《离散数学》(上)试卷(A卷)及参考答案

合集下载

离散数学试题(A卷答案)

离散数学试题(A卷答案)

离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。

乙说:王教授不是上海人,是苏州人。

丙说:王教授既不是上海人,也不是杭州人。

王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。

试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。

则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。

所以,丙至少说对了一半。

因此,可得甲或乙必有一人全错了。

又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。

同理,乙全错则甲全对。

所以丙必是一对一错。

故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。

三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。

证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。

离散数学试卷06-07(上)A

离散数学试卷06-07(上)A

合肥学院2007至2008学年第二学期《离散数学》课程考试( A )卷计算机 系 06 级 网络工程 专业 学号 姓名一、选择题:(每小题2分,计22分)1.前提,,p q q r r ⌝∨⌝∨⌝的结论是(A.qB.p ⌝C. p q ∨D p q ⌝→2.集合A={1,2,3,4},下列关系R 中不是等价关系的是( ) A. {1,1,2,2,3,3}R =〈〉〈〉〈〉;B.{1,1,2,2,3,3,3,2,2,3}R =〈〉〈〉〈〉〈〉〈〉;C.{1,1,2,2,3,3,1,4}R =〈〉〈〉〈〉〈〉;D.{1,2,2,1,1,3,3,1,2,3,3,2}A R I =〈〉〈〉〈〉〈〉〈〉〈〉⋃。

. 3.下列语句中哪个是命题( )A.我正在说谎。

B. 5x y + 。

C.地球之外还存在有智慧的动物。

D.请勿践踏草地! 4.设F(x):x 是火车,G(x):y 是汽车,H(x,y):x 比y 快。

命题“某些汽车比所有的火车慢”的符号化公式是( ).(()(()(,)))A y G y x F x H x y ∃→∀∧ .(()(()(,)B y G y x F x H x y ∃∧∀→ .(()(()(,)))C x y G y F x H x y ∀∃→∧ .(()(()(,)D y G y x F x H x y ∃→∀→ 5.利用谓词的约束变元的更名规则和自由变元的代人规则,可将公式(()(,))(,)x P x Q x y R x y ∀→∧改写为( )。

.(()(,))(,)A x P y Q x y R z s ∀→∧ .(()(,))(,)B z P z Q z s R x s ∀→∧ .(()(,))(,)C x P s Q x s R x s ∀→∧ .(()(,))(,)D z P s Q z s R z s ∀→∧6.下列公式中正确的等价式是( )。

.()()A xA x x A x ∃⇔∃⌝ .()()B xA x x A x ⌝∀⇔∃⌝.(,)(,)C x yA x y y xA x y ∀∃⇔∃∀.(()())(()())D x A x B x x A x B x ∀∧⇔∀∨7.设{},(())A B P P A =∅=,以下不正确的式子是( )。

11级离散数学试题(A)参考答案

11级离散数学试题(A)参考答案

2011级离散数学(A)参考答案一、填空题(每小题2分,共30分)1. 设():M x x 为人, ():F x x 不吃饭。

将命题“没有不吃饭的人”符号化为:))()((x F x M x ⌝→∀ 或 ))()(((x F x m x ∧∃⌝ 。

2. 设A={1, 2, 3, 4} ,则 A 的全部2元子集共有 6 个。

3. 设p :明天是周一,q :明天是周三,r :我有课。

则命题“如果明天是周一或周三,我就有课”的符号化形式为 r q p →∨)( 。

4. 已知命题公式A 含有2个命题变项,其成真赋值为00、10、11,则其主析取范式为 320m m m ∨∨ 。

5. 设p :北京比大连人口多,q :2+2=4,r :乌鸦是白色的。

则命题公式)()(r p r q ⌝→→∨的真值为 1 。

6. 集合}3,2,1{=A 上的关系}3,2,3,1,2,1{><><><=R ,则=-1R { <2,1>,<3,1>,<3,2> }。

7. 画出下图的补图 。

8.设A={1,2,3},B={a,b,c},A 1={1},f={<1,a>,<2,a>,<3,b>},则=-))((11A f f { 1,2 }。

9. 设无向图的度数序列为:1,2,2,3,4。

则该无向图的边数m= 6 。

10. 3阶有向完全图的2条边的非同构的生成子图有 4 个。

11. 设〈≤,A 〉为偏序集,A B ⊆。

若y x B y x 与,,∈∀都是可比的,则称B是A 中的一条链,B 中的元素个数称为链的长度。

在偏序集〈{1,2,…,9},整除〉中,{1,2,4,8}是长为 4 的链。

12. 下面运算表中的单位元是 b 。

13. 写出模4加法群G=<Z 4,⊕ >的运算表14. 模4加法群中, 2-3= 2 。

离散数学期末考试试卷a答案及评分细则

离散数学期末考试试卷a答案及评分细则

………密………封………线………以………内………答………题………无………效……电子科技大学英才学院2022 -2022学年第 1学期期 末 考试 A 卷离散数学 课程考试题 A 卷 〔 120分钟〕 考试形式:闭卷 考试日期 2022 年 月 日课程成绩构成:平时 分, 期中 分, 实验 分, 期末 100 分I.Multiple Choice (15%, 1.5 points each)〔A 〕 1. (p ∧q)→(p ∨q) is logically equivalent toa) T b) p ∨q c) F d) p ∧q〔A 〕 2. If P(A) is the power set of A, and A = ∅, what is |P(P(P(A)))|?a) 4 b) 24 c) 28 d) 216〔C 〕 3. Which of these statements is NOT a proposition?a) Today is Monday. ` b) 1+1=2.c) Am I right? d) Go and play with me.〔C 〕 4. Which of these propositions is not logically equivalent to the other three?a) (p → q) ∧ (r → q) b) (p ∨ r) → qc) (p ∧r) → q d) The contrapositive of ¬q → (¬p ^ ¬r)〔B 〕 5. Suppose | A | = 3 and | B | = 8. The number of 1-1 functions f : A → B isa) 24 b) P (8,3). c) 38 d) 83〔B 〕 6. Let R be a relation on the positive integers where xRy if x is a factor of y . Whichof the following lists of properties best describes the relation R ? a) symmetric, transitiveb) antisymmetric, transitive, reflexive c) antisymmetric, symmetric, reflexive d) symmetric, transitive, reflexive〔C 〕 7. Which of the following are partitions of },,,,,,,{h g f e d c b a U =?a)},,,,,{},,,{},{h g f e d c c b a a . b) },,,,,{},,{},{h g f e d c c b a c) }{},,{},,{},,,{h f e c b g d a . d) },,,,{},,{},,{h g f e d c b b a〔C 〕 8. The function f(x)=x 2log(x 3+78) is big-O of which of the following functions?a) x 2 b) x(logx)3 c) x 2logx d) xlogx〔A 〕 9.If 1010110111101101R ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦M , then R is: a) reflexive b) symmetric c) antisymmetric d) transitive.〔B 〕 10. Which of the followings is a function from Z to R ?………密………封………线………以………内………答………题………无………效……a) )1()(-±=n n f . ` b) 1)(2+=x x f . c) x x f =)( d) 21)(2-=n n fII. True or False (10%, 1 point each) 〔T 〕 1. If 1 < 0, then 5 = 6. 〔F 〕 2. (p ∧ q) ∨ r ≡ p ∧ (q ∨ r)〔F 〕 3. If A , B , and C are sets, then (A -C )-(B -C )=A -B . 〔T 〕 4. Suppose A = {a ,b ,c }, then {{a }} ⊆ P (A ).〔F 〕 5.()h x =is defined as a function with domain R and codomain R.〔T 〕 6. Suppose g : A → B and f : B → C , where f g is 1-1 and f is 1-1. g must be 1-1? 〔T 〕 7. If p and q are primes (> 2), then p + q is composite .〔F 〕 8.If the relation R is defined on the set Z where aRb means that ab > 0, then R is an equivalence relation on Z .〔T 〕 9. (A - B ) ⋃ (A - C ) = A - (B ⋂ C ).〔T 〕 10. The set{∅,{a },{∅},{a ,∅}} is the power set of some set III. Fill in the Blanks (20%, 2 points each)1. Let p and q be the propositions “I am a criminal 〞 and “I rob banks 〞. Express in simpleEnglish the proposition “if p then q 〞: If I am a criminal them I rob banks. 2. P (x ,y ) means “x + 2y = xy 〞, where x and y are integers. The truth value of ∃x ∀yP (x ,y )is False .3. T he negation of the statement “No tests are easy.〞 is some tests are easy.4. If 11{|}i A x x R x i i =∈∧-≤≤ then 1i i A +∞=is ∅.5. Suppose A = {x , y }. Then ()P A is {∅, {x}, {y},{x,y}}.6. Suppose g : A →A and f :A →A where A ={1,2,3,4},g = {(1, 4), (2,1), (3,1), (4,2)} andf ={(1,3),(2,2),(3,4),(4,2)}.Then fg ={(1,2),(2,3),(3,3),(4,2)}.7. The sum of 2 + 4 + 8 + 16 + 32 + ... + 210 is 211 - 2 .8. The expression of gcd(45, 12) as a linear combination of 12 and 45 is 12 ⋅ 4 + 45 ⋅ (1). 9.There are 5! permutations of the seven letters A,B ,C ,D ,E ,F have A immediately to the left of E .10. The two's complement of -13 is 1 0011 . IV. Answer the Questions (32%, 4points each):1. Determine whether the following argument is valid:………密………封………线………以………内………答………题………无………效……p→rq→rq∨⌝r________∴⌝pAns: Not valid: p true, q true, r true2.Suppose you wish to prove a theor em of the form “if p then q〞.(a) If you give a direct proof, what do you assume and what do you prove?(b) If you give an indirect proof, what do you assume and what do you prove?(c) If you give a proof by contradiction, what do you assume and what do you prove? Ans: (a) Assume p, prove q.(b) Assume ⌝q, prove ⌝p.(c) Assume p∧⌝q, show that this leads to a contradiction.3.Prove that A B A B⋂=⋃by giving a proof using logical equivalence.Ans:()()()() A B x x A Bx x A Bx x A Bx x A x Bx x A x Bx x A x Bx x A x Bx x A B A B ⋂={|∈⋂}={|∉⋂}={|⌝∈⋂}={|⌝∈∧∈}={|⌝∈∨⌝∈}={|∉∨∉}={|∈∨∈}={|∈⋃}=⋃4.Suppose f:R→R where f(x) =⎣x/2⎦.(a) If S={x| 1 ≤x≤ 6}, find f(S).(b) If T={3,4,5}, find f-1(T). Ans: (a) {0,1,2,3}(b) [6,12).e the definition of big-oh to prove that5264473n nn+--is O(n3).………密………封………线………以………内………答………题………无………效……Ans: 5555322226446410573763n n n n n n n n n n +-+≤==--, if n ≥ 2. 6. Solve the linear congruence 5x ≡ 3 (mod 11).Ans: 5 + 11k .7. Use the Principle of Mathematical Induction to prove that 1311392732n n+-++++...+= for alln ≥ 0.Ans: P (0):13112-= , which is true since 1 = 1. P (k ) → P (k + 1):111211313123311333222k k k k k k ++++++--+⋅-++...+=+==.8.Encrypt the message NEED HELP by translating the letters into numbers, applying the encryption function f(p ) = (3p + 7) mod 26, and then translating the numbers back into letters.Ans: Encrypted form: UTTQ CTOA.V. (6%) Without using the truth table, show that the following are tautologiesa) [⌝p ∧(p ∨q)]→q b) [p ∧(p →q)]→qAns:a) ⌝p ∧(p ∨q)≡(⌝p ∧p)∨(⌝p ∧ q)≡flase[⌝p ∧(p ∨q)]→q ≡ false →q ≡⌝false ∨q ≡true ∨q ≡true (3points)b)[p ∧(p →q)]→q ≡(⌝[p ∧(⌝p ∨q)])∨q ≡(⌝p ∨(p ∧⌝q))∨q ≡((⌝p ∨p)∧(⌝p ∨⌝q))∨q ≡⌝p ∨⌝q ∨q ≡true (3points)VI. (6%) Devise an algorithm which will find the minimum of n integers. What is the worst case time………密………封………线………以………内………答………题………无………效……complexity of this algorithm?a) procedure min(a1, a2, …, an: integers)(4points)v := a1 {largest element so far}for i := 2 to n {go thru rest of elems}if ai < v then v := ai {found smaller?}{at this poi nt v’s value is the same as the smallest integer in the list}return vb) the worst case time complexity of this algorithm is O(n). (2points)VII.(5%) Give the definition of a transitive relation, and Prove or disprove that the union of two transitive relations is transitive.Ans: A relation R on a set A is called transitive if only if (a,b)∈R and (b,c)∈R ,then (a,c) ∈R ,for a,b,c ∈A. (2points)The union of two transitive relations may be not transitive. A counter-example:A={1,2,3}, R1= {<1,1>, <2,3>}, R2={<1,2><3,3> }R1∪R2={<1.1>, <2,3><1,2><3,3>}, which is not transitive. (3points)VIII.(6%) Give an argument using rules of inference to show that the conclusion follows from the hypotheses. List all the steps in your argument.Hypotheses: All computer scientists like Star Trek. Sarah does not like Star Trek. Therefore, Sarah is not a computer scientist.Solution:Hypotheses: ∀x(ComputerScientist(x) →Likes(x, StarTrek))¬Likes(Sarah, StarTrek)Conclusion: ¬ComputerScientist(Sarah)Step 1: ∀x(ComputerScientist(x) →Likes(x, StarTrek)) (Hypothesis)Step 2: ComputerScientist(Sarah) →Likes(Sarah, StarTrek) (Univ. Inst. Step 1)Step 3: ¬Likes(Sarah, StarTrek) (Hypothesis)Step 4: ¬ComputerScientist(Sarah) (Modus Toll. St. 2+3)The argument is sound.Grading rubric: -3 points for making wrong assumptions.-2 points for not being able to complete the proof.-1 to -3 points for illegal usage of inference rules.。

离散数学样卷及答案A

离散数学样卷及答案A

a
c e d
2分 2分
b
R 的仅具有反自反性
4、已知集合 A={1,2,3,4,5,6},B={2,3,5},R 是 A 上的整除关系 (1)作出偏序关系 R 的哈斯图 (2)令 B={2,3,5},求 B 的最大,最小元,极大、极小元。 解(1)偏序关系 R 的哈斯图为
6 3
4 2 1
5
3分
(2) B 无最大元和最小元; 极大元:2,3,5,极小元:2,3,5 5、设 G 为群,a,b,c ∈ G,证明: abc = bca = cab 证明: (abc) 设 abc = t
证:设该树的顶点数为 n,则边数为 n-1。 由握手定理知 ∑ d (vi ) = 2m = 2(n − 1) ,
i =1 n
设该树中度数大于 2 的顶点数为 x,则
2(n − 1) = ∑ d (vi ) ≥ 2 * 1 + 2 * (n − 2 − x) + 3 x = 2n − 2 + x
i =1 n
2、设论域 D={a,b},与公式 xA(x)等价的命题公式是(
3、在布尔代数 L 中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是(
4、设 A={a,b,c,d},A 上的等价关系 R={<a,b>,<b,a>,<c,d>,<d,c>}∪IA,则对应于 R 的 A A.{{a},{b,c},{d}} C.{{a},{b},{c},{d}} 5、下列式子正确的是( A ) B.A-(B∪C)=(A-B)∪C D.~(A∩B) ⊆ A A. (A-B)-C=A-(B∪C) C.~(A-B)=~(B-A) B.{{a,b},{c},{d}} D.{{a,b},{c,d}}

离散数学试卷及答案

离散数学试卷及答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:A BC* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。

10.下图所示的偏序集中,是格的为 。

二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。

2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

3、设A={1,2,3},则A 上的二元关系有( )个。

A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。

4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。

《离散数学》试题含答案

《离散数学》试题含答案

《离散数学》试题含答案⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全⼆叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1?R2 =________________________,R2?R1 =____________________________, R12=________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B =__________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学试题及答案

离散数学试题及答案

离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。

解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。

则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。

因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。

二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。

解:论域:所有人的集合。

S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案)

离散数学考试试题(A 卷及答案)一、 (10 分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P Q)∧Q)一 ((Q∨R)∧Q) 2)((Q P)∨P)∧ (P∨R)3)((P∨Q)R)((P∧Q)∨R)解: 1)永真式; 2) 永假式; 3)可满足式。

二、 (8 分) 个体域为{1, 2},求x3y (x+y=4)的真值。

解:x3y (x+y=4) 一 x ((x+1=4)∨(x+2=4))一((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))一(0∨0)∧(0∨1)一1∧1一0三、 (8 分) 已知集合 A 和 B 且|A|=n, |B|=m,求 A 到 B 的二元关系数是多少? A 到 B 的函数数是多少?解:因为|P(A×B) |=2|A×B|=2|A| |B|=2mn,所以 A 到 B 的二元关系有 2mn 个。

因为|BA|= |B| |A|=mn,所以 A 到 B 的函数 mn 个。

四、 (10 分) 已知 A={1,2,3,4,5}和 R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求 r(R) 、s(R)和 t(R)。

解: r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、 (10 分) 75 个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20 人这三种东西都乘过,其中 55 人至少乘坐过其中的两种。

离散数学试卷(A)

离散数学试卷(A)

离散数学试卷(A)一、单项选择题(每小题2分。

共20分)在每小题的四个备选答案中只有一个正确的答案。

请将正确答案的序号写在题干的括号内。

1.设集合A={2,{a},3,4},B = {{a},3,4,1},E 为全集,则下列命题正确的是( ).A.{2}∈AB.{a}⊆AC.∅⊆{{a}}⊆B ⊆ED.{{a},1,3,4}⊂ B.2.除非613≥ ,否则79≤。

令r: 613≥,s :79≤,可符号化为( ).A.s r →B. r s →⌝C. s r →⌝D. r s →3.使命题公式()p q q ∧→为假的赋值是( )A.10B.01C.00D.114. ()r q p ↔→的合取范式是( )A.()()()r q p r q r p ⌝∨∨⌝∧∨⌝∧∨;B. ()()()r q p r q q p ⌝∨∨⌝∧∨⌝∧∨C. ()()()r q p r q q p ⌝∨∨⌝∧∨∧∨;D. ()()()r q p r q r p ⌝∨∨⌝∧∨∧∨;5.判断下列各式中,不是合式公式的是 ( )A.S R Q ∧→B.()()S R P →↔C.()()()P Q Q P →→→⌝D.()K RS →6. 下列语句中是命题的只有( )A .1+1=10B .x+y=10C .sinx+siny<0D .x mod 3=2 7.设A={1,2,3,4,5},下面集合等于A 的是( )A .{1,2,3,4} B.{}252≤x x x 是整数,且C .{}5≤x x x 是正整数,且D .{}5≤x x x 是正有理数,且8.设f 和g 都是x 上的双射函数,则()1-g f ( ) A.11--g f B. ()1-f gC. 11--f gD. 1-g f9.下面等值式不正确的是:( C )A.A A A ⇔∨ ;B. ()B A B A ⌝∨⌝⇔∧⌝ ;C. ()B B A A ⇔∧∨;D. B A B A ∨⌝⇔→;10.R 代表实数集合,针对给定的函数集合f ,下面函数f: R R →属于双射的是:( )A. ()x x f 2=B. ()x x f sin =C. ()23x x x f -=D. ()x x f x +=2二、判断题(每题2分,共10分)11. A 是合式公式,但()B A ∨不一定就是合式公式( )12. q p →为真当且仅当p 与q 同时为真或同时为假( )13.设i i m M 与是命题变项1p ,2p ,。

离散数学试卷及参考答案A

离散数学试卷及参考答案A

考试时间:90分钟满分:100分一、选择题(每题3分,共30分)1. 下列关于集合的描述,正确的是()A. 集合是具有相同性质的一组对象的集合B. 集合是具有不同性质的一组对象的集合C. 集合是具有相同性质的一组数字的集合D. 集合是具有不同性质的一组数字的集合2. 下列关于关系的描述,正确的是()A. 关系是集合中元素之间的对应关系B. 关系是集合中元素之间的相等关系C. 关系是集合中元素之间的包含关系D. 关系是集合中元素之间的顺序关系3. 下列关于函数的描述,正确的是()A. 函数是集合中元素之间的对应关系B. 函数是集合中元素之间的相等关系C. 函数是集合中元素之间的包含关系D. 函数是集合中元素之间的顺序关系4. 下列关于图的描述,正确的是()A. 图是由顶点和边组成的数学结构B. 图是由顶点和边组成的几何结构C. 图是由顶点和边组成的物理结构D. 图是由顶点和边组成的化学结构5. 下列关于图的类型的描述,正确的是()A. 无向图是顶点之间没有方向的图B. 有向图是顶点之间有方向的图C. 无向图是顶点之间有方向的图D. 有向图是顶点之间没有方向的图6. 下列关于图的性质的描述,正确的是()A. 图的顶点数等于边的数量B. 图的边数等于顶点的数量C. 图的顶点数可能大于边的数量D. 图的边数可能大于顶点的数量7. 下列关于图的路径的描述,正确的是()A. 路径是图中顶点之间的连续序列B. 路径是图中边之间的连续序列C. 路径是图中顶点和边之间的连续序列D. 路径是图中顶点和边之间的任意序列8. 下列关于图的连通性的描述,正确的是()A. 图是连通的,当且仅当任意两个顶点之间都有路径B. 图是连通的,当且仅当任意两个顶点之间都没有路径C. 图是连通的,当且仅当任意两个顶点之间都有至少一条边D. 图是连通的,当且仅当任意两个顶点之间都没有至少一条边9. 下列关于图的树的描述,正确的是()A. 树是连通且无环的图B. 树是连通且有环的图C. 树是连通且可能有环的图D. 树是连通且可能有环的图10. 下列关于图的颜色的描述,正确的是()A. 图的颜色是顶点之间的颜色关系B. 图的颜色是边之间的颜色关系C. 图的颜色是顶点和边之间的颜色关系D. 图的颜色是顶点和边之间的任意颜色关系二、填空题(每题2分,共20分)11. 集合是______的一组对象的集合。

《离散数学》模拟试卷A及答案

《离散数学》模拟试卷A及答案

《离散数学》模拟试卷A 及答案一、选择1.设集合A={a ,b ,c ,d ,e},偏序关系R 的哈斯图下图所示,假设A 的子集B={c ,d ,e},则元素c 为B 的 ( )A .下界B .最大下界C .最小上界D .以上答案都不对2.已知│A │=15,│B │=10,│A ∪B │=20,则│A ∩B │= ( ) A .10 B .5 C .20 D .133.下图中哪个是欧拉图 ( )A B C D4.下列式子中正确的是 ( )A .∅=0B .∅∈∅C .∅∈{a ,b}D .∅∈{∅}5.在下图所示的哈斯图中的偏序集不是格的是 ( )dbeac6.下图中是一个从X 到Y 的映射f ,其中X={a ,b ,c ,d ,e},Y={1,2,3,4},则映射f 是 ( )A 双射B 满射C 入射D 以上都不是7.已知集合A={∅,1,2},则A 的幂集合ρ(A)=________ 8.设K6是有6个点的完全图,则K6共有____________条边。

9.设A ,B 是两集合,其中A={a ,b ,c},B={a ,b},则A-B=_______________,A ⋂B=_______________________________________10. 设A={a ,b},B ={1,2,3},则A ⨯B=二、计算或证明题1. 利用推理规则证明:┒(P ∧┒Q ),┒Q ∨R ,┒R ┒P (10分)2. 利用推理规则证明:(∀x )(┒A (x )→B (x )),(∀x )┒B (x )(∃x )A (x )(10分)3. 如果关系R 和S 为X 上的等价关系,证明:R ⋂S 也是X 上的等价关系。

(10分)4. 设集合A={a ,b ,c ,d},A 上的关系R={<a ,a>,<a ,b>,<b ,a>,<c ,d>,<b ,c>}(10分) 求:1)画出R 的关系图,并用作图法分别求出R 的自反闭包和对称闭包。

离散数学试卷及参考答案

离散数学试卷及参考答案

济南大学继续教育学院离散数学试卷(A)学年:学期:年级:专业:学习形式:层次:(本试题满分100分,时间90分钟)一、选择(每题2分,共18分)1.设简单图G所有结点的度之和为12,则G一定有 ( ) 条边。

A. 3B. 4C. 5D. 62.设G是一棵树,则G 的生成树有 ( B ) 棵A. 0B. 1C. 2D.不能确定3. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( )。

A. (1,2,2,3,4,5)B. (1,2,3,4,5,5)C. (1,1,1,2,3)D. (2,3,3,4,5,6).4. 命题∀xG(x)取真值1的充分必要条件是( )。

A.对任意x,G(x)都取真值1.B.有一个x0,使G(x0)取真值1.C.有某些x,使G(x0)取真值1.D.以上答案都不对.5.设集合A={2,{a},3,4},B = {{a},3,4,1},E为全集,则下列命题正确的是( )。

A. {2}∈AB. {a}⊆AC. ∅⊆{{a}}⊆B⊆ED. {{a},1,3,4}⊂B.6. 下列关于集合的表示中正确的为( )。

A.{a}∈{a,b,c}B. {a}⊆{a,b,c}C. ∅∈{a,b,c}D. {a,b}∈{a,b,c}7.下列式子正确的是 ( )。

A. p →q = q →pB. p →q = ⌝q ∨ pC. p →q,q →s ⇒ p →sD. p ↔q = (p → q) ∨ (q→ p)8.下列语句中,( )是命题。

A.请把门关上B.地球外的星球上也有人C. x + 5 > 6D. 下午有会吗?9.设G、H是一阶逻辑公式,P是一个谓词,G=∃xP(x), H=∀xP(x),则一阶逻辑公式G→H是( )。

A. 恒真的第 1 页共 13 页。

离散数学试题与参考答案

离散数学试题与参考答案

《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。

(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( )(A) 1∈A (B) {1,2, 3}⊆A(C) {{4,5}}⊂A (D) ∅∈A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B ⋂C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>}5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共206. 设集合A ={∅,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><,那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系.9. 写出一个不含“→”的逻辑联结词的完备集 .10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C)12. (10分)构造证明:(P →(Q →S))∧(⌝R ∨P)∧Q ⇒R →S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽大学20 09 — 20 10 学年第 1 学期 《 离散数学 》考试试卷(A 卷)(时间120分钟)院/系 专业 姓名 学号一、单项选择题(每小题2分,共20分)1. 设:P 天没下雪,:Q 我去镇上,则命题“天正在下雪,我没去镇上”可符号化为( D )A.Q P ⌝→⌝;B. P Q ⌝→⌝;C.Q P ⌝∧;D. Q P ⌝∧⌝。

2.下列命题是重言式的是( C )A.)()(P Q Q P →∧→;B. )()(Q P P Q P ↔↔↔∧;C. )(Q P Q P →→∧;D. Q P R Q P ∧⌝∧⌝∨→))((。

3. 设解释R 如下:论域D 为实数集,a=0, f(x,y)=x-y, A(x,y):x<y.下列公式在R 下为真的是( )A.(∀x)(∀y)(∀z)(A(x,y)→A(f(x,z),f(y,z)))B.(∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))4. 对任意集合,,A B C ,下列结论正确的是( B )A. C A C B B A ∉⇒∉∧∉][;B. C A C B B A ∈⇒⊆∧∈][;C. C A C B B A ∉⇒∉∧∈][;D. C A C B B A ∈⇒∈∧⊆][。

5. 9.关于{,,}X a b c =到{1,2,3}Y =的函数{,1,,1,,3}f a b c =<><><>,下列结论不正确的是( )A 、1({3}){}f c -=; B 、1(3)f c -=; C 、({}){3}f c =; D 、()3f c =。

6. 设I 为整数集合,则I 上的二元关系}4|||,{=-><=y x y x R 具有( B )A.自反性和对称性;B.反自反性和对称性;C.反自反性和传递性;D.反对称性和传递性。

7. 设R %为非空集合A 上的关系R的逆关系,则下列结论不成立的是( D )A.若R 为偏序,则R %为偏序;B.若R 为拟序,则R %为拟序;C.若R 为线序,则R %为线序;D.若R 为良序,则R %为良序。

8. 设1π和2π是非空集合A 的划分,则下列结论正确的是( B )A. 1π细分21ππ•;B. 1π细分21ππ+;C. 非空集合A 的划分12ππI 细分1π;D. 1π细分非空集合A 的划分12ππU 。

9. 设X={a,b,c},I x 是X 上恒等关系,要使I x ∪{〈a,b 〉,〈b,c 〉,〈c,a 〉,〈b,a 〉}∪R 为X 上的等价关系,R 应取( D )A. {〈c,a 〉,〈a,c 〉}B.{〈c,b 〉,〈b,a 〉}C. {〈c,a 〉,〈b,a 〉}D.{〈a,c 〉,〈c,b 〉}10. 设N 和R 分别为自然数和实数集合,则下列集合中与其他集合的基数不同的集合是( D )A.R ;B.N N ;C.()N ρ;D.n N (n N ∈)。

二、判断题(每小题2分,共10分。

对的打√,错的打×)1. ( )命题联结词{⌝,∧,∨}是最小联结词组。

2. ( )(P ∧Q )∧⌝P 为矛盾式。

3. ( )((⌝P ∨Q )∧(Q →R ))→(P →R )为重言式。

4.( )A 、B 、C 是任意集合,如果A C U =A B U ,一定有B=C 。

5. ( )若集合A 上的二元关系R 是对称的,R 的绝对补R 一定是对称的。

6. ( )R 是A 上的二元关系,R 是自反的,当且仅当r(R)=R 。

7. ( )集合A 上的等价关系确定了A 的一个划分。

8. ( )有理数集是可数的。

9. ( )若函数f ,g 为单射的则其复合函数也为单射的。

10. ( )R 是集合A 上的关系,R 有传递性的充要条件是RoR ⊆R 。

二、填空题(每小空2分,共20分)1.设)(x R :x 是实数,)(x Q :x 是有理数,)(x Z :x 是整数,则“有理数都是实数,但实数并非都是有理数”符号化为: ; “有理数都是实数但并非都是整数”符号化为: 。

3. 设集合A ={a,b,c},B={a,b}, 那么 ρ(B)-ρ(A)= ____ __ 。

ρ(B-A) = ____ __ 2. 设}5,4,3,2,1,0{=A ,则定义在集合A 上二元关系}2(|,{<∧=∃><=k ky x k y x R 的关系矩阵为__________。

=)(R t M ___________________。

6. 设]1,0[=U ,]1,21[=A ,13(,)44B =,则()A B x ψ=U __________,()A B x ψ⊕=__________。

设N 为自然数集合,Q 为有理数集合,R 为实数集合,则|NXQ| |N| ,|R-Q| |Q| (填=,>,<)三、解答题(每小题10分,共20分)1. 求))(()(R Q P R Q P ⌝∧⌝→⌝∧∧→的主析取范式和主合取范式。

A=上的偏序关系R={ }。

3. 给定集合{1,2,3,4,5,6,7}(1)给出了偏序集合,A R <>的哈斯图(2)求出A 的最小元素和最大元素,如果不存在,则指出不存在。

(3)求出A 的极小元素和极大元素;(4) 令}4,3,2{=B ,}5,4,3{=C ,分别求出B 和C 的最大、最小、极大、极小元及其上界、下界、最小上界和最大下界。

四、证明题(每小题10分,共30分)1. 设I 为整数集合,函数:f I I I I ⨯→⨯定义为:(,),f x y x y x y <>=<+->, 证明:f 是单射的但不是满射的。

2. 设R是集合{1,2,3,4,5}A=上的关系{(1,1),(1,3),(2,2),(2,5),(3,1),(3,3),(4,4),(5,2),(5,5)}R=(1)画出R的关系图;(2)证明R是等价关系;(3)写出R的所有等价类。

2. 用推理规则证明:))()(())()(())()((xPxRxQxRxxQxPx⌝→→⌝→∀⇒→∀。

3. 设R 为实数集合,Q 为整数集合,证明:c Q R =-||。

安徽大学20 07 —20 08 学年第 1 学期《 离散数学 》考试试题(A 卷)参考答案及评分标准一、单项选择题(每小题2分,共20分)1.D ;2.C ;3.A ;4.B ;5.C ;6.B ;7.D ;8.B ;9.D ; 10.D 。

二、填空题(每小空2分,共20分)1.},4,2,0,2,4{]0[2ΛΛ--=, },5,3,1,1,3{]1[2ΛΛ--=;2.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡10000010*******0001011111;3.162,15;4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0101010111010101)(R t M ; 5.双,满,单;6. ⎩⎨⎧=01)(x A ψ 时当时当210121<≤≤≤x x 。

三、解答题(每小题10分,共30分)1. ))(()(R Q P R Q P ⌝∧⌝→⌝∧∧→)()(R Q P R Q P ⌝∧⌝∨∧∧∨⌝⇔ 2分 )()()()(R P Q P R P Q P ⌝∨∧⌝∨∧∨⌝∧∨⌝⇔ 4分 )()()(R Q P R Q P R Q P ⌝∨⌝∨∧∨⌝∨∧⌝∨∨⇔)()()(R Q P R Q P R Q P ∨⌝∨⌝∧⌝∨∨⌝∧∨∨⌝∧ )6,5,4,3,2,1(π⇔(主合取范式) 8分 )7,0(∑⇔(主析取范式) 10分2. {(1,1),(1,3),(2,2),(2,5),(3,1),(3,3),(4,4),(5,2),(5,5)}R =.(1) R 的关系图4分 (2) 因为 R 满足自反、对称和传递性,所以R 是等价关系;3分 (3) 等价类:{1, 3}, {2, 5}, {4}。

3分3. (1),A R <>的有向图为2分(2)A 的最小元素不存在,最大元素是1; 4分 (3)A 的极小元为:4,5;极大元为;1 6分 (4)B 最大元素不存在,最小元素为:4,极大元为:2,3,极小元为:4,上界为:1,下界为:4,上确界为1,下确界为:4; 8分C 的最大元素为:3,最小元素不存在,极大元为:3,极小元为:4,5,上界为:1,3,下界不存在,上确界为3,下确界不存在。

10分四、证明题(每小题10分,共30分)1. (1)1122,,,x y x y I I∀<><>∈⨯,若),(),(2211><=><y x f y x f ,即>-+>=<-+<22221111,,y x y x y x y x ,则⎩⎨⎧-=-+=+22112211y x y x y x y x , 3分易得21x x =且21y y =,因此1122,,x y x y <>=<>,所以f 是单射函数。

5分 (2)取,0,1p q I I <>=<>∈⨯,对,x y ∀<>,若>=<><q p y x f ,),(,则有01x y p x y q +==⎧⎨-==⎩,易得1/21/2x y =⎧⎨=-⎩,但,1/2,1/2x y I I <>=<->∉⨯, 8分 所以对于,p q I I <>∈⨯,不存在,x y I I <>∈⨯,使得>=<><q p y x f ,),(,所以f 不是满射的。

10分2. 根据CP 规则,上式等价于))()(())()(())()((x P x R x Q x R x x Q x P x ⌝→⇒⌝→∀∧→∀ 2分而))()(())()((x Q x R x x Q x P x ⌝→∀∧→∀)))()(())()(((x Q x R x Q x P x ⌝→∧→∀⇔ 10Q 4分 )))()(())()(((x Q x R x P x Q x ⌝→∧⌝→⌝∀⇔ 245,E E 6分 ))()(())()((x Q x R x P x Q ⌝→∧⌝→⌝⇒ 1Q 8分 )()(x P x R ⌝→⇒ 6I 10分 所以,))()(())()(())()((x P x R x Q x R x x Q x P x ⌝→→⌝→∀⇒→∀3. 设R Q R f →-:,()f x x =,则f 是从Q R -到R 的单射函数,所以c R Q R =≤-||||。

相关文档
最新文档