六年级奥数题列方程解应用题精编WORD版

合集下载

完整word版,六年级奥数列方程解应用题

完整word版,六年级奥数列方程解应用题

列方程解应用题列方程解应用题,就是用代数算法解应用题。

它以布列方程为前提,先不考虑求得数,只把所求未知数设x。

一般所求问题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。

但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。

列方程解应用题,一般分四步进行:①弄清题意,用x表示未知数;②找出数量间的等量关系,列出方程式;③解方程;④检验并作答。

正确的方程式,应符合下列条件:①等号两边的意义的相同;②等号两边的数量相等;③等号两边的单位一致。

例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本?我能行:1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船?2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米?3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。

这个班有多少个学生?例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少?解析:这道题用算术方法解答有一定的难度,换成方程来解答,思路就比较简洁。

设个位上的数字为x人,则十位上的数字是x -1我能行:1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位上的数字位置交换后,所得的两位数比原来的两位数大36,求原来的两位数?2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少?3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。

word完整版小学六年级奥数题50道题及解答可直接打印

word完整版小学六年级奥数题50道题及解答可直接打印

精品文档得分5. 甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45 千米,两地相距多少千米?(交换乘客的时间略去不计)2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?6. 学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走 4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?9. 学校买来6张桌子和5把椅子共付455元, 已知每张桌子比每把练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍, 又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?精品文档椅子贵30元,桌子和椅子的单价各是多少元?8. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天, 正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

小学六年级奥数列方程解应用题

小学六年级奥数列方程解应用题

【导语】⽅程(equation)是指含有未知数的等式。

是表⽰两个数学式(如两个数、函数、量、运算)之间相等关系的⼀种等式,使等式成⽴的未知数的值称为解或根。

以下是⽆忧考整理的《⼩学六年级奥数列⽅程解应⽤题》相关资料,希望帮助到您。

1.⼩学六年级奥数列⽅程解应⽤题 1、⾷堂买进⾯粉175千克,⽐⽟⽶⾯的3倍还多25千克,⾷堂买进⽟⽶⾯多少千克? 2、师傅⽐徒弟多加⼯162个零件,已知师傅加⼯零件的个数是徒弟的4倍,师徒⼆⼈各加⼯多少个零件? 3、⽀钢笔⽐15⽀圆珠笔贵7.6元。

每⽀圆珠笔的价钱是2.8元,每⽀钢笔多少元? 4、⼀个三⾓形的⾯积是18平⽅厘⽶,它的底边长是12厘⽶,⾼是多少厘⽶? 5、选择适当的⽅法解答下⾯两题。

(1)学校科技组有18名⼥⽣,⽐男⽣⼈数的1/3少2⼈。

学校科技组有多少名男⽣? (2)学校科技组有36名⼥⽣,男⽣⼈数⽐⼥⽣⼈数的3倍还多6⼈。

学校科技组有多少名男⽣?2.⼩学六年级奥数列⽅程解应⽤题 1、某果园向市场运⼀批⽔果,原计划每车装1.6吨,实际每车装2吨,结果少了4吨,⼀共有多少辆车? 2、某班42个同学参加植树,男⽣平均每⼈种3棵,⼥⽣平均每⼈种2棵,已知男⽣⽐⼥⽣多种56棵,男、⼥⽣各有多少⼈? 3、学校买来科技书的册数是⽂艺书册数的1.4倍,如果再买12册⽂艺书,两种书的册数相等。

学校买来两种书各有多少册? 4、学校买6张办公桌和15把椅⼦共⽤去660元。

已知每张办公桌与3把椅⼦的价钱相等,求多少元? 5、东⽅⼩学五年级举⾏数学竞赛,共10个赛题每做对⼀题得8分,错⼀题倒扣5分,张华全部解答,但只得41分,他做对多少题? 6、松⿏妈妈采松⼦,晴天每天可采24个,⾬天每天可采16个,他⼀连⼏天⼀共采了168个松⼦,平均每天采21个,这⼏天中⼀共有多少是天晴天? 7、甲⼄两个仓库共有⼤⾖138吨,若从甲仓库运⾛30吨,从⼄仓库运⾛35吨,这时⼄仓库⽐甲仓库的⼀半还多4吨,求两个仓库原来各有⼤⾖多少吨? 8、甲、⼄、丙、丁四⼈共做零件270个,如果甲多做10个,⼄少做10个,丙做的个数乘以2,丁做的个数除以2,那么四⼈做的零件数恰好相等,丙实际做了多少个? 9、某仓库运出四批原料,第⼀批运出的占全部库存的⼀半,第⼆批运出的占余下的⼀半,以后每⼀批都运出前⼀批剩下的⼀半。

六级奥数列方程解应用题

六级奥数列方程解应用题

列方程解应用题,就是用代数算法解应用题.它以布列方程为前提,先不考虑求得数,只把所求未知数设.一般所求问题与已知条件地数量关系明显者,采取设直接未知数地办法,即求什么就设什么为;而所求问题与已知条件地数量关系隐蔽者,则采取设间接未知数地办法,即设一个跟所求问题与已知条件相关联地未知数为.但是,无论设哪种未知数为,均将其放在与已知数同等地地位,一起参加数量关系地分析和运算.文档收集自网络,仅用于个人学习列方程解应用题,一般分四步进行:①弄清题意,用表示未知数;②找出数量间地等量关系,列出方程式;③解方程;④检验并作答.正确地方程式,应符合下列条件:①等号两边地意义地相同;②等号两边地数量相等;③等号两边地单位一致.例.光明小学买回一批图书,如果每班发本,则少本,如果每班发本,则剩下本,这个学校一共有多少个班?买回图书多少本?文档收集自网络,仅用于个人学习我能行:、一批游客过一条河,如果每只船坐个人,还剩人,如果每船坐个人,那么多出只船,你知道这批游客有多少人?有多少只船?文档收集自网络,仅用于个人学习、小明每天同一时间从家出发去学校,如果每分钟行米,则可提前分钟到校,如果每分钟行米,则迟到分钟,小明家离学校多少米?文档收集自网络,仅用于个人学习、某班班主任给同学们分巧克力,如果每个人分块,则剩下块,如果每个人分块,有个同学分不到.这个班有多少个学生?文档收集自网络,仅用于个人学习例.一个两位数,十位上地数字比个位上地数字少,如果十位上地数字扩大倍,个位上地数字减去,那么所得地两位数比原来大,求原来地两位数是多少?文档收集自网络,仅用于个人学习解析:这道题用算术方法解答有一定地难度,换成方程来解答,思路就比较简洁.设个位上地数字为人,则十位上地数字是文档收集自网络,仅用于个人学习我能行:、有一个两位数,它地十位数字和个位数字和是,如果把十位上地数字和个位上地数字位置交换后,所得地两位数比原来地两位数大,求原来地两位数?文档收集自网络,仅用于个人学习、甲数是乙数地倍,甲数减去,乙数减去,则两数相等,甲乙两数各是多少?、一个三位数,十位数字是,其余两位数字之和是,如果个位数字减,百位数字加,那么所得地新数比原数地百位数字与个位数字互换位置后地数小,求原三位数.文档收集自网络,仅用于个人学习例.个和尚吃个馒头,大和尚每人吃个,小和尚每人吃一个,那么一共有几个大和尚,几个小和尚?文档收集自网络,仅用于个人学习我能行:、鸡兔同笼,从上面数,有个头.从下面数,共条腿,鸡和兔子各有多少只?、桌子上有分和分地硬币共十枚,总共角分,有分和分地硬币各多少枚?、一份数学试卷有道选择题,规定做对一题得分,不做或做错倒扣分,结果某学生得分为分,问他做对了几道题?文档收集自网络,仅用于个人学习例.甲、乙两列火车从相距千米地两城相向而行,甲车每小时行千米,乙车每小时行千米,乙车出发小时后,甲车才出发,求甲车几小时后与乙车相遇?文档收集自网络,仅用于个人学习解析:甲、乙两车相向而行,“甲车行驶地路程乙车行驶地路程总路程”,乙车行驶地路程 包括两部分,一部分是先出发小时所走地路程,另一部分是和甲车同时行驶地路程, 我能行:、甲、乙两地相距千米,一列客车与一列货车分别从甲、乙两地相向而行,客车先走小时后,货车从乙地出发,经过小时后两车相遇,已知客车每小时行千米,求货车地速度是多少?文档收集自网络,仅用于个人学习、甲、乙两车从、两地同时出发,相向而行,相遇后,甲车又行驶小时到达地.已知甲车每小时比乙车快千米,甲车每小时行千米.求乙车出发后几小时与甲车相遇?文档收集自网络,仅用于个人学习、甲、乙两车同时从、两地出发相向而行,小时后,两车还相距千米,又行了小时,两车又相距千米.求、两地相距多少千米?文档收集自网络,仅用于个人学习第三关:我想会 例.少年宫合唱团有学生人,其中女生地61比男生地 21多人,合唱队男、女生各有多少人?解析:设女生为 人,则男生就是人,、一堆煤,第一天用去全部地52,第二天用去吨,第三天又用去剩下52地,此时还剩下吨,原来有煤多少吨?文档收集自网络,仅用于个人学习、甲乙两户共养鸡只,如果甲卖掉原有鸡地53,乙户卖掉只鸡,则甲乙两户余下地鸡地只数相等,甲乙原来各有多少只鸡?文档收集自网络,仅用于个人学习、某车间生产甲乙两种零件,生产地甲种零件比乙种多个,乙种零件全部合格,甲种零件只有54合格,两种零件合格地总共有个,两种零件各生产了多少个?文档收集自网络,仅用于个人学习例.在含盐地水中,加入千克地水就变成了含盐地盐水,原来地盐水重多少千克?解析:此题根据加水前后盐地质量不变,根据“溶液溶质浓度”表示出前后地盐地质量列出等式. 解:设原来地盐水重 千克,加水后盐水地质量是千克,则( )答:原来地盐水重千克.我要学:、在含盐为地盐水中,加入千克地水,就变成了含盐为地盐水,原来地盐水有多少千克?、在含盐为地盐水中,加入千克地水,就变成了含盐为地盐水,原来地盐水有多少千克? 、在含盐为地盐水中,加入千克地盐,就变成了含盐为地盐水,原来地盐水重多少千克? 例.芳芳和圆圆各有一个盒子,里面都放着棋子,两个人地盒子里一共有粒,芳芳从自己地盒子里拿出 41放入圆圆地盒子里,圆圆盒子里地棋子数正好比原来增加51,原来芳芳有多少粒棋子?文档收集自网络,仅用于个人学习解析:假设芳芳地棋子原来有 粒,则圆圆地盒子里原有粒,“芳芳从自己地盒子里拿出 41放入圆圆地盒子里”,圆圆地盒子里就增加了 41个,根据“圆圆盒子里地棋子数正好比原来增加”可以列出下面地方程:文档收集自网络,仅用于个人学习我要学: 、甲、乙两班一共有人,从甲班调61到乙班,乙班正好比原来多了 41,原来甲班有少人? 、小明和小刚一共有元,小明拿出自己地51给小刚后,小刚正好比原来多了41,原来小明有多少钱?、师傅和徒弟二人共同加工个零件,师傅比原来多加工了 141 ,徒弟就比原来少加工 101,原来师傅和徒弟各加工多少个?文档收集自网络,仅用于个人学习例.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度地倍,每隔分有一辆公共汽车超过小光,每隔分有一辆公共汽车超过小明.已知公共汽车从始发站每次间隔同样地时间发一辆车,问:相邻两车间隔几分?文档收集自网络,仅用于个人学习解析:本题是行程问题中地追及问题,由追及问题“追及时间×速度差=追及距离”,可列方程.每隔分钟车追小光地路程每隔分钟车追小明地路程.文档收集自网络,仅用于个人学习解:设车速为,小光地速度为,则小明骑车地速度为.根据题意可列方程(-)=(-)=即车速是小光速度地倍.小光走分相当于车行分,由每隔分有一辆车超过小光可知,每隔分发一辆车.答:每隔分钟发一辆车.我要学:、甲、乙、丙三辆车先后从地开往地.乙比丙晚出发分钟,出发后分追上丙;甲比乙晚出发分,出发后小时追上丙.问甲出发后几小时追上乙?文档收集自网络,仅用于个人学习、甲、乙、丙三人同时从向跑,当甲跑到时,乙离还有米,丙离还有米;当乙跑到时,丙离还有米.问:(),相距多少米?文档收集自网络,仅用于个人学习()如果丙从跑到用秒,那么甲地速度是多少?、甲、乙两人在铁路旁边以同样地速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了秒,分后又用秒从乙身边开过.问:文档收集自网络,仅用于个人学习()火车速度是甲地速度地几倍?()火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?大显身手:、小明买了本故事书和本漫画书,共花了元,漫画书每本元,故事书每本多少元?、为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树棵,实际每天植树棵,结果比预计时间提前天完成植树任务,则计划植树多少棵?文档收集自网络,仅用于个人学习、苹果每千克元,梨每千克元,王叔叔买了一些苹果和梨共千克,一共花了元,那么苹果和梨各买了多少千克?文档收集自网络,仅用于个人学习、父亲今年岁,儿子今年岁,几年前父亲年龄是儿子地倍?、一个两位数地个位数字与十位数字之和是,如果在这两个数字中间加一个,那么所得地三位数比原数地倍多,求这个两位数.文档收集自网络,仅用于个人学习、现在有一些糖分给小朋友,如果每人分块,那么就会剩下块糖,如果每人分块,就少了块,那么有多少个小朋友?有多少块糖?文档收集自网络,仅用于个人学习、有分和分地硬币共枚,共价值角分,那么分和分硬币各有多少枚?、同学们去搬砖,如果每人搬块,那么就剩下块砖,如果每人搬块,那么就少了块砖,那么一共有几名同学搬砖?一共有多少块砖?文档收集自网络,仅用于个人学习、小明从家去学校上学,如果每分钟走米,那么将迟到分钟.如果每分钟走米,那么将提前分钟.小明家距学校多远?文档收集自网络,仅用于个人学习、公园门票价格规定如下表:购票张数每张票地价格~张元~张元张以上元某校初一()、()两个班共人去游公园,其中()班人数较少,不足人.]经估算,如果两个班都以班为单位购票,则一共应付元,问:文档收集自网络,仅用于个人学习()两班各有多少学生?()如果两班联合起来,作为一个团体购票,可省多少钱?()如果初一()班单独组织去游公园,作为组织者地你将如何购票才最省钱?。

完整word版,六年级奥数讲义列方程解应用题

完整word版,六年级奥数讲义列方程解应用题

第十讲列方程解应用题小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。

他就问管理员叔叔共有多少只猩猩,管理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是100 .”那么聪明的你知道一共有多少只猩猩吗?呵呵!认真学习今天的好方法,你就可以准确、快速的解答出上面的问题了!内容概述在小学数学中,列方程解应用题与用算术方法解应用题是有密切联系的。

它们都是以四则运算和常见的数量关系为基础,通过分析题里的数量关系,根据四则运算的意义列式解答的。

但是,两种解答方法的解题思路却不同。

由于数量关系的多样性和叙述方式的不同,用算术方法解答应用题,时常要用逆向思考,列式比较困难,解法的变化也比较多。

用列方程的方法解答应用题,由于引进了字母表示未知数,可以使未知数直接参与运算,使题目中的数量关系更加清楚,把未知数当成已知数来用,使我们很容易理清数量关系,正确解决问题。

特别是在解比较复杂的或有特殊解法的应用题时,用方程往往比较容易。

列方程解应用题的一般步骤是:①审清题意,弄清楚题目意思以及数量之间的关系,;②合理设未知数x,设未知数的方法有两种:问什么设什么(直接设未知数),间接设未知数;③依题意确定等量关系,根据等量关系列出方程;④解方程;⑤将结果代入原题检验。

概括成五个字就是:“审、设、列、解、验”.列方程解应用题的关键是找到正确的等量关系。

寻找等量关系的常用方法是:根据题中“不变量”找等量关系。

一些基本概念:(1)像4x+2=9这样的的等式,只含有一个未知数x,而且未知数x的指数为1的方程叫做一元一次方程;(2)像2x+y=8这样的的等式,含有两个未知数x、y,而且未知数的指数都为1的方程叫做二元一次方程;把两个二元一次方程用“﹛”写在一起,就组成了一个二元一次方程组;(3)如果有两个未知数,一般需要两个方程才能求出唯一解,如果有三个未知数,一般需要三个方程才能求出唯一解.如果有更多的未知数,可借助今天学习的解题思路来类推出解法.类型Ⅰ:列简易方程解应用题【例1】 (清华附中培训试题)(难度系数:★★)解下列方程:(1)357x x +=+ (2)452x x -=-(3)12(3)7x x +-=+ (4)132(23)5(2)x x --=--(5)5118()2352x x ⎡⎤⨯⨯-=⎢⎥⎣⎦ (6)1123x x +-= (7)527x y x y +=⎧⎨+=⎩ (8)2311329x y x y +=⎧⎨+=⎩分析:(1)375,22,21.1x x x x x -=-===移项得:注意把“同类”放在等号的同侧,移项过程中注意变号;化简得:等式两边同时除以可得:把代入原式满足等式.以下各题不再写检验步骤,请教师强调学生答案要检验.(2)2541.x x x -=-=,(3)16277730.x x x x +-=+-==,,(4)13465219471974123 4.x x x x x x x x -+=-+-=--==,,-=,,(5)511154104101104()410.35236333333x x x x x x x x x x ⎡⎤⎡⎤⨯⨯-=⨯-=-=-===⎢⎥⎢⎥⎣⎦⎣⎦,,,,, (6)312633263.x x x x x +=+-==()-,,请教师强调学生在解答时要注意:移项变号、同类放在等式一边、(4)中去括号时每一项都要发生相应变化、(6)中每一项都同时扩大6倍、(5)中可以先简化运算的一定要先化简。

(完整word版)六年级奥数题列方程解应用题

(完整word版)六年级奥数题列方程解应用题

列方程解应用题训练1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 .2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100 i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克). 6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

六年级奥数题列方程解应用题

六年级奥数题列方程解应用题

列方程解应用题训练1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100 i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里? 1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x . 由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵.13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

六年级奥数第7讲:列方程解应用题

六年级奥数第7讲:列方程解应用题

六年级奥数第6讲:列方程解应用题[例1] 同时点燃两支粗细不同、长度相同的蚊香。

粗蚊香燃完要3小时,细蚊香燃完要2小时。

问:点燃多少小时后,细蚊香的长度是粗蚊香的12?点拨:原来两支蚊香同样长,单位“1”相同。

粗蚊香能点3小时,每小时点这支蚊香的13;细蚊香能点2小时,每小时点这支蚊香的12。

如果设点燃了x小时,那么粗蚊香点燃了13x,剩下(1-13x),细蚊香点燃了12x,剩下(1- 12x)。

等量关系为:细蚊香剩下的长度=粗蚊香剩下的长度×12。

解答:解:设点燃x小时后,细蚊香的长度是粗蚊香的12。

1- 12x =12×(1-13x)1- 12x =12-16x1 2 x -16x =1 -1213x =12x = 3 2答:点燃32小时后,细蚊香的长度是粗蚊香的12。

[试一试1] 同时点燃两支粗细不同、长度相同的蜡烛。

粗蜡烛燃完要2小时,细蜡烛燃完要1小时。

问:点燃多少小时后,细蜡烛的长度是粗蜡烛的12?(答案:x =23)[例2] 有一个水池,第一次放出全部水的25,第二次放出40立方米水,第三次又放出剩下水的25,池里还剩下56立方米水。

全池蓄水为多少立方米?点拨:如果用x立方米表示全池的蓄水量,那么第一次放出全部的水应为2 5 x立方米,第二次放出的水是40立方米水,第三次放出的水应是剩下的水(x - 25x -40)的25。

等量关系为:第一次放水量+第二次放水量 + 第三次放水量 + 剩余水量 = 全池蓄水量。

解答:解:设全池蓄水为x立方米。

2 5 x + 40 + (x -25x -40)×25+ 56 = xx - 25x -25x +425x = 80925x = 80x = 2000 9答:全池蓄水为20009立方米。

[试一试2] 粮站运来一批大米,第一天卖出这批大米的13,第二天卖出16吨,第三天又卖出剩下大米的58,这时还剩12吨。

粮站运来多少吨大米?(答案:x =72)[例3]有两箱苹果,第一箱苹果的个数比第二箱个数的45少3个。

六年级列方程解应用题练习题Word 文档

六年级列方程解应用题练习题Word 文档

六年级列方程解决问题练习题
姓名成绩
1、将一个棱长6分米的立方体钢材熔铸成一个底面积是48平方分米的圆锥形模具,这个模具的高是多少分米?
2、某建筑队修筑一段公路,原计划每天修56米,15天完成,实际上每天多修4米,实际用了几天?
3、甲筐苹果的重量是乙筐的3倍。

如果从甲筐取出20千克放入乙筐,那么两筐苹果的重量就相等。

两筐原来各有苹果多少千克?
4、师徒二人共加工208个零件,师傅加工的零件数比徒弟的2倍还多4个。

师傅加工了多少个零件?
5、新江县新开通的公共汽车实行两种票制,普通车票每张2元,通票每张5元。

有一天售票员统计车票收入时,发现这天共有乘客880人,通票收入比普通车票收入多1740元。

问这天购买通票的有多少人?
6、苹果、梨、桔子三种水果共100千克,其中苹果的重量是梨的3倍,桔子的重量比梨的一半少8千克,其中有桔子多少千克?
7.一辆汽车,从甲地到乙地.如果每小时行45千米,就要晚0.5小时到达;如果每小时行50千米,就可提前0.5小时到达.问甲乙两地的距离及原计划行驶的时间.
8.小红、小乔买了一本习题集,利用暑假做习题.小红做了364道,小乔做了228道后剩下的题目正好是小红剩下的2倍,问此书共有多少习题?
9.父亲今年47岁,儿子今年20岁,问几年以前,父亲的年龄是儿子年龄的4倍?
10.一个植树小组去栽树,如果每人栽5棵,还剩下14棵树苗;如果每人栽7棵,就缺少4棵树苗.问这个小组有多少人?一共有多少棵树苗?。

小学奥数之列方程组解应用题(完整版)

小学奥数之列方程组解应用题(完整版)

1、设未知数的主要技巧和手段:找出与其他量的数量关系紧密的关键量2、用代数法来表示各个量:利用“,x y ”表示出所有未知量或变量3、找准等量关系,构建方程(明显的等量关系与隐含的等量关系)一、列方程解应用题的主要步骤 ⒈ 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密数量关系; ⒈ 用字母来表示关键量,用含字母的代数式来表示题目中的其他量;⒈ 找到题目中的等量关系,建立方程;⒈ 解方程;⒈ 通过求到的关键量求得题目最终答案.二、解二元一次方程(多元一次方程)消元目的:即将二元一次方程或多元一次方程化为一元一次方程.消元方法主要有代入消元和加减消元. 模块一、列方程组解应用题【例 1】 30辆小车和3辆卡车一次运货75吨,45辆小车和6辆卡车一次运货120吨。

每辆卡车和每辆小车每次各运货多少吨?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设每辆卡车和每辆小车每次各运货x y 、吨,根据题意可得:30375456120x y x y +=⎧⎨+=⎩,解得25x y =⎧⎨=⎩所以,每辆卡车每次运货2吨,每辆小车每次运货5吨。

【答案】每辆卡车每次运货2吨,每辆小车每次运货5吨【巩固】 甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲每小时加工x 个零件,乙每小时加工y 个零件.则根据题目条件有:2254344x y x y +=⎧⎨-=⎩,解得1611x y =⎧⎨=⎩所以甲每小时加工16个零件,乙每小时加工11个零件.【答案】甲每小时加工16个零件【例 2】 已知练习本每本0.40元,铅笔每支0.32元,老师让小虎买一些练习本和铅笔,总价正好是老师所给的10元钱.但小虎将练习本的数量与铅笔的数量记混了,结果找回来0.56元,那么老师原来打算让小虎买多少本练习本?教学目标 知识精讲列方程组解应用题【解析】 设老师原本打算让小虎买x 本练习本和y 支铅笔,则由题意可列方程组:0.40.32100.40.32100.56x y y x +=⎧⎨+=-⎩,整理得403210004032944x y y x +=⎧⎨+=⎩,即54125(1)54118(2)x y y x +=⎧⎨+=⎩,将两式相加,得9()243x y +=,则27(2)x y +=, ⑴ 4-⨯⒈,得17x =.所以,老师原打算让小虎买17本练习本.【答案】老师原打算让小虎买17本练习本【巩固】 商店有胶鞋、布鞋共45双,胶鞋每双3.5元,布鞋每双2.4元,全部卖出后,胶鞋比布鞋收入多10元.问:两种鞋各多少双?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设布鞋有x 双,胶鞋有y 双.453.5 2.410x y x y +=⎧⎨-=⎩,解得2025x y =⎧⎨=⎩所以布鞋有20双,胶鞋有25双.【答案】布鞋有20双,胶鞋有25双【例 3】 松鼠妈妈采松子,晴天每天可以采20个,雨天每天可以采12个,它一连几天采了112个松子,平均每天采14个,问这几天当中有几天是下雨天?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 根据题意,松鼠妈妈采的松子有晴天采的,也有雨天采的,总的采集数可以求得,采集天数也确定,因此可列方程组来求解.设晴天有x 天,雨天有y 天,则可列得方程组:()()20121121112214x y x y +=⎧⎪⎨+=⎪⎩ ()1化简为5328x y += …………()3用加减法消元:()()253⨯-得:5()(53)4028x y x y +-+=-解得6y =.所以其中6天下雨.【答案】其中6天下雨【例 4】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设乙车运来x 箱,每箱装y 个苹果,根据题意列表如下:()()()()433455x y xy xy x y ⎧+--=⎪⎨--+=⎪⎩,化简为4315(1)5415(2)y x x y -=⎧⎨-=⎩ ⒈+⒈,得:230x =,于是15x =.将15x =代入⒈或⒈,可得:15y =.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:191215151120673⨯+⨯+⨯=(个).【答案】三车苹果的总数是:673个【例 5】 有大、中、小三种包装的筷子27盒,它们分别装有18双、12双、8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种盒各有多少盒?【解析】 设中盒数为x ,大盒数为y ,那么小盒数为2x ,根据题目条件有两个等量关系:227181282330x x y y x x ++=⎧⎨++⨯=⎩ 该方程组解得69x y =⎧⎨=⎩,所以大盒有9个,中盒有6个,小盒有12个. 【答案】大盒有9个,中盒有6个,小盒有12个【巩固】 用62根同样长的木条钉制出正三角形、正方形和正五边形总共有15个.其中正方形的个数是三角形与五边形个数和的一半,三角形、正方形和五边形各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设三角形的个数为x ,五边形的个数为y ,那么正方形的个数为2x y +⎛⎫ ⎪⎝⎭,由此可列得方程组: 152345622x y x y x y x y ⎧+⎛⎫++= ⎪⎪⎪⎝⎭⎨+⎛⎫⎪++= ⎪⎪⎝⎭⎩该方程组解得:46x y =⎧⎨=⎩,所以52x y +⎛⎫= ⎪⎝⎭,因此三角形、正方形、五边形分别有4、5、6个. 【答案】三角形、正方形、五边形分别有4、5、6个【例 6】 有1克、2克、5克三种砝码共16个,总重量为50克;如果把1克的砝码和5克的砝码的个数对调一下,这时总重量变为34克.那么1克、2克、5克的砝码有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】5克砝码比1克砝码每多1个,对调后总重量将减少514-=克,所以5克砝码比1克砝码多()503444-÷=(个). 在原来的砝码中减掉4个5克砝码,此时剩下12个砝码,且1克砝码与5克同样多,总重量为30克.设剩下1克、5克各x 个,2克砝码y 个,则212(15)230x y x y +=⎧⎨++=⎩,解得36x y =⎧⎨=⎩所以原有1克砝码3个,2克砝码6个,5克砝码347+=个.【答案】原有1克砝码3个,2克砝码6个,5克砝码347+=个【巩固】 某份月刊,全年共出12期,每期定价2.5元.某小学六年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元;若订全年的同学都改订半年,而订半年的同学都改订全年,则共需订费1245元.则该小学六年级订阅这份月刊的学生共有 人.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设订半年的x 人,订全年的y 人,则:2.5(612)13202.5(126)1245x y x y ⨯+=⎧⎨⨯+=⎩,得288283x y x y +=⎧⎨+=⎩,两式相加,得3()171x y +=, 所以57x y +=,即该小学六年级订阅这份月刊的学生共有57人.【答案】小学六年级订阅这份月刊的学生共有57人【例 7】 有两辆卡车要将几十筐水果运到另一个城市,由于可能超载,所以要将两辆卡车中的一部分转移到另外一辆车上去,如果第一辆卡车转移出20筐,第二辆卡车转移出30筐,那么第一辆卡车剩下的水果筐数是第二辆的1.2倍,如果第一辆卡车转移出21筐,第二辆卡车转移出25筐,那么第三辆车上的水果筐数是前面两辆车水果筐数和的一半,求原来两辆车上有多少筐水果?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设第一辆卡车上的水果有x 筐,第二辆卡车上的水果有y 筐,则有()()2030 1.2(1)212521252(2)x y x y ⎧-=-⨯⎪⎨-+-=+⨯⎪⎩,由⒈得 1.216x y =-,代入⒈得2.26292y -=,解得70y =,所以 1.21668x y =-=,原来两辆车上分别装有68筐水果和70筐水果.【答案】两辆车上分别装有68筐水果和70筐水果【巩固】 大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容量是小池的1.5倍,问:两池中共有多少吨水?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设大池中有x 吨水,小池中有y 吨水.则根据题目条件,两池一共有x y +吨水,大池可装5x y +-吨水,小池可装30x y +-吨水,所以可列得方程5(30) 1.5x y x y +-=+-⨯,方程化简为80x y +=,所以两池中共有80吨水.【答案】两池中共有80吨水【例 8】 某公司花了44000元给办公室中添置了一些计算机和空调,办公室每月用电增加了480千瓦时,已知,计算机的价格为每台5000元,空调的价格为2000元,计算机每小时用电0.2千瓦时,平均每天使用5小时,空调每小时用电0.8千瓦时,平均每天运行5小时,如果一个月以30天计,求公司一共添置了多少台计算机,多少台空调?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设添置了x 台计算机,y 台空调.则有5000200044000(1)0.25300.8530480(2)x y x y +=⎧⎨⨯⨯+⨯⨯=⎩⒈式整理得416x y +=,则164x y =-;代入⒈得()5000164200044000y y -+=,解得2y =,则8x =,所以公司一共添置了8台计算机和2台空调.【答案】8台计算机和2台空调【巩固】 甲、乙两件商品成本共600元,已知甲商品按45%的利润定价,乙商品按40%的利润定价;后来甲打8折出售,乙打9折出售,结果共获利110元.两件商品中,成本较高的那件商品的成本是多少?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两件商品成本分别为x 元、y 元.根据题意,有方程组:600(145%)0.8(140%)0.9600110x y x y +=⎧⎨+⨯+⨯+⨯-=⎩,解得460140x y =⎧⎨=⎩所以成本较高的那件商品的成本是460元.【答案】成本较高的那件商品的成本是460元【巩固】 某市现有720万人口,计划一年后城镇人口增涨0.4%,农村人口增长0.7%,这样全市人口增加0.6%,求这个城市现在的城镇人口和农村人口.【解析】 假设这个城市现在的城镇人口是x 万人,农村人口是y 万人,得:7200.4%0.7%7200.6%x y x y +=⎧⎨+=⨯⎩,解得240480x y =⎧⎨=⎩, 即这个城市现在的城镇人口有240万,农村人口有480万.【答案】城镇人口有240万,农村人口有480万【例 9】 某次数学竞赛,分两种方法给分.一种是先给40分,每答对一题给4分,不答题不给分,答错扣1分,另一种是先给60分,每答对一题给3分,不答题不给分,答错扣3分,小明在考试中只有2道题没有答,以两种方式计分他都得102分,求考试一共有多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设小明答对了x 道题,答错了y 道题.由题目条件两种计分方式,他都得102分,可得到两条等量关系式:4041026033102x y x y +-=⎧⎨+-=⎩ 解得162x y =⎧⎨=⎩,所以考试一共有162220++=道题. 【答案】考试一共有162220++=道题【巩固】 某次数学比赛,分两种方法给分.一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分.某考生按两种判分方法均得81分,这次比赛共多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设答对a 道题,未答b 道题,答错c 道题,由条件可列方程()()52811403812a b a c +=⎧⎪⎨+-=⎪⎩由()1式知,a 是奇数,且小于17.()2式可化简为()3413c a =-由()3式知,a 大于13.综合上面的分析,a 是大于13小于17的奇数,所以15a =.再由()()13式得到3b =,4c =. 153422a b c ++=++=,所以共有22道题.【答案】共有22道题【巩固】 下表是某班40名同学参加数学竞赛的分数表,如果全班平均成绩是2.5分,那么得3分和5分的各有多少人?【考点】列方程组解应用题【解析】 根据题意,只要设得3分和5分的各有多少人,即可利用总人数和总分数而列方程组求解,等量关系有两条:一是各分数段人数之和等于总人数,各分数段所有人得分之和等于总分数.设得3分的人数有x 人,得5分的人数有y 人,那么:471084017210348540 2.5x y x y +++++=⎧⎨⨯+⨯++⨯+=⨯⎩,化简为:()()11135412x y x y +=⎧⎪⎨+=⎪⎩ ()()213-⨯,得到28y =,即4y =,再代入()1,最后得到方程组得解47x y =⎧⎨=⎩,所以40名学生当中得3分的有7人,得5分的有4人.【答案】得3分的有7人,得5分的有4人【例 10】 在S 岛上居住着100个人,其中一些人总是说假话,其余人则永远说真话,岛上的每一位居民崇拜三个神之一:太阳神、月亮神和地球神.向岛上的每一位居民提三个问题:⑴您崇拜太阳神吗?⑴您崇拜月亮神吗?⑴您崇拜地球神吗?对第一个问题有60人回答:“是”;对第二个问题有40人回答:“是”;对第三个问题有30人回答:“是”.他们中有多少人说的是假话?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 我们将永远说真话的人称为老实人,把总说假话的人称为骗子.每个老实人都只会对一个问题“是”.而每个骗子则都对两个问题答“是”.将老实人的数目计为x ,将骗子的数目计为y .于是2130x y +=.又由于在S 岛上居住着100个人,所以100x y +=,联立两条方程,解得30y =.所以岛上有30个人说的是假话.【答案】30个人说的是假话【例 11】 甲、乙两人生产一种产品,这种产品由一个A 配件与一个B 配件组成.甲每天生产300个A 配件,或生产150个B 配件;乙每天生产120个A 配件,或生产48个B 配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙分别有x 天和y 天在生产A 配件,则他们生产B 配件所用的时间分别为(10)x -天和(10)y -天,那么10天内共生产了A 配件(300120)x y +个,共生产了B 配件150(10)48(10)198015048x y x y ⨯-+⨯-=--个.要将它们配成套,A 配件与B 配件的数量应相等,即300120198015048x y x y +=--,得到7528330x y +=,则3302875y x -=. 此时生产的产品的套数为330283001203001201320875y x y y y -+=⨯+=+,要使生产的产品最多,就要使得y 最大,而y 最大为10,所以最多能生产出132********+⨯=套产品.【答案】最多能生产出1400套产品【巩固】 某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙两个车间用于生产上衣的时间分别为x 天和y 天,则他们用于生产裤子的天数分别为(21)x -天和(21)y -天,那么总共生产了上衣(1618)x y +件,生产了裤子20(21)24(21)9242024x y x y ⨯-+⨯-=--件.根据题意,裤子和上衣的件数相等,所以16189242024x y x y +=--,即67154x y +=,即15476y x -=.那么共生产了15472216181618410633y x y y y -+=⨯+=-套衣服.要使生产的衣服最多,就要使得y 最小,则x 应最大,而x 最大为21,此时4y =.故最多可以生产出22410440833-⨯=套衣服. 【答案】最多可以生产出408套衣服【例 12】 一片青草,每天长草的速度相等,可供10头牛单独吃20天,供60只羊单独吃10天.如果1头牛的吃草量等于4只羊的吃草量,那么,10头牛与60只羊一起吃草,这片草可以吃________天.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 把1只羊每天的吃草量当作单位“1 ”,则1头牛每天的吃草量为4,设原有草量为x ,每天的长草量为y ,那么:20410201016010x y x y +=⨯⨯⎧⎨+=⨯⨯⎩解得400x =,20y =,如果10头牛与60只羊一起吃草,这片草可以吃400(41016020)5÷⨯+⨯-=(天).【答案】5【例 13】 甲、乙、丙沿着环形操场跑步,乙与甲、丙的方向相反.甲每隔19分钟追上丙一次,乙每隔5分钟与丙相遇一次.如果甲4分钟跑的路程与乙5分钟跑的路程相同,那么甲的速度是丙的速度的多少倍?甲与乙多长时间相遇一次?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 把环形操场的周长看作1,设甲每分钟跑的路程为x ,丙每分钟跑的路程为y .根据题意可知乙每分钟跑的路程为45x .有: 1194155x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,解得857557x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以甲的速度是丙的速度的85 1.65757÷=倍; 甲与乙相遇一次所用的时间为884231()35757524÷+⨯=分钟. 【答案】甲的速度是丙的速度的1.6倍;甲与乙相遇一次所用的时间为23324分钟【例 14】 甲、乙二人从相距60千米的两地同时出发,沿同一条公路相向而行,6小时后在途中相遇.如果两人每小时所行走的路程各增加1千米,则相遇地点距前一次地点差1千米.求甲、乙两人的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲速为每小时x 千米,乙速为每小时y 千米.根据第一次相遇的条件,可知:()660x y +=,则10x y +=,即甲、乙两人的速度和为10千米/小时,所以第二次相遇两人的速度和为12千米/小时.第二次相遇时,甲走的路程可能比第一次少1千米或多1千米,即(61)x -千米,或(61)x +千米.由此可列第二条方程:5(1)61x x +=-或5(1)61x x +=+.因此可列的方程组有:105(1)61x y x x +=⎧⎨+=-⎩解得64x y =⎧⎨=⎩,或105(1)61x y x x +=⎧⎨+=+⎩解得46x y =⎧⎨=⎩. 所以甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时.【答案】甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时【例 15】 从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米.车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】华杯赛,复赛【解析】 (法1)从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路.设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,依题意得:920351735202x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得140x =,70y =,所以甲、乙两地间的公路有14070210+=千米,从甲地到乙地须行驶140千米的上坡路.答:甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【答案】甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路【巩固】 从A 村到B 村必须经过C 村,其中A 村至C 村为上坡路,C 村至B 村为下坡路,A 村至B 村的总路程为20千米.某人骑自行车从A 村到B 村用了2小时,再从B 村返回A 村又用了1小时45分.已知自行车上、下坡时的速度分别保持不变,而且下坡时的速度是上坡时速度的2倍.求A 、C 之间的路程及自行车上坡时的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设A 、C 之间的路程为x 千米,自行车上坡速度为每小时y 千米,则C 、B 之间的路程为(20)x -千米,自行车下坡速度为每小时2y 千米.依题意得:2022203124x x y y x x yy -⎧+=⎪⎪⎨-⎪+=⎪⎩, 两式相加,得:202032124y y +=+,解得8y =;代入得12x =. 故A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米.【答案】A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米【巩固】 华医生下午2时离开诊所出诊,走了一段平路后爬上一个山坡,给病人看病用了半小时,然后原路返回,下午6时回到诊所.医生走平路的速度是每小时4千米,上山的速度是每小时3千米,下山的速度是每小时6千米,华医生这次出诊一共走了 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【关键词】2004年,南京市,冬令营【解析】 设平路长a 千米,山坡长b 千米,则共走了2()a b +千米,根据题意,列方程3.54346a b a b +++=,1() 3.52a b +=, 2()14a b +=.所以,华医生这次出诊一共走了14千米.【答案】14【例 16】 小明从自己家到奶奶家时,前一半路程步行,后一半路程乘车;他从奶奶家回家时,前13时间乘车,后23时间步行.结果去奶奶家的时间比回家所用的时间多2小时.已知小明步行每小时行5千米,乘车每小时行15千米,那么小明从自己家到奶奶家的路程是多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设小明家到奶奶家的路程为x 千米,而小明从奶奶家返回家里所需要的时间是y 小时,那么根据题意有:112225*********x x y x y y ⎧⎪+=+⎪⎨⎪=⨯+⨯⎪⎩,解得: 15018x y =⎧⎨=⎩ 答:小明从自己家到奶奶家的路程是150千米.【答案】小明从自己家到奶奶家的路程是150千米【例 17】 (保良局亚洲区城市小学数学邀请赛)米老鼠从A 到B ,唐老鸭从B 到A ,米老鼠与唐老鸭行走速度之比是65∶,如下图所示.M 是A 、B 的中点,离M 点26千米的C 点有一个魔鬼,谁从它处经过就要减速25%,离M 点4千米的D 点有一个仙人,谁从它处经过就能加速25%.现在米老鼠与唐老鸭同时出发,同时到达,那么A 与B 之间的距离是 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 设AM MB x ==,米老鼠的行走速度为6k ,则唐老鸭的行走速度为5k (0k ≠),如下图,则有米老鼠从A 到B 需要时间 2630466(125%)6(125%)(125%)x x k k k --++⨯-⨯-⨯+ 11614(4)615x x k ⎧⎫=++-⎨⎬⎩⎭, 唐老鸭从B 到A 需要时间4302655(125%)5(125%)(125%)x x k k k --++⨯+⨯-⨯+ 11620(26)515x x k ⎧⎫=++-⎨⎬⎩⎭. 因为米老鼠与唐老鸭用的时间相同,所以列方程11611614(4)20(26)615515x x x x k k ⎧⎫⎧⎫++-=++-⎨⎬⎨⎬⎩⎭⎩⎭, 解得46x =.所以,A 、B 两地相距92千米.【答案】A 、B 两地相距92千米x -430x -26A C M D【例 18】 甲、乙两人分别从A 、B 两地同时出发相向而行,5小时后相遇在C 点.如果甲速度不变,乙每小时多行4千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点D 距C 点10千米.如果乙速度不变,甲每小时多行3千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点E 距C 点5千米.问:甲原来的速度是每小时多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 甲速度不变,乙每小时多行4千米,相遇点D 距C 点10千米,出发后5小时,甲到达C ,乙到达F ,因为乙每小时多行4千米,所以4520FC =⨯=千米,那么10FD DC ==千米,也就是说相遇后相同的时间内甲、乙走的路程相同,也就是说原来甲比乙每小时多行4千米. 乙速度不变,甲每小时多行3千米,相遇点E 距C 点5千米,出发后5小时乙到达C ,甲到达G ,因为甲每小时多行3千米,所以3515GC =⨯=千米.那么10GE =千米,5EC =千米.所以2EG EC =,即相遇后在相同的时间甲走的路程是乙的2倍,所以甲每小时多行3千米后,速度是乙的两倍.于是可列得方程组:432v v v v =+⎧⎪⎨+=⎪⎩乙甲乙甲,解得117v v =⎧⎨=⎩甲乙,所以甲原来每小时11千米. 【答案】甲原来每小时11千米【例 19】 甲、乙二人共存款100元,如果甲取出49,乙取出27,那么两人存款还剩60元.问甲、乙二人各有存款多少元?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲存款x 元,乙存款y 元,根据题目条件有两条等量关系,一是两人存款加起来等于100元,二是取钱后两人存款加起来有60元.由此可列得方程组:100421006097x y x y +=⎧⎪⎨+=-⎪⎩ 方程组最终解得7228x y =⎧⎨=⎩,所以甲存款72元,乙存款28元. 【答案】甲存款72元,乙存款28元【巩固】 甲、乙两个容器共有溶液2600克,从甲容器取出14的溶液,从乙容器取出15的溶液,结果两个容器共剩下2000克.问:两个容器原来各有多少溶液?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲容器有溶液x 克,乙容器有溶液y 克,根据题目条件有两条等量关系,一是两容器溶液加起来等于2600克,二是取溶液后两容器加起来有2000克.由此可列得方程组: 26001111200045x y x y +=⎧⎪⎨⎛⎫⎛⎫-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎩ 方程组最终解得16001000x y =⎧⎨=⎩,所以甲容器中有溶液1600克,乙容器中有溶液1000克. 【答案】甲容器中有溶液1600克,乙容器中有溶液1000克【例 20】 某班有45名同学,其中有6名男生和女生的17参加了数学竞赛,剩下的男女生人数正好相等.问:这个班有多少名男生?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设有x 名男生和y 名女生,那么根据题目条件有两条等量关系:一是原来男女生人数和为45人,二是剩下的男女生人数相等,由此可列得方程组:451617x y x y +=⎧⎪⎨⎛⎫-=- ⎪⎪⎝⎭⎩该方程组解得2421x y =⎧⎨=⎩,所以这个班有24名男生.【答案】这个班有24名男生【巩固】 甲、乙两班人数都是44人,两班各有一些同学参加了数学小组的活动,甲班参加的人数恰好是乙班未参加人数的13,乙班参加的人数恰好是甲班未参加人数的14,那么共有多少人未参加数学小组?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设甲、乙两班参加数学小组的人数分别为x 人、y 人,未参加人数分别为()44x -人、()44y -人,由题设已知条件可以得到:1(44)31(44)4x y x y⎧=-⎪⎪⎨⎪-=⎪⎩,解之得128x y =⎧⎨=⎩ 所以未参加兴趣小组的人数()()444468x y =-+-=人.【答案】未参加兴趣小组的人数68人【例 21】 一群小朋友去春游,男孩戴小黄帽,女孩戴小红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设男孩有x 人,女孩有y 人.根据条件可列方程:(1)52(1)x y x y --=⎧⎨=-⎩由第一条方程可以得到6x y =+,代入第二条方程得到62(1)y y +=- .解得8y =,再代入第一条方程.方程解得148x y =⎧⎨=⎩.所以男孩有14人,女孩有8人.【答案】男孩有14人,女孩有8人【巩固】 有大小两盘苹果,如果从大盘中拿出一个苹果放在小盘里,两盘苹果一样多;如果从小盘里拿出一个苹果放在大盘里,大盘苹果的个数是小盘苹果数的3倍.大、小两盘苹果原来各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设原来大盘有苹果x 个,小盘有苹果y 个.那么可列方程组:()11131x y x y -=+⎧⎪⎨+=-⎪⎩,方程组解得53x y =⎧⎨=⎩,所以大盘原来有苹果5个,小盘原来有苹果3个.【答案】大盘原来有苹果5个,小盘原来有苹果3个【巩固】 教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。

六年级奥数列方程解应用题

六年级奥数列方程解应用题

六年级奥数列方程解应用题解析:这道题可以用代数方法解决。

设大和尚的人数为x,小和尚的人数为y,则有以下两个方程:3x + (y/3) = 100.(总人数)x + y = 100.(总馒头数)将第一个方程式中的y化简为3y,得到:9x + y = 300将两个方程式相减,消去y,得到:6x = 200解出x=33.33,但是x必须是整数,所以取x=33,代入第二个方程式,得到y=67.因此,一共有33个大和尚,67个小和尚。

我能行:1、某个班级有男生和女生,男生人数是女生人数的3倍,如果男生每人吃2个苹果,女生每人吃3个苹果,那么这个班级一共吃了多少个苹果?2、一家商店有苹果和梨两种水果,苹果每斤6元,梨每斤4元,如果这家商店卖出了100斤水果,收入500元,苹果和梨各卖出多少斤?3、三个数的和是15,其中两个数之和是9,第一个数比第二个数小2,求这三个数。

1.鸡兔同笼问题:有15个头,48条腿,求鸡和兔子的数量。

根据题意,可以列出方程组:鸡+兔=15,2鸡+4兔=48.解方程得到鸡有9只,兔子有6只。

2.硬币问题:有5分和2分的硬币各若干枚,共10枚,总面值为4角4分。

设5分硬币有x枚,2分硬币有y枚,则可以列出方程组:x+y=10,5x+2y=44.解方程得到5分硬币有6枚,2分硬币有4枚。

3.数学试卷问题:一份试卷有20道选择题,做对一题得5分,错一题扣1分,不做不扣分。

某学生得分为76分,求他做对了几道题。

设做对x道题,则错了20-x道题,可以列出方程:5x-(20-x)=76.解方程得到他做对了16道题。

4.火车问题:甲、乙两列火车从相距470千米的两城相向而行,甲车每小时行38千米,乙车每小时行40千米,乙车出发2小时后,甲车才出发,求甲车几小时后与乙车相遇。

根据题意,可以列出方程:(38+40)t+2*40=470,解方程得到甲车行驶8小时后与乙车相遇。

1.鸡兔同笼问题:有15个头,48条腿,求鸡和兔子的数量。

六年级数学上册《列方程解应用题》奥数思维拓展习题

六年级数学上册《列方程解应用题》奥数思维拓展习题

六年级数学上册《列方程解应用题》奥数思维拓展习题1.为满足学生多样的兴趣爱好,学校还增设了花样跳绳社团和陶笛社团,这两个社团也受到了大家的追捧。

参加两个社团的总人数有120人,其中参加花样跳绳人数是参加陶笛社团人数的23,参加两个社团的人数分别是多少?(列方程解答)解:设参加陶笛社团的人数是x人,则花样跳绳的人数是23x人x+23x=12053x=120x=72花样跳绳:120-72-48(人)答:参加陶笛社团的人数是72人,参加花样跳绳的人数是48人。

2.李叔叔买了一套桌椅共花了640元,椅子的价格是书桌价格的35,书桌和椅子的价格分别是多少元?(用方程解)解:设书桌的价格是x元,则椅子的价格是35元。

x+35x-64085x=640 x=400椅子:640-400-240(元)答:书桌的价格是400元,椅子的价格是240元。

3.甲、乙两厂共有 2000人。

如果甲厂调出原有工人的14,乙厂调出 110人,则甲、乙两厂剩下的人数相等。

甲、乙两厂原有工人多少人?解:设甲厂原有工人x 人,则乙厂原有工人(2000-x)人。

(1-14)x=2000-x-110 34x=1890-x x=1080乙厂:2000-1080=920(人)答:甲厂原有工人1080人,乙厂原有工人920人。

4.西安市居民在环城公园举行民间艺术展,其中展出书法作品245件,比所有的展品的825多21件,这次共展出作品多少件?(列方程解)解:设这次共展出作品x 件。

825x+21=245 825x+21-21=245-21X=700 答:这次共展出作品 700件。

5.在培英小学开展的“我最喜欢的少儿节目”投票评选活动中,《动画乐翻天》获得的票数是总票数的14,《猪猪侠》获得的票数是总票数的15,《动画乐翻天》的票数比《猪猪侠》的票数多48票,总票数有多少张?(列方程解答) 解:总票数有x票。

1 4x -15x=48120x=48x=960答:总票数有 960 张。

小学奥数方程专题--列方程解应用题(六年级)竞赛测试.doc

小学奥数方程专题--列方程解应用题(六年级)竞赛测试.doc

小学奥数方程专题--列方程解应用题(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【答案】长18厘米,宽15厘米【解析】解:设长方形的宽是x厘米,则长方形的长厘米(厘米)【题文】某八位数形如,它与3的乘积形如,则七位数应是多少?【答案】8571428【解析】设,则,,,即七位数应是8571428【题文】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【答案】10、11、12【解析】设最小的那个数为,那么中间的数和最大的数分别为和.则.所以这三个连续整数依次为10、11、12.【题文】兄弟二人共养鸭550只,当哥哥卖掉自己养鸭总数的一半,弟弟卖出70只时,两人余下的鸭只数评卷人得分相等,求兄弟两人原来各养鸭多少只?【答案】兄原来养鸭320只,弟原来养鸭230只【解析】解:设兄原来养鸭x只,则弟原来养鸭只.(只)【题文】某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将一组人数调整为二组人数的一半,应从一组调多少人到二组去?【答案】10【解析】如果从第一组调人到第二组去,那么第一组还有人,第二组有人,现在第一组人数是第二组的一半,根据这个等量关系可以列出方程.设应从第一组调人到第二组去,由题意得:两边同乘以得:【题文】寒暑表上通常有两个刻度,摄氏度(记为℃)和华氏度(记为),它们之间的换算关系是:摄氏度华氏度,那么在摄氏多少度时,华氏度的值恰好比摄氏度的值大.【答案】35【解析】根据摄氏度与华氏度的换算关系,设在摄氏度时,华氏度的值恰好比摄氏度的值大,列方程:答:在摄氏度时,华氏度的值恰好比摄氏度的值大.【题文】小军原有故事书的本数是小力的3倍,小军又买来7本书,小力买来6本书后,小军所有的书是小力的2倍,两人原来各有多少本书?【答案】小力原有故事书5本,小军原有故事书15本【解析】解:设小力原有故事书x本,则小军原有故事书3x本(本)【题文】六年级学生去秋游,要分成15个组,一部分由8人组成一个小组,另一部分由5个人组成一个小组,8人组成小组的总人数比5人组成小组的总人数多3人,求六年级共有多少名同学参加秋游?【答案】93【解析】设8人小组有x组,则5人小组有组(名)【题文】五年级一班同学参加学校植树活动,派男、女生共12人去取树苗,男同学每人拿3棵,女同学每人拿2棵,正好全部取完;如果男、女生人数调换一下,则还差2棵不能取回.问:原来男、女生人数各是多少?【答案】原来男生有7人,女生有5人【解析】设原来男生有人,女生有人,依题意列方程:.所以原来男生有7人,女生有5人.【题文】苹果和梨共80斤,价值200元,已知苹果2元一斤,梨元一斤,那么苹果和梨各多少斤?【答案】苹果有30斤,梨有50斤【解析】设苹果斤,梨斤,则有,解得.所以苹果有30斤,梨有50斤.【题文】唐代大诗人李白不仅诗写得好,而且也很能喝酒,杜甫说他是“李白斗酒诗百篇”。

小学六年级奥数方程应用题【三篇】

小学六年级奥数方程应用题【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是为⼤家整理的《⼩学六年级奥数⽅程应⽤题【三篇】》供您查阅。

【第⼀篇:商品进价】
习题:商店进了⼀批商品,按40%加价出售.在售出⼋成后,为了尽快销完,决定五折处理剩余商品,⽽且商品全部出售后,突然被征收了150元的附加税,这使得商店的实际利润率只是预期利润率的⼀半,那么这批商品的进价是多少元?(注:附加税算作成本)
答案与解析:
理解利润率的含义,是利润在成本上的百分⽐。

设进价x元,则预期利润率是40%
所以收⼊为(1+40%)x×0.8+0.5×(1+40%)x×0.2=1.26x
实际利润率为40%×0.5=20%
1.26x=(1+20%)(x+150)
得x=3000
所以这批商品的进价是3000元
【第⼆篇:两个班】
习题:甲⼄两班共90⼈,甲班⽐⼄班⼈数的2倍少30⼈,求两班各有多少⼈?
答案与解析:
第⼀种⽅法:设⼄班有Χ⼈,则甲班有(90-Χ)⼈。

找等量关系:甲班⼈数=⼄班⼈数×2-30⼈。

列⽅程:90-Χ=2Χ-30
解⽅程得Χ=40从⽽知90-Χ=50
第⼆种⽅法:设⼄班有Χ⼈,则甲班有(2Χ-30)⼈。

列⽅程(2Χ-30)+Χ=90
解⽅程得Χ=40从⽽得知2Χ-30=50
答:甲班有50⼈,⼄班有40⼈。

【第三篇:分⽯⼦】。

小学六年级数学奥数

小学六年级数学奥数

小学六年级数学奥数第一讲列方程解应用题(一)例题:例1、一个数的5倍加上10等于它的7倍减去6,求这个数。

例2、两块地一共100公顷,第一块地相当于第二块地的3倍,第二块地是多少公顷?例3、XXX数学兴趣小组的人数是语文组的2.4倍,比美术组多30人,三个小组共115人。

三个小组各多少人?例4、被除数与除数的和是98,如果被除数和除数都减去9,那么被除数是除数的4倍。

求原来的除数和被除数。

题:1、一个数的6倍加上8等于它的8倍减去6,求这个数。

2、篮球、足球、排球各1个,平均每个36元。

篮球比排球贵10元,足球比排球贵8元。

每个排球多少元?3、XXX今年11岁,爷爷今年74岁。

再过多少年,爷爷的年龄是XXX年龄的4倍?4、一个两层书架,一共有书245本。

上层每天借出15本,下层每天借出10本,3天后,上、下两层剩下的本数一样多。

上、下两层原来各有图书多少本?5、甲、乙、丙三个数的和是195,已知甲数除以乙数,乙数除以丙的商都是3.甲、乙、丙三个数各是多少?6、甲厂有煤120吨,乙厂有煤96吨。

甲厂每天烧15吨,乙厂每天烧9吨。

多少天后,两厂剩下的煤吨数相等?7、将自然数1—100排列如下表:1.2.3.4.5.6.7.89.10.11.12.13.14.15.1617.18.19.20.21.22.23.24……97.98.99.100在这个表里,用长方形框出的二行六个数(如图)。

如果框出的六个数的和是432,问这六个数最小的数是几?8、一次数学竞赛有10道题,评分规定对一题得10分,错一题倒扣2分。

XXX回答了全部10道题,结果只得了76分。

他答对了几道题?第二讲列方程解应用题(二)例题:例1、六(1)班同学合买了一件礼物,如果每人出6元,则多48元;如果每人出4.5元,则少27元。

求六(1)班有多少人?例2、黉舍体育室里的足球是排球的2倍。

体育举动课上,每班借7个足球,5个排球,排球借完时,还有足球72个。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数题列方程解应用题精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】
列方程解应用题训练
1.一个分数约分后将是
54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是9
4.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .
3,□,□,□,□,□,□180
3.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.
4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.
5.粮店中的大米占粮食总量的
73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.
6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .
7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.
8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.
9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.
10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.
11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?
12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的
101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的10
1,照此类推,第i 班取走树苗100?i 棵又取走剩下树苗的10
1.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?
13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了3
1的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.
14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下
鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里? 1.
335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335
268675674=⨯⨯. 2. 12
设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由
24+13x =180,解得 x =12.
3. 630
设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程
14a ?5a +182=(14a -13)?(5a +13)
70a 2+182=70a 2+117a -169
解得a =3,所以原长方形的面积为14a ?5a =70a 2=630(平方厘米)
4. 55
设成本是x 元.根据题意可列方程(x +5)?11=(x +11)?10,解得x =55(元).
5. 4200
设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯
x x 解得x =4200(千克).
6. 42
设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程
)5(60
20)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30?[(55-15)?(55-5)]=24(千米/小)
7. 200
浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.
设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ?40%+(300-
x )?10%=300?30%,解得x =200(克).
8. 20
设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .
由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3?(2x )+4?(3x )=10(工时). 即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:
2?(3x )+10?(2x )+14x =40x =20(工时).
9. 7
设共损坏x 套茶具,依题意,得1.6?(1998-x )-18?x =3059.6,解得x =7.
10. 600
设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(3
1400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).
11. 设甲出发后x 分钟开始减速的,依题意,得 20?
30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.
12. 设这批树苗有x 棵,则第一班取走树苗(100+
)10100-x 棵,第二班取走 树苗10)1010100(200200-+
--+x x 棵.依题意,得
10
)10100100(20020010100100-+
--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为9900
8100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504040504545+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).
14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,
骑马行x 千米,依题意,得
12
45112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。

相关文档
最新文档