强化复习线性代数各章重点及题型考研

合集下载

考研数学《线性代数》复习重点

考研数学《线性代数》复习重点

考研数学《线性代数》复习重点本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。

数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的计算;而抽象型行列式的计算问题会以填空题的形式展现,在历年考研真题中可以找到有关抽象型行列式的计算问题。

因此,在复习期间行列式这块要做到利用行列式的性质及展开定理熟练的、准确的计算出数值型行列式的值,不管是高阶的还是低阶的都要会计算。

另外还要会综合后面的知识会计算简单的抽象行列式的值。

本章需要重点掌握的根本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关性质也很重要,也是需要掌握的。

除了这些就是矩阵的根本运算,可以将矩阵的运算分为两个层次:1、矩阵的符号运算。

2、具体矩阵的数值运算。

矩阵的符号运算就是利用相关矩阵的性质对给出的矩阵等式进行化简,而具体矩阵的数值运算主要指矩阵的乘法运算、求逆运算等。

本章的重点有:1、向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。

2、向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。

要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。

第四章线性方程组本章的重点是利用向量这个工具解决线性方程组解的判定及解的结构问题。

题目根本没有难度,但是大家在复习的时候要注意将向量与线性方程组两章的知识内容联系起来,学会融会贯穿。

本章的根本要求有三点:1、要会求特征值、特征向量。

对于具体给定的数值型矩阵,一般方法是通过特征方程∣λE-A∣=0求出特征值,然后通过求解齐次线性方程组(λE-A)ξ=0的非零解得出对应特征值的特征向量,而对于抽象的矩阵来说,在求特征值时主要考虑利用定义Aξ=λξ,另外还要注意特征值与特征向量的性质及其应用。

数学考研必备知识点线性代数的重点章节解析

数学考研必备知识点线性代数的重点章节解析

数学考研必备知识点线性代数的重点章节解析一、引言线性代数是数学中的一个重要分支,广泛应用于各个领域的科学研究和工程实践中。

作为数学考研的一门必备知识,掌握线性代数的重点章节非常关键。

本文将对数学考研必备知识点线性代数的重点章节进行解析,帮助考生全面理解和掌握这些内容。

二、向量空间向量空间是线性代数的基础,包括向量的加法、数乘和向量空间的性质等。

重点章节有:1. 线性相关性与线性无关性:讨论向量组的线性相关性与线性无关性,以及线性相关性的判定方法。

2. 向量空间的维数:介绍向量空间的维数概念及其性质,以及维数的计算方法。

3. 基与坐标:介绍向量空间的一组基及其坐标表示方法,以及基的变换与坐标的变换关系。

三、线性映射与线性变换线性映射与线性变换是线性代数的重要内容,涉及到线性变换的性质、线性变换的表示矩阵和线性映射的核与像等。

重点章节有:1. 线性变换与矩阵:介绍线性变换的定义和性质,并探究线性变换的代数表示——矩阵。

2. 线性变换的核与像:讨论线性变换的核与像的概念,以及它们的性质和计算方法。

3. 线性变换的合成与逆变换:研究线性变换的合成和逆变换的概念与性质,以及相应的计算方法。

四、特征值与特征向量特征值与特征向量是线性代数中的重要概念,用于研究线性变换的本质特性。

重点章节有:1. 特征值与特征向量的定义:介绍特征值与特征向量的定义及其性质。

2. 特征值与特征向量的计算:探究特征值与特征向量的计算方法和求解步骤。

3. 对角化与相似矩阵:讨论矩阵的对角化概念及其条件,以及相似矩阵的性质和计算方法。

五、内积空间与正交变换内积空间与正交变换是线性代数的重要分支,包括内积空间的定义与性质、正交变换的概念与性质等。

重点章节有:1. 内积空间的定义与性质:介绍内积空间的定义和性质,包括内积的性质和内积空间的几何解释。

2. 正交向量与正交子空间:研究正交向量和正交子空间的概念、性质及其计算方法。

3. 正交变换与正交矩阵:探究正交变换的定义和性质,以及正交变换的矩阵表示——正交矩阵。

考研数学线性代数重点题型

考研数学线性代数重点题型

考研数学线性代数重点题型考研数学中的线性代数部分对于许多考生来说是一个具有挑战性的模块。

掌握重点题型对于提高成绩至关重要。

以下将为大家详细介绍几种常见且重要的线性代数题型。

一、行列式的计算行列式是线性代数中的基础概念,其计算是常见的考点之一。

行列式的计算方法多种多样,包括定义法、化上(下)三角法、按行(列)展开法等。

对于低阶行列式(二阶和三阶),可以直接使用定义进行计算。

但对于高阶行列式,通常需要将其化为上三角或下三角行列式,然后主对角线元素之积即为行列式的值。

例如,通过对行列式进行倍加、倍乘等初等变换,将某一行(列)的元素尽可能化为零,从而实现化为上三角或下三角的目的。

按行(列)展开法则是根据行列式的展开定理,将高阶行列式按照某一行(列)展开,转化为低阶行列式的计算。

二、矩阵的运算矩阵的运算包括加法、减法、乘法、数乘以及求逆等。

矩阵的加法和减法较为简单,只要对应元素相加减即可。

数乘则是将矩阵中的每个元素乘以给定的数。

矩阵乘法是重点也是难点,需要注意的是,一般情况下矩阵乘法不满足交换律。

在计算矩阵乘法时,要严格按照乘法规则,即前行后列对应元素相乘再求和。

求逆矩阵是常考的题型之一。

通常可以使用伴随矩阵法或初等变换法来求逆。

伴随矩阵法相对复杂,需要先求出矩阵的行列式和伴随矩阵;初等变换法则更为简便,通过对矩阵进行初等行变换,将其化为单位矩阵,同时对单位矩阵进行相同的变换,得到的结果即为逆矩阵。

三、线性方程组的求解线性方程组的求解是线性代数的核心内容之一。

分为齐次线性方程组和非齐次线性方程组。

对于齐次线性方程组,若系数矩阵的秩等于未知数的个数,则方程组只有零解;若系数矩阵的秩小于未知数的个数,则方程组有非零解。

求解齐次线性方程组可以使用高斯消元法将其化为阶梯形矩阵,然后确定基础解系。

非齐次线性方程组的解由特解和通解组成。

可以先求出对应的齐次线性方程组的通解,再求出一个特解,从而得到非齐次线性方程组的解。

线性代数知识重难点和常考题型汇总

线性代数知识重难点和常考题型汇总

②、

a11 a21

a12
a22

a1 n a2 n



x1
x2



b1
b2


Ax
b
(向量方程,
A为mn
矩阵, m
个方程, n 个未知数)
am1
am 2

amn xm
bm
⑦、 r( AB) min(r( A), r(B)) ;(※)⑧、如果 A 是 m n 矩阵, B 是 n s 矩阵,且 AB 0 ,则:(※) Ⅰ、 B 的列向量全部是齐次方程组 AX 0 解(转置运算后的结论); 3
Ⅱ、 r( A) r(B) n ⑨、若 A 、 B 均为 n 阶方阵,则 r( AB) r( A) r(B) n ;
③、 a1
a2



an


x1
x2



(全部按列分块,其中



b1 b2




);



xn
bn
④、 a1 x1 a2 x2 an xn (线性表出)
⑤、有解的充要条件: r( A) r( A, ) n ( n 为未知数的个数或维数)
③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ;
3,代数余子式和余子式的关系:
M ij (1)i j Aij
Aij (1)i j M ij
4,设 n 行列式 D :
n ( n 1)

考研数学线性代数复习要点

考研数学线性代数复习要点

考研数学线性代数复习要点对于考研数学中的线性代数部分,掌握好复习要点至关重要。

线性代数在考研数学中占据着重要的地位,其特点是概念多、定理多、符号多、运算规律多,并且前后知识的联系紧密。

以下是为大家梳理的线性代数复习要点。

一、行列式行列式是线性代数中的基础概念,其计算方法和性质是必须要熟练掌握的。

1、行列式的定义要理解行列式的定义,特别是二阶和三阶行列式的计算方法。

对于高阶行列式,可以通过行列式的性质将其化为上三角行列式或下三角行列式来计算。

2、行列式的性质熟练掌握行列式的性质,如行列式转置值不变、两行(列)互换行列式变号、某行(列)乘以常数加到另一行(列)行列式不变等。

这些性质在行列式的计算中经常用到。

3、行列式按行(列)展开定理掌握行列式按行(列)展开定理,能够将高阶行列式降阶计算。

二、矩阵矩阵是线性代数的核心内容之一,需要重点掌握。

1、矩阵的运算包括矩阵的加法、数乘、乘法、转置等运算。

要特别注意矩阵乘法的规则和性质,以及矩阵乘法不满足交换律这一特点。

2、矩阵的逆理解逆矩阵的定义和存在条件,掌握求逆矩阵的方法,如伴随矩阵法和初等变换法。

3、矩阵的秩掌握矩阵秩的定义和求法,了解矩阵秩的性质。

矩阵的秩在判断线性方程组解的情况等方面有重要应用。

4、分块矩阵了解分块矩阵的概念和运算规则,能够灵活运用分块矩阵解决一些复杂的矩阵问题。

三、向量向量是线性代数中的重要概念,与线性方程组和矩阵的秩密切相关。

1、向量的线性表示理解向量线性表示的概念,掌握判断向量能否由一组向量线性表示的方法。

2、向量组的线性相关性掌握向量组线性相关和线性无关的定义和判定方法,这是线性代数中的重点和难点。

3、向量组的秩理解向量组的秩的概念,掌握求向量组秩的方法。

4、向量空间了解向量空间的基本概念,如基、维数等。

四、线性方程组线性方程组是线性代数的核心内容之一,在考研中经常出现。

1、线性方程组的解掌握线性方程组有解、无解和有唯一解、无穷多解的判定条件。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

考研数学《线性代数》考点知识点总结

考研数学《线性代数》考点知识点总结

记作: ri rj ( ci cj ) D D 0 .
3.行列式乘以 k 等于某行(列)所有元素都乘以 k. 推论:某一行(列)所有元素公因子可提到行列式的外面.
记作: kD ri k ( kD ci k ).
记作: kD ri k ( kD ci k ).
行列式的 性质:
a2i a2n
a21
a22
a2i a2n
an1 an2 (ani ani ) ann
an1 an2 ani ann an1 an2 ani ann
上式为列变换,行变换同样成立.
6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.
记作: ci ci kcj ( ri ri krj ), D 不变.
n
aki Akj
k 1
Dij
D, 0,
当i 当i
j, n
j;

k 1
aik
Ajk
Dij
D, 0,
当i 当i
j, j; 其中ij
1, 0,
当i j, 当i j.
1 1 11
范德蒙德 行列式:
x1 Dn x12
x2 x22
x3 xn
x32 xn2 = (xi x j ) .证明用数学归纳法.
定理 2:
n 阶行列式可定义为 D (1)ta a p11 p2 2 apnn = (1)ta1p1a2 p2 anpn .
1.D=DT,DT 为 D 转置行列式.(沿副对角线翻转,行列式同样不变)
2.互换行列式的两行(列),行列式变号.
推论:两行(列)完全相同的行列式等于零.
记作: ri rj ( ci c j ) D D .

线性代数重点题型总结

线性代数重点题型总结

第四章
4.1 ①求特征值与特征向量,例2、例3
②特征值与特征向量性质考察,例7,习题2
其他:例5
4.2 ①判断某阵能否对角化,并求幂。

例、习题1、2
②两阵相似,求阵中的未知数。

习题1、3、14
4.3 ①将向量正交化or单位化(方法见P185),习题16、17
②已知实对称矩阵,求正交阵使Q−1AQ为对角阵,例4、例5、习题22、23
注意出现多重特征值时要先正交化再单位化
证明类:习题7、3、19、P172 例5
第三章
3.1①线性方程解的情况:无解、唯一解、无穷解、线性方程的非零解时r(A)和r(A|b)的关系。

例1、例2、例3、例4
3.2①向量的4则运算,分配律、结合律。

②某向量能否被另一向量组线性表示,充要条件是
r(α1….αn)=r(α1…αn,β)。

例5、习题7
③向量组是否等价(能相互表示即可)例6
3.3①判断已知向量组是否线性相关(即r(A)<n),p130例4、习题10、14、15、
3.4①判断某向量组的一个极大无关组,并用它表示其他向量。

例2,习题16、17
3.5①求方程组的基础解系,分齐次和非齐次的。

例1、2、4
第二章
2.2①加减乘法,习题6、23。

注意6题体现规律,矩阵左乘变列,右乘变行。

②矩阵转置和矩阵行列式的性质,用于判断题。

2.4-2.7①分块矩阵、逆矩阵,矩阵的秩习题33、47、48、51
第一章
重点习题:1.3(例5、例7、例6),
1.4行列式按行列展开(例4)
习题21、22、24、32、35。

考研数学强化阶段重要题型攻略——线性代数(二)

考研数学强化阶段重要题型攻略——线性代数(二)

2012钻石卡考研数学强化阶段重要题型攻略——线性代数(二)万学海文行和相等或列和相等的行列式为行列式中常考数字型行列式,另一类考察相对较多的数字型行列式为三条线型行列式. 下面,万学海文数学钻石卡考研辅导老师们就再次为广大2012年的考生们详细地分析一下。

形如“”,“”,“”,“”的行列式称为爪型行列式.这属于三条线型的行列式,计算方法为:当这类行列式的主(或副)对角线元素不为零时,利用主(或副)对角线元素将其化为上三角形(或下三角形)行列式.形如的行列式称为三对角线型行列式,这也属于三条线型的行列式,计算方法为:①当这类行列式的主(或副)对角线元素不为零时,利用主(或副)对角线元素将其化为上三角形(或下三角形)行列式.②当n D 和r D 结构一致时,利用递推法计算数字型行列式.由行列式按行(或按列)展开定理,将一个n 阶行列式表示为具有相同结构的较低阶行列式的线性关系式:21--+=n n n bD aD D 或b aD D n n +=-1,再根据此关系式递推求得所给n 阶行列式的值.【例1】计算行列式dcb a D 002002002222=,其中0≠abcd .分析 这是形如“”的爪型行列式,即只有三条线上的元素不为零,其余元素均为零的行列式.要化为上三角形(或下三角形)行列式,只需将a 所在的列(或行)中的2化为0即可.解 第2,3,4行分别提出b ,c ,d ,得,100201020012222dc babcd D = 再把第i 行(2,3,4i =)的2-倍加至第1行,得100201020012000444dc bd c b a bcdD ---=bc bd cd abcd dc b a bcd 444)444(---=---=. 评注 求解本题的方法可以推广到求解形如“”、“”、“”的行列式,思路是一样的,都是利用某条线上的元素将另一条线上的元素化为零,从而化为上三角形(或下三角形)行列式. 【例2】计算5阶行列式5100011001100011011a a a a D a aa a a---=------.分析 按照行列式按行(或按列)展开定理,将5D 按第1行展开,找到5D 和4D ,3D 之间的关系,再根据此关系式递推求出5D .解法一 将5D 按第1行展开,得54100010(1)011011a a a D a D aa a a--=------,将右端的行列式按第1列展开,得54343(1)(1)(1)D a D a D a D aD =---=-+.一般地,可得12(1)(3)n n n D a D aD n --=-+≥,将上式变形,得另一递推公式112n n n n D aD D aD ---+=+,于是得11223211n n n n n n D aD D aD D aD D aD -----+=+=+==+=,即11(2)n n D aD n -=-≥,于是得2543311(1)1D aD a aD a a D =-=--=-+ 223221(1)1a a aD a a a D =-+-=-+-,而 221111a a D a a a-==-+--,所以 232325211(1)D a a a D a a a a a =-+-=-+--+23451a a a a a =-+-+-.评注 本题主要考查行列式按行(或按列)展开定理及递推关系式的应用.用递推法计算行列式n D ,适用于m D 与n D 的结构相同或相似的一类行列式,建立递推关系式的基础是利用行列式按行(或按列)展开定理将行列式降阶.。

考研数学线性代数重点知识点整理与习题解析

考研数学线性代数重点知识点整理与习题解析

考研数学线性代数重点知识点整理与习题解析一、矩阵的运算矩阵的加法、乘法、转置以及数量乘法等是矩阵运算的基本操作。

矩阵的加法和乘法具有结合律、交换律和分配律等基本性质。

1.1 矩阵的加法对于两个相同大小的矩阵A和B,它们的和记作A + B,定义为它们对应元素相加所得到的矩阵。

即,如果A = [a_ij],B = [b_ij],则A + B = [a_ij + b_ij]。

1.2 矩阵的乘法对于两个矩阵A和B,如果A的列数等于B的行数,它们可以进行乘法运算,记作C = AB。

矩阵C的元素c_ij可以表示为c_ij =∑(a_ik * b_kj)。

其中∑表示求和符号,k表示对应元素的相同下标。

1.3 矩阵的转置对于一个矩阵A,它的转置记作A^T。

即,如果A = [a_ij],则A^T = [a_ji]。

也就是说,矩阵A的行变为转置后矩阵的列,矩阵A的列变为转置后矩阵的行。

1.4 数量乘法一个数与一个矩阵的乘积称为数量乘法。

对于一个数k和一个矩阵A,它们的乘积记作kA。

即,kA = [ka_ij]。

其中ka_ij表示矩阵A中每个元素乘以k所得到的矩阵。

二、线性方程组线性方程组是线性代数的重要内容之一。

解一个线性方程组就是找到一组使得方程组中所有方程都成立的未知数的值。

通常通过矩阵的方法来解线性方程组,有三种常用的解法:高斯消元法、克拉默法则和逆矩阵法。

2.1 高斯消元法高斯消元法是通过矩阵的初等变换将线性方程组化为最简形式,从而求解方程组。

具体步骤如下:1) 将线性方程组的系数矩阵和常数矩阵合并成增广矩阵;2) 逐行进行初等变换,使得增广矩阵的主对角线元素为1,其他元素为0;3) 对增广矩阵进行回代,求出方程组的解。

2.2 克拉默法则克拉默法则是通过行列式的性质来解线性方程组。

对于一个n元线性方程组,如果系数矩阵的行列式不为0,则方程组有唯一解,且每个未知数的值可以通过求解n个行列式得到。

2.3 逆矩阵法逆矩阵法是通过求解方程AX = B来解线性方程组。

考研数学线性代数各章复习要点及命题特点 行列式

考研数学线性代数各章复习要点及命题特点 行列式

考研数学线性代数各章复习要点及命题特点行列式摘要:行列式是线性代数中一个基本的工具,贯穿于线性代数整门学科。

虽然单独考查行列式计算的命题不多,但与行列式有关的命题却很多。

例如,在与特征值有关的问题中有较多型行列式的计算。

在向量组的线性相关性、矩阵的秩、矩阵可逆性、n个未知数n个方程的齐次线性方程组、正定二次型及正定矩阵等问题中,都会涉及行列式的计算。

同学们一定要掌握行列式的性质和基本计算方法,不要因小失大,不要因为行列式没计算正确,导致整道题目全盘皆输。

(一)行列式部分的主要考点有:逆序、逆序数的定义,行列式的定义,余子式与代数余子式的定义,范德蒙行列式的定义,行列式的性质与推论,行列式按行(列)展开定理,行列式的计算公式。

(二)行列式部分考查的主要内容和能力有:1.行列式的定义。

阶行列式是一个数,它是取自来自行列式不同行、不同列的个元素乘积的项的代数和,去每一项的符号由当行(列)标排成自然顺序时,该项列(行)标排列的逆序数所确定。

它是计算行列式的基础。

2.阶行列式的性质。

要求考生熟练掌握行列式的6条性质和2个推论,具有快速计算行列式的能力。

性质1行列式与其转置行列式相等。

性质2互换两行(或列),行列式变号。

推论1如果行列式的两行(列)相同,行列式为零。

性质3行列式的某一行(列)中所有元素都乘以同一个数,等于用k乘以此行列式。

推论2行列式某行(或列)有公因子可以提取到行列式的外面。

性质4行列式某两行(或列)元素对应成比例,行列式为零。

性质5行列式的某行(或列)的每个元素皆为两数之和时,行列式可分解为两个行列式,性质6行列式的某行(或列)的倍数加到另一行(或列),行列式不变,即要求考生熟练运用上述公式计算行列式。

(三)行列式常考的题型有:1.计算数字型行列式;2.计算抽象型行列式;3.克莱姆法则的应用;行列式的计算与矩阵、方程组紧密联系,同学们在后期复习过程中,脑子里时刻要有行列式这个工具。

能够灵活应用行列式进行解题。

2022考研线性代数强化讲义(知识体系+重点题型解析)

2022考研线性代数强化讲义(知识体系+重点题型解析)

第一章行列式一、知识体系 1122,,A i j i j A i j i j =a A a A a A ≠ i j i j 1122 +++= 0,= a A a A a A i j i j +++= ≠ 0, in jnn ! 项不同行不同列元素乘积的代数 定 ni nj 义和 性质 上()或下三角、主对角行列式 副对角行列式ab 型行列式 拉普拉斯展开式 范德蒙行列式行列式12,,,,12,,,T n kA k A A A D n D D x x x −D D D1−1n −1i =1 行列式的概念重要行列式展开定理=nAB A B ==A A= 行列式的公式 * =A A=12=== = ∏ n i 设 n A A 的特征值为λλλλ则 若A B A B 与相似,则Cramer 法则二、重点题型重点题型一数字行列式的计算【方法】【例1.1】设212322212223333245354435743x x x x x x x x x x x x −−−−−−−− f x ()=−−−−x x x x −−− 则方程f x ()0 =根的个数为【】(B )2(C )3(A )1【详解(D )4】【例1.2】利用范德蒙行列式计算222a a bcb bac cc ab=.【详解】【例1.3】设x x x x 1234≠0,则11121314212223243132333441424344x a a a a a a a a a x a a a a a a a a a x a a a +a a a a a a x a 2+2=+2+2.【详解】【例1.4】计算三对角线行列式000000000000αβαβαβαβαββαβ+++D n =++αβα【详解】重点题型二代数余子式求和【方法】【例1.5】已知1234522211312451112243150A=27,则A A A 414243=++=,A A 4445+=.【详解】010000200001n 000【例1.6】设A =n −,则A 的所有代数余子式的和为.【详解】重点题型三抽象行列式的计算【方法】【例1.7】(2005,数一、二)设α1,α2,α3均为3维列向量,A =(α1,α2,α3),(,24,39)B ααααααααα=++++++123123123.若A =1,则=B .【详解】【例1.8】设A 为n 阶矩阵,αβ,为n 维列向量.若A a =,TAαb=0,β则TA β【详解】(2)(2)A A O −O A 1*−【例1.9】设A 为2阶矩阵,B =2 .若A =−1,则=B .【详解】【例1.10】设n 阶矩阵A 满足A A 2=,A E ≠,证明A =0.【详解】第二章矩阵一、知识体系 ()AB A A Ax +A B kAAT⇔≠||0 ⇔=r A n ⇔ ⇔=⇔=定 义 性质 定义法 初等变换 求法伴 随矩法阵法 分块矩阵法的列(或行)向量组线性无关 充要条件齐次线性方0 程组只有零解 非齐次线性方程组Ax b 有唯一解 ⇔A 的特征值均不为零 定义矩性质阵求法基本运算逆 秩定 义 伴随矩阵性质 定义 性质 求矩阵的逆初等变换与初等矩阵 求矩阵的秩线性 应用求表极大示线性无关组 解线性方程组 求二次型的标准形分块矩阵二、重点题型重点题型一求高次幂【方法】2131【例2.1】设46A a b c − =,B 为3阶矩阵,满足BA O=,且r B ()1>,则A n =.【详解】200412 【例2.2】设A =−320,则A n=.【详解】−−121 【例2.3】设A =−− −−363 121,P 为3阶可逆矩阵,B P AP =−12022B E ,则()+=.【详解】重点题型二逆的判定与计算【方法】 【例2.4】设n 阶矩阵A 满足A 2=2A ,则下列结论不正确的是【】 (B )A E (C )−可逆A E(D )+可逆A E −3可逆 (A )A 可逆【详解】,为n 阶矩阵,【例2.5】设A B a b ,为非零常数.证明: I )若(AB aA bB ,则=+AB BA =2+=,则(II )若A aAB E AB BA ;=.【详解】11a 0110a 【例2.6】(2015,数二、三)设A a =−,满足A O 3=. (I )求a 的值;(II )若矩阵X 满足22X XA AX AXA E ,求X −−+=.【详解】重点题型三秩的计算与证明 【方法】秩的性质(1)设A 为m ×n 阶矩阵,则()min ,r A m n {}≤; 2)(()()()r A B r A r B +≤+; ({3)()min (),()r AB r A r B }≤;({4)max (),()()()()r A r B r A B r A r B }≤≤+;5)r A r kA k (()()(0)=≠;(6)设A 为m ×n 阶矩阵,P 为m 阶可逆矩阵,Q 为n 阶可逆矩阵,则()()()()r A r PA r AQ r PAQ ===;7)设A 为m ×n 阶矩阵,若(r A n ()=,则()()r AB r B ;若=r A m ()=,则()()r CA r C =;===TTT8)(()()()()r A r A r AA r AA ;(9)设A 为m ×n 阶矩阵,B 为n ×s 阶矩阵,AB O =,则r A r B n ()()+≤.,为n 阶矩阵,【例2.7】(2018,数一、二、三)设A B () X Y 表示分块矩阵,则【】 (A )( )()r A AB r A (B )=( )()r A BA r A ={ }(C )( )max (),()r A B r A r B =T T(D )r A B r A B ( )( )=【详解】 【例2.8】设A 为n 阶矩阵.证明:I )若A 2=A ,则(r A r A E n ()()+−=;2=,则(II )若A E r A E r A E n ()()++−=.【详解】重点题型四关于伴随矩阵【伴随矩阵的性质】||01**11(1),AA A AA E A A A A AA A≠**−−== →==; (*1*=n 2)()kA k A −; 3)()AB B A (***=(4;)*A A n −1=;(** A A 5)()()T T=;( 6)()()A 1**1A A A−−==;( n −7)()A A A 2**=; ,()8)r A r A n (()1,()1=n r A n *==−r A n <−0,()1.【例2.9】设n 阶矩阵A 的各列元素之和均为2,且A =6,则A ∗的各列元素之和均为【】(B )31(C )3 (A )2【详解(D )6】ij 为n n 【例2.10】设A a =()(3)阶非零矩阵,A ij 为a ij 的代数余子式,≥证明:(*(,1,2,,)TTI )a A i j n A A AA E ij ij ==⇔=⇔= 且A =1;*(,1,2,,)TT(II )a A i j n A A AA E ij ij =−=⇔=−⇔= 且A =−1.【详解】重点题型五初等变换与初等矩阵【初等变换与初等矩阵的性质】(1)E i j (,)1=−,(())E i k k =,E ij k (())1=; T2)((,)(,)E i j E i j =T,E ij k E ji k T ,E i k E i k (())(())=(())(())=;−13)((,)(,)E i j E i j =1,E i k E i k(())−1=−1,(())(())E ij k E ij k =−;(4)初等行(或列)变换相当于左(或右)乘相应的初等矩阵;(5)可逆矩阵可以写成有限个初等矩阵的乘积.【例2.11】(2005,数一、二)设A 为n (n ≥2)阶可逆矩阵,交换A 的第1行与第2行得到矩阵B ,则【】(A )交换A *的第1列与第2列,得B *(B )交换A *的第1行与第2行,得B *(C )交换A *的第1列与第2列,得−B *(D )交换A *的第1行与第2行,得−B *【详解】123012001 【例2.12】设A = 001010100,P =110010001 ,Q = ,则()()T −P A Q 120212022=__________.【详解】第三章向量一、知识体系212(,,,)(,,,) (,,,)s k k k x 1x x r r βαααααααααβ αααβαβ+ k α [αβ,] =+++ ⇔= ⇔= →1122 s s 12 s 12 s s 12 s 定初等行变换义非齐次线性方程组(,,,)αααβ有解 充要条件 充分条件 求法行最简形矩阵向线性相关量 1 22 (,,,)0(,,,)x x x s r s x 1x x s ααα 定ααα义 ⇔=⇔< ⇔= 12s 12 s 12s ⇔至少有一个向量可由其余向量线性表 示齐次线性方程组充要条件ααα有非零解 充分条件齐次线性方程组充要条件(,,,)0只有零解 (,,,)ααα基本运算线性表示定义⇔任意向量均不能由其余向量线性表示线性无 关αs =s ⇔r (,,αα12,)12 s → 充分条初等行变换件定义极大线性无关组与向量组的秩求法行阶梯形矩阵二、重点题型重点题型一线性表示的判定与计算 【方法】,,与数【例3.1】设向量组αβγk l m ,,满足k l m km αβγ++=≠0(0),则【】,与(A )αβαγ ,等价 ,与(B )αββγ,等价(D )α与γ,,与(C )αγβγ等价等价【详解】【例3.2】(123(1,2,0),(1,2,3),(1,2,2)T T T2004,数三)设αααa ab a b ==+−=−−−+,β=−(1,3,3)T .当a ,b 为何值时, ,,线性表示I )β不能由ααα(123;,,唯一地线性表示,并求出表示式(II )β可由ααα123;,,线性表示,但表示式不唯一,并求出表示式(III )β可由ααα123. 【详解】【例3.3】(2019,数二、三)设向量组(123(1,1,4),(1,0,4),(1,2,3)T TT a 2I )ααα===+;向量组2a a a 123(1,1,3),(0,2,1),(1,3,3)T T T (II )βββ=+=−=+I )与(II )等价,求a 的.若向量组(值,,,线性表示并将β3由ααα123.【详解】重点题型二线性相关与线性无关的判定【方法】【例3.4】(2014,数一、二、三)设ααα123,,均为3维列向量,则对任意常数k l,,1323,αααα ++k l ,,线性无关的【线性无关是ααα123】(B )充分非必要条件(C )充分必要条件(A )必要非充分条件【详解(D )既非充分又非必要条件】【例3.5】设A 为n 阶矩阵,ααα123,,均为n 维列向量,满足A A 2αα11=≠0,212A A2ααα=+, 2323A A ααα=+ ,,线性无关,证明ααα123.【详解】,,线性无关,与4维列向量β1,β2两两正交,证明β1,β2线性相关【例3.6】设4维列向量ααα123.【详解】重点题型三极大线性无关组的计算与证明【方法】 1234(1,1,1,3),(1,3,5,1),(3,2,1,2),(2,6,10,)TTTT【例3.7】设ααααa a ==−−=−+=−−.(I )当a 为何值时,该向量组线性相关,并求其一个极大线性无关组;(II )当a 为何值时,该向量组线性无关,并将α=(4,1,6,10)T 由其线性表示.【详解】,为I )设A B m n ×矩阵,则()()()r A B r A r B +≤+;×矩阵,B 为n s {×矩阵,则()min (),()r AB r A r B 【例3.8】证明:((II )设A 为m n 【详解}≤.】重点题型四向量空间(数一专题)【方法】过渡矩阵12,,,n 到基β1,β2, ,βn 的过渡矩阵为由基ααα(,,,)(,,,)=βββααα12C 12 n n ,−12αααβββ1C =(,,,)(,,,) 12 n n .12坐标变换公式,,, n 下的坐标为设向量γ在基αααx x x x12 n T,在基β1,β2, ,βn 下=(,,,)的坐标为y y y y 12 n T,则坐标变换公式为x =Cy =(,,,).2015,数一)设向量组ααα【例3.9】(123,,为R 3的一个基,113βαα=+22k ,βα22=2,313k=++βαα(1).,,为R 3的一个基I )证明向量组βββ(123;(II )当k 为何值时,存在非零向量ξ在基ααα123,,下的坐标相同,并求所有的ξ,,与基βββ123.I 【详解】()3123201(,,)(22,2,(1))(,,)020201k k βββαααααααα1231321=+++= k k +201020201令C =k k +,则,,为R 3的一个基,,线性无关,故βββ=≠40,从而βββC 123123.(II )设ξ在基ααα123,,下的坐标为x ,,与基βββ123,则 123123123Cx x=ξαααβββααα(,,)(,,)(,,)=x =C E x −=得()0.对C E −作初等行变换,1011010100102000k k kC E −=→当k =0时,方程组()00−C E x −=有非零解,所有非零解为1x c 1=,在两个基下坐标相同的所有非零向量为1231231xc −ξαααααααα1=(,,)(,,)0()==−c 31,其中c 为非零常数第四章线性方程组一、知识体系11220 () 0() ()()()()1 ()()()()r A n Ax r A n r A r A n r A r A n k k k ξξξ−− =⇔= Ax =0Ax =⇔<Ax b r A r A r A r A =⇔<⇔=− Ax b Ax b ==⇔== Ax b =⇔=< +++ 性 n r n r 质只有零解有非零解无解 判定有唯一解有无穷多解的通解线性方程组 1122()()()()()()()AX BAX B r A r A B n r A r A B n ξξξη−− Ax =0 ++++ Ax b k k k = =⇔< AX B r A r A B =⇔== AX B =⇔=< A B → n r n r =的通初等行变换解 定义无解矩阵方程判定有唯一解有无穷多解 求法行最简形矩阵 定义 求法,的行向量组等价()()A ⇔r A r r B B 解的性质与判定解的结构公共解定义公共解与同解 ⇔ A B 同解充要条 件==二、重点题型重点题型一解的判定【方法】【例4.1】(0TA2001,数三)设A 为n 阶矩阵,α为n 维列向量,且r r A α α=(),则线性方程组(A )Ax =α有无穷多解(B )Ax =α有唯一解A x α (C )αT0y =0只  有零解Ax α(D )  αT 0y =0有 非零解 【详解】 ×阶矩阵,且【例4.2】设A 为m n r A m n ()=<,则下列结论不正确的是【】T =0(A )线性方程组A x 只有零解 T (B )线性方程组A Ax =0有非零解 (C )∀b ,线性方程组A x b(D )∀b ,线性方程组T =有唯一解Ax b =有无穷多解【详解】重点题型二求齐次线性方程组的基础解系与通解【方法】1234为4阶矩阵,(1,0,1,0)T为线性方程组Ax =0【例4.3】(2011,数一、二)设A =αααα(,,,)的 *=0的基础解系可为【基础解系,则A x 】 , (A )αα12,(B )αα13,,(C )ααα123,,(D )ααα234【详解】a b c ,【例4.4】(2005,数一、二)设3阶矩阵A 的第1行为(,,)a b c 12324636k ,,不全为零,B =,满足AB O=,求线性方程组Ax =0的通解.【详解】【例4.5】(2002,数三)设线性方程组n 0n 0n 0 123n 0++++=ax bx bx bx bx ax bx bx 123++++=123++++=bx bx ax bx123++++=bx bx bx ax其中a ≠0,b ≠0,n ≥2. 当a b 求其通解,为何值时,方程组只有零解、有非零解,当方程组有非零解时,.【详解】重点题型三求非齐次线性方程组的通解【方法】,,为非齐次线性方程组【例4.6】设A 为4阶矩阵,k 为任意常数,ηηη123Ax b =的三个解,满足124ηη12+=23245 3,ηη23+==,则.若r A ()3Ax b =的通解为【】11203142− (A ) +k (B )21324051 +k (C )01102132− +k (D )11121011 +k【详解】2017,数一、二、三)设3阶矩阵A =【例4.7】((,,)=+2ααα123有三个不同的特征值,其中312ααα. I )证明r A (()2=;(II )若βααα=++123,求线性方程组Ax =β的通解.【详解】1101011λλλ 【例4.8】(2010,数一、二、三)设A =−11a ,b =,线性方程组 Ax b=有两个不同的解.(I )求λ,a 的值;(II )求方程组Ax b =的通解.【详解】【例4.9】设A 为m n ×阶矩阵,且r A r 12,,,()=.若ξξξ−为齐次线性方程组Ax =0的 n r 基础解系,η为非齐次线性方程组Ax =b 的特解,证明:(,,,,I )ηξξξ12 n r −线性无关;,,,,(II )ηηξηξηξ+++12 n r −线性无关;,,,,(III )ηηξηξηξ+++n r −为Ax =b 所有解的极大线性无关组12 .【详解】重点题型四解矩阵方程【方法】矩阵方程解的判定AX B=无解⇔<()()r A r A B AX B ()()r Ar A B n =有唯一解⇔==AX B ()()r Ar A B n =有无穷多解⇔=<矩阵方程的求法对()AB 作初等行变换,化为行最简形矩阵,得矩阵X .101−202101【例4.10】设A =−−,矩阵X 满足AX E A X 20222,求矩阵X +=+.【详解】【例4.11】(123401111203−−2014,数一、二、三)设A =− −.(I )求线性方程组Ax =0的一个基础解系;(II )求满足AB E =的所有矩阵B .【详解】重点题型五公共解的判定与计算【方法】【例4.12】(2007,数一、二、三)设线性方程组(+ +=++=001321x x I )x x 1+4x 2+a 2x 3=0ax 2x 32x 与方程(II )x 1+2x 2+x 3=a −1有公共解,求a 的值及所有公共解.【详解】【例4.13】设齐次线性方程组(123420x x x 123+−=230I )x x x x ++−= 12(2,1,2,1),(1,2,4,8)齐次线性方程组(II )的一个基础解系为ααa a T T =−+=−+.(1)求方程组(I )的一个基础解系;(2)当a 为何值时,方程组(I )与(II )有非零公共解,并求所有非零公共解.【详解】重点题型六同解的判定与计算【方法】【例4.14】(2005,数三)设线性方程组( =+=++ I )202132+321 x 35 x 1+x 2+ax 3=0x x x x 3x +=++0 12+321 2(1)x 3=0c x 0与(II ) x cx b x +bx 2同解,求a ,b ,c 的值.【详解】第五章特征值与特征向量一、知识体系 (0)0()0A E B P AP P AP A n A λλA αλαα−1=≠ −= A E x −= =−1=Λ ⇔ ⇔k k A n 定义性质 特征方程法 定义 性质特征值与特 定义征有个线性无关的特征向量 充要条件重特征值有个线性无关的向特征向量量有个不同的特征值 充分条件为实对称矩阵 T k k 特征值与特征向量相似矩阵相似对角化==Λ特征值均为实数不同特征值的特征向量正交实对称矩阵重特征值有个线性 无关的特征向量,使得− A 可正交相似对角化,即存在正交矩阵Q Q AQ Q AQ 1二、重点题型重点题型一特征值与特征向量的计算【方法】特征值与特征向量的性质 (1)不同特征值的特征向量线性无关;(2)不同特征值的特征向量之和不是特征向量;(3)k 重特征值最多有k 个线性无关的特征向量;4)设A 的特征值为12(,,,λλλnn ,则i =1∑nA λi=tr A (),λi i =1=∏;=,即A =αβT,其中5)若r A (()1αβ,为n 维非零列向量,则A 的特征值为TT tr A ()λαββαn1===0 ,λλ2===(6)设α为矩阵A 属于特征值λ的特征向量,则【例5.1】设1111111111111111−−A = −− −−求A 的特征值与特征向量.【详解】322 223010001【例5.2】(2003,数一)设A = 232 ,P = 101 ,B =P −1A *P ,求B +2E 的特征值与特征向量.【详解】12214212a 【例5.3】设A = −−− 的特征方程有一个二重根,求A 的特征值与特征向量. 【详解】 2【例5.4】设3阶非零矩阵A 满足A O = ,则A 的线性无关的特征向量的个数是【】(B )1(C )2(A )0【详解(D )3】【例5.5】设A =+αββαTT,其中αβ 1,为3维单位列向量,且αβT 3=,证明:(I )0为A 的特征值; ,(II )αβαβ为A +−的特征向量;(III )A 可相似对角化.【详解】重点题型二相似的判定与计算【相似的性质】(1)若A B ,则A B ,有相同的行列式、秩、特征方程、特征值、迹;2)若(A B ,则()()f A f B ,A B −− 11 ,(0)AB BA A ≠,A B T T ,A B ** ;3)若(A B ,B C,则A C .【例5.6】设1000030000110022 A =矩阵B 与A 相似,则r B E r B E ()(3)−+−=.【详解】【例5.7】设n 阶矩阵A 与B 相似,满足A E 2=2,则 AB A B E +−−=. 【详解】【例5.8】(22−−002221 2019,数一、二、三)设A x =−−21001000y与B =−相似.I )求(x y ,的值;−(II )求可逆矩阵P ,使得P AP B 1=.【详解】重点题型三相似对角化的判定与计算【方法】【例5.9】设3阶矩阵A 的特征值为1,3,−2,对应的特征向量分别为ααα123,,.若P =−ααα(,2,)−1*=【132,则P A P 】12 (A )−1− 36 (B )−2 −36 (C ) −2 13(D ) −2【详解】【例5.10】设n 阶方阵A 满足32A A E O ,证明A 可相似对角化2−+=.【详解】【例5.11】(2020,数一、二、三)设A 为2阶矩阵,P A =(,)αα,其中α为非零向量且不是A 的特征向量.(I )证明P 为可逆矩阵; 2ααα+−=60,求II )若(A A P AP−1,并判断A 是否相似于对角矩阵.【详解】重点题型四实对称矩阵的计算【方法】2+=,n 阶矩阵B 满足【例5.12】设n 阶实对称矩阵A 满足A A O B B E 2+=,且r AB ()2=,则A +【详解】01413【例5.13】(2010,数二、三)设40A a a −=−T,正交矩阵Q 使得Q AQ 为对角矩阵.若Q的第12,1)T ,求a Q ,.【详解】 2=,【例5.14】设3阶实对称矩阵A 满足A E A E+的各行元素之和均为零,且r A E ()2+=.(I )求A 的特征值与特征向量;(II )求矩阵A .【详解】第六章二次型一、知识体系0,0T T f x Ax B C AC x Ax x Bx =x x Ax T =T ⇔ ⇔ 定∀≠>义 拉格朗日配方法 合同变换 标准形的求法法正交变换法 定义与有相同的正、负惯性指数 充要条件A B ,有相同的正、负特征值的个数 充分条件A B 与相似必要条件二次A B 与等价型有T 0(1,,)0A E A A 二次型与标准形合同矩阵定义 性质 ⇔f n ⇔ 正定矩阵 ⇔ii >= a i n > 的正惯性指数为与合同充要条件的特征 值均大于零⇔A 的顺序主子式均大于零必要条件二、重点题型重点题型一求二次型的标准形【方法】222【例6.1】(2016,数二、三)设二次型123123122313(,,)()222f x x x a x x x x x x x x x=+++++ 的正、负惯性指数分别为1,2,则【】(B )a <−2 a (A )a >1【详解(D )a =1或−(C )−<<212】 =−+++++222【例6.2】(2018,数一、二、三)设二次型1231232313(,,)()()()f x x x x x x x x x ax .I )求f x x x ((,,)0 123=的解;(II )求f x x x (,,)123的规范形.【详解】【例6.3】(2020,数一、三)设二次型121122(,)44f x x x x x x 1122x y =−+22经正交变换x y =Q化为二=++22,其中次型(,)4121122g y y ay y y by a b ≥.I )求(a b ,的值;(II )求正交矩阵Q .【详解】重点题型二合同的判定【方法】 12【例6.4】(2008,数二、三)设A =21,与A 合同的矩阵是【】−1221 (A )− 21− (B ) −12 21 12(C )12− (D )−21 【详解】【例6.5】设A B ,为n 阶实对称可逆矩阵,则存在n 阶可逆矩阵P ,使得 ①PA B −;②=P ABP BA 1−;③=P AP B 122T =;④P A P B =. 成立的个数是【 】 (A )1 (B )2(C )3 (D )4【详解】重点题型三二次型正定与正定矩阵的判定【方法】【例6.6】设A 为m n ×阶矩阵,且r A m ()=,则下列结论 ①AA T 与单位矩阵等价;③AA T 与单位矩阵合同;②AA T 与对角矩阵相似;④AA T 正定. 正确的个数是【 】(B )2(C )3 (A )1【详解(D )4】 I )设A 为n 阶正定矩阵,B 为n 阶反对称矩阵,则【例6.7】证明:(A B −2为正定矩阵;,为n 阶矩阵,且(II )设A B r A B n TT()+=,则A A B B +为正定矩阵.【详解】。

考研数学线性代数每年必考的知识点

考研数学线性代数每年必考的知识点

考研数学线性代数每年必考的知识点考研数学线性代数每年必考的知识点线性代数是考研数学中比较重要的一部分内容,考生要认真复习,尤其注意对重点知识的理解和应用。

店铺为大家精心准备了考研数学线性代数每年必考的难点,欢迎大家前来阅读。

考研数学线性代数每年必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学拿高分的技巧1、认真思考数学问题的习惯思考对于数学的学习是最核心的,对做题更甚。

不坚持去思考,不仔细去联想,类比,总结只相当于背书,是学不到数学的本质的,想考高分是不可能的。

举一个例子:中值定理那块的证明题,一开始不会证,我就忍住不去看答案,自己去思考,有时候一晚上都在思考一个题。

这样思考,我会想到很多知识点并加以整合,会慢慢提炼出思路。

以后解这一类题就会顺畅很多。

考研的题肯定是自己没见过的,平常做题时不会就去看答案,考场上可没有现成的答案看啊。

考研线代重点内容与题型总结

考研线代重点内容与题型总结

考研线代重点内容与题型总结线性代数作为考研数学中的一门重要课程,其难度较大,需要广大考生进行深入的学习和理解才能取得好成绩。

在复习考研数学的过程中,线性代数往往也是最难理解的一科,因此在备考期间需要针对性地进行专业的学习,从而顺利通过考试。

那么,重点内容和题型都有哪些呢?下面就详细介绍一下。

一、重点内容1. 矩阵矩阵是线性代数中的重要概念,考生需要仔细学习其相关内容。

(1)矩阵的基本概念和性质矩阵的基本概念和性质是线性代数的基础,需要重点掌握。

(2)矩阵的初等变换矩阵的初等变换包括行交换、行数乘以非零常数、一行加上另一行的k倍,需要熟练掌握。

(3)矩阵的逆和行列式矩阵的逆和行列式也是考生需要掌握的内容,需要将逆和行列式的求法都熟记于心。

2. 向量向量是线性代数中的另一个重要概念,需要考生认真学习。

(1)向量的基本概念和性质向量的基本概念和性质也是线性代数的基础,需要重点掌握。

(2)向量的线性相关和线性无关向量的线性相关和线性无关是考生需要仔细理解的内容。

3. 线性方程组线性方程组也是考研线性代数的重点内容之一,需要考生细致地学习。

(1)线性方程组的基本概念和性质线性方程组的基本概念和性质也是线性代数的基础内容,需要重点掌握。

(2)线性方程组的求解和解的结构线性方程组的求解和解的结构也是考生需要学习的内容。

4. 线性变换线性变换在线性代数中也是重要的内容之一,需要考生进行深入学习。

(1)线性变换的基本概念和性质线性变换的基本概念和性质也需要考生重视,认真掌握。

(2)线性变换的矩阵表示线性变换的矩阵表示是考生需要学习的重要内容。

5. 特征值与特征向量特征值与特征向量也是线性代数的重点内容之一,需要考生掌握。

(1)特征值与特征向量的基本概念特征值与特征向量的基本概念也是重点内容之一。

(2)特征值与特征向量的计算特征值与特征向量的计算方法也是考生需要学习的内容。

二、题型总结1. 矩阵题型矩阵是考研线性代数中的重点之一,因此在考试中会涉及到矩阵的各种题型,主要包括矩阵的初等变换、矩阵的秩、逆矩阵与行列式等几个方面。

考研数学一大纲核心知识点解析线性代数部分典型题型详解

考研数学一大纲核心知识点解析线性代数部分典型题型详解

考研数学一大纲核心知识点解析线性代数部分典型题型详解考研数学一大纲核心知识点解析——线性代数部分典型题型详解随着考研热潮的兴起,越来越多的学子选择考研数学一。

数学一是理工科考研生非常重要的科目之一,其中线性代数作为数学一的一个重要组成部分,对考生来说是必备技能之一。

本文将围绕着考研数学一大纲中线性代数部分的核心知识点进行解析,并通过详细的典型题型解析,帮助考生掌握线性代数的重要知识点。

一、矩阵及其运算1.1 矩阵的基本概念矩阵是考研数学一中最基本的概念之一,它由行和列组成,可以用于表示线性方程组、线性映射等问题。

矩阵的转置、加法和数乘等运算是矩阵运算的基本操作。

例如,给定矩阵A、B和数k,满足以下条件:\[A = \begin{pmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{m1} & a_{m2} & \cdots & a_{mn} \\\end{pmatrix},B = \begin{pmatrix}b_{11} & b_{12} & \cdots & b_{1n} \\b_{21} & b_{22} & \cdots & b_{2n} \\\vdots & \vdots & \ddots & \vdots \\b_{m1} & b_{m2} & \cdots & b_{mn} \\\end{pmatrix},k \in R\]则有以下矩阵运算法则:(1)矩阵的转置:$A^T$表示矩阵A的转置,即将A的行变为列,列变为行;(2)矩阵的加法:$A + B$表示两个矩阵对应元素相加所得的矩阵;(3)数乘:$kA$表示把矩阵A的每个元素都乘以k所得的矩阵。

线性代数复习总结(重点精心整理)

线性代数复习总结(重点精心整理)

线性代数复习总结大全第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nija k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

考研线性代数知识点全面总结

考研线性代数知识点全面总结

《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。

3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。

奇排列变为标准排列的对换次数为基数,偶排列为偶数。

n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。

2、互换行列式两行或两列,行列式变号。

若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。

行列式某行(列)的公因子可提到外面。

4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。

5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。

6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。

(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。

考研数学有哪些线性代数复习重点

考研数学有哪些线性代数复习重点

考研数学有哪些线性代数复习重点考研数学有哪些线性代数复习重点考生们在进入考研数学的感想阶段时,有哪些线性代数是需要复我们去。

店铺为大家精心准备了考研数学线性代数复习难点,欢迎大家前来阅读。

考研数学线性代数复习要点第一章行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。

考试要求:1、了解行列式的概念,掌握行列式的性质。

2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。

第二章矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。

考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。

2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。

3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。

4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。

5、了解分块矩阵及其运算。

新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。

解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。

从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。

这部分内容的增加,加大了对数学二同学矩阵方面的要求。

同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。

还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。

第三章向量考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。

考研数学历年真题线性代数的考点总结

考研数学历年真题线性代数的考点总结

考研数学历年真题线性代数的考点总结线代部分对很多备考的学子来说,最深刻感觉就是,抽象、概念多、定理多、性质多、关系多。

为大家精心准备了考研数学历年真题线性代数的要点,欢迎大家前来阅读。

?线性代数章节总结第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理问题需要计算行列式,题目难度不是很大。

主要方法是利用行列式的性质或者展开定理即可。

而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进展变形、利用相似关系。

06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,今年数一、数二、数三这块都没有涉及。

第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。

本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。

其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的那么是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题那么用到了矩阵的秩的相关性质。

14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。

16年只有数二了矩阵等价的判断确定参数。

第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。

重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。

复习的时候要注意构造和从不同角度理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数在考研数学中占有重要地位,必须予以高度重视。

线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,必须注重计算能力。

线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的,下面就将线代中重点内容和典型题型做了总结,希望对大家学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,
不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、
逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等
问题中都会涉及到行列式。

如果试卷中没有独立的行列式的试题,必然会在其他章、节的试
题中得以体现。

行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶
法,用按行、按列展开公式将行列式降阶。

但在展开之前往往先用行列式的性质对行列式进
行恒等变形,化简之后再展开。

另外,一些特殊的行列式(行和或列和相等的行列式、三对
角行列式、爪型行列式等等)的计算方法也应掌握。

常见题型有:数字型行列式的计算、抽
象行列式的计算、含参数的行列式的计算。

矩阵是线性代数的核心,是后续各章的基础。

矩阵的概念、运算及理论贯穿线性代数的
始终。

这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。

涉及伴随矩阵的定义、
性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。

这几
年还经常出现有关初等变换与初等矩阵的命题。

常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。

向量组的线性相关性是线性代数的重点,也是考研的重点。

考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。

常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。

本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。

主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。

特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。

重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。

由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。

重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念; 了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。

重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

相关文档
最新文档