πθθθππ32441053204412202222=-===+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩdr r r d dzrdr r d dzrdrd r dV y xr2.利用球面坐标计算三重积分我们知道球面坐标用数ϕθ,,r 来表示空间的一个点.设有直角坐标系的空间点()z y x M ,,,点M 在坐标面xoy 上的投影'M ,其中||OM r =,θ为x 轴到射线'OM 转角.ϕ为向量OM 与z 轴的夹角.如图12-4-7.规定三个变量的变化范围是⎪⎩⎪⎨⎧≤≤≤≤+∞≤≤πϕπθ0200r . 我们可以看到,注意到,当=r 常数时,表示以原点为球心的球面. 当θ=常数时,表示通过z 轴的半平面.当=ϕ常数时,表示以原点为顶点,z 轴为中心的锥面. 两种坐标系之间的关系如下:⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x . 即又是一个即是R 3到R 3的映射.它的Jacobi 是,sin 0sin cos cos sin cos cos sin sin sin sin sin cos cos sin ),,(),,(2ϕϕϕθϕθϕθϕθϕθϕθϕθϕr r r r r r r z y x =--=∂∂由一般的重积分变换公式容易得到:如果f (x,y,z ) 是R 3中的有界可求体积的闭区域V 上的可积函数,则()()⎰⎰⎰⎰⎰⎰=VVd drd rr r r f dV z y x f θϕϕϕθϕθϕsin cos ,sin sin ,cos sin ,,2,其中,变换前后区域都用V 表示.用几何直观的意义可以如下理解: 已知f (x,y,z ) 闭区域V 上的可积函数.用三组坐标=r 常数,=θ常数,=ϕ常数,将积分区域V 划分为若干个小的区域. 考虑其中有代表性的区域,此小区域可以看成是有半径为dr r r +和的球面,极角为θ和θθd +的半平面,与中心轴夹角为ϕ和ϕϕd +的锥面所围成,它可以近似的看作边长分别是θϕϕd r rd dr sin ,,的小长方体,从而得到球面坐标系下的体积元素为ϕθϕd drd r dV sin 2=.再由直角坐标系与球面坐标之间的关系,可以得到下面的公式()()ϕθϕϕθϕθϕd drd rr r r f dV z y x f VVsin cos ,sin sin ,cos sin ,,2⎰⎰⎰⎰⎰⎰=.例3计算三重积分()⎰⎰⎰Ω+dV y x22,其中Ω是右半球面0,2222≥≤++y a z y x 所围成的区域.解 在球面坐标下,积分区域可以表示为}0,0,0{πϕπθ≤≤≤≤≤≤=Ωa r所以()503505334022222154cos 31cos 551sin sin sin sin a a d r d drr d d d drd r r dV y xaaπϕϕπϕϕθϕϕθϕθϕϕπππππ=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡===+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ与二重积分,三重积分一样可以定义一般n 重积分.我们这里只是简单介绍.当V 是R n中的有界闭区域. 依照可求面积的方法定义V 的可求“体积”或可测(略).设f (x 1, x 2,,…, x n ,) 是R n中的有界可测闭区域V 上的函数, 任取V 的分划P,, 即把分成若干个可测小区域m V V V ,,,21ΛΛ , 它们的”体积”或测度分别记为m V V V ∆∆∆,,,21ΛΛ, 当令 {}i i V Q Q Q Q d ∈=2121,|||sup ,||21Q Q 表示两点的距离, {}m d d d P ,,,m ax ||||21Λ= , 对任取),,2,1(,),,,()()(2)(1m i V x x x i i n i i ΛΛ=∈,如果i mi i n i i P V x x xf ∆∑=→1)()(2)(10||||),,,(limΛ存在,称f (x 1, x 2,,…, x n ,)是V 上的可积函数.其极限值称为 f (x 1, x 2,,…, x n ,)在V 上的n 重积分,记为dV x x x f n n V),,,(21Λ876Λ⎰⎰ 或 n n n Vdx dx dx x x x f ΛΛ876Λ2121),,,(⎰⎰.特别 当V =[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]时,n nb a b a b a n n n Vdx xx x f dx dx dx dx dx x x x f nn),,,(),,,(212121211122ΛΛΛΛ876Λ⎰⎰⎰⎰⎰=.若V 上有一一映射T⎪⎪⎩⎪⎪⎨⎧===),,,(),,,(),,,(:2121222111n n n nn u u u x x u u u x x u u u x x T ΛΛΛΛΛ,其每个分量的函数有连续偏导数, 当V 是有界可测区域,f (x 1, x 2,,…, x n ,)在T(V )上可积,并且JacobiV u u u u x u x u x u x u x ux u x u x u x u u u x x x n nn n n n n n n ∈≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂),,,(,0),,,(),,,(212122212121112121ΛΛΛΛΛΛΛΛΛΛ 那么nn n V T dx dx dx x x x f ΛΛ876Λ2121)(),,,(⎰⎰nn n n n n n n Vdu du du u u u x x x u u u x u u u x u u u x f ΛΛΛΛΛΛΛ876Λ21212121212211),,,(),,,()),,,(,),,,,(),,,,((∂∂=⎰⎰.特别是R n中的球坐标变换T :,321321211cos sin sin ,cos sin ,cos ϕϕϕϕϕϕr x r x r x === ……,123211cos sin sin sin sin ---=n n n r x ϕϕϕϕϕΛ, 12321sin sin sin sin sin --=n n n r x ϕϕϕϕϕΛ,在R n中, .20,,,,0,012321πϕπϕϕϕϕ≤≤≤≤∞<≤--n n r Λ这时的Jacobi 是2231211112122111111121sin sin sin ),,,(),,,(--------=∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂n n n n n n n n n n n n r x x rx x x rx x x r x r x x x ϕϕϕϕϕϕϕϕϕϕϕΛΛΛΛΛΛΛΛΛΛ。
重积分基本概念
重积分基本概念重积分是微积分中的一个重要概念,它主要应用于对三维空间中复杂体积的计算。
通过重积分,我们可以将曲线、曲面以及空间区域的某种量进行求和或者平均。
本文将介绍重积分的基本概念,包括重积分的定义、性质以及计算方法。
一、重积分的定义在三维空间中,如果将一个曲线、曲面或者空间区域划分成无数个微小的体积元素,每个微小体积元素的体积可以表示为dV,并且在每个体积元素上都定义了一个函数f(x, y, z),那么重积分可以用下式表示:∬f(x, y, z)dV其中,∬代表重积分的符号,f(x, y, z)是被积函数,dV表示微小体积元素。
二、重积分的性质1.线性性质:如果f(x, y, z)和g(x, y, z)是可积函数,k是常数,那么以下性质成立:∬[kf(x, y, z) + g(x, y, z)]dV = k∬f(x, y, z)dV + ∬g(x, y, z)dV2.保号性质:如果在积分区域上,f(x, y, z) ≥ 0,那么∬f(x, y, z)dV ≥ 0;如果f(x, y, z) ≤ 0,那么∬f(x, y, z)dV ≤ 0。
3.单调性质:如果在积分区域上,f(x, y, z) ≤ g(x, y, z),那么∬f(x, y, z)dV ≤ ∬g(x, y, z)dV。
三、重积分的计算方法1.直角坐标系的计算方法:在直角坐标系中,我们可以采用三重积分的方法来计算重积分。
具体而言,我们可以将积分区域划分成小的立体体积,然后通过求和的方式将每个小立体体积的贡献加起来,得到整体的重积分值。
2.柱坐标系的计算方法:在柱坐标系中,我们可以将被积函数和微小体积元素表示为f(r,θ,z)和r dθ dr dZ,其中r表示从原点到点(x,y)的距离。
通过应用柱坐标系的变量替换和雅可比行列式的计算,可以将立体体积的重积分转化为曲线和平面的二重积分。
3.球坐标系的计算方法:在球坐标系中,我们可以将被积函数和微小体积元素表示为f(ρ,θ,φ)和ρ²sinφ dφ dθ dρ,其中ρ表示从原点到点(x,y,z)的距离,θ和φ分别表示极角和方位角。
重积分的计算方法及应用
重积分的计算方法及应用重积分是多元函数积分的一种形式,应用广泛。
本文将介绍重积分的计算方法和应用。
一、重积分的计算方法1. 重积分的定义重积分是对多元函数在一个具有面积的区域上进行的积分,它可以看作是对一个平面上的区域进行积分。
假设在二元函数f(x,y)的定义域D上选择了一个面积为S的区域R,那么多元函数f(x,y)在区域R上的重积分为∬Rf(x,y)dxdy。
2. 重积分的计算方法重积分的计算方法与一元函数积分类似,可以使用曲线积分或者换元法进行求解。
特别的,对于二元函数f(x,y),可以通过极坐标系进行重积分的计算,在极坐标系中,面积可以用rdrdθ表示,积分公式为f(x,y)dxdy=rdrdθ∫∫Rf(rcosθ,rsinθ)drdθ。
如果要计算三元函数的重积分,则需要使用球坐标系,积分公式为f(x,y,z)dxdydz=r^2sinθdrdθdϕ∫∫∫Rf(x,y,z)r^2sinθdxdydz。
二、重积分的应用重积分在实际生活中有许多应用,比如:1. 计算物体的质量和重心物体的质量可以看作是物体密度分布的加权平均值,因此可以使用重积分的概念来计算物体的质量。
同样的,对于一个平面图形,可以通过将图形分割为若干个小面积来计算它的面积和重心。
2. 计算物体的体积重积分还可以用于计算物体的体积。
假设在三元函数f(x,y,z)的定义域D上选择了一个体积为V的区域S,那么多元函数f(x,y,z)在区域S上的重积分为∭Sf(x,y,z)dxdydz。
3. 计算动量和角动量在物理学中,物体的动量和角动量可以通过积分的方式计算。
物体的动量可以看作是物体质量与运动速度的乘积,因此可以通过对速度的积分来计算动量。
同样的,物体的角动量可以看作是物体质量、运动速度和距离的乘积,因此可以通过对速度和距离的积分来计算角动量。
4. 计算电荷量和电场强度在电磁学中,电荷量可以通过积分来计算。
同样的,电场强度也可以通过积分来计算。
大一高数重积分知识点总结
大一高数重积分知识点总结在大一高数学习中,重积分是一个重要的知识点,它是对多重积分的深入学习和扩展。
在本文中,我们将对大一高数中重积分的相关知识点进行总结和概述。
一、重积分的定义重积分是对二重积分的进一步推广,用于计算曲顶柱体与曲面之间的空间体积。
对于三维空间中的函数f(x,y,z),其在某一立体区域D上的重积分定义为:∬Df(x,y,z)dV其中,dV表示体积元素,满足dV = dxdydz。
二、重积分的计算1. 直角坐标系下的重积分计算在直角坐标系下,计算重积分的方法有两种:先y后x的积分次序和先x后y的积分次序。
根据具体情况选择合适的积分次序进行计算,并利用定积分的性质进行积分计算。
2. 极坐标系下的重积分计算在极坐标系下,计算重积分相对简便。
利用极坐标系的变换关系,将被积函数和积分区域转化为极坐标系下的表示形式,然后按照定积分的性质进行积分计算。
3. 应用:质量、质心和转动惯量重积分在物理学和工程学中有着广泛的应用。
通过计算重积分可以求解三维空间中物体的质量、质心和转动惯量等参数,为实际问题的分析提供了数学工具。
三、重积分的性质1. 重积分的线性性质重积分具有线性性质,即对于任意常数k,函数f(x,y,z)和g(x,y,z),以及积分区域D,有以下等式成立:∬D[kf(x,y,z) + g(x,y,z)]dV = k∬Df(x,y,z)dV + ∬Dg(x,y,z)dV2. 重积分的保号性如果积分区域D上的函数f(x,y,z)始终大于等于0,则重积分的结果也大于等于0。
这一性质在实际问题中常用于判断物体的质量分布或概率密度分布等情况。
3. 重积分的积分域可加性对于积分区域D,若可以分解为两个互不相交的子区域D1和D2,则有以下等式成立:∬Df(x,y,z)dV = ∬D1f(x,y,z)dV + ∬D2f(x,y,z)dV四、常见的重积分问题1. 计算空间几何体的体积通过重积分的计算,可以求解复杂几何体的体积。
重积分知识点的总结
重积分知识点的总结一、重积分的基本概念1. 多元函数在多元函数中,自变量不再是一个,而是两个或两个以上。
例如,z=f(x,y)就是一个的二元函数。
无论是一元函数,还是二元函数,其基本概念都是“输入-处理-输出”。
其中输入就是参数,也就是变量,处理就是函数规定的运算。
这一基本概念在重积分中也是适用的。
2. 多元函数的极限多元函数的极限,与一元函数的极限类似,只是在多个自变量的情况下,我们需要考察所有自变量分别趋于一定值时的极限情况。
其中一定需要掌握的是多元函数极限的存在性问题。
3. 多元函数的连续性对于多元函数的连续性,我们同样需要关注多个自变量的变化趋势。
多元函数的连续性与一元函数的连续性类似,但要求更加严格。
在重积分中,对于多元函数的连续性是一个比较重要的概念。
4. 重积分的意义重积分的最基本的意义,就是对于多变量函数在多维空间上进行积分。
而在物理学上,重积分的意义就更加明显了。
在空间当中,一定有一个虚拟的某一点,作为观察点。
而对整个空间进行积分,就是将所有的观察点都进行积分,求得整个空间的某一个物理量。
二、重积分的性质1. 线性性质重积分的线性性质是最基本的性质之一。
它影响到重积分的很多性质,例如加减性、齐次性等都是与线性性质相关的。
2. 保号性和保序性对于多元函数来说,保号性和保序性是非常重要的性质。
在重积分中,保号性和保序性也是一个非常重要的概念,它们影响到多元函数的积分值的大小。
3. 对称性对称性在重积分中同样起到了非常重要的作用。
对称性不仅在理论证明中起到了重要作用,而且在实际应用中,对称性也常常起到了非常重要的作用。
4. 交换积分次序对于多元函数的重积分来说,交换积分次序是一个很基本的性质。
但是在实际应用中,交换积分次序同样是需要一些技巧的,有时候并不是直接可行的,需要一些特殊的条件。
5. 分部积分法分部积分法在一元函数的积分中是非常重要的一种积分方法。
而对于多元函数的重积分来说,分部积分法同样是非常重要的。
重积分基础概念
重积分基础概念在数学中,积分是一个非常重要的概念,它是微积分中的一个核心内容。
而在积分的概念中,重积分是其中的一种特殊情况。
本文将为您介绍重积分的基础概念。
1. 一重积分的定义一重积分是对一维空间中的函数在给定区间上的积分运算。
设函数f(x)在区间[a, b]上连续,则[a, b]上f(x)的积分可以表示为:∫[a,b] f(x) dx其中∫表示积分运算,f(x)为被积函数,dx表示积分变量。
2. 重积分的定义重积分是对多维空间中的函数在给定区域上的积分运算。
设函数f(x,y)在闭区域D上连续,则D上f(x,y)的积分可以表示为:∬D f(x,y) dσ其中∬表示重积分运算,f(x,y)为被积函数,dσ表示面积元素。
3. 重积分的几何意义重积分的几何意义是计算多维区域上的体积或者质量。
对于函数f(x,y),它在区域D上的积分结果表示了函数f(x,y)在该区域上的平均值乘以区域D的面积。
4. 重积分的计算方法对于重积分的计算,可以使用多种方法,包括直接计算和变量替换等。
直接计算是将区域D划分成小的子区域,然后计算每个子区域的面积乘以函数值的和。
变量替换是将原来的积分区域通过变换映射到更易计算的区域上。
5. 重积分的性质重积分具有一些重要的性质,包括线性性、保号性和积分中值定理等。
线性性表示对于任意实数k,两个函数f(x,y)和g(x,y)的线性组合的积分等于它们分别积分后再求和。
保号性表示对于函数f(x,y),如果f(x,y)在区域D上总是非负的,则D上f(x,y)的积分也非负。
积分中值定理表示在区域D上,存在一点(x0, y0),使得f(x0,y0)等于D上f(x,y)的平均值。
在实际问题中,重积分在物理学、经济学、工程学等领域中有广泛的应用。
通过对重积分的理解和运用,可以更好地解决实际问题,并推动科学的发展和进步。
总结起来,重积分是对多维空间中函数在给定区域上的积分运算。
它有着重要的几何意义和计算方法。
三重积分及其计算和多重积分
三重积分及其计算和多重积分三重积分是多元函数积分的一种形式,用于求解三维空间中的体积、质量、质心等物理量。
在数学上,三重积分可以看作是一个连续变量在三维区域上的求和,它可以通过分割区域、选择适当的样本点,以及取极限的方式来进行计算。
三重积分的计算可以通过两种方法来完成:直接计算和换序求积分。
直接计算是指通过将三重积分的积分区域分割成小的立体单元,然后计算每个立体单元的积分值,再将这些积分值相加得到最终的结果。
这种方法适用于简单的积分区域,但对于复杂的区域,计算难度较大。
而换序求积分是指通过改变积分的顺序,将三重积分转化为便于计算的累次积分。
这种方法的优势在于可以简化计算过程,降低计算难度。
对于直接计算,首先需要确定积分区域,然后将区域分割成小的立体单元,每个单元的大小趋近于零。
可以使用直角坐标系、柱坐标系或球坐标系来表示积分区域,并确定相应的积分限。
接下来,选择样本点,可以选择样本点在单元中的中心,或者在每个单元中选择若干个样本点。
然后计算每个单元的积分值,再将这些积分值相加,就得到了最终的积分结果。
对于换序求积分,首先需要确定积分顺序,一般是从内积分到外积分。
然后,根据积分顺序,确定每个积分部分的积分限。
接下来,可以根据条件判断是否需要修改积分区域,如是否需要进行坐标转换或对区域进行分割。
最后,通过依次进行累次积分,得到最终的结果。
三重积分在物理中的应用非常广泛。
例如,利用三重积分可以求解一个带电体的电荷分布密度、一个流体的质量分布密度,以及一个物体的质心。
通过计算三重积分,可以得到这些物理量的精确值,为进一步研究提供了基础。
在实际计算过程中,三重积分的计算通常比较复杂,需要运用一些基本的数学知识和技巧。
例如,可以通过选择适当的坐标系来简化计算,使用奇偶性来简化被积函数的表达式,利用对称性来简化积分区域的确定等。
此外,还可以利用数值计算方法,如数值积分、Monte Carlo方法等,来近似计算三重积分的值。
多重积分的计算
多重积分的计算多重积分是微积分的重要内容之一,其涉及到对多个变量的函数进行积分计算。
在实际应用中,多重积分常常出现在曲线线性拟合、概率密度函数计算、物体质量计算等问题中。
本文将介绍多重积分的概念、计算方法以及一些实际应用。
一、多重积分的概念多重积分即对多个变量的函数进行积分计算。
与一重积分不同,一重积分只涉及一个自变量,其形式通常为∫f(x)dx。
而多重积分涉及多个自变量,一般形式为∫∫…∫f(x1, x2, ..., xn)dxdy…dz,其中n为变量的个数。
多重积分可以理解为对多维空间中的一个区域进行体积的计算。
当n=2时,多重积分可以理解为对平面上的一个区域进行面积的计算;当n=3时,多重积分可以理解为对空间中的一个区域进行体积的计算。
多重积分的计算方法分为累次积分和换序积分两种。
二、累次积分的计算方法累次积分是多重积分的一种计算方法,通过将多重积分转化为一重积分的形式来进行计算。
累次积分的计算顺序可以按照自变量的先后顺序进行,比如先计算x的积分,再计算y的积分。
举个例子,考虑函数f(x, y)在区域D上的积分计算,其中D为一个有界闭区域。
我们可以首先固定y的值,将f(x, y)看作x的函数,即得到f(x, y)在y固定时的积分函数F(y),然后在区域D上对F(y)进行一重积分计算。
这样就得到了原函数f(x, y)在区域D上的积分值。
三、换序积分的计算方法换序积分是多重积分的另一种计算方法,通过改变积分次序来简化计算。
换序积分的前提是被积函数在所考虑的区域上是可积的。
换序积分的计算顺序可以根据具体情况进行灵活选择,常见的换序顺序有从内到外、从外到内等。
在选择换序顺序时,需要考虑到不同变量的取值范围和被积函数的形式,以便进行合适的变量替换和积分计算。
四、多重积分的应用多重积分在实际应用中有着广泛的应用。
以下列举几个常见的应用场景:1. 曲线线性拟合:多重积分可以用来拟合实验数据中的曲线关系,通过求解拟合曲线下的面积来获得拟合结果。
二重积分和三重积分的计算
几何意义:三重 积分可以用来计 算三维空间中物 体的质量、质心 和转动惯量等物
理量
计算方法:通 过累加三维空 间中各个小体 积元的积分来 计算三重积分
应用场景:在 物理学、工程 学和经济学等 领域有广泛应
用
连续性:三重积分在连续的区间上具有连续的函数值 可加性:对于任意分割的三重积分,其和等于原三重积分的值 可积性:如果三重积分存在,则其值等于被积函数在积分区域上的质量
奇偶性:如果被积函数是奇函数或偶函数,则三重积分的值可能是奇数或偶数
二重积分与三重积 分的应用
计算物体在弹性力作用下的 变形量
计算物体在重力场中的质心 位置
计算带电体在电场中的电势 分布
计算电磁场中的能量密度分 布
三重积分可以用来计算三维物 体的质量、质心和转动惯量等二重积分表示的是二维平面上的面积 二重积分可以计算平面图形的面积 二重积分的值等于被积函数与x轴围成的面积 二重积分的几何意义是二维平面上的体积
可加性:二重积分满足可加性,即可以将积分区域分成若干个小区域, 分别对每个小区域进行积分后再求和。
线性性质:二重积分满足线性性质,即对于常数c,有∫∫D (c) dxdy = c * ∫∫D dxdy。
二重积分的计算需要使用微元法, 将积分区域划分为小的矩形区域
将所有矩形的积分结果相加,即可 得到整个积分区域的二重积分值
直角坐标系法:将二重积分转化为累次积分,再逐一计算 极坐标系法:将二重积分转化为极坐标形式,再逐一计算 区域分割法:将积分区域分割成若干个小区域,再分别计算 数值计算法:利用数值计算软件进行二重积分的计算
三重积分的几何意义:三重积分可以理解为三维空间中体积的积分,即对三维空 间中某一区域进行积分。
三重积分的计算方法:三重积分可以通过多次逐维积分来计算,即先对一个变量 进行积分,再对另一个变量进行积分,最后对第三个变量进行积分。
高等数学重积分总结
高等数学重积分总结重积分是高等数学中的一个重要章节,包括了二重积分和三重积分。
本文将对重积分的相关概念、性质、计算方法等进行总结。
一、重积分的定义和性质重积分可以看作是对多元函数在一个区域内的积分,其中二重积分和三重积分分别对应了二元函数和三元函数。
对于一个区域D,其可以用极限值对角线的方法划分成n个微小的小区域Di,其中i的取值范围为1到n。
设函数f(x,y)在小区域Di上的面积为S,且S趋近于0,则重积分可以表示为:$$\iint_D f(x,y)dxdy=\lim_{\substack{n,m\to \infty}} \sum_{i=1}^n\sum_{j=1}^m f(x_{ij},y_{ij})\Delta S$$其中$\Delta S$为小区域Di的面积,$(x_{ij},y_{ij})$为小区域Di的任意一点。
与一元函数的积分类似,重积分也具有线性性、可加性、区间可减性和保号性等数学特征。
同时,由于重积分的定义,其也满足如下性质:1.积分与被积函数与积分区域的连续性,即对于在区域D上连续的函数f(x,y),有:2.积分与区域的可加性,即对于一个区域D可以分割成两个没有公共点的子区间,则:同时还有极坐标和柱面坐标下的重积分公式:对于极坐标,有:$$\iint_D f(x,y)dxdy=\iint_D f(rcos\theta,rsin\theta)rdrd\theta$$$$\iiint_W f(x,y,z)dxdydz=\int_a^b\int_{\varphi_1}^{\varphi_2}\int_{\rho_1}^{\rho_2} f(\rho cos\varphi,\rho sin\varphi, z)\rho d\rho d\varphi dz$$其中W为三维区域,$(\rho,\varphi,z)$为柱面坐标系。
三、重积分的计算方法对于重积分的具体计算,常用的有以下几种方法:1.累次积分法累次积分法就是将多重积分化为多个一元积分,以二重积分为例,若:$$\iint_D f(x,y)dxdy$$其中D为一个平面区域,那么可以先将y作为常数,对x进行积分,再将x作为常数,对y积分,即可得到:其中a、b、c、d为D中x、y坐标的极值。
《重积分计算方法》课件
计算引力场中的力
01
在物理学中,重积分常用于计算物体在引力场中所受的力。例
如,地球上物体的重力就是地球质量的重积分结果。
弹性力学中的应力分析
02
在弹性力学中,重积分用于分析物体在受力后内部的应力分布
情况。
电场和磁场中的高斯定理和安培环路定理
03
重积分在电场和磁场理论中有重要应用,如高斯定理和安培环
路定理的证明。
重积分计算方法
目录
• 重积分概述 • 重积分的基本计算方法 • 重积分的换元法 • 重积分的分部积分法 • 重积分的近似计算方法 • 重积分的应用实例
01
重积分概述
重积分的定义
定义
重积分是定积分概念的推广,用于计 算多元函数在某个区域上的累积值。
记号
设 $f(x, y)$ 为定义在 $D$ 上的函数 ,$D$ 是二维平面上的一区域,则 $f(x, y)$ 在 $D$ 上的重积分表示为 $int_{D} f(x, y) dsigma$。
∫∫(x^2+y^2)dxdy=∫(x^2+y^2)dy ∫dx=π/2*∫(x^2+y^2)dy,其中D是 积分区域。
∫∫∫(x^2+y^2+z^2)dxdydz=∫(x^2 +y^2+z^2)dz∫(x^2+y^2)dy∫dx= π^2/6*∫(x^2+y^2+z^2)dz,其中 Ω是积分区域。
体积
当 $f(x, y) = z$ 时,$int_{D} dsigma$ 表示以 $D$ 为底面,高为 $f(x, y)$ 的立体的体积。
02
重积分的基本计算方法
直角坐标系下的计算方法
直角坐标系下,重积分可以通过将积 分区域划分为若干个小矩形,然后对 每个小矩形进行积分,最后求和得到 结果。
重积分及其计算和多重积分
(差 ).
3.设 是可求体积的有界闭区域, f x, y, z 在 上可积, 分为两个无共同内点的
可求体积的闭区域 1, 2 之并,则 f x, y, z 在 1, 2 上可积,并有
f x, y, z dV
f x, y, z dV
mijk y j z k
f ( i , y , z) dydz M ijk y j zk
D jk
其中 Δ xi ,= xi - xi-1 , Δ yj ,= y j - y j -1 , Δ zk ,= zk - zk-1 , ( i=1,2,… ,n; ,j i =1,2,… ,m; k=1,2, … ,s,).
f ( i , y, z)dydz
f ( i , y, z)dydz I ( i )
j ,k D jk
D
mijk xi y j zk
i, j ,k
n
I ( i ) xi
i1
M ijk xi y j zk
i, j ,k
因可积,所以当 ||P||趋于 0 时, Darboux 大 ,小和趋于同一数,即三重积分 .
0
0
1
故容易得到 : 如果 f(x,y,z) 是 R3 中的有界可求体积的闭区域 V 上的可积函数 ,则
f x, y, z dV
f r cos , r sin , z rdrd dz ,
V
V
其中 ,变换前后区域都用 V 表示 .
我们也可以从几何直观的意义来描述这个公式的由来
.
用三组坐标面 r C1 , C1 , z C3 将积分区域划分为若干个小区域,考虑其中有代
三重积分和多重积分方法
重积分的 计算 及应用 小结
D1
( x y) d
( x y) d x
6
4
dy y 2
2
12 y
( x y) d x
4
dy y 2
2
4 y
543 15
11
6、
a
证明:
y m( a x )
0 d y 0 e
f ( x)d x
0 (a x)e
a
m( a x )
1 2 0
2
y ) d xd y 0
1 3
D
d r d r
0
4
o
1x
(2) 积分域如图: 添加辅助线 y x, 将D 分为 D1 , D2 ,
利用对称性 , 得
D2 D1 x y
2 2
xye
d xd y
xye
x
x y
2
2
y yx o D2 1 x D1
1. 交换积分顺序的方法
2. 利用对称性等简化计算
3. 消去被积函数绝对值符号
1、
计算二重积分
所围成的闭区域.
y r R cos
其中D 为圆周 提示: 利用极坐标
0 r R cos D: 2 2
o
D
R x
原式
2 3
R
3
0
2
(1 sin ) d
一、重积分计算的基本方法 —— 累次积分法
1. 选择合适的坐标系 使积分域多为坐标面(线)围成; 被积函数用此坐标表示简洁或变量分离.
2. 选择易计算的积分序
积分域分块要少, 累次积分易算为妙 . 3. 掌握确定积分限的方法 图示法 列不等式法 (从内到外: 面、线、点)
重积分的知识点总结
重积分的知识点总结一、多重积分的概念1. 多元函数多元函数是指自变量不止一个的函数,通常表示为$z=f(x,y)$,其中$x$、$y$是自变量,$z$是因变量。
2. 二重积分二重积分是对二元函数在平面区域上的积分,其定义如下:$\iint_Df(x,y)\,d\sigma=\lim_{\lambda\rightarrow0}\sum_{i=1}^nf(\xi_i,\eta_i)\Delta\sig ma_i$其中$D$为平面区域,$f(x,y)$为在$D$上的连续函数,$\Delta\sigma_i$为区域$D$上第$i$个小面积,$\xi_i$、$\eta_i$为$(x,y)$的取值点。
$\lambda$是面积的划分趋于0时的极限。
3. 三重积分三重积分是对三元函数在空间区域上的积分,其定义如下:$\iiint_{\Omega}f(x,y,z)\,dV=\lim_{\lambda\rightarrow0}\sum_{i=1}^nf(\xi_i,\eta_i,\zeta_ i)\Delta V_i$其中$\Omega$为空间区域,$f(x,y,z)$为在$\Omega$上的连续函数,$\Delta V_i$为区域$\Omega$上第$i$个小体积,$\xi_i$、$\eta_i$、$\zeta_i$为$(x,y,z)$的取值点。
$\lambda$是体积的划分趋于0时的极限。
4. 一般情况下的重积分对于$n$元函数在$n$维空间上的积分通常可以表示为:$\int...\int_Df(x_1,x_2,...,x_n)dV$其中$D$为空间区域,$f(x_1,x_2,...,x_n)$为在$D$上的连续函数,积分区域为$D$,$dV$为该区域上的$n$维体积元。
二、多重积分的性质1. 多重积分的可加性重积分在可加性方面与定积分类似,即若函数$f(x,y)$在区域$D$上连续,则有:$\iint_Df(x,y)\,d\sigma=\iint_{D_1}f(x,y)\,d\sigma+\iint_{D_2}f(x,y)\,d\sigma$其中$D=D_1\cup D_2$,$D_1$、$D_2$为$D$的互不相交子区域。
探讨多重积分的概念
探讨多重积分的概念多重积分是高等数学中的重要概念,它在多元函数积分的计算中起着关键作用。
本文将探讨多重积分的概念及其应用。
一、多重积分的定义与符号表示多重积分是对多元函数在某个区域上的积分运算。
在二维平面上,我们通常使用二重积分;在三维空间中,我们则使用三重积分。
1. 二重积分设二元函数f(x,y)在闭区域D上有定义,则二重积分的定义为:∬D f(x,y) dσ其中,dσ表示D上的面积元素。
2. 三重积分设三元函数f(x,y,z)在闭区域Ω上有定义,则三重积分的定义为:∭Ω f(x,y,z) dV其中,dV表示Ω上的体积元素。
二、多重积分的计算方法多重积分的计算方法根据具体问题的特点选择不同的坐标系,常用的有直角坐标系、极坐标系和柱坐标系等。
1. 直角坐标系中的计算在直角坐标系中,二重积分的计算通常采用行列式法、二次换元法等方法。
三重积分的计算则涉及到三重积分的累次积分运算。
2. 极坐标系中的计算对于具有旋转对称性的问题,使用极坐标系能简化积分的计算。
在极坐标系中,二重积分的计算转化为对径向和角度的积分,三重积分的计算转化为对径向和两个角度的积分。
3. 柱坐标系中的计算柱坐标系是三维空间中常用的坐标系之一。
在柱坐标系中,二重积分的计算转化为对半径和角度的积分,三重积分的计算转化为对半径和两个角度的积分。
三、多重积分的应用多重积分在物理学、工程学等领域中有广泛的应用。
以下列举几个实际问题中多重积分的应用场景。
1. 几何体的体积通过三重积分计算几何体的体积,例如球体、圆柱体、锥体等。
2. 质心和物理中心通过多重积分计算物体的质量、质心以及物理中心,进而研究物体的平衡性和运动规律。
3. 动量和转动惯量在力学中,通过多重积分计算物体的动量和转动惯量,揭示物体的运动状态和惯性特征。
4. 统计学中的期望与方差在统计学中,通过多重积分计算随机变量的期望和方差,研究数据的分布规律和统计特性。
综上所述,多重积分是高等数学中的重要概念,广泛应用于多元函数积分的计算和实际问题的求解过程中。
重积分计算方法分析
重积分计算方法分析重积分是微积分中的一个重要概念,用于计算多重积分。
在本文中,我们将分析常见的重积分计算方法,包括直角坐标系下的二重积分和极坐标系下的二重积分,以及三重积分的计算方法。
一、直角坐标系下的二重积分计算方法二重积分可以用于计算在平面上的某一区域上的函数的面积、质量、重心等性质。
在直角坐标系下,二重积分的计算方法如下:1. 矩形区域上的二重积分:如果函数f(x,y)在矩形区域R上连续,可以将R划分成许多小矩形,每个小矩形的面积为△S,选择其中一个小矩形,设它的面积为△S,中心坐标为(xi, yj)。
则将函数f(x,y)在小矩形上的取值与该小矩形的面积△S相乘,得到一个乘积项f(xi, yj)△S。
然后将所有乘积项相加得到一个求和项。
2. 一般区域上的二重积分:对于一般的区域R,可以利用曲线坐标变换将其变换成一个矩形区域。
然后按照矩形区域上的二重积分的计算方法进行计算。
需要注意的是,变换坐标系后,函数f(x,y)需要乘以一个雅可比行列式。
二、极坐标系下的二重积分计算方法在某些问题中,使用极坐标系可以简化计算过程。
极坐标系下的二重积分计算方法如下:1. 极坐标下的二重积分:对于极坐标系下的区域R,可以利用极坐标变换将其变换成一个矩形区域。
然后按照矩形区域上的二重积分的计算方法进行计算。
需要注意的是,变换坐标系后,函数f(x,y)需要乘以一个雅可比行列式。
2. 区域的边界方程:对于利用极坐标变换变换后的新坐标系,需要确定新坐标系下的区域边界方程。
通过对边界方程进行参数化,得到参数关于θ的表达式。
然后根据极坐标系中的面积元素△S=r△r△θ,计算极坐标系下的二重积分。
三、三重积分的计算方法三重积分用于计算空间中某一区域内的函数的体积、质量、重心等性质。
三重积分的计算方法如下:1. 直角坐标系下的三重积分:对于直角坐标系下的区域R,可以将其划分成许多小立方体,每个小立方体的体积为△V,选择其中一个小立方体,设它的体积为△V,中心坐标为(xi, yj, zk)。
重积分的积分方法和积分公式
重积分的积分方法和积分公式重积分是高等数学中的重要概念,也是应用数学和物理学中使用最广泛的数学工具之一。
重积分包括二重积分和三重积分两种形式,其积分方法和积分公式对于求解各种物理量的大小、均值、中心、惯性矩等、数学物理问题的衍生、傅里叶级数的变换等都有着非常重要的应用价值。
1.二重积分的积分方法在二维空间内,设有一函数$f(x,y)$,在有界区域$D$上有定义,那么$f(x,y)$在$D$上的二重积分可以通过将$D$分成若干个无穷小的小矩形,然后对每个小矩形求面积乘上$f(x,y)$在矩形内的均值得出,公式如下:$\iint_Df(x,y)dxdy=\lim_{\Delta x, \Delta y \to 0} \sum_{i=1}^nf(x_i, y_i) \Delta x_i \Delta y_i$这里,$\Delta x$和$\Delta y$表示$x$和$y$在区域$D$上的最小划分,$n$表示小矩形的个数,而$f(x_i,y_i)$则为小矩形中心点$(x_i,y_i)$处的函数值。
不同的小矩形划分方式会影响到二重积分的精确度,一种常用的划分方式是网格划分方法,即将区域D分成若干格子,然后在每个格子中取其中心点作为较准确的位置来求积分。
2.二重积分的积分公式(1) Fubini定理:对于在矩形域$D$上的二重积分,其积分范围可以交换。
$\iint_Df(x,y)dxdy=\int_{a}^{b}dx\int_{c}^{d}f(x,y)dy=\int_{c}^ {d}dy\int_{a}^{b}f(x,y)dx$(2) 极坐标变换:若对于$f(x,y)$在极坐标下的表示为$f(r,\theta)$,则对于圆域$D$有以下公式成立。
$\iint_Df(x,y)dxdy=\int_{0}^{2\pi}d\theta\int_{0}^{R(\theta)}f(r\c os\theta,r\sin\theta)rdr$其中,$R(\theta)$表示圆$D$在极坐标系下,相对于$\theta$的极径取值范围。
重积分的数值计算和积分算法
重积分的数值计算和积分算法重积分是高等数学中的一个重要概念,其表示对于二元函数在某一区域内的积分。
而相对于一元函数积分,重积分涉及到更为广泛的应用,例如经济学、力学、物理学等诸多领域。
对于重积分的数值计算和积分算法,我们需要进行深入研究。
1. 数值计算重积分的数值计算是将二元函数的积分转化为数值计算的一种方法。
其主要思路是通过将被积函数在区域内分割成多个小矩形,然后对于每个小矩形进行面积和函数值之积的近似计算,最后将每个小矩形的计算结果加和得到总的数值积分结果。
在计算重积分时,我们需要通过一些数值方法来实现积分值的精确计算,一些经典的数值计算方法包括:中心矩形法、梯形法、辛普森法、高斯-勒让德法等。
中心矩形法是一种初步的数值计算方法,其核心思想是将积分区间的每一小段区间等分为一定数量的小区间,然后通过每个小区间中心点的函数值和小区间的长度相乘得到每个小区间的积分估计值,最后将所有小区间的积分值加和即为总的积分估计值。
梯形法是另一种常用的数值计算方法,其基本思路是通过将积分区间的每一小段区间作为梯形的底边,然后通过连接所有相邻点并形成的“梯形”来近似计算每个小区间的面积,最后将所有小区间的积分值加和得到总的积分估计值。
2. 积分算法除了数值计算以外,积分算法也是重积分领域的核心研究内容。
其中常用的积分算法包括:线性积分、带权积分、定积分等。
线性积分是针对一元函数积分的一种常用算法,在计算时需要对于每个小区间进行数值计算,并将其所有的值相加得到总的积分结果。
带权积分则是针对二元函数积分的一种算法,在计算时需要将小区间的面积乘以相应的权重,并将其加和得到总的积分结果。
定积分则是一种基本的积分算法,其核心思路是将积分区间分割成多个小区间,并通过区间长度和函数值之积的积分计算得到每个小区间的积分值,最后将所有小区间的积分值加和得到总的积分结果。
总结重积分作为高等数学中的一个基本概念,其数值计算和积分算法也是重要的研究方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重积分及其计算和多重积分Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】三重积分和多重积分方法在第三节中我们讨论了二重积分,本节将之推广到一般的n 维空间中去.类似于第三节,我们先定义一个R 3中集合的可求体积性. 同样可以给出一列类似的结论. 读者自己推广. 这里将不再赘述.一、 引例设一个物体在空间R 3中占领了一个有界可求体积的区域V ,它的点密度为()z y x f ,,,现在要求这个物体的质量.假设密度函数是有界的连续函数,可以将区域V 分割为若干个可求体积的小区域n V V V ,...,,21,其体积分别是n V V V ∆∆∆,...,,21,直径分别是n d d d ,...,,21,即},||sup{|i i V Q W WQ d ∈=, (i =1,2,…,n ), |WQ|表示W, Q 两点的距离.设},...,,m ax {21n d d d =λ,则当λ很小时,()z y x f ,,在i V 上的变化也很小.可以用这个小区域上的任意一点()i i i z y x ,,的密度()i i i z y x f ,,来近似整个小区域上的密度,这样我们可以求得这个小的立体的质量近似为()i i i i V z y x f ∆,,,所有这样的小的立体的质量之和即为这个物体的质量的一个近似值.即()i i i i ni V z y x f M ∆≈∑=,,1.当0→λ时,这个和式的极限存在,就是物体的质量.即()i i i i ni V z y x f M ∆=∑=→,,lim 10λ.从上面的讨论可以看出,整个求质量的过程和求曲顶柱体的体积是类似的,都是先分割,再求和,最后取极限.所以我们也可以得到下面一类积分.二、 三重积分的定义设()z y x f ,,是空间3R 中的一个有界可求体积的闭区域V 上的有界函数,将V 任意分割为若干个可求体积的小闭区域n V V V ,...,,21,这个分割也称为V 的分划,记为P : n V V V ,...,,21. Φ=⋂o o j i V V (空, j i ≠), 其体积分别是n V V V ∆∆∆,...,,21,直径分别是n d d d ,...,,21.设},...,,m ax {21n d d d =λ,或记为||P ||. 在每个小区域中任意取一点()i i i i V z y x ∈,,,作和()iiiini V z y x f ∆∑=,,1(称为Riemann 和),若当0→λ时,这个和式的极限存在,则称其极限为函数()z y x f ,,在区域V 上的三重积分,记为()⎰⎰⎰VdV z y x f ,,.并称函数()z y x f ,,在区域V 上可积.()z y x f ,,称为被积函数,x,y,z 称为积分变量.,V 称为积分区域.特别地,在直角坐标系下,可以记为()⎰⎰⎰Vdxdydz z y x f ,,.我们同样可以引入Darboux 大,小和来判别可积, 也有同样的结论(略).1. 若()z y x f ,,是有界闭区域V 上的连续函数,则函数()z y x f ,,在区域V 上可积.2. 若()z y x f ,,=1时, ⎰⎰⎰=VV dxdydz 的体积.3. 若()z y x f ,,在有界闭区域V 上的间断点集合是0体积时, ()z y x f ,,在V 可积.三重积分有着与二重积分类似的性质.下面简单叙述一下.1. 可积函数的和(或差)及积仍可积. 和(差)的积分等于积分的和(差).2.可积函数的函数k 倍仍可积. 其积分等于该函数积分的k倍.3.设Ω是可求体积的有界闭区域,()z y x f ,,在Ω上可积,Ω分为两个无共同内点的可求体积的闭区域21,ΩΩ之并,则()z y x f ,,在21,ΩΩ上可积,并有()()()V d z y x f V d z y x f V d z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+=21,,,,,,.等等.三、 三重积分的计算方法同二重积分一样, 我们这里给出三重积分的计算方法,理论上的证明读者自己完成..1. 利用直角坐标系计算三重积分先给一个结论.定理 若函数()z y x f ,,是长方体V =[a,b ]×[c,d ]×[e,h ]上的可积, 记D=[c,d ]×[e,h ], 对任意x ∈[a,b ], 二重积分()⎰⎰=Ddydz z y x f x I ,,)(存在, 则 ()⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛=ba D ba dx dydz z y x f dx x I ,,)( (记为()⎰⎰⎰D ba dydz z y x f dx ,,)也存在, 且()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰==hed cb aDb aVdz z y x f dy dx dydz z y x f dx V d z y x f ,,,,,,.这时右边称为三次积分或累次积分, 即三重积分化为三次积分. 证明 分别中[a,b ], [c,d ], [e,h ] 插入若干个分点b x x x x a n =<<<<= 210;d y y y y c m =<<<<= 210;h z z z z e s =<<<<= 210作平面i x x =, j y y =, k z z =,(i =0,1,2,…,n; ,j i =0,1,2,…,m;k =0,1,2,…,s,)得到V 的一个分划P . 令],,[],[],[111k k j j i i ijk z z y y x x v ---⨯⨯=(i =1,2,…,n; ,j i =1,2,…,m;k =1,2,…,s,),ijk M ,ijk m 分别是()z y x f ,,在ijk v 上的上, 下确界.那么在],[],[11k k j j jk z z y y D --⨯=上有k j ijkD ik j ijk z y Mdydz z y f z y m jk∆∆≤≤∆∆⎰⎰),,(ξ其中Δx i ,= x i - x i -1 , Δy j ,= y j - y j -1 , Δz k ,= z k - z k -1 , (i =1,2,…,n; ,j i =1,2,…,m; k =1,2,…,s,).)(),,(),,(,i Di k j D i I dydz z y f dydz z y f jkξξξ==⎰⎰∑⎰⎰∑∑∑∆∆∆≤∆≤∆∆∆=kj i k j i ijkni i i kj i k j i ijkz y x Mx I z y x m,,1,,)(ξ因可积,所以当||P ||趋于0时,Darboux 大,小和趋于同一数,即三重积分.故定理得证.如果V 如右图, e ≤z ≤h, z=z 与V 截面图12-4-2xye图12-4-1面积为D z ,不难得到,若函数()z y x f ,,在V 上的可积, 那么()()⎰⎰⎰⎰⎰⎰=zD heVdxdy z y x f dz V d z y x f ,,,,.下面给出一般三重积分的具体计算方法,理论证明读者可参照二重积分自己完成.设函数),,(z y x f 在有界闭区域Ω上连续,我们先讨论一种比较特殊的情况.()()()()},,,,|,,{21y x z z y x z D y x z y x ≤≤∈=Ω,其中xy D 为Ω在xoy 平面上的投影,且()()})(,|,{21x y y x y b x a y x D xy ≤≤≤≤=.如图12.我们现在z 轴上做积分,暂时将y x ,看成是常数.把函数()z y x f ,,看作是z 的函数,将它在区间()()],,,[21y x z y x z 上积分得到()()()⎰y x z y x z dz z y x f ,,21,,.显然这个结果是y x ,的函数,再把这个结果在平面区域xy D 上做二重积分()()()dxdy dz z y x f y x z y x z D xy⎪⎭⎫ ⎝⎛⎰⎰⎰,,21,,. 在利用二重积分的计算公式便可以得到所要的结果.若平面区域xy D 可以用不等式()()x y y x y b x a 21,≤≤≤≤表示,则()⎰⎰⎰ΩdV z y x f ,,()()()()()⎰⎰⎰=y x z y x z x y xy badz z y x f dy dx ,,2121,,.这个公式也将三重积分化为了三次积分.如果积分区域是其他的情形,可以用类似的方法计算.例1计算三重积分⎰⎰⎰ΩxdV ,其中Ω是由三个坐标面和平面1=++z y x 所围的立体区域.解 积分区域如图所示,可以用不等式表示为y x z x y x --≤≤-≤≤≤≤10,10,10,所以积分可以化为()()241413181121112341021010101010=+-=-=--==⎰⎰⎰⎰⎰⎰⎰⎰⎰----Ωx x x dx x x dyy x x dx xdzdy dx xdV xyx x四、三重积分的积分变换和二重积分的积分变换一样,有如下的结果:定理 设V 是uvw 空间R 3中的有界可求体积的闭区域,T :x =x (u,v,w ), y =y (u,v,w ), z =z (u,v,w ),是V 到xyz 空间R 3中的一一映射,它们有一阶连续偏导数,并且V w v u zz vz uz z yv y uyz x v x ux w v u z y x ∈≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂),,(,0),,(),,( (称为Jacobi). 如果f (x,y,z ) 是T (V )上的可积函数,那么dudvdw w v u z y x w v u z w v u y w v u x f dxdydz z y x f VV T ⎰⎰⎰⎰⎰⎰∂∂=),,(),,()),,(),,,(),,,((),,()(在R 3中有两种重要的变换柱面坐标和球面坐标.1. 利用柱面坐标计算三重积分前面我们可以看到,由于积分区域与被积函数的特点,二重积分可以用极坐标来计算.同样对于三重积分可以用柱面坐标和球面坐标计算.我们先讨论用柱面坐标来计算三重积分.图12-4-4x图12-4-5M ’M (x,yyz设空间中有一点()z y x M ,,,其在坐标面xoy 上的投影点'M 的极坐标为()θ,r ,这样三个数θ,,r z 就称为点M 的柱面坐标(如图12-4-4).这里规定三个变量的变化范围是⎪⎩⎪⎨⎧+∞≤≤∞-≤≤+∞≤≤z r πθ200, 注意到,当=r 常数时,表示以z 轴为中心轴的一个柱面. 当θ=常数时,表示通过z 轴,与平面xoy 的夹角为θ的半平面. 当=z 常数时,表示平行于平面xoy ,与平面xoy 距离为z 的平面. 空间的点的直角坐标与柱面坐标之间的关系, 即是R 3到R 3的映射:⎪⎩⎪⎨⎧===z z r y r x θθsin cos . 所以 其Jacobi 为,10cos sin 0sin cos ),,(),,(r r r z r z y x =-=∂∂θθθθθ故容易得到: 如果f (x,y,z ) 是R 3中的有界可求体积的闭区域V 上的可积函数,则图12-()()⎰⎰⎰⎰⎰⎰=VVdz rdrd z r r f dV z y x f θθθ,sin ,cos ,,,其中,变换前后区域都用V 表示.我们也可以从几何直观的意义来描述这个公式的由来.用三组坐标面311,,C z C C r ===θ将积分区域划分为若干个小区域,考虑其中有代表性的区域,如图12-4-5所示的区域可以看成是由底面圆半径为dr r r +和两个圆柱面,极角为θθθd +和的两个半平面,以及高度为dz z z +和的两个平面所围成的.它可以近似的看作一个柱体,其底面的面积为θrdrd ,高为dz .所以其体积为柱面坐标下的体积元素,即dz rdrd dV θ=.再利用两种坐标系之间的关系,可以得到()()⎰⎰⎰⎰⎰⎰=VVdz rdrd z r r f dV z y x f θθθ,sin ,cos ,,.在柱面坐标下的三重积分的计算也是化为三次积分. 例2计算三重积分()⎰⎰⎰Ω+dV y x 22,其中Ω是由椭圆抛物面()224y x z +=和平面4=z 所围成的区域.解 如图所示,积分区域Ω在坐标面xoy 上的投影是一个圆心在原点的单位圆.所以{}44,20,102≤≤≤≤≤≤=Ωz r r πθ.于是()()πθθθππ32441053204412202222=-===+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩdr r r d dzrdr r d dzrdrd r dV y xr2.利用球面坐标计算三重积分图12-4-7M ’我们知道球面坐标用数ϕθ,,r 来表示空间的一个点.设有直角坐标系的空间点()z y x M ,,,点M 在坐标面xoy 上的投影'M ,其中||OM r =,θ为x 轴到射线'OM 转角.ϕ为向量OM 与z 轴的夹角.如图12-4-7.规定三个变量的变化范围是⎪⎩⎪⎨⎧≤≤≤≤+∞≤≤πϕπθ0200r . 我们可以看到,注意到,当=r 常数时,表示以原点为球心的球面. 当θ=常数时,表示通过z 轴的半平面.当=ϕ常数时,表示以原点为顶点,z 轴为中心的锥面. 两种坐标系之间的关系如下:⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x . 即又是一个即是R 3到R 3的映射.它的Jacobi 是,sin 0sin cos cos sin cos cos sin sin sin sin sin cos cos sin ),,(),,(2ϕϕϕθϕθϕθϕθϕθϕθϕθϕr r r r r r r z y x =--=∂∂由一般的重积分变换公式容易得到:如果f (x,y,z ) 是R 3中的有界可求体积的闭区域V 上的可积函数,则()()⎰⎰⎰⎰⎰⎰=VVd drd r r r r f dV z y x f θϕϕϕθϕθϕsin cos ,sin sin ,cos sin ,,2,其中,变换前后区域都用V 表示.用几何直观的意义可以如下理解: 已知f (x,y,z ) 闭区域V 上的可积函数.用三组坐标=r 常数,=θ常数,=ϕ常数,将积分区域V 划分为若干个小的区域. 考虑其中有代表性的区域,此小区域可以看成是有半径为dr r r +和的球面,极角为θ和θθd +的半平面,与中心轴夹角为ϕ和ϕϕd +的锥面所围成,它可以近似的看作边长分别是θϕϕd r rd dr sin ,,的小长方体,从而得到球面坐标系下的体积元素为ϕθϕd drd r dV sin 2=.再由直角坐标系与球面坐标之间的关系,可以得到下面的公式()()ϕθϕϕθϕθϕd drd r r r r f dV z y x f VVsin cos ,sin sin ,cos sin ,,2⎰⎰⎰⎰⎰⎰=.例3计算三重积分()⎰⎰⎰Ω+dV y x 22,其中Ω是右半球面0,2222≥≤++y a z y x 所围成的区域.解 在球面坐标下,积分区域可以表示为}0,0,0{πϕπθ≤≤≤≤≤≤=Ωa r所以()503553034022222154cos 31cos 551sin sin sin sin a a d r d drr d d d drd r r dV y xaaπϕϕπϕϕθϕϕθϕθϕϕπππππ=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡===+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ与二重积分,三重积分一样可以定义一般n 重积分.我们这里只是简单介绍.当V 是R n中的有界闭区域. 依照可求面积的方法定义V 的可求“体积”或可测(略). 设f (x 1, x 2,,…, x n ,) 是R n中的有界可测闭区域V 上的函数, 任取V 的分划P,, 即把分成若干个可测小区域m V V V ,,,21 , 它们的”体积”或测度分别记为m V V V ∆∆∆,,,21 , 当令{}i i V Q Q Q Q d ∈=2121,|||sup , ||21Q Q 表示两点的距离,{}m d d d P ,,,m ax ||||21 = , 对任取),,2,1(,),,,()()(2)(1m i V x x x i i n i i =∈,如果 i mi i n i i P V x x xf ∆∑=→1)()(2)(10||||),,,(lim存在,称f (x 1, x 2,,…, x n ,)是V 上的可积函数.其极限值称为 f (x 1, x 2,,…, x n ,)在V 上的n 重积分,记为dV x x x f n n V),,,(21 ⎰⎰ 或 n n nVdx dx dx x x x f2121),,,(⎰⎰. 特别 当V =[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]时,n n b a b a b a n n n Vdx x x x f dx dx dx dx dx x x x f n n),,,(),,,(212121211122⎰⎰⎰⎰⎰=.若V 上有一一映射T⎪⎪⎩⎪⎪⎨⎧===),,,(),,,(),,,(:2121222111n n n nn u u u x x u u u x x u u u x x T ,其每个分量的函数有连续偏导数,当V 是有界可测区域,f (x 1, x 2,,…, x n ,)在T(V )上可积,并且JacobiV u u u u x u x u x u x u x ux u x u x u x u u u x x x n n nn n n n n n ∈≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂),,,(,0),,,(),,,(212122212121112121那么n n n V T dx dx dx x x x f2121)(),,,(⎰⎰nn n n n n n n Vdu du du u u u x x x u u u x u u u x u u u x f21212121212211),,,(),,,()),,,(,),,,,(),,,,((∂∂=⎰⎰.特别是R n 中的球坐标变换T :,321321211cos sin sin ,cos sin ,cos ϕϕϕϕϕϕr x r x r x === ……,123211cos sin sin sin sin ---=n n n r x ϕϕϕϕϕ , 12321sin sin sin sin sin --=n n n r x ϕϕϕϕϕ ,在R n 中, .20,,,,0,012321πϕπϕϕϕϕ≤≤≤≤∞<≤--n n r 这时的Jacobi 是2231211112122111111121sin sin sin ),,,(),,,(--------=∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂n n n n n nn n n n n n r x x rx x x rx x x r x r x x x ϕϕϕϕϕϕϕϕϕϕϕ。