高中数学导数基础练习题

合集下载

《导数》基础训练题(1)答案

《导数》基础训练题(1)答案

高考数学模拟卷基础题型训练(1)姓名:导数概念公式【笔记】课堂练习1、在曲线2y x =上切线倾斜角为4π的点是( D ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24【笔记】 2、曲线221y x =+在点(1,3)P -处的切线方程为( A )A .41y x =--B .47y x =--C .41y x =-D .47y x =+【笔记】 3、函数在322y x x =-+在2x =处的切线的斜率为 10【笔记】4、函数1y x x=+的导数是( A ) A .211x -B .11x -C .211x + D .11x+ 【笔记】5、函数cos xy x=的导数是( C ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2cos cos x x xx+- 【笔记】6、函数sin (cos 1)y x x =+的导数是( C )A .cos2cos x x -B .cos2sin x x +C .cos2cos x x +D .2cos cos x x +【笔记】课后作业(1) 姓名:1、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( D )A .319 B .316 C .313 D .3102、函数sin 4y x =在点(,0)M π处的切线方程为( D )A .y x π=-B .0y =C . 4y x π=-D .44y x π=- 3、求下列函数的导数:(1)12y x =; (2)41y x=; (3)y 【答案】(1)11'12x y =, (2)54--=x y ;(3)5253-=x y4、若3'0(),()3f x x f x ==,则0x 的值为_________1±________5、函数sin x y x =的导数为___________2'sin cos xx x x y -=__________ 6、与曲线y =1ex 2相切于P (e ,e)处的切线方程是(其中e 是自然对数的底)高考数学模拟卷基础题型训练(2)姓名:1、已知曲线3:C y x =。

导数基础练习题(2)

导数基础练习题(2)

2导数基础练习题一选择题1函数f (x) =(2nx )的导数是(C )2 2(A) f (x) =4二x (B) f (X) =4二x (C) f (x) =8二x (D) f (x) =16二x2.函数f(x)二X €公的一个单调递增区间是( A )(A) 1-1,0 1 (B) 2,8 1 (C) 1,21 (D) 0,213 .已知对任意实数x,有f(-x)--f( ,x) g卜x)二g(且x 0时,f ( x) ,0 g (x ),则x 0 时(B )A. f (x) 0, g (x) 0B. f (x) 0, g (x) :: 0C. f (x) :: 0, g (x) 0D. f (x) ::0, g (x) :: 034.若函数f (x) = x -3bx 3b在0,1内有极小值,则(A )1(A) 0 : b :1 (B) b 1(C) b 0 (D) b :-25•若曲线y =x4的一条切线I与直线x • 4y-8 = 0垂直,则I的方程为(A )A. 4x-y-3=0 B . x 4y-5=0 C . 4x-y 3 = 0 D . x 4y 3 = 06.曲线y =e x在点(2, e2)处的切线与坐标轴所围三角形的面积为( D )A. 2 2B. 2e c. eD.7.设f (x)是函数f (x)的导函数,将y二f (x)和y二f(x)的图象画在同一个直角坐标系B. C. D.2&已知二次函数f(x)=ax bx c 的导数为f'(x) , f'(O).O ,对于任意实数 x 都有f (x) Z 0,则丄^的最小值为(C )f'(0)c5 c3A . 3B .C . 2D .-2 29. 设 p: f (x^ e x ln x • 2x 2 mx 1 在(0, •::)内单调递增,q : m > -5,则 p 是 q 的 (B )A.充分不必要条件 E.必要不充分条件C.充分必要条件D.既不充分也不必要条件10. 已知函数f (x^ax 3 bx 2 c ,其导数f (x)的图像如图所示,则函数 是( )A. a b cB. 3a 4b cC. 3a 2bD. c11. 函数y=f(x)的图象如图所示,则导函数 y = f (x)的图象可能是() 12.函数f(x)=(x-3) 的单调递增区间是( )A. (2, ::)B. (0,3)C. (1,4)D. (一::,2)13.函数f (x) =2x 3 -6x 2 m ( m 为实数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为A -3B -27C -37D -5414三次函数 f(x)3 ..=mx — x 在(—8,+^ )上是减函数,则 m 的取值范围是()A. m<0B. m<1C. m< 0D. mC 1[答案]A[解析]f ' (x) =3mx — 1,由条件知f ' (x) <0在(—8,+8 )上恒成立,f (x)的极小值yxy = 3x 3 + x 在点(1 , 4)处的切线斜率k = y ,|3 34• k = 2,切线方程为 y — 3= 2(x — 1),即 6x — 3y — 2= 0, 2 1 112 1令 x = 0 得 y = — 3,令 y = 0 得 x =命二 S = X 3 X 2= &216.若函数f(x)的导数为.f'(x)=-2x+1,则f(x)可能是 ( D )17.已知曲线y=£-3lnx 的一条切线的斜率为J ,则切点的横坐标为(B A -2 B 3 C 118.正弦曲线y 二sinx 上一点P,以点P 为切点的切线为直线 L ,则直线是(A )21已知直线y = x + 1与曲线y = In(x + a)相切,则a 的值为(C. — 1222已知函数f (x )在R 上满足f(x)=2f (2-x)-x &-8,则曲线y= f(x)在点m<0△ = 12m<0,二 m<0,故选 A.15曲线y = ]x 3+ x 在点j 1, 4处的切线与坐标轴围成的三角形面积为3i 3 ;A. 1 1 B .9 1 C.3 2 D.3[答案][解析] ••• y '= x 2+ 1,•••曲线 x =1= 1 + 1 = 2,A.-2 x 3+1B.-X+1C.-4xD.-3x 3+xL 的倾斜角的范围A [0,-][注二)B [0,二)C4 4n [419 yx =3处的导数值为(B. -D.-20若曲线y = x 2+ ax + b 在点(0, b)处的切线方程是 x — y + 1 = 0,则()A . a = 1, b = 1 b = 1C . a = 1, b =— 1D . a =— 1, b =— 1二.填空题32 •已知函数 f(x)二x -12x 8在区间[-3, 3]上的最大值与最小值分别为 M,m ,则M -m= —32.3 23.点P 在曲线y = x —x —上移动,设在点P 处的切线的倾斜角为为 〉,则〉的取值范3围是 ------------------------------ 0/ |; ” ,|—,二 --------IL 2 _41 3 24 •已知函数y x x • ax -5(1)若函数在-:= 总是单调函数,则 a 的取值范围3是 _________ a^1 ______ .⑵若函数在[1,+处)上总是单调函数,则a 的取值范围(1,f(1))处的切线方程是 () A 『=2X — 1 B 『=x c y=3x-2 D y = -2 x + 323•函数f(x)的定义域为开区间(a,b),导函数f (x)在(a,b)内的图象如图所示, 极小值点 (f(x) 4 B.—312 D.—325.以下四图, 的序号是都是同一坐标系中三次函数及其导函数的图像, 、④1.函数f(x)=xlnx(x 0)的单调递增区间是.内有8 C.—324.如图是函数2A.—3=x 34个bx 2 cx d 的大致图象,则x其中一定不正确④① ②③ C .D . 3(3 )若函数在区间(-3 , 1 )上单调递减,则实数a的取值范围是a _ -3. _________ .5. 函数f(x)=x3—ax在[1 , +m)上是单调递增函数,则a的取值范围是__________________ 。

导数公式练习题

导数公式练习题

导数公式练习题在微积分中,导数是一个重要的概念,它描述了函数在某一点上的变化率。

了解和掌握导数的公式对于解决各种数学问题非常关键。

本文将通过一系列导数练习题,帮助读者加深对导数公式的理解和应用。

1. 求函数 f(x) = x^2 + 3x - 2 在 x = 2 处的导数。

解答:首先,我们可以使用导数的定义来求解。

导数的定义是函数在某一点上的斜率或者切线的斜率,可以通过极限的思想来表示。

根据导数的定义:f'(x) = lim (h->0) [f(x + h) - f(x)] / h代入 f(x) = x^2 + 3x - 2:f'(x) = lim (h->0) [(x + h)^2 + 3(x + h) - 2 - (x^2 + 3x - 2)] / h= lim (h->0) [x^2 + 2hx + h^2 + 3x + 3h - 2 - x^2 - 3x + 2] / h= lim (h->0) [2hx + h^2 + 3h] / h= lim (h->0) [2x + h + 3]= 2x + 3所以,函数 f(x) = x^2 + 3x - 2 在 x = 2 处的导数为 f'(2) = 2*2 + 3 = 7。

2. 求函数 g(x) = 5e^x - 3x 在 x = 0 处的导数。

解答:函数 g(x) = 5e^x - 3x 可以看作是两个函数相加的形式:f(x) = 5e^x 和 h(x) = -3x。

根据导数的性质,我们知道两个函数相加的导数等于两个函数分别求导后再相加。

首先,求 f(x) = 5e^x 的导数:f'(x) = (5e^x)' = 5e^x (指数函数的导数就是其本身)然后,求 h(x) = -3x 的导数:h'(x) = (-3x)' = -3 (常数函数的导数为 0)因此,函数 g(x) 的导数可以表示为:g'(x) = f'(x) + h'(x)= 5e^x - 3x + 0= 5e^x - 3x所以,函数 g(x) = 5e^x - 3x 在 x = 0 处的导数为 g'(0) = 5e^0 - 3*0 = 5。

导数在研究函数中的应用练习题(基础、经典、好用)

导数在研究函数中的应用练习题(基础、经典、好用)

导数在研究函数中的应用一、选择题1.设函数f(x)=2x+ln x,则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点2.函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=f(x)x在区间(1,+∞)上一定()A.有最小值B.有最大值C.是减函数D.是增函数3.若函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是() A.(0,1) B.(-∞,1)C.(0,+∞) D.(0,1 2)4.对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有() A.f(x)≥f(a) B.f(x)≤f(a)C.f(x)>f(a) D.f(x)<f(a)5.若函数f(x)=xx2+a(a>0)在[1,+∞)上的最大值为33,则a的值为()A.33 B. 3 C.3+1 D.3-1二、填空题6.函数f(x)=xln x的单调递减区间是________.7.已知函数f(x)=x3+3mx2+nx+m2在x=-1时有极值0,则m+n=________.8.已知函数f(x)=-12x2+4x-3ln x在[t,t+1]上不单调,则t的取值范围是________.三、解答题9.(2013·肇庆调研)已知函数f(x)=ax2+b ln x在x=1处有极值1 2.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.10.设函数f(x)=x+ax2+b ln x,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)令g(x)=f(x)-2x+2,求g(x)在定义域上的最值.11.(2013·惠州模拟)已知函数f(x)=x2+2a ln x.(1)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;(2)求函数f(x)的单调区间;(3)若函数g(x)=2x+f(x)在[1,2]上是减函数,求实数a的取值范围.导数在研究函数中的应用解析及答案一、选择题1.【解析】∵f(x)=2x+ln x(x>0),∴f′(x)=-2x2+1x.由f′(x)=0解得x=2.当x∈(0,2)时,f′(x)<0,f(x)为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)为增函数.∴x=2为f(x)的极小值点.【答案】 D2.【解析】由函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,可得a的取值范围为a<1,又g(x)=f(x)x=x+ax-2a,则g′(x)=1-ax2,易知在x∈(1,+∞)上g′(x)>0,所以g(x)为增函数.【答案】 D3.【解析】f′(x)=3x2-6b,令f′(x)=0得x2=2b,由题意知0<2b<1,∴0<b<12,故选D.【答案】 D4.【解析】 由(x -a )f ′(x )≥0知, 当x >a 时,f ′(x )≥0;当x <a 时,f ′(x )≤0. ∴当x =a 时,函数f (x )取得最小值,则f (x )≥f (a ). 【答案】 A5.【解析】 f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2.令f ′(x )=0,得x =a 或x =-a (舍),①若a ≤1时,即0<a ≤1时,在[1,+∞)上f ′(x )<0,f (x )max =f (1)=11+a=33. 解得a =3-1,符合题意. ②若a >1,在[1,a ]上f ′(x )>0; 在[a ,+∞)上f ′(x )<0. ∴f (x )max =f (a )=a 2a =33,解得a =34<1,不符合题意, 综上知,a =3-1. 【答案】 D 二、填空题6.【解析】 f ′(x )=ln x -1ln 2x ,令f ′(x )<0得 ln x -1<0,且ln x ≠0. ∴0<x <1或1<x <e ,故函数的单调递减区间是(0,1)和(1,e). 【答案】 (0,1),(1,e)7.【解析】 ∵f ′(x )=3x 2+6mx +n ,且f (x )在x =-1处的极值为0. ∴⎩⎨⎧f (-1)=(-1)3+3m (-1)2+n (-1)+m 2=0,f ′(-1)=3×(-1)2+6m (-1)+n =0, ∴⎩⎨⎧m =1,n =3或⎩⎨⎧m =2,n =9,当⎩⎨⎧m =1,n =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0恒成立与x =-1是极值点矛盾, 当⎩⎨⎧m =2n =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3), 显然x =-1是极值点,符合题意, ∴m +n =11. 【答案】 118.【解析】 由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1, 得0<t <1或2<t <3. 【答案】 (0,1)∪(2,3) 三、解答题9.【解】 (1)f ′(x )=2ax +b x ,又f (x )在x =1处有极值12. ∴⎩⎪⎨⎪⎧f (1)=12,f ′(1)=0,即⎩⎪⎨⎪⎧a =12,2a +b =0.解之得a =12且b =-1. (2)由(1)可知f (x )=12x 2-ln x , 其定义域是(0,+∞),且f ′(x )=x -1x =(x +1)(x -1)x .当x 变化时,f ′(x )、f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) -0 +f (x )极小值所以函数y =f (x )的单调减区间是(0,1),单调增区间是(1,+∞). 10.【解】 (1)f ′(x )=1+2ax +bx (x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎨⎧f (1)=0,f ′(1)=2,即⎩⎨⎧1+a =0,1+2a +b =2. 解之得a =-1,b =3.(2)由(1)知,f (x )=x -x 2+3ln x ,定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0,则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)内单调递增,在(1,+∞)内单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 11.【解】 (1)f ′(x )=2x +2a x =2x 2+2ax , 由已知f ′(2)=1, 解得a =-3.(2)函数f (x )的定义域为(0,+∞).①当a ≥0时,f ′(x )>0,f (x )的单调递增区间为(0,+∞); ②当a <0时,f ′(x )=2(x +-a )(x --a )x .当x 变化时,f ′(x ),f (x )的变化情况如下:x (0,-a )-a (-a ,+∞)f ′(x ) -0 +f (x )极小值由上表可知,函数f (x )的单调递减区间是(0,-a ); 单调递增区间是(-a ,+∞).(3)由g (x )=2x +x 2+2a ln x 得g ′(x )=-2x 2+2x +2ax , 由已知函数g (x )为[1,2]上的单调减函数, 则-2x 2+2x +2ax ≤0在[1,2]上恒成立.即a≤1x-x2在[1,2]上恒成立.令h(x)=1x-x2,h′(x)=-1x2-2x=-(1x2+2x)<0,所以h(x)在[1,2]上为减函数,h(x)min=h(2)=-7 2,所以a≤-7 2.。

导数基础练习题

导数基础练习题

导数基础练习题1.与直线2x-y+4=的平行的抛物线y=x的切线方程是A。

2x-y+3=B。

2x-y-3=C。

2x-y+1=D。

2x-y-1=2.函数y=(x+1)(x-1)在x=1处的导数等于A。

1B。

2C。

33.过抛物线y=x上的点M(-π/4,11/4)的切线的倾斜角为A。

π/24B。

3π/42C。

3π/144.函数y=1+3x-x^2有()A。

极小值-1,极大值1 B。

极小值-2,极大值3 C。

极小值-2,极大值2 D。

极小值-1,极大值35.已知f(x)=x,则f'(3)等于A。

2B。

6C。

1D。

96.f(x)=的导数是A。

1B。

不存在C。

2x7.y=3x^2的导数是A。

3x^2B。

x^2/11C。

-2/3x^38.曲线y=x^n在x=2处的导数是12,则n等于A。

1B。

2C。

3D。

49.若f(x)=3x,则f'(1)等于A。

-3B。

3C。

1D。

610.y=x^2的斜率等于2的切线方程是A。

2x-y+1=B。

2x-y+1=或2x-y-1=C。

2x-y-1=D。

2x-y=11.在曲线y=x^2上的切线的倾斜角为π/4的点是A。

(0,0)B。

(2,4)C。

(11/24,11/16)D。

(11/16,11/24)12.已知f(x)=x-5+3sinx,则f'(x)等于A。

-5x-6-3cosxB。

x-6+3cosxC。

-5x-6+3cosxD。

x-6-3cosx13.函数y=cos^-2x的导数是A。

-2cosxsinxB。

sin2xcos^-4xC。

-2cos^2xD。

-2sin^2x14.设y=f(sinx)是可导函数,则y'等于A。

f'(sinx)B。

f'(sinx)cosxC。

f'(sinx)sinxD。

f'(cosx)cosx15.函数y=4(2-x+3x^2)的导数是A。

8(2-x+3x^2)B。

2(-1+6x)^2C。

高中数学导数练习题

高中数学导数练习题

高中数学导数练习题----c2430ac8-6ebe-11ec-8276-7cb59b590d7d专题8:导数(文)经典例子分析测试点1:推导公式。

例1f?(x)是f(x)吗?13x?2倍?1的导数,那么f?(?1)的值为。

32解析:F'?十、十、2,那么f′??1.1.2.答案:3考点二:导数的几何意义。

例2已知函数y?F(x)在m(1)点的像的切线方程是y?,f(1))1x?2,然后是2F(1)?F(1)?。

解析:因为k?11,所以f'?1??,由切线过点m(1,f(1)),可得点m的纵坐标为2255,所以f?1??,所以f?1??f'?1??322答案:3例3曲线y?十、2倍?4x?2点(1,±3)处的切线方程为。

解析:y'?3x?4x?4,?点(1,?3)处切线的斜率为k?3?4?4??5,所以设切232,? 3)引入切线方程得到B?2.3)直线方程是y??5倍?b、设定点(1)。

因此,曲线上点(1)处的切线方程为5x?Y2.0.答案:5x?Y2.0点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4已知曲线C:y?十、3倍?2X,直线L:y?直线L在点处与曲线C相切32?x0,y0?x0?0,求直线l的方程及切点坐标。

决议:?如果直线穿过原点,那么K?y0?x0?0分?x0,y0?在曲线C上,然后是x0y0?x0?3x0?2x0?32y02?x0?3x0?2.Y'?3x2?6x?2.在X02?x0,y0?处曲线c的切线斜率是k?f'?x0??3x0?6x0?2.222x0?3x0?0,已排序:解决方案:x0?x0?3x0?2.3x0?6x0?2.3或x0?02(舍),此时,y0??311,k??。

所以,直线l的方程为y??x,切点坐标是844?33??,??。

?28?答案:直线l的方程为y??1?33?x,切点坐标是?,??4?28?点评:本小题考查导数几何意义的应用。

导数概念练习题

导数概念练习题

导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。

导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。

下面是一些导数概念的练习题,帮助大家更好地理解这个概念。

已知函数f(x) = x^2 + 2x + 1,求f'(x)。

已知函数f(x) = sin(x),求f'(x)。

已知函数f(x) = log(x),求f'(x)。

已知函数f(x) = e^x,求f'(x)。

已知函数f(x) = x^n,求f'(x)。

已知函数f(x) = x/ln(x),求f'(x)。

解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。

已知函数f(x) = e^(arctan(x)),求f'(x)。

解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。

解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。

解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。

导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。

求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。

下面是一些求导数的练习题,供大家参考。

(1)θ=sinx,y=cosx。

(x)=3xx=0为函数的极值点。

随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。

导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。

因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。

函数求导练习题(含解析)

函数求导练习题(含解析)

一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。

导数基础练习

导数基础练习
3.若函数f(x)=sin2x,则f′( )的值为( )
A.
B.
0
C.
1
D.

考点:
简单复合函数的导数.
专题:
计算题.
分析:
先利用复合函数的导数运算法则求出f(x)的导函数,将x= 代入求出值.
解答:
解:f′(x)=cos2x(2x)′=2cos2x
所以f′( )=2cos =1
故选C.
点评:
求函数在某点处的导数值,应该先利用导数的运算法则及初等函数的导数公式求出导函数,在求导函数值.
4.函数f(x)=xsinx+cosx的导数是( )
A.
xcosx+sinx
B.
xcosx
C.
xcosx﹣sinx
D.
cosx﹣sinx
考点:
导数的乘法与除法法则;导数的加法与减法法则.
专题:
计算题.
分析:
利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.
解答:
解:∵f(x)=xsinx+cosx
解:∵函数 ,∴f′(x)=0.
故选C.
点评:
本题考查了常数的导数,只要理解常数c′=0即可解决此问题.
13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是( )
A.
4
B.
5
C.
6
D.
7
考点:
导数的几何意义.
专题:
计算题.
分析:
曲线y=x2+3x在点A(2,10)处的切线的斜率k就等于函数y=x2+3x在点A(2,10)处的导数值.
则函数的导数为y′= (x2+1) (x2+1)′= (x2+1) ×2x= ,

(完整)导数基础练习题

(完整)导数基础练习题

导数基础题 一1.与直线042=+-y x 的平行的抛物线2x y =的切线方程是 ( )A .032=+-y xB .032=--y xC .012=+-y xD .012=--y x2. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .43.过抛物线2x y =上的点M (41,21-)的切线的倾斜角为( )A .4πB .3πC .43πD .2π4.函数331x x y -+=有( )(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2(D )极小值-1,极大值31、已知()2f x x =,则()3f '等于( )A .0B .2xC .6D .9 2、()0f x =的导数是( )A .0B .1C .不存在D .不确定3、y = ) A .23xB .213x C .12- D4、曲线n y x =在2x =处的导数是12,则n 等于( )A .1B .2C .3D .45、若()f x =()1f '等于( )A .0B .13- C .3 D .136、2y x =的斜率等于2的切线方程是( ) A .210x y -+=B .210x y -+=或210x y --=C .210x y --=D .20x y -=7、在曲线2y x =上的切线的倾斜角为4π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫⎪⎝⎭D .11,24⎛⎫ ⎪⎝⎭ 8、已知()53sin f x x x -=+,则()f x '等于( )A .653cos x x ---B .63cos x x -+C .653cos x x --+D .63cos x x --9、函数2cos y x -=的导数是( ) A .2cos sin x x -B .4sin 2cos x x -C .22cos x -D .22sin x -10、设()sin y f x =是可导函数,则x y '等于( ) A .()sin f x ' B .()sin cos f x x '⋅ C .()sin sin f x x '⋅ D .()cos cos f x x '⋅ 11、函数()22423y x x =-+的导数是( )A .()2823x x -+B .()2216x -+C .()()282361x x x -+-D .()()242361x x x -+-12、22sin 35cos y x x =+的导数是( )A .22sin 35sin x x -B .2sin 610sin x x x -C .23sin 610sin x x x +D .23sin 610sin x x x - 13、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-14、已知a 为实数,()()()24f x x x a =--,且()10f '-=,则a =___________. 17、正弦曲线sin y x =上切线斜率等于12的点是___________.18、函数lg y x =在点()1,0处的切线方程是__________________________.导数练习题(B )1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值; (II)若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I)求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >;(II )讨论函数)(x g y =在区间),1(a e 上零点的个数.5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I)求实数a 的值;(II)求函数()f x 在]3,23[∈x 的最大值和最小值.7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I)当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值.8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I)求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立.9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I)讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围; (II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II)对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '.12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I)令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域; (II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题(B )答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f得 ⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分)(II )依题意 3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a 解得 6,1-==b a所以396)(23++-=x x x x f …………(8分)(III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点;2'()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点,故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=.(I)求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.解:(I))0()1()('>-=x xx a x f(2分) 当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a 当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II)32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m (12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II)若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;…………(4分)(II )由下表:依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III)对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα 在区间[—2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81,所以81|)sin 2()sin 2(|≤-βαf f .…………(14分)4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I)写出)(x f 的单调递增区间,并证明a e a >;(II)讨论函数)(x g y =在区间),1(a e 上零点的个数. 解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分)∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分)(II )xa x a x x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得22a x =,列表 x )22,0(a 22a ),22(+∞a )(x g ' - 0 + )(x g 单调递减 极小值 单调递增当22ax =时,函数)(x g y =取极小值)2ln 1(2)22(a a a g -=,无极大值. …………(6分)由(I)a e a >,∵⎪⎩⎪⎨⎧>>22aa e e aa ,∴22a e a>,∴22a e a > 01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a…………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii)当122>a,即2>a 时若0)2ln 1(2>-aa ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-aa ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-aa ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)a e 上,我们有结论:当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点;当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II)若函数()f x 没有零点,求实数k 的取值范围;解:(I )当1k =时,2()1xf x x -'=-)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分) ∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分) (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点,∴函数()f x 有零点,不合要求; ………………(8分)②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分) 令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k '∈++∞<时,∴1()(1,1)f x k +在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I)求实数a 的值;(II)求函数()f x 在]3,23[∈x 的最大值和最小值.解:(I )由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分) ∵2x =是函数()f x 的一个极值点,∴(2)0f '= ∴2(5)0a e +=,解得5a =- ……………(6分) (II)由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=- ∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4, 注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(。

导数练习题附答案

导数练习题附答案

一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知某函数的导数为y′=12(x-1),则这个函数可能是 ()A.y=ln1-x B.y=ln11-xC.y=ln(1-x) D.y=ln11-x2.(2009•江西)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为 ()A.4 B.-14 C.2 D.-123.(2009•辽宁)曲线y=xx-2在点(1,-1)处的切线方程为 ()A.y=x-2 B.y=-3x+2C.y=2x-3 D.y=-2x+14.曲线y=ex在点(2,e2)处的切线与坐标轴所围成三角形的面积为 ()A.94e2 B.2e2 C.e2 D.e225.已知函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()6.设y=8x2-lnx,则此函数在区间(0,14)和(12,1)内分别 ()A.单调递增,单调递减B.单调递增,单调递增C.单调递减,单调递增D.单调递减,单调递减7.下列关于函数f(x)=(2x-x2)ex的判断正确的是 ()①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值;③f(x)没有最小值,也没有最大值.A.①③ B.①②③C.② D.①②8.已知f(x)=-x3-x,x∈[m,n],且f(m)•f(n)<0,则方程f(x)=0在区间[m,n]上() A.至少有三个实根 B.至少有两个实根C.有且只有一个实根 D.无实根9.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是() A.-1<a<2 B.-3<a<6 C.a<-3或a>6 D.a<-1或a>210.要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,其高应为 ()A.2033cm B.100cm C.20cm D.203cm11.(2010•河南省实验中学)若函数f(x)=(2-m)xx2+m的图象如图所示,则m的范围为 ()A.(-∞,-1) B.(-1,2) C.(1,2) D.(0,2)12.定义在R上的函数f(x)满足f(4)=1.f′(x)为f(x)的导函数,已知函数y=f′(x)的图象如图所示.若两正数a,b满足f(2a+b)<1,则b+2a+2的取值范围是 ()A.(13,12) B.(-∞,12)∪(3,+∞)C.(12,3) D.(-∞,-3) 二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。

导数的经典练习题

导数的经典练习题

2.A.导数经典练习题及详解答案函数y=x+2cosx在[0 ,]上取得最大值时,x的值为2A. 0函数yB .-6xlnx的单调递减区间是(C.-3(e1, )B. ,e )C. (0,e 1) D. (e,)3.点P在曲线y x323上移动,设点围是( )A [0,—]2 C. [ - , n )4 B.D.D.-2P处切线倾斜角为a,则a的取值范3[0'2)U n)4 .已知函数y xf (x)的图象如右图所示(其中f '(x)是函数 f (x)的导函数),下面四个图象中y f (x)的图象大致是( )-12 \,Q1: 2 \L i-2A5.对于函数y-2 -1y2-2B42-2 -1 Q1■ -21112]L■Q2XD-2 -1C2x 1,下列结论中正确的是(A. y有极小值o,且o也是最小值B. y有最小值o,但o不是极小值c. y有极小值o,但o不是最小值 D .o既不是极小值,也不是最小值6 若0(2x 3x2)dx 0,则k=(以上都不对7.已知函数f (x)满足f (x) f( x),且当x (齐)时, f (x) x sin x,则( )A. f(1) f(2) f(3)B. f(2) f(3) f (1)c. f(3) f(2)f(1)D. f(3) f (1) f(2)8.设函数f(x) x m1 ax的导函数f(x) 2x 1,则数列f^}(n N*) 的前n 项和是 C ・U 9 .设 f(x)= —B n 1 l x 3+ax 2+5x+6在区间[1,3]上为单调函数,则实数a 的取值范围为3 A [- ,5,+ x B . (- x ,-3) C. (- x ,-3) U [ — , 5,+ 0 D .5 , 5]10 .函数f(x)在定义域R 内可导,若f(x)=f(2-x), 且当x € (- x,1)时, 1 (x-1) f (x) v 0,设 a=f(0),b= f( 丄)2= f(3), 则 2B . c v a vb A . a v b vc va C. c v bv a D. b v c11.曲线yx 在点(1,4)处的切线与坐标轴围成的三角形面积为 B. 29C.D.- 312.如图所示的是函数f(x)A.C . )2 38 3 13 .设f(x)是偶函数,若曲线 则该B. 4 3 D.㊇ 3曲线在(1, f (1))处的切线的斜率为 14.已知曲线 两点,则 15.函数y1 y -与y x 2交于点P ,过P 点的两条切线与x 轴分别交于A , B x△ ABP 的面积为 ;f (x)在定义域(3,3)内可导,其图 2峙》象如图,记y f (x)的导函数为y则不等式f /(x) 0的解集为f /(x),少16•若函数f(x)= 飞―(a>0)在[1 , +x )上的最大值为,则a 的值为x 2 a3三、解答题:解答应写出文字说明、证明过程或演算步骤 (本大题共6个大题, 共74分)。

高中数学专题练习《导数的四则运算法则》含详细解析

高中数学专题练习《导数的四则运算法则》含详细解析

5.2.2导数的四则运算法则基础过关练题组一导数的四则运算法则1.函数f(x)=x 2x+3的导数f'(x)=()A.x 2+6xx+3B.-2x(x+3)2C.x2+6x(x+3)2D.3x2+6x(x+3)22.函数y=x2cos x的导数为()A.y'=2xcos x-x2sin xB.y'=2xcos x+x2sin xC.y'=x2cos x-2xsin xD.y'=xcos x-x2sin x3.已知f(x)=x2+e x,则f'(0)=()A.0B.-4 C.-2 D.14.对于函数f(x)=e xx2+ln x-2kx,若f'(1)=1,则实数k等于()A.e2B.e3C.-e2D.-e35.(2020浙江宁波余姚中学高二下月考)设f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f'(x)=g'(x),则f(x)与g(x)满足() A.f(x)=g(x) B.f(x)=g(x)=0C.y=f(x)-g(x)为常数函数D.y=f(x)+g(x)为常数函数6.若函数f(x)=x 2e x,则f'(x)=.7.已知函数f(x),g(x)满足f(5)=5,f'(5)=3,g(5)=4,g'(5)=1,若h(x)=f(x)+2g(x),则h'(5)=.8.求下列函数的导数.(1)y=x-2+x2;(2)y=3x e x-2x+e;(3)y=lnxx2+1;(4)y=x2-4sin x2cos x2.题组二求导法则的综合应用9.已知函数f(x)=f'(1)+xln x,则f(e)=()A.1+eB.eC.2+eD.310.已知定义在R上的函数f(x)=e x+x2-x+sin x,则曲线y=f(x)在点(0,f(0))处的切线方程为()A.y=3x-2B.y=x+1C.y=2x-1D.y=-2x+311.(2020浙江嘉兴高三上期末)设曲线y=x+1x-2在点(1,-2)处的切线与直线ax+by+c=0(b≠0)垂直,则ab=()A.13B.-13C.3D.-312.(2020河北保定高二上期末)设曲线f(x)=ae x-ln x(a≠0)在x=1处的切线为l,则l在y轴上的截距为()A.1B.2C.aeD.ae-113.若质子的运动方程为s=tsin t,其中s的单位为m,t的单位为s,则质子在t=2s时的瞬时速度为m/s.14.曲线y=x3+3x2+6x-10的所有切线中,斜率最小的切线方程为.15.(2020江西南昌三中高二下期中)已知函数f(x)=x-2ln x,求曲线y=f(x)在点A(1,f(1))处的切线方程.能力提升练题组导数的四则运算法则及其应用1.()设函数f(x)=sinθ3x3+√3cosθ2x2+tanθ,其中θ∈[0,5π12],则导数f'(1)的取值范围是()A.[-2,2]B.[√2,√3]C.[√3,2]D.[√2,2]2.(2020湖南长沙长郡中学高二上期末,)下面四个图象中,有一个是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(-1)=()A.13B.-23C.73D.-13或533.(2019河北衡水中学高三二调,)已知f'(x)是函数f(x)的导函数,且对任意的实数x都有f'(x)=e x(2x-2)+f(x)(e是自然对数的底数),f(0)=1,则(易错)A.f(x)=e x(x+1)B.f(x)=e x(x-1)C.f(x)=e x(x+1)2D.f(x)=e x(x-1)24.()设函数f(x)=xsin x+cos x的图象在点(t,f(t))处切线的斜率为g(t),则函数y=g(t)图象的一部分可以是()5.(多选)()给出定义:若函数f(x)在D上可导,即f'(x)存在,且导函数f'(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f'(x))',若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,π)上不是凸函数的是()2A.f(x)=sin x-cos xB.f(x)=ln x-2xC.f(x)=-x3+2x-1D.f(x)=xe x6.()对于三次函数f(x)=ax3+bx2+cx+d(a≠0),现给出定义:设f'(x)是函数f(x)的导数,f″(x)是f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)=ax3+bx2+cx+d(a≠0)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=2x3-3x2+1,则g(1100)+g(2100)+…+g(99100)=.7.(2020湖南长沙长郡中学高二上期末,)已知函数f(x)=13x3-2x2+3x(x∈R)的图象为曲线C.(1)求曲线C上任意一点的切线的斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.8.()已知直线x+2y-4=0与抛物线y2=4x相交于A,B两点,O是坐标原点,试在抛物线的AOB⏜上求一点P,使△ABP的面积最大.9.()已知函数f(x)(x∈(0,+∞))的导函数为f'(x),且满足xf'(x)-2f(x)=x3e x,f(1)=e-1,求f(x)在点(2,f(2))处的切线方程.答案全解全析基础过关练1.C f'(x)=(x 2)'(x+3)−x2(x+3)′(x+3)2=2x(x+3)−x 2(x+3)2=2x2+6x-x2(x+3)2=x2+6x(x+3)2.故选C.2.A对函数y=x2cos x求导,得y'=2xcos x+x2·(-sin x)=2xcos x-x2sin x.故选A.3.D由题意,得f'(x)=2x+e x,则f'(0)=1,故选D.4.A因为f'(x)=e x(x-2)x3+1x+2kx2,所以f'(1)=-e+1+2k=1,解得k=e2,故选A.5.C取f(x)=x,g(x)=x+1,满足f'(x)=g'(x),可以验证A、B、D错误;由f'(x)=g'(x),得f'(x)-g'(x)=0,即[f(x)-g(x)]'=0,所以f(x)-g(x)=c(c为常数),C 正确.故选C.6.答案2x-x 2e x解析f'(x)=2xe x-x2e x(e x)2=2x-x2e x.7.答案516解析由题意得,h'(x)=f'(x)g(x)-[f(x)+2]g'(x)[g(x)]2,由f(5)=5,f'(5)=3,g(5)=4,g'(5)=1,得h'(5)=f'(5)g(5)-[f(5)+2]g'(5)[g(5)]2=3×4−(5+2)×142=516.8.解析(1)y'=2x-2x-3. (2)y'=(ln3+1)·(3e)x-2x ln2.(3)y'=x 2+1−2x 2lnx x(x 2+1)2.(4)∵y=x 2-4sin x2cos x 2=x 2-2sin x,∴y'=2x-2cos x.9.A ∵f'(x)=ln x+1,∴f'(1)=ln 1+1=1,则f(x)=1+xln x,∴f(e)=1+eln e=1+e.10.B ∵f'(x)=e x +2x-1+cos x,∴切线的斜率k=f'(0)=1,又f(0)=1,∴切线方程为y=x+1. 11.B 依题意得y'=x -2-(x+1)(x -2)2=-3(x -2)2,则y'x=1=-3,由于曲线y=x+1x -2在点(1,-2)处的切线与直线ax+by+c=0(b ≠0)垂直,所以(-3)·(-ab)=-1,解得a b=-13.故选B.12.A 因为函数f(x)=ae x -ln x(a ≠0), 所以f'(x)=ae x -1x ,将x=1代入,得k=ae-1,又f(1)=ae,所以曲线f(x)在x=1处的切线l 的方程为y-ae=(ae-1)(x-1), 整理得y=(ae-1)x+1,令x=0,得y=1. 所以l 在y 轴上的截距为1.故选A. 13.答案 sin 2+2cos 2解析 ∵s'=(tsin t)'=sin t+tcos t, ∴所求瞬时速度为(sin 2+2cos 2)m/s. 14.答案 3x-y-11=0解析 ∵y'=3x 2+6x+6=3(x 2+2x+2) =3(x+1)2+3≥3,∴当x=-1时,y'最小,即此时切线的斜率最小,此时切点为(-1,-14), ∴切线方程为y+14=3(x+1), 即3x-y-11=0.15.解析 ∵函数f(x)=x-2ln x 的导函数为f'(x)=1-2x ,∴曲线y=f(x)在点A(1,f(1))处的切线斜率为f'(1)=1-2=-1,又f(1)=1,∴曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.能力提升练1.D f'(x)=sin θ·x 2+√3cos θ·x, ∴f'(1)=sin θ+√3cos θ=2sin (θ+π3),∵θ∈[0,5π12],∴θ+π3∈[π3,3π4],∴sin (θ+π3)∈[√22,1],∴f'(1)=2sin (θ+π3)∈[√2,2].故选D.2.D 因为f'(x)=x 2+2ax+a 2-1,所以y=f'(x)的图象开口向上,排除②④.若y=f'(x)的图象为①,则a=0,f(-1)=53;若y=f'(x)的图象为③,则a 2-1=0,得a=±1.又对称轴x=-a>0,所以a=-1,所以f(-1)=-13.3.D 由f'(x)=e x (2x-2)+f(x), 得f'(x)-f(x)e x =2x-2,即[f(x)e x]'=2x-2,所以f(x)e x=x 2-2x+c(c 为常数),所以f(x)=(x 2-2x+c)e x , 又因为f(0)=1,所以c=1,所以函数f(x)的解析式是f(x)=e x (x-1)2.故选D.易错警示 已知原函数可求出唯一的导函数,已知导数求原函数,则结论不唯一,如本题中由y'=2x-2可以得到y=x 2-2x+c(c 为常数),解题时容易将c 遗漏导致解题错误. 4.A 由f(x)=xsin x+cos x,可得f'(x)=sin x+xcos x-sin x=xcos x. 则g(t)=f'(t)=tcos t,易知函数g(t)是奇函数,排除选项B,D; 当t ∈(0,π2)时,g(t)>0,排除选项C.故选A.5.AD 对于A,f'(x)=cos x+sin x, f″(x)=-sin x+cos x,当x ∈(0,π4)时,f″(x)>0,故f(x)=sin x-cos x 不是凸函数;对于B,f'(x)=1x-2,f″(x)=-1x2<0,故f(x)=ln x-2x 是凸函数; 对于C,f'(x)=-3x 2+2,f″(x)=-6x,当x ∈(0,π2)时,f″(x)<0,故f(x)=-x 3+2x-1是凸函数;对于D,f'(x)=(x+1)e x ,f″(x)=(x+2)e x ,当x ∈(0,π2)时,f″(x)>0,故f(x)=xe x 不是凸函数.故选AD.6.答案992解析 依题意得,g'(x)=6x 2-6x,g″(x)=12x -6,令g″(x)=0,解得x=12, ∵g (12)=12,∴函数g(x)的对称中心为(12,12),则g(1-x)+g(x)=1,∵1100+99100=2100+98100=…=49100+51100=1,∴g (1100)+g (99100)=g (2100)+g (98100)=…=g (49100)+g (51100)=1,∴g (1100)+g (2100)+…+g (99100) =[g (1100)+g (99100)]+[g (2100)+g (98100)] +…+[g (49100)+g (51100)]+g (12) =49+12=992.7.解析 (1)由题意得f'(x)=x 2-4x+3,则f'(x)=(x-2)2-1≥-1,即曲线C 上任意一点的切线的斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k,则由条件和(1)中结论可知, {k ≥−1,-1k ≥−1,解得-1≤k<0或k ≥1,故由-1≤x 2-4x+3<0或x 2-4x+3≥1,得x ∈(-∞,2-√2]∪(1,3)∪[2+√2,+∞).8.解析 因为|AB|为定值,所以要使△PAB 的面积最大,只要点P 到AB 的距离最大即可,即点P 是抛物线的切线中平行于AB 的切线的切点,设P(x,y).由题图知,点P 在x 轴下方的图象上,所以y=-2√x ,所以y'=-√x . 因为k AB =-12,所以-√x =-12,解得x=4.由y=-2√x ,得y=-4, 所以点P 的坐标为(4,-4).9.解析 ∵xf'(x)-2f(x)=x 3e x ,x ∈(0,+∞),∴xf'(x)-2f(x)x 3=e x . 令g(x)=f(x)x 2,则g'(x)=xf'(x)-2f(x)x 3=e x , ∴g(x)=f(x)x 2=e x +c(c 为常数),∴f(x)=x 2(e x +c).又f(1)=e+c=e-1,∴c=-1.∴f(x)=x 2(e x -1),∴f'(x)=2x(e x -1)+x 2e x =(x 2+2x)e x -2x,∴f'(2)=8e 2-4.又f(2)=4(e 2-1),∴所求切线方程为y-4(e 2-1)=(8e 2-4)·(x-2),即y=(8e 2-4)x-12e 2+4.。

《导数与极值》基础练习题

《导数与极值》基础练习题

《导数与极值》基础练习题一、单选题 1.已知3()x xf x e=,则()f x ( ) A .在(,)-∞+∞上单调递增 B .在(,1)-∞上单调递减 C .有极大值3e ,无极小值 D .有极小值3e,无极大值 2.已知函数()f x 的导函数()'f x 的图像如下,若()f x 在0x x =处有极值,则0x 的值为( )A .3-B .0C .3D .73.已知函数()y f x =的导函数()y f x '=的图象如图所示,则函数()y f x =在区间(),a b 内的极小值点的个数为( ) A .1 B .2 C .3 D .4 4.若函数1()sin sin 33f x a x x =+在3x π=处有最大(小)值,则a 等于( ) A .2B .1C .233D .05.如图是函数()y f x =的导函数()y f x ='的图象,则函数()y f x =的极小值点的个数为( )A .0B .1C .2D .36.关于x 的函数32()33f x x x x a =++-的极值点的个数有( )A .2个B .1个C .0个D .由a 确定7.函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤8.已知函数()ln f x x ax =-在2x =处取得极值,则a =( )A .1B .2C .12D .-29.已知a 为函数3()27f x x x =-的极小值点,则a =( )A .3B .-2C .4D .210.函数()()x f x x x e 2=-3+1的极大值为()A .2e -B .15e -C .3254e -D .2e -11.函数()sin xf x ae x =-在0x =处有极值,则a 的值为( )A .1-B .0C .1D .e12.函数()ln f x kx x =-的极值点为2x =,则k 的值为( )A .2B .1C .12D .12-13.已知1x =是2()(3)23xf x x a x a e ⎡⎤=-+++⎣⎦的极小值点,则实数a 的取值范围是( )A .(1,)+∞B .(1,)-+∞C .(,1)-∞-D .(,1)-∞14.函数()[]2cos 0,f x x x π=+在上的极小值点为( )A .0B .6πC .56π D .π15.设()21cos 2=+f x x x ,则函数()f x ( ) A .有且仅有一个极小值 B .有且仅有一个极大值 C .有无数个极值 D .没有极值 16.已知函数()31f x ax bx =++的图象在点()1,1a b ++处的切线斜率为6,且函数()f x 在2x =处取得极值,则a b +=( ) A .263-B .7C .223D .26317.若1x =是函数3221()(1)(33)3f x x a x a a x =++-+-的极值点,则a 的值为( ) A .-3B .2C .-2或3D .–3或218.已知是函数2x =就函数3()32f x x ax =-+的极小值点,那么函数()f x 的极大值为( )A .-2B .6C .17D .18二、多选题19.函数()f x 的定义域为R ,它的导函数()y f x '=的部分图象如图所示,则下面结论正确的是( )A .在()1,2上函数()f x 为增函数B .在()3,5上函数()f x 为增函数C .在()1,3上函数()f x 有极大值D .3x =是函数()f x 在区间[]1,5上的极小值点20.已知函数39,0(),0x x x f x xe x ⎧-≥=⎨<⎩,若()f x 的零点为α,极值点为β,则( )A .=0αB .+=1αβC .()f x 的极小值为1e --D .()f x 有最大值 三、填空题21.函数2sin y x x =-在()0,π上的极值点为______. 22.函数()ln f x x x =的极值点是x =__________.23.函数()f x 的定义域为开区间(),a b ,导函数()f x 在(),a b 内的图象如图所示,则函数()f x 在开区间(),a b 内有极小值点___________个.24.已知函数()ln f x x x =,则()y f x =的极小值为______. 25.若函数32()4f x x ax =-+-在2x =处取得极值,则a =________. 26.若x =2是f (x )=ax 3-3x 的一个极值点,则a =________. 27.函数()ln f x x x =-的极大值是______.28.已知a 为函数()212f x x x =-的极小值点,则a =______ .29.已知函数()2()e xf x x ax =+的一个极值点为1,则曲线()y f x =在点(0,(0))f 处的切线方程为______.30.函数f (x )=x 3+ax 2+(a +6)x +1有极值,则a 的取值范围是_____.31.设函数()2xf x e x ax =+-,若0x =是()f x 的极值点,则曲线()y f x =在点()()1,1f 处的切线的斜率为_______.32.已知函数()xf x e ax =+在1x =处取得极小值,则实数a =__________.33.设x =-2与x =4是函数f(x)=x 3+ax 2+bx 的两个极值点,则常数a -b 的值为________. 34.已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m +n =________. 35.若函数f (x )=a sin x +cos x 在x 3π=处有极值,则实数a 等于________.四、双空题 36.若函数2'1()(2)ln 2f x x f x ⋅=+,则()f x 的极大值点为_______,极大值为_________.五、解答题37.函数()ln 1f x x x ax =-+在点(1,(1))A f 处的切线斜率为2-.(1)求实数a 的值;(2)求()f x 的单调区间和极值.38.已知函数()()3223168f x x a x ax =-+++,其中a R ∈,已知()f x 在3x =处取得极值.(1)求()f x 的解析式;(2)求()f x 在点()()1,1A f 处切线的方程.39.已知函数3()31f x x x =-+.(1)求()f x 的单调区间; (2)求函数的极值;(要列表).40.已知函数()ln(1)f x x =+与函数2()g x x ax b =++在0x =处有公共的切线.(1)求实数a ,b 的值;(2)记()()()F x f x g x =-,求()F x 的极值.《导数与极值》参考答案1.C 【解析】由题意3(1)()xx f x e-'=,当1x <时,()0f x '>,()f x 递增,1x >时,()0f x '<,()f x 递减,(1)f 是函数的极大值,也是最大值3(1)f e=,函数无极小值.故选:C .2.B 【解析】由()'f x 知,0x =时,(0)0f '=,30x -<<时,()0f x '>,03x <<时,()0f x '<,0是极值点.虽然有(7)0f '=,但在7的两侧,()0f x '<,7不是极值点.故选:B .3.A 【解析】由图象,设()'f x 与x 轴的两个交点横坐标分别为c 、d 其中c d <,知在(,)c -∞,(),d +∞上()0f x '≥,所以此时函数()f x 在(,)c -∞,(,)d +∞上单调递增,在(,)c d 上,()0f x '<,此时()f x 在(,)c d 上单调递减,所以x c =时,函数取得极大值,x d=时,函数取得极小值.则函数()y f x =的极小值点的个数为1.故选: A4.A 【解析】∵()f x 在3x π=处有最大(小)值,∴3x π=是函数()f x 的极值点.又∵()cos cos3()f x a x x x R =+∈',∴cos cos 033f a πππ'⎛⎫=+=⎪⎝⎭,解得2a =.故选:A 5.B 【解析】由图象,设()f x '与x 轴的两个交点横坐标分别为a 、b 其中a b <,知在(,)a -∞,(,)b +∞上()0f x '>,所以此时函数()f x 在(,)a -∞,(,)b +∞上单调递增,在(,)a b 上,()0f x '<,此时()f x 在(,)a b 上单调递减,所以x a =时,函数取得极大值,x b=时,函数取得极小值.则函数()y f x =的极小值点的个数为1.故选: B6.C 【解析】因为,32()33f x x x x a =++-,所以,令2'()3630f x x x =++=,得,2(1)0x +=,在x=-1附近,导函数值不变号,所以,关于x 的函数32()33f x x x x a =++-的极值点的个数为0,选C .7.C 【解析】因为2()31f x ax '=+,所以221()31030f x ax a x =+=⇒=-<',即0a <,故选C . 8.C 【解析】()'1f x a x =-,依题意()'20f =,即110,22a a -==.此时()()'112022x f x x x x-=-=>,所以()f x 在区间()0,2上递增,在区间()2,+∞上递减,所以()f x 在2x =处取得极大值,符合题意.所以12a =.故选:C 9.A 【解析】3'22()27()3273(9)03f x x x f x x x x =-⇒=-=-=⇒=±.当3x >时,'()0f x >,因此函数单调递增,当33x -<<时,'()0f x <,因此函数单调递减,当3x <-时,'()0f x >,因此函数单调递增,所以3x =是函数的极小值点,故3a =.故选:A 10.B 【解析】依题意()()'22x fx x x e =--()()21x x x e =-+,故函数在()(),1,2,-∞-+∞上递增,在()1,2-上递减,所以函数在1x =-处取得极大值为()115f e --=.故选B. 11.C 【解析】由题意得:()cos xf x ae x '=-.()f x 在0x =处有极值,()0cos010f a a '∴=-=-=,解得:1a =经检验满足题意,本题正确选项:C12.C 【解析】因为()ln f x kx x =-,所以()´1fx k x=-;又()ln f x kx x =-的极值点为2x =,所以()´20f=,即12k =.故选C 13.D 【解析】依题意()()()1xf x x a x e '=--,零点为121,x x a ==,要1x =是函数的极小值点,则必须1a <,此时函数在(),1a 上递减,在()1,+∞上递增,在1x =处取得极小值.故本题选D. 14.C 【解析】y′=1﹣2sinx =0,得x π6=或x 5π6=,故y =x+2cosx 在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数.∴x 5π6=是函数的极小值点,故选:C . 15.A 【解析】()sin f x x x '=-,()1cos 0f x x ''=-≥,∴()f x '单调递增且()00f '=,∴当0x <时,()0f x '<,函数()f x 单调递减,当0x >时,()0f x '>,函数()f x 单调递增,故()f x 有唯一的极小值点.故选:A. 16.C 【解析】由题可知:()'23fx ax b =+,则36,120,a b a b +=⎧⎨+=⎩解得23a =-,8b =.经检验,当23a =-,8b =时,()f x 在2x =处取得极大值,所以223a b +=.故选:C 17.D 【解析】由题意,知:22()2(1)(33)f x x a x a a '=++-+-且()01f '=,∴260+-=a a ,解得:3a =-或2a =.当3a =-时,2()43(1)(3)f x x x x x '=-+=--,即在1x =的左侧(0)30f '=>,右侧(2)10f '=-<,所以1x =是极值点,而非拐点;当2a =时,2()67(1)(7)f x x x x x '=+-=-+,即在1x =的左侧(0)70f '=-<,右侧(2)90f '=>,所以1x =是极值点,而非拐点;故选:D18.D 【解析】函数3()32f x x ax =-+的导数()233f x x a '=-, 由题意得,()20f '=,即1230a -=,4a =. ()3122f x x x =-+,()()()2312322f x x x x '=-=-+,令()0f x '>,得2x >或2x <-;()0f x <′,得22x -<<, 所以当时2x =-取极大值,即()()8242218f x f -=-=++=极大值. 故选:D .19.AC 【解析】由图象可知()f x 在区间()1,2和()4,5上()'0fx >,()f x 递增;在区间()2,4上()'0f x <,()f x 递减.所以A 选项正确,B 选项错误.在区间()1,3上,()f x 有极大值为()2f ,C 选项正确.在区间[]1,5上,4x =是()f x 的极小值点,D 选项错误.故选:AC20.BC 【解析】当0x <时,()0x f x xe =<,此时函数无零点,当0x ≥时,()39x f x =-,函数的零点为2,所以2α=,当0x <时,()(1)x x xf x e xe e x ='=++,由()0f x '<得1x <-,由()0f x '>,得10x -<<,所以函数在1x =-处取得极小值,极小值点为1-,极小值为1(1)f e --=-,当0x ≥时,()39x f x =-为递增函数,此时()f x 无极值,也无最大值,所以1β=-,所以2(1)1αβ+=+-=,故选:BC21.3π【解析】∵'12cos y x =-,∴当03x π<<时,'0y <;当3x ππ<<时,'0y >.故极值点为3π. 22.1e 【解析】令()'ln 10f x x =+=,解得1e x =.则函数()ln f x x x =的极值点是1ex =, 23.1【解析】从导函数的图象上可得导数的零点有4个,其中满足零点左侧附近导数小于零且右侧附近导数大于零的零点有1个,24.1e-【解析】因为()ln f x x x =,所以()ln 1f x x '=+,由()0f x '>得1x e>;由()0f x '<得10x e <<;所以函数()ln f x x x =在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()y f x =的极小值为1111ln f e e e e⎛⎫==- ⎪⎝⎭.25.3【解析】由题意,得2()32f x x ax '=-+,因为2x =是函数()f x 的极值点,可得()20f '=,所以34220a -⨯+⨯=,解得3a =.26.14【解析】因为3()3f x ax x =-,所以2()33f x ax '=-,因为x =2是f (x )=ax 3-3x 的一个极值点,所以(2)1230f a '=-=,故14a =,经验证当14a =时,2x =是()f x 的一个极值点.所以14a =.27.-1【解析】()f x 的定义域为(0,)+∞,∵()ln f x x x =-,∴()1'1f x x=-,令()'0f x =,解得1x =,当01x <<时,()'0f x >;当1x >时,()'0f x <,()f x ∴递增区间是(0,1),递减区间是(1,)+∞,故()f x 在1x =处取得极大值,极大值为()1ln111f =-=-.28.6【解析】由()212f x x x =-有()()221226f x x x '=-=-.令()0f x '>,得6x >,则()f x 在()6+,∞上单调递增.令()0f x '<,得6x <,则()f x 在()6,-∞上单调递减.所以()f x 在6x =处取得极小值,所以6a =29.320x y +=【解析】2()(2)e x x x a a f x ⎡⎤=+++⎣⎦',由()01f '=,有32a =-,又切点为(0,0),3(0)2f '=-,则切线方程为32y x =-,320x y +=.30.{a |a <﹣3或a >6}【解析】函数32()(6)1f x x ax a x ++++=有极值,则2()3260f x x ax a '=+++=有两个不相等的实数解,22412(6)4(318)0a a a a ∆=-+=-->,3a ∴<-或6a >.31.1e +【解析】由已知()2xf x e x a '=+-,所以()010f a '=-=,得1a =,所以()1211f e e '=+-=+,32.e -【解析】因为()xf x e ax =+,所以()´x fx e a =+,又函数()xf x eax =+在1x =处取得极小值,所以()´1e 0fa =+=,故a e =-.33.21【解析】因为()32f x x ax bx =++,所以()2'32f x x ax b =++£®因为2x =-与4x =是函数,()32f x x ax bx =++的两个极值点,可得()()2124044880f a b f a b ⎧-=-+=⎪⎨=++=''⎪⎩,解得3a =-,24b =-,所以21a b -=£® 34.11【解析】()()3222336f x x mx nx m f x x mx n =+++∴'=++, 依题意可得()()210130 10360f m n m f m n ⎧-⎧-+-+⎪⇒⎨⎨'--+⎪⎩⎩====,联立可得29m n =⎧⎨=⎩或1?3m n =⎧⎨=⎩;当1,3m n ==时函数()32331f x x x x =+++,()()22363310f x x x x '=++=+≥,所以函数()f x 在R 上单调递增,故函数()f x 无极值,所以1,3m n ==舍去;所以2,9m n ==,所以+11m n =. 35解析】由函数f (x )=asinx +cosx ,则f ′(x )=acosx ﹣sinx ,由函数f (x )在x 3π=处有极值,则'()03f π=,即acos3π-sin 3π=0,故a =36()1ln 212-【解析】2'''11()(2)ln ()(2)2f x x f x f x x f x=+⇒⋅=⋅+,因此有 '''11(2)2(2)(2)22f f f =⋅+⇒=-,所以2'111()ln ,()42f x x x f x x x=-+=-+2'112()22x f x x x x -+=-+==,因为0x >,所以当x >,函数()f x 单调递减,当02x时, 函数()f x 单调递增,因此()f x,极大值为11(ln 21)22f =-+=-.37.【解析】(1)函数()ln 1f x x x ax =-+的导数为()ln 1f x x a '=+-,在点(1,(1))A f 处的切线斜率为12k a =-=,(1)2f '∴=-,即12a -=-,3a ∴=;(2)由(1)得,()ln 2,(0,)f x x x '=-∈+∞, 令()0f x '>,得2x e >,令()0f x '<,得20x e <<,即()f x 的增区间为()2,e +∞,减区间为()20,e .在2x e =处取得极小值21e -,无极大值. 38.【解析】(1)()()3223168,f x x a x ax =-+++()()()()2661661f x x a x a x a x ∴=-++=--'而()f x 在3x =处取得极值,故()'30f=,得3a =,经检验,当3a =时,()f x 在3x =处取得极值. 所以()32212188f x x x x =-++.(2)由(1)得,()()()631f x x x -'=-所以,切线的斜率()10k f '==,而()116f =,所以切线的方程为160y -=. 39.【解析】(1)3()31=-+f x x x ,/2()333(1)(1)∴=-=-+f x x x x ,设'()0f x =可得1x =或1x =-. ①当/()0f x >时,1x >或1x <-; ②当/()0f x <时,11x -<<,所以()f x 的单调增区间为()(),1,1,-∞-+∞,单调减区间为:()1,1-.(2)由(1)可得,当x 变化时,/()f x ,()f x 的变化情况如下表:当1x =-时,()f x 有极大值,并且极大值为(1)3f -= 当1x =时,()f x 有极小值,并且极小值为(1)1f =-. 40.【解析】(1)()11f x x '=+,()2g x x a '=+, 由题意得()()00f g '=',()()00f g =,解得1a =,0b =. (2)()()()()2ln 1F x f x g x x x x =-=+--,()()23121(1)11x x F x x x x x -+=--=>-++', ()F x ',()F x 的变化情况如下表:x()1,0-()0,∞+()F x ' +-()F x极大值由表可知,()F x 的极大值为()00F =,无极小值.。

高三文科数学基础题(导数、切线方程)

高三文科数学基础题(导数、切线方程)

文科导数、切线方程练习一、选择题1.函数()22)(x x f π=的导数是( ) A.x x f π4)(=' B.x x f 24)(π=' C. x x f 28)(π=' D. x x f π16)(=' 2.曲线2313-=x y 在点)37,1(--处的切线的倾斜角为( ) A . 30o B . 45o C . 135o D . -45o3. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( )A.1B.2C.-1D. 0 4.曲线3()2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( )A. (1,0)B. (2,8)C. (1,0)和(1,4)--D. (2,8)和(1,4)--5.曲线223y x x =-+在点(1,2)处的切线方程为( )A .31y x =-B .35y x =-+C .35y x =+D .2y x =6.曲线x y e =在点A (0,1)处的切线斜率为( )A .1B .2C .eD .1e 7.曲线2y 21x x =-+在点(1,0)处的切线方程为( )A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+8.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则A .1,1a b ==B . 1,1a b =-=C .1,1a b ==-D . 1,1a b =-=-9.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=10.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294e B.22e C.2e D.22e 二、填空题 11.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________.12.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________13.若()sin cos f x x α=-,则'()f α等于_______________14.若23ln 4x y x =-的一条切线垂直于直线20x y m +-=,则切点坐标为 三、解答题:13.已知a ∈R,函数f(x)=2x 3-3(a +1)x 2+6a x 若a =1,求曲线y=f(x)在点(2,f(2))处的切线方程;14.已知函数1()ln 1()a f x x ax a R x-=-+-∈)当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;15.已知函数f (x )=3231()2ax x x R -+∈,其中a >0. 若a =1,求曲线y=f (x )在 点(2,f (2))处的切线方程;16. 已知函数f (x )=3213x x ax b -++的图像在点P (0,f(0))处的切线方程为y=3x-2. 求实数a , b 的值;17. 已知函数32()23 3.f x x x =-+求曲线()y f x =在点2x =处的切线方程;18.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。

2024届新高考数学复习:专项(导数的概念及运算)历年好题练习(附答案)

2024届新高考数学复习:专项(导数的概念及运算)历年好题练习(附答案)

2024届新高考数学复习:专项(导数的概念及运算)历年好题练习[基础巩固]一、选择题1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( )A .2B .0C .-2D .-42.已知函数f (x )=g (x )+2x 且曲线y =g (x )在x =1处的切线方程为y =2x +1,则曲线y =f (x )在x =1处的切线的斜率为( )A .2B .4C .6D .83.已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-14.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)ꞏ(x -a 2)ꞏ…ꞏ(x -a 8),则f ′(0)=( )A .26B .29C .212D .2155.设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x6.已知曲线y =x 24 -3ln x 的一条切线的斜率为-12 ,则切点的横坐标为( )A .3B .2C .1D .127.f ′(x )是f (x )=sin x +a cos x 的导函数,且f ′⎝⎛⎭⎫π4 =2 ,则实数a 的值为( ) A .23 B .12C .34D .18.已知曲线y =x +ln x 在点(1,1)处的切线与二次曲线y =ax 2+(a +2)x +1相切,则a 等于( )A .-2B .0C .1D .89.函数f (x )的定义域为R ,f (-1)=2,对于任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)二、填空题10.已知物体运动的位移s与时间t之间的函数关系式为s=12t3-t,则当t=2时,该物体的瞬时速度为________.11.已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为________.12.若曲线y=e-x在点P处的切线与直线2x+y+1=0平行,则点P的坐标是________.[强化练习]13.函数f(x)=x4-2x3的图象在点(1,f(1))处的切线方程为()A.y=-2x-1 B.y=-2x+1C.y=2x-3 D.y=2x+114.(多选)已知函数f(x)=-x3+2x2-x,若过点P(1,t)可作曲线y=f(x)的三条切线,则t的取值可以是()A.0 B.1 27C.128D.12915.已知e是自然对数的底数,函数f(x)=(x-1)e x+3e的图象在点(1,f(1))处的切线为l,则直线l的横截距为________.16.[2022ꞏ新高考Ⅰ卷]若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是________.参考答案1.D ∵f (x )=2xf ′(1)+x 2,∴f ′(x )=2f ′(1)+2x ,∴f ′(1)=2f ′(1)+2,∴f ′(1)=-2,∴f (x )=-4x +x 2,∴f ′(x )=-4+2x ,∴f ′(0)=-4.2.B ∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=2.∵函数f (x )=g (x )+2x ,∴f ′(x )=g ′(x )+2=g ′(1)+2,∴f ′(1)=2+2=4,即曲线y =f (x )在x =1处的切线的斜率为4.故选B.3.D 因为y ′=a e x +ln x +1,所以当x =1时,y ′=a e +1,所以曲线在点(1,a e)处的切线方程为y -a e =(a e +1)(x -1),即y =(a e +1)x -1,所以⎩⎪⎨⎪⎧a e +1=2,b =-1, 解得⎩⎪⎨⎪⎧a =e -1b =-1. 4.C ∵函数f (x )=x (x -a 1)(x -a 2)ꞏ…ꞏ(x -a 8),∴f ′(x )=(x -a 1)(x -a 2)ꞏ…ꞏ(x -a 8)+x [(x -a 1)(x -a 2)ꞏ…ꞏ(x -a 8)]′,∴f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.5.D ∵f (x )=x 3+(a -1)x 2+ax 为奇函数,∴a -1=0,得a =1,∴f (x )=x 3+x ,∴f ′(x )=3x 2+1,∴f ′(0)=1,则曲线y =f (x )在点(0,0)处的切线方程为y =x ,故选D.6.B 令y ′=2x 4 -3x =-12 ,解得x =-3(舍去)或x =2.故切点的横坐标为2,故选B.7.B ∵f ′(x )=cos x -a sin x ,∴f ′⎝⎛⎭⎫π4 =22 -22 a =24 ,得a =12 . 8.D 由y =x +ln x ,得y ′=1+1x ,∴当x =1时,y ′=2,∴切线方程为y -1=2(x -1),即y =2x -1,由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,得ax 2+ax +2=0,由题意得⎩⎪⎨⎪⎧a ≠0,Δ=a 2-8a =0, 得a =8. 9.B 设g (x )=f (x )-2x -4,g ′(x )=f ′(x )-2,由题意得g ′(x )>0恒成立,∴g (x )在(-∞,+∞)上单调递增,又g (-1)=f (-1)-2×(-1)-4=0,又f (x )>2x +4等价于g (x )>0,∴原不等式的解为x >-1.10.5答案解析:由题知s ′=32 t 2-1,故当t =2时,该物体的瞬时速度为32 ×22-1=5.11.e答案解析:f ′(x )=e x ꞏln x +e x x ,∴f ′(1)=e.12.(-ln 2,2)答案解析:∵y =e -x ,∴y ′=-e -x ,设P (x 0,y 0),由题意得-e -x 0=-2,∴e -x 0=2,∴-x 0=ln 2,x 0=-ln 2,∴P (-ln 2,2).13.B f ′(x )=4x 3-6x 2,则f ′(1)=-2,易知f (1)=-1,由点斜式可得函数f (x )的图象在(1,f (1))处的切线方程为y -(-1)=-2(x -1),即y =-2x +1.故选B.14.CD ∵f (x )=-x 3+2x 2-x ,∴f ′(x )=-3x 2+4x -1.由已知得,过点P (1,t )作曲线y =f (x )的三条切线,情况如下:①点P (1,t )在曲线上,此时切点为P (1,t ),把P 点坐标代入函数答案解析式可得P (1,0),利用切线公式得y =f ′(1)(x -1),所以切线为x 轴,但此时切线只有一条,不符合题意.②点P (1,t )不在曲线上,设切点为(x 0,y 0),又切线经过点P (1,t ),所以切线方程为y -t =f ′(x 0)(x -1). 因为切线经过切点,所以y 0-t =(-3x 20 +4x 0-1)(x 0-1).又因为切点在曲线上,所以y 0=-x 30 +2x 20 -x 0.联立方程得化简得t =2x 30 -5x 20 +4x 0-1. 令g (x )=2x 3-5x 2+4x -1,即t =g (x )有三个解,即直线y =t 与y =g (x )的图象有三个交点.令g ′(x )=6x 2-10x +4=2(x -1)(3x -2)=0,可得两极值点为x 1=1,x 2=23 .所以x ∈⎝⎛⎭⎫-∞,23 和(1,+∞)时,g (x )单调递增,x ∈⎝⎛⎭⎫23,1 时,g (x )单调递减, 所以当g (1)=0<t <127 =g ⎝⎛⎭⎫23 时,满足直线y =t 与y =g (x )的图象有三个交点,而0<129 <128 <127 ,故选CD.15.-2答案解析:因为f ′(x )=e x +(x -1)e x =x e x ,所以切线l 的斜率为f ′(1)=e ,由f (1)=3e 知切点坐标为(1,3e),所以切线l 的方程为y -3e =e(x -1).令y =0,解得x =-2,故直线l 的横截距为-2.16.(-∞,-4)∪(0,+∞)答案解析:设切线的切点坐标为(x 0,y 0).令f (x )=(x +a )e x ,则f ′(x )=(x +1+a )e x ,f ′(x 0)=(x 0+1+a )e x 0.因为y 0=(x 0+a )e x 0,切线过原点,所以f ′(x 0)=y 0x 0,即(x 0+1+a )ꞏe x 0=(x 0+a )e x 0x 0.整理,得x 20 +ax 0-a =0.由题意知该方程有两个不同的实数根,所以Δ=a 2+4a >0,解得a <-4或a >0.。

求导数例题

求导数例题

求导数例题
求导数是高中数学学习中的一个重要部分,它给学生提供了开展数学研究和解决实际问题的方法。

这里将介绍几个求导数的例题,帮助学生更好地掌握求导数的技巧。

例题1:设函数f(x) = x2+2x,求f(x)的值
解:我们已知f(x) = x2+2x,用一阶导数的定义求出f(x) = 2x+2,所以f(x)的值为2x+2。

例题2:设函数f(x) = x3+3x2-2x,求f(x)的值
解:答案是f(x) = 3x2+6x-2。

例题3:设函数f(x) = sin x,求f(x)的值
解:f(x) = cos x,所以f(x)的值为cos x。

以上三个例题均是计算求导数的基本例题,它们可以帮助学生更好地了解求导数的概念和方法。

计算求导数的过程基本一致,其中重要的步骤是使用一阶微分定义和求值,熟悉这一基本步骤后,学生可以对更复杂的求导问题也能有效求出求导数的值。

除了掌握计算求导数的基本步骤,学生还需要学习求导数的相关知识,如函数的定义、利用泰勒级数计算求导数等,这些内容都是学习求导数的基础。

在学习求导数的时候,学生还需要不断的练习,并积极查找更复杂的求导数例题,通过多次练习,学生可以更好地掌握求导数的基本技能。

此外,学生还可以尝试解决求导数的应用题,例如使用求导数来分析函数的波峰、波谷点以及函数的单调性等。

求导数的学习涉及到较为抽象的概念,因此在学习的过程中,学生可以寻求老师或者辅导老师的帮助,以便更好地理解和掌握求导数的知识点。

总之,求导数是高中数学学习中一个重要的知识点,学习者需要不断练习,并积极查找不同类型的求导数例题,了解求导数相关的基础知识,同时也可以咨询老师以及辅导老师,从而掌握求导数的基本技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数基础练习题20170305
一、选择题
1.曲线y =2x 2−x 在点(0,0)处的切线方程为( )
A. x +y +2=0
B. x −y +2=0
C. x −y =0
D. x +y =0 2.“a ≤0”是“函数f(x)=ax +lnx 存在极值”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件 3.设曲线2
y x =上任一点(,)x y 处的切线的斜率为()g x ,则函数()()cos h x g x x =的部分图像可以为( )
4.已知函数f(x)=(e
x−1
−1)(x −1),则( )
A. 当x <0,有极大值为2−4e
B. 当x <0,有极小值为2−4e
C. 当x >0,有极大值为0
D. 当x >0,有极小值为0
5.已知函数()f x 是奇函数,当0x <时,()()ln 2f x x x x =-++,则曲线()y f x =在1x =处的切线方程为( )
A .23y x =+
B .23y x =-
C .23y x =-+
D .23y x =-- 6.如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能是( )
7.已知()f x 是定义在()0,+∞上的函数,()()f x f x '是的导函数,且总有
()()f x xf x '>,则不等式()()1f x xf >的解集为
A. (),0-∞
B. ()0,1
C. ()0,+∞
D.(1,+∞)
8.已知函数()f x 是偶函数,当0x >时,()()21ln f x x x =-,则曲线()y f x =在点()()
1,1f --处的切线的斜率为( )
A.2-
B.1-
C.1
D.2 9.在下面的四个图象中,其中一个图象是函f (x )=
13
x 3+ax 2+(a 2
-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( ).
A
二、填空题
10.定义在R 上的偶函数f(x)满足:当x <0时,f(x)=x
x−1,则曲线y =f(x)在点(2,f(2))处的切线的斜率为__________. 11,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜恒成立,则实数a 的取值范围是 . 12.设函数f(x)=x 3−3x +1,x ∈[−2,2]的最大值为M ,最小值为m ,则M +m =__________.
13.在平面直角坐标系xoy 中,若曲线y =ax 2+b
x (a,b 为常数)过点P(2,−5),且该曲
线在点P 处的切线与直线7x +2y +3=0平行,则a +b = .
14.过函数 ()3
2
325f x x x x =-++图像上一个动点作函数的切线,则切线倾斜角的
取值范围是 __________. 15,若0'()1f x =,则 16.已知定义域为R 的奇函数()y f x =的导函数为()'y f x =,当0x ≠时,
,则 a b c ,,的大小关系是 .
17,直线l 与函数()(),f x g x 的图像都相切于点(1,0).
(1)求直线l 的方程及函数()g x 的解析式;
(2)若()()()h x f x g x '=-(其中()g x '是()g x 的导函数),求函数()h x 的极大值. 18.已知函数f(x)=x 2−2x ,g(x)=ax −1,若∀x 1∈[−1,2],∃x 2∈[−1,2],使得f(x 1)=g(x 2
19 (1)若3x =是()f x 的极值点,求()f x 的极大值; (2)求a 的范围,使得()1f x ≥恒成立.
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

答案第1页,总1页
参考答案
1.D 2.B 3.A 4.D 5.B 6.A 7.B 8.B 9.B 10.1
9 11
12.2 13.−3 143,4ππ⎫⎡⎫
⎪⎪⎢⎭⎣⎭
15.1 16.b c a << 17.(1)1y x =-,
g (2 18.(−∞,
−4]∪[2,+∞)【答案】(1)5-
;(2。

相关文档
最新文档