数形结合思想在解题中的应用

合集下载

数形结合思想在高中数学解题中的应用

数形结合思想在高中数学解题中的应用

数形结合思想在高中数学解题中的应用数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。

华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,割裂分家万事休。

”数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果。

数形结合的重点是研究“以形助数”。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓思维视野。

数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。

另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

运用数形结合思想解题的三种类型及思维方法:一、“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

例如:已知二次函数y=ax2+bx+c(a≠0)的图像如图,在下列代数式中(1)a+b+c>0,(2)-4a<b<-2a,(3)abc>0,(4)5a-b+2c<0,其中正确的个数为(A)。

A.1个B.2个C.3个D.4个由图形可知:抛物线开口向上,与y轴交点在正半轴,∴a>0,b<0,c>0,即abc<0,故(3)错误。

又x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误。

∵对称轴在1和2之间,∴1<-<2,又a>0,∴在不等式左右两边都乘以-2a得:-2a>b>-4a,故(2)正确。

又x=-1时,对应的函数值大于0,故将x=1代入得:a-b+c>0,又a>0,即4a>0,c>0,∴5a-b+2c=(a-b+c)+4a+c>0,故(4)错误。

浅谈“数形结合”思想在数学解题中的应用

浅谈“数形结合”思想在数学解题中的应用

浅谈“数形结合”思想在数学解题中的应用——从2003年全国数学高考题看数学解题中的“数形结合”思想数学是研究现实世界的空间形式和数学关系的一门学科。

数学思想是现实世界的空间形式和数量关系反映到人的意识之中,经过思维而产生的结果,是对数学事实与理论的本质认识。

数学思想是数学学科的精髓,是素质教育的要求,是数学素养的重要内容,是获取知识、发展思维能力的重要工具,同时也是数学解题中的良方。

“数”和“形”是数学研究的两个基本的对象。

是在数学解题中,通过建立坐标系,使数和形互相渗透,互相转化,以“数解形”与以“形助数”的思想方法得到极佳的效果,寻求解题中的技巧和捷径。

这就是数学思维中所谓的“数形结合”思想。

“数形结合”思想是高中数学众多数学思想中最重要的,也是最基本的思想之一,它在高中数学中有着广泛的应用,是解决许多数学问题的有效思想。

数和形是数学研究客观物体的两个方面,数侧重研究物体数量方面,具有精确性;形侧重研究物体形的方面,具有直观性。

数和形互相联系,可用数来反映空间形式,也可用形来说明数量关系,“数形结合”就是将两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题。

以“数解形”是从特殊到一般,从直观到抽象的发展过程,以“形助数”是利用图形的直观帮助探求解题思路。

通过已知条件和探求目标联想甚至是构造出一个恰当的图形,可利用图形探索解题思路,甚至有时能估计出结果。

历年来,数学高考中都十分重视考查学生对数形结合思想的运用。

2003年数学高考试题中对运用这种方法的考查体现得十分突出。

如试题中第1题、第2题、第3题、第5题、第6题、第8题、第11题、第12题、第15题、第16题、第17题、第18题、第19题、第20题、第21题等,都可以借助这种思想方法求解,在整个试题中占分值达108分。

可见必须充分重视“数形结合”方法的运用。

一、“数形结合”思想在函数解题中的应用函数是高中数学的重要内容之一,通过坐标系把“数”和“形”结合起来,利用函数图像研究函数的性质,由函数的解析式画出其几何图形,由此相互依托,可以解决许多问题。

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。

在初中数学的教学中,数形结合思想被广泛地应用。

本文将从初中数学的各个章节对其应用进行探讨。

1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。

数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。

例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。

2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。

例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。

3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。

4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。

结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。

教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。

数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用1. 引言1.1 概述数形结合思想方法是一种通过将数学与几何图形相结合的方式来解决数学问题的方法。

在高中数学教学与解题中,数形结合思想方法被广泛运用,对学生的数学思维能力和解题能力有着显著的提升作用。

本文将从理论基础、教学应用、解题实际操作、优势局限性和案例分析等方面对数形结合思想方法进行详细介绍和分析,旨在探讨这种方法在高中数学教学和解题中的实际应用效果及其潜在局限性。

通过对数形结合思想方法的深入研究,可以为未来数学教学和研究提供新的思路和方法,促进学生对数学的深入理解和应用能力的提高。

【概述】1.2 研究背景随着科技的不断发展和社会的快速进步,教育也在不断改革和创新。

高中数学作为学生必修科目之一,承担着培养学生逻辑思维能力和数学素养的重要使命。

在传统的数学教学中,很多学生常常感到枯燥和无趣,难以理解和掌握抽象的概念和定理。

有必要寻找一种更加生动、直观且实用的教学方法来激发学生学习数学的兴趣和动力。

1.3 研究意义数范围等。

【研究意义】内容如下:研究数形结合思想方法在高中数学教学与解题中的应用具有重要的实际意义。

数学教学是培养学生逻辑思维能力和问题解决能力的重要途径,而数形结合思想方法能够帮助学生更好地理解数学知识,提高他们的数学学习兴趣和学习效果。

数形结合思想方法在解题中的应用能够帮助学生更加深入地理解问题的本质,提高他们的问题解决能力和创新思维水平。

研究数形结合思想方法的优势和局限性,有助于教师更好地指导学生应用该方法解决问题,并且能够帮助教育部门和相关机构调整和改进数学教学计划,推动数学教育的发展和进步。

深入研究数形结合思想方法在高中数学教学与解题中的应用,对于提高我国数学教育质量,培养优秀数学人才,具有重要的现实意义和战略意义。

2. 正文2.1 数形结合思想方法的理论基础数,具体格式等。

数形结合思想方法的理论基础主要包括几何与代数的融合和数学建模的理论支持。

数形结合百般好——数形结合思想在解题中的应用

数形结合百般好——数形结合思想在解题中的应用

用 计 算 的方 法 , 要 解 决 的 形 的 问 题 转 化 为 对 数 量 关 系 的 把
标 系 这一 舞 台来 进 行 着 数 与 形 最 完 美 的结 合 .
例 2 已 知 一 次 函 数 Y=h +b的 图 像 经 过 (一1 m) 。 , ( 1 两 点 , m >1 则 , 满 足 的 条 件 是 ( m。 ) 且 , 6应
读 题 一 边 用 图示 或 图 表 来 直 观 地 表 示 其 中 的 量 , 可 方 便 就
地 发 现 等 量 关 系 , 而解 决 问题 . 从
4 .利 用 几 何 定 理 、 型 来 反 映 数 量 关 系 模

是 指 把 代 数 的 精 确 刻 画 与 几 何 的 形 象 直 观 相 统 一 , 抽 象 将 思 维 与 形 象 直 观 相 结 合 的 一 种 思 想 方 法 . 学 家 华 罗 庚 教 数
三角 形 的三边 关 系 , 口+ C的 最小 值 就 是线 段 B P P C的 长. 长 延 B , c 作 c 上 B , AB C 中 , c = B c 2= A过 E E 在 E B E + E


用 形 来 反 映 数 量 关 系
1 .数

数 轴 是初 中数 学 教 材 中 数 形 结 合 的 第 一 个 实 例 , 充 它 分发 挥 了数 的准 确 、 的 直 观. 的 建 立 , 仅 使 直 线 上 的 形 它 不 点 与 实数 间建 立 了 一 一 对 应 关 系 , 揭 示 了数 形 之 间 的 内 还 在联 系 , 实 数 的 许 多 性 质 可 由数 轴 上 相 应 点 的 位 置 关 系 使 得 到形 象 生 动 的说 明 , 为 以 后 学 习 相 反 数 、 对 值 、 理 也 绝 有

数形结合思想在解题中的应用

数形结合思想在解题中的应用

数形结合思想在解题中的应用2012年秋季学期,广西将进入高中新课程改革,新课程理念逐渐深入人心;学习新理念,转变旧观念正成为高中教师重要的课题.数学课程改革的重心是发展学生的广泛的数学能力,注重数学思想、方法的教学渗透,培养学生形成良好的数学素质.数形结合是高中数学中重要的思想方法,通过数形结合可沟通数与形的内在联系,把代数语言的精确刻画与几何图形的直观描述有机地结合起来,使复杂问题简单化,抽象问题具体化,能使高中数学中许多复杂问题迎刃而解,收到事半功倍的效果.【例1】解不等式x+2>x.解法一:原不等式可化为x≥0x+2≥0x+2≥x2或x<0x+2≥0,解得0≤x<2或-2≤x<0,∴原不等式的解集为{x|-2≤x<2}.解法二:设y1=x+2,y2=x,在同一坐标系中作出这两个函数的图象(如图1),则不等式x+2>x的解就是y1=x+2的图象在y2=x的上方的那一段对应的横坐标,即不等式的解集为{x|xa≤x<xb},其中xa=-2,解方程x+2=x得xb=2.∴原不等式的解集为{x|-2≤x<2}.评析:比较上述两种解法,可以看到用图形直观地反映数量关系,解决问题简洁明了.【例2】设f(x)=x2-2ax+2-a,当x∈[-1,+∞]时,f(x)>a恒成立,求实数a的取值范围.解法一:f(x)>a在x∈[-1,+∞)上恒成立等价于x2-2ax+2-a >0在x∈[-1,+∞)上恒成立.设函数g(x)=x2-2ax+2-a,其图象在x∈[-1,+∞)时位于x轴上方有两种情况(如图2、图3所示).(1)δ=4a2-4(2-a)<0,解得-2<a<1;(2)δ=4a2-(2-a)≥0a<-1g(-1)=a+3>0,解得-3<a≤-2.故实数a的取值范围是(-3,1).解法二:由f(x)>a得x2+2>a(2x+1),设h(x)=x2+2,t(x)=a(2x+1),在同一坐标系中这两个函数的图象如图4所示,直线l1与抛物线相切,的对应值为1,直线l2经过点(- 12,0) 和点(-1,3),a的对应值为-3,符合题意的直线t(x)=a(2x+1)恒过点(-12,0)且位于l1与l2之间,故实数a的取值范围是(-3,1).图5【例3】已知:椭圆x29+y24=1 与抛物线y=x2+m有四个不同的交点,求实数m的取值范围.错解:在同一坐标系中作出椭圆和抛物线的图象(如图5),根据图象可得:m<-2-m<3,解得-9<m<-2.评析:图形的直观性给解决问题提供了很大的帮助,但离开了严格的数学推理,往往受图形直观错觉的影响得出错误的结论.图6正解:联立椭圆和抛物线的方程,得x29+y24 =1y=x2+m ,消去y,整理得9x4+(18m+4)x2+9m2-36=0,令t=x2,得9t2+(18m+4)t+9m2-36=0.设f(t)=9t2+(18m+4)t+9m2-36,根据题意知方程f(t)=0在(0,+∞)上有两个不相等的实数根(如图6),即得δ=(18m+4)2-36(9m2-36)>0,-18m+418 >0,f(0)=9m2-36>0解得-829<m<-2 .评析:这是一个关于图形交点的问题,求解过程却是从分析方程的根的情况入手,而在讨论方程f(t)=0在(0,+∞)上有两个不相等的实数根时,又需要利用二次函数的图象特征,这样数和形的密切结合、相互补充,使问题得到了圆满的解决.(责任编辑黄春香)。

49.数形结合思想在解题中的应用(王景超)

49.数形结合思想在解题中的应用(王景超)

解析: 已 知 可 联 想 到 长 方 体 的 对 角 线 与 过 同 一 由
点的三条棱所成的角 的关 系. , , a ( 7可 以看做是长方 3
体 的一 条对 角 线 与 过 这 条 对 角 线 一 端 的 三 条 棱 所 成 的 角 . 样 通 过 构 造 长 方 体 模 型 , 使 问题 迎 刃 而解 . 这 可 构 造 如 图 5所 示 的 长 方 体 ABC - B, , D A, , C D,
求得 y 。 一万 +- 二6 ; . 一6 y 、 十棍 图3 r 已知点( , ) 二 , 满足的一 平面区域 , 罕 。 十b 的 最值 问 求 牛 . y
霎 嘿 毕1 } l l 赢 潜似 ; ! ) } ff! v , 甲' , 是 就 塑
设 艺 DAC “a 匕 B , , A, , , , , AC =召 乙 AC =y AD=a AB , =b A =( 连结 D , , C , , A, 一 C , C , ,易知 csa c s3 csy . B A, o ' ot ot + ( + =1
_丫' ,_ 。 丫 ' b+。 _ a +扩 t ana
譬鳗
N =何的关键是要能够把 “ 气‘ 有机结合起来 , 形 数‘ _ 实现 形中有 J‘
戮 瞥
成功是寻海人经过长途跋 涉后 看到 大海时的那份欣喜 。 — 贵州盘县第二 中学高三(o 班 l) 陈 刚
中 举 生 数 理 化
解 析 : F( ) ( ). ( ) 由 已知 得 F( ) 征 : 设 二 -f 二 g 二 , 二特 0 二 是 奇 函 数 ; 1F( ) ② 当 二 时 , x >0所 以 二 时 , ( ) <0 尸< ) , <。 F 二 为增 函数 ; ③ ( ) f 一3 g 一3 二0 F 一3 = ( )・ ( ) 二F( ) 3. 根 据 FC ) x 的性 质 大 致 画 出 F( ) 图 象 , 图 4 观 察 二 的 如 . 一3U 3 故选 D ( ) 0 ・ 知 不 等 式 F( ) O的 解 集 是 ( xG 一二 , ) , ,

数形结合思想在中学数学中的解题应用

数形结合思想在中学数学中的解题应用

数形结合思想在中学数学中的解题应用数与形是数学的两大支柱,它们是对立的,也是统一的。

数形结合,其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。

教师要尽量发掘数与形的本质联系,促使学生善于运用数形结合的思想方法去分析问题、解决问题,从而提高学生的数学能力。

下面结合具体实例谈谈数形结合思想在解题中的应用:1.函数中的数形结合思想例1:已知:点(-1,y1)(-3,y2)(2,y3)在y=3x2+6x+2的图象上,则: y1、y2、y3 的大小关系为()a.y1>y2>y3b.y2>y1>y3c.y2> >y1d.y3>y2>y1分析:由y=3x2+6x+2=3(x+1)2-1画出图象1,由图象可以看出:抛物线的对称轴为直线x=-1即:x=-1时,y有最小值,故排除a、b,由图象可以看出:x=2时y3的值,比x=-3时y2的值大,故选c.例2:二次函数 y=ax2+bx+c的图象的顶点在第三象限,且不经过第四象限,则此抛物线开口向,c的取值范围,b的取值范围,b2-4ac的取值范围。

解:由题意画出图象,如图:从而判断:a>0,c≥0∴对称轴:x=- 0图象与x轴有两个交点:∴△>0即b2-4ac>0例3:如图3,已知二次函数y=ax2+bx+c(a≠0)的图象过点c (0,),与x轴交于两点a(x1,0)、b(x2,0)(x2>x1),且x1+x2=4,x1x2=-5.求(1)a、b两点的坐标;(2)求二次函数的解析式和顶点p的坐标;(3)若一次函数y=kx+m的图象的顶点p,把△pab分成两个部分,其中一部分的面积不大于△pab面积的,求m的取值范围。

解:(1)∵x1+x2=4x1·x2=-5且x1<x2∴x1=5,x2=-1.∴a、b两点的坐标是a(5,0),b(-1,0)(2)由a(5,0),b(-1,0),c(0,),求得y=- (x-2)2+3.∴顶点p的坐标为(2,3);(3)由图象可知,当直线过点p(2,3)且过点m(1,0)或n (3,0)时,就把△pab分成两部分,其中一个三角形的面积是△pab的面积的 .①过n(3,0),p(2,3)的一次函数解析式为y=-3x+9;过点a(5,0),p(2,3)的一次函数解析式为y=-x+5.又一次函数y=kx+m,当x=0时,y=m,此一次函数图象与y轴的交点的纵坐标为m,观察图形变化,可得m的取值范围是5<m≤9.②过b(-1,0),p(2,3)的一次函数解析式为y=x+1;过点m (1,0),p(2,3)一次函数解析式为y=3x-3,观察图形变化,得m的取值范围是-3≤m<1.∴m的取值范围是-3≤m<1或5<m≤9.2.求最值问题:例.已知正实数x,求y= + 的最小值.分析:可以把 + 整理为 + ,即看作是坐标系中一动点(x,0)到两点(0,2)和(2,1)的距离之和,于是本问题转化为求最短距离问题.解:y= + ,令p=(x,0)、a(0,2)和b(2,1),则y=pa+pb.作b点关于x轴的对称点b’(2,-1),则y的最小值为ab’= = .3.利用方程解决几何问题例:本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取a、b、c三根木柱,使得a、b之间的距离与a、c之间的距离相等,并测得bc长为240米,a到bc的距离为5米,如图1所示.请你帮他们求出滴水湖的半径.[解析]如图2,设圆心为点o,连结ob、oa,oa交线段bc于点d.因为ab=ac,所以ab= bc,∴oa⊥bc,且bd=dc= bc=120.由题意,知da=5.设ob=x米.在rt△bdo中,因为ob2=od2+bd2,所以x2=(x-5)2+120.得x=1442.5 .所以,滴水湖的半径为1442.5米.数形结合思想在对于培养和发展学生的空间观念和数感方面有很大的启发作用,利用数形结合思想进行解题可以使的有些复杂问题简单化,抽象问题具体化。

数形结合思想在解题中的应用

数形结合思想在解题中的应用

数形结合思想在解题中的应用(一)教学目标:1.利用图形来处理方程及函数问题和不等式问题,求函数的值域,最值等问题时能运用数形结合思想,避免复杂的计算与推理,在解题时能提高效率。

2.增养学生问题转化的意识。

重点:“以形助数”,培养学生在解题过程中运用数形结合的意识。

难点:问题的转化。

利用多媒体形象地展示图形在解题中的应用,克服解题中的困难.数形结合作为一种重要的数学思想,历年来一直是高考考查的重点之一.这种思想体现在解题中,就是指在处理数学问题时,能够将抽象的数学语言与直观的几何图象有机结合起来思索,促使抽象思维和形象思维的和谐复合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决.本节课着重研究在函数与不等式问题中,在求函数的值域、最值问题时,运用数形结合的思想,使某些问题直观化、生动化、能够变抽象思维为形象思维,达到发现解题途径,避免复杂的计算和推理,简化解题过程的目的。

一、基础训练:1.方程lgx = sinx 的实根的个数为 [ ] A. 1个 B. 2个 C. 3个D. 4个解:画出y = lgx 和y = sinx 在同一坐标系中的图象,两图象有3个交点,选C.2.函数y = a |x|与y = x + a 的图象恰有两个公共点,则实数a 的取值范围是[ ] A .(1,+∞)B .(- 1,1)C .(- ∞,- 1]∪[1,+∞)D .(- ∞,- 1)∪(1,+∞)解:画出y = a |x|与y = x + a 的图象,两图象有两个交点的情形如下:情形1:⎩⎨⎧a > 0a > 1 => a > 1 情形2:⎩⎨⎧a < 0a < - 1 => a < - 1 选D3.不等式x + 2 > x 的解集是______________. 解法一:(常规解法)教师:杨如钢2007-4-23原不等式等价于(Ⅰ)⎩⎪⎨⎪⎧x ≥ 0x + 2≥0x + 2 > x2,或(Ⅱ)⎩⎨⎧x < 0x + 2≥0,解(Ⅰ)得0≤x < 2;解(Ⅱ)得- 2≤x < 0.综上可知,原不等式的解集为{x|- 2≤x < 0}∪{x|0≤x < 2}= {x|- 2≤x < 2} 解法二:(数形结合解法) 令y 1 = x + 2,y 2 = x ,则不等式x + 2 > x 的解就对应于:函数y 1 = x + 2的图象在y 2 = x 上方的图象的部分在x 轴上的射影.如图,不等式的解集为{x|x A < x < x B },由x + 2 = x 得x B = 2,而x A = - 2,∴不等式的解集是{x| - 2≤x < 2}.变题:不等式x + 2 > kx 的解集为M ,且M ⊆{x| - 2≤x < 2},则k ∈____________. 答案:[1,+∞)4.函数y = sinx + 2cosx - 2的值域为_______________.解法一:(代数法)由y =sinx + 2cosx - 2得ycosx – 2y = sinx + 2,∴sinx – ycosx = - 2y – 2,∴y 2 + 1sin(x + φ) = - 2y – 2, ∴sin(x + φ) = - 2y – 2y 2 + 1,而|sin(x + φ)|≤1, ∴|- 2y – 2y 2 + 1|≤1,解不等式得- 4 - 73≤y ≤- 4 + 73,∴函数的值域为[- 4 - 73,- 4 + 73].解法二(几何法):y = sinx + 2cosx - 2的形式类似于斜率公式k = y 2 - y 1x 2 - x 1,∴y =sinx + 2cosx - 2表示过两点P 0(2,- 2)及P(cosx ,sinx)的直线的斜率,由于点P 在单位圆x 2 + y 2 = 1上(如图),显然A P k 0≤y ≤B p k 0,设过P 0的圆的切线方程为y + 2 = k(x – 2), 则有|2k + 2|k 2 + 1= 1,解得k = - 4±73,即A P k 0=- 4 - 73,B p k 0= - 4 + 73∴- 4 - 73≤y ≤- 4 + 73,∴函数的值域为[- 4 - 73,- 4 + 73]5.过圆M :(x -1)2+(y -1)2=1外一点P 向此圆作两条切线,当这两切线互相垂直时,动点P 的轨迹方程是_____________.解:如图,设切点为A 、B ,连结MA 、MB 、PM ,则MA ⊥AP ,MB ⊥PB ,又AP ⊥PB ,且|PA|=|PB|,那么MBPA 是正方形,从而|PM| = 2|MA| = 2.设动点P(x ,y),则(x -1)2+(y-1)2=2,这就是所求的轨迹方程. 二、例题:例1.若关于x 的方程x 2 + 2kx + 3k = 0的两根都在-1和3之间,求k 的取值范围. 解:解法一:令f (x) = x 2 + 2kx + 3k ,其图象与x 轴交点的横坐标就是方程f (x) = 0的解,由y = f(x)的图象可知,要使两根都在-1和3之间,只需⎩⎨⎧f (-1) > 0f (3) > 0- 1 < - k < 34k 2- 12k ≥0,∴k ∈(- 1,0].解法二:设函数f (x) = x 2,g(x) = -2k(x +32),问题转化为两函数图象的两个交点的横坐标必须在- 1和3之间.画出两函数图象(如图),而PA 、PB 的斜率相等,都是2,∴0≤- 2k < 2,即k ∈(- 1,0] 例2.定圆C :(x – 3) 2 + (y – 3) 2 = (52) 2上有动点P ,它关于定点A(7,0)的对称点为Q ,点P 绕圆心C 依逆时针方向旋转120°后到达点R ,求线段RQ 长度的最大值和最小值.[分析]本题一般解法是,设点P(3 + 52cosα,2 + 52sinα),然后求出点Q 、R 的坐标,最后用两点间距离公式,求出|RQ|的最值.但这种解法运算量较大,还易出错.观察图,在△PRQ 中,欲求|RQ|,因A 是PQ 的中点,易想起三角形的中位线. 解: 取PR 的中点B ,连结BA ,则|RQ|=2|AB|.又B 是弦RP 的中点,连CB ,则CB ⊥RP ,∠BCP = 12∠PCR = 60°,∴|BC| = 12|CP| = 54.∴点B 的轨迹是以C 为圆心,54为半径的圆.这时求|QR|的最值,转化为求点A 与所作圆上点的距离的最值.过C 、A 作直线,交所作圆于B 1、B 2两点,则由平面几何知,|AB|的最大值为|AB 2| = |AC| + |CB 2| = (7 - 3) 2 + (0 - 3) 2 + 54 = 254,|AB|的最小值为|AB 1| =|AC| - |CB 1| = 5 - 54 = 154.故|QR|的最大值、最小值分别是252和152.例3. 求函数u = 2t + 4 + 6 - t 的最值.[分析]由于等式右端根号内同为t 的一次式,故作简单换元,设2t + 4 = m ,无法转化为一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元。

数形结合思想在中学数学解题中的应用

数形结合思想在中学数学解题中的应用

数形结合思想在中学数学解题中的应用
数形结合思想起源于古希腊,欧几里得的《几何原本》中对此有所提及;十七世纪,笛卡尔建立平面直角坐标系并发表了《几何学》;再后来,费马用代数方法研究几何学,著成《平面与立体轨迹引论》,从此数形结合思想被重视.我国在公元前十五世纪的甲骨文中对数形结合思想也有所记载;大约在公元前二世纪左右,我国已经记载了勾股定理;祖冲之所得?仔的结果比欧洲早一千年.数形结合思想的应用非常广泛,仍有很大的研究空间.数形结合思想用画图的方法来解决代数问题,用数字、公式来解决几何问题,使代数的繁琐问题变换成图形,更加直观明了,使复杂的图形变换成数字,更加具体化,结果也更加准确.目前国外的课本注重数形结合思想,强调用心理解然后应用,使学生将此思想变成一种习惯与意识,并能够直接运用.而在我国,数形结合思想在课本中体现得很少,基本由教师结合具体题型进行具体分析、传授,只是作为一种有利的解题工具出现.然而,在新课改的背景下,我国的数学教学越来越注重培养学生的数形结合能力,也有越来越多的人开始研究数形结合思想.著名的数学家华罗庚曾经说过:“数与形,本是相倚依,焉能分作两边飞,数无形时少直觉,形无数时难入微,数形结合百般好,隔离分家万事休,切莫忘,几何代数统一体,永远联系莫分离。

”罗新兵在文章《数形结合的解题研究――表征的视角》中对该思想大加
赞扬,同时也提出高中生存在的普遍现状:往往“以形助数”,在几何问题中通过直角坐标系向量使问题代数化,却往往忽略几何图形本身的定义和性质,这是应该注意的.。

数形结合思想在解题中应用

数形结合思想在解题中应用

数形结合思想在解题中的应用摘要:数形结合思想是中学数学中最重要和最常见的数学思想方法之一,数与形是中学数学研究的两类基本对象,相互独立,又互相渗透。

尤其在坐标系建立以后数与形的结合更加紧密。

从数中去认识图形,从形中去认识数。

数缺形少直观,形少数难入微。

高中数学的一些代数问题,通过研究其几何性质,能使抽象的数量关系在图形上直观地表达出来,使问题变得简单。

关键词:数形结合数学思想解题与应用所谓数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数式的含义又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题途径,使问题得以解决。

它包含“以形助数”和“以数辅形”两个方面。

著名数学家华罗庚先生说过“数形结合百般好,隔离分家万事休”。

高中数学的一些代数问题,通过研究其关系、性质,能使抽象的数量关系在图形上直观地表达出来,使问题变得简单。

而构造图形的关键在于敏锐的观察和合理的联想,巧用构造图形不仅可以提升学生数形互用解题的水平,而且还能培养他们不循常规、不拘常法、不落俗套的创新思维和探求精神。

纵观近几年的高考试题,巧妙地运用数形结合的思想方法解决一些抽象的数学问题可起到事半功倍的效果。

数形结合的思想方法应用是非常广泛的,在考试乃至平常的教学中常见的如解方程和解不等式问题,求函数的值域、最值问题,求复数和三角函数问题等。

运用数形结合思想不仅直观、易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。

所以要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

下面通过几个例题的分析给予解评。

例1.某班有50名学生报名参加a、b两项比赛,参加a项的30人,参加b项的有33人,且a、b都不参加的同学比a、b都参加的同学的三分之一多一人。

问:只参加a不参加b的学生有多少?分析:此类问题若只进行空洞的分析,很难找到我们所需的等量关系,甚至易出现多解和漏解情形。

数形结合思想在函数解题中的应用

数形结合思想在函数解题中的应用

数形结合思想在函数解题中的应用摘要:数形结合思想是数学教学重视数学思想培养之一。

高中数学教学和学习中,灵活地应用数形结合思想可以更好地对于数的概念以及形的特征把握,可以化抽象为具体,能通过数与形快速解决问题。

解决数学问题关键的一大利器是利用数形结合思想关键词:数形结合思想;函数;解题1. 阐述数形结合思想在高中数学的教与学的过程中要重视合理的转化数与形,实现将难懂的的数学问题的性质清晰表现处理。

寻找到潜藏在数与形之间的对应关系是数形结合思想的本质所在,常见的我们是把数转化成形,从而直观形象的解决问题,同时大家不要忽略有时学会形转化成数。

这是因为过于直观和具体的形,无法凝练出具有一般性的特征。

充分理解数与形互化关系,把形转化成为数,答案通过计算得出。

总而言之,数形结合是高中数学重要的数学思想之一,学会数学互化的重要思想。

本文主要讨论的是数形结合的思想在函数解题中的应用:研究单调性,求函数的最值,函数的零点问题等。

2.数形结合思想在函数性质中的应用新课改更注重学生的自主学习,自己提练信息,所以出题更偏爱将函数的几种性质综合在一起考查学生。

如果学生只是从代数的角度去解题,那无疑会增加解题的难度,如果能利用图形的直观性,能大大的提高解题效果。

我们要引导学生解题的要充分利用数形结合的思想。

(1)数形结合思想在函数单调中的应用例1.设函数f(x)=若函数f(x)在区间(a,a+1)上单调递增,求实数a取值范围解析:函数f(x)的图象如图所示,由图象可知f(x)在(a,a+1)上单调递增,需满足a≥4或a+1≤2,即a≤1或a≥4.总结:单调性是函数的重要性质之一,它的主要应用是用来求解最值,求解不等式,比较大小,求参数等,不管哪一种应用,能画出函数的图像,通过图像中的单调得出答案,能大大的提高解题效率,充分体现了数形结合思想的重要性(2)数形结合思想在函数最值中的应用例题1:定义max{a,b,c}为a,b,c中的最大值,设M=max{2x,2x-3,6-x},求M的最小值解析:画出函数M={2x,2x-3,6-x}的图象(如图),由图可知,函数M在点A(2,4)处取得最小值22=6-2=4,故M的最小值为4.总结:函数的最值是函数中比较热点的题目。

数形结合思想在解题中的应用(包含30例子)

数形结合思想在解题中的应用(包含30例子)

数形结合思想在解题中的应用(包含30例子)数形结合思想在解题中的应用(包含30例子)一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

22-+-=214x y如等式()()3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

二、例题分析 例1.的取值范围。

之间,求和的两根都在的方程若关于k k kx x x 310322-=++分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2.解不等式x x +>2解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222法二、数形结合解法:令,,则不等式的解,就是使的图象y x y x x x yx 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

数形结合的思想在高中数学解题中的应用

数形结合的思想在高中数学解题中的应用

龙源期刊网
数形结合的思想在高中数学解题中的应用
作者:刘锋
来源:《理科考试研究·高中》2013年第09期
数形结合就是把抽象的数学语言与直观的图形结合起来,通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化、抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法.
一、利用数形结合思想解决集合的问题
1.利用韦恩图法解决集合之间的关系问题
二、运用数形结合思想解三角函数题
纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.
三、利用单位圆中的有向线段解决三角不等式问题
在教材中利用单位圆的有向线段表示角的正弦线,余弦线,正切线,并利用三角函数线可作出对应三角函数的图象.如果能利用单位圆中的有向线段表示三角函数线,应用它解决三角
不等式问题,简便易行.
总之,由于数形结合的思想在高考中考查的比重很大,因而要花大力气,循序渐进地使学生建立数形结合的对应转化和应用,既要借助形的直观性来阐明数之间的关系,也要借助于数的精确性来阐明形的某些属性,使学生抓住数形结合本质,在解题中自觉地运用数形结合的思想,以提高解题的能力和速度.。

高中数学数形结合思想在解题中的应用

高中数学数形结合思想在解题中的应用

中学数学数形结合思想在解题中的应用一、学问整合1.数形结合是数学解题中常用的思想方法,运用数形结合的方法,许多问题能迎刃而解,且解法简捷。

所谓数形结合,就是依据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使困难问题简洁化,抽象问题详细化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与敏捷性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y -+-=214223.纵观多年来的高考试题,奇妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是探讨“以形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发觉解题途径,而且能避开困难的计算与推理,大大简化了解题过程。

这在解选择题、填空题中更显其优越,要留意培育这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

二、例题分析例1.的取值范围。

之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

数形结合思想在解题过程中的应用

数形结合思想在解题过程中的应用

摘要近年来,随着科学研究的进步与发展,我国数学地位在教育中也有明显的提升,数学已经广泛地渗入到数学以外的学科和我们的生活中.数学的精髓不在于知识本身,而在于数学知识中所蕴含的数学思想方法.本文首先简述了数形结合思想的历史演进、地位和原则.其次,借助实例从“以形辅数”、“以数思形”和“数形并重”等对数形结合思想在不等式、方程、函数、解析几何以及微积分等方面的应用加以分析,以便人们学会正确运用抽象和概括的科学思维方法,提高人们研究问题和解决问题的能力,充分体现数形结合思想在解题中的优越性.最后,总结出数形结合思想在数学教学中的作用和意义以及对人类生活的影响.关键词:数形结合思想,以数思形,以形辅数,数形并重The application of the number form combining ideas inthe problem solving processAbstract: In recent years, with the progress of scientific research and development, the status of mathematics in China also has obvious improvement in education, mathematics has been widely penetrated into mathematics discipline and in our life. The essence of mathematics lies not in knowledge itself, but is contained in the mathematical knowledge of mathematics thinking method. This article first briefly describes several form combining ideas of historical evolution, status and principle. Secondly, with the aid of examples from "to shape and auxiliary number", "thinking" and "number form and logarithmic form combining ideas" in inequality, equation, function, the application of analytic geometry and calculus analysis, so that people learn to correctly use of abstraction and generalization of scientific thinking methods, improve the ability of people to study and solve problems, fully embody the superiority of the number form combining ideas in problem solving. Finally, summarizes several form combining ideas in mathematics teaching the role and significance as well as the impact on human life.Key words:Several form combining ideas, To the number of Si-shaped, To form secondary number, Both the number of shape目录一、引言 (1)二、数形结合思想的背景 (1)三、数形结合思想的概述及其地位 (1)四、数形结合思想的原则 (2)(一)“形”的精确性原则 (2)(二)等价性原则 (2)(三)双向性原则 (2)(四)简单性原则 (3)五、数形结合思想在解题中的应用 (3)(一)利用数形结合思想解决方程和不等式问题 (3)(二)利用数形结合思想解决数列问题 (5)(三)利用数形结合思想解决最值问题 (5)(四)利用数形结合思想解决解析几何问题 (6)(五)利用数形结合思想解决三角形问题 (6)(六)利用数形结合思想解决定积分问题 (7)(七)利用数形结合思想解决实际问题 (8)六、数形结合思想在教学中的作用和意义 (9)七、数形结合思想对人类生活的影响 (12)(一)“数形结合”的思想方法与人类生活的关系 (12)(二)“数形结合”的思想方法对人类生活影响的具体体现 (12)八、结束语 (13)参考文献 (14)一、引言数与形是数学中两个最古老,也是最基本的研究对象,它们在一定的条件下可以互相转化.数形结合是一种很重要的数学思想,它是研究与解决数学问题的重要方法,在数学中占有举足轻重的地位.把数量关系的研究转化为图形性质的研究,或把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”互相转化的研究策略,就是数形结合的思想.数形结合思想就是要使抽象的数学语言与直观的图形结合起来,由“数”思“形”,由“形”思“数”,相互渗透,相互作用,根据条件和结论之间的内在联系,即分析其代数含义,又揭示其几何背景,使数量关系的精确刻画与空间形式的主观形象巧妙、和谐地结合在一起,充分利用这种结合,有利于多角度、多层次地展开思维,培养学生的观察能力、理解能力、记忆能力、逻辑能力,以及提高学生思维的广阔性、灵活性和深刻性,使思维具有发散性,开拓解题思路,从而起到优化解题途径的目的.二、数形结合思想的背景早在数学萌芽时期,人们在度量长度、面积和体积的过程中,就把数和形联系起来了.我国宋元时期,系统地引进了几何问题代数化的方法,用代数式描述某些几何特征,把图形之间的几何关系表达成代数式之间的代数关系.17世纪上半叶,法国数学家笛卡儿以坐标为桥梁,在点与数对之间、曲线与方程之间建立起对应关系,用代数方法研究几何问题,从而创立了解析几何学.后来,几何学中许多长期不能解决的问题,例如三等分任意角、化圆为方问题,最终也借助于代数方法得到了完满的解决.即使在近代和现代数学的研究中,几何问题的代数化也是一条重要的方法原则,有着广泛的应用.初等数学历来被划分为代数和几何两大分支,前者偏重于数的分析,而后者则偏重于形的研究.但是今天人们越来越认识到:仅有代数的思想而无图形的直观,或虽有直观的图形而缺少数据的分析,许多数学问题都难以高质有效的解决.形是数的翅膀,数是形的灵魂.[1]三、数形结合思想的概述及其地位“问题是数学的心脏”,提出问题并解决问题是推动数学发展的动力.数学的精髓不在于知识本身,而在于数学知识中所蕴含的数学思想方法.“欲善其事,必先利其器”,数形结合就是解决数学问题的一个有力工具,也是数学教学中极为重要的数学思想的基本方法之一,通过数形结合可以将抽象的数学语言与直观图形相结合,使抽象思维与形象思维相结合,缩短了思维链,简化了思维过程.所谓数形结合,就是将抽象的数学语言和直观的图形结合起来.一方面借助数的精确性来阐明形的某些属性,另一方面借助图形的直观性来阐明数量之间的关系.其实质就是根据数学问题的条件和结论之间的内在联系,把代数上的“数”与几何上的“形”和谐地结合起来去认识问题以至于解决问题的一种思想.给“数”的问题以直观图形的描述,揭示出问题的几何特征,就能变抽象为直观;给“形”的问题以数的度量,分析数据之间的关系,更能从本质上认识“形”的属性.正如著名数学家华罗庚所说:“数与形,本是相倚依,焉能分作两边飞,数缺形时少直观,形少数时难人微”.具体点说,就是在解决数学问题时,不能单一的从数或者形的方面去思考,而是要将两者和谐的运用,才能使问题简单化、明朗化.在现代数学教育的各个阶段,数形结合思想都是尤为重要的.利用数形结合,能有效地讲解有关基本概念、定理、培养学生的学习能力、提高学生的主观能动性、发展学生智力.解题中运用它能使复杂的问题简单化、明朗化、清晰化,提高学生思考、分析、解决问题的能力.可以说数形结合思想是师范学生应重点掌握的一种数学思想,在教学中教师应引起高度重视. 四、数形结合思想的原则为了正确地在解题中运用数形结合思想,一般要遵循以下四个原则:(一)“形”的精确性原则几何图形的优点是其具有直观性,但若构图不精确,则往往会造成视觉性的误解.(二)等价性原则等价性原则是指“数”的代数性质与“形”的几何性质的转化应是对应的,即对于所讨论的问题,形与数所反映的对应关系应具有一致性.利用数形结合解决数学问题时要注意转化的等价性,我们常常由“形”观察出“数”,由“数”构造出“形”,这中间的观察与构造并未经过严格的逻辑推理,加之审题不周到,容易造成数形转化的不等价而产生误解.(三)双向性原则双向性原则是指既进行几何直观的分析,又进行代数抽象的探索,代数表达及其运算比起几何图形及其结构有着自身固有的优越性,能克服几何直观方法的局限性.(四)简单性原则简单性原则是指数形转换时尽可能使构图简单合理,即使几何形象优美 又使代数计算简洁,明了,避免繁琐的运算.五、数形结合思想在解题中的应用对一个学生数学水平的评价,不仅要看学生对数学知识掌握多少,也要注重学生的数学技能.而提高这种能力,最好的方法就是学习和运用数形结合思想.通过以下应用来实际说明这一点.(一)利用数形结合思想解决方程和不等式问题利用二次函数)0()(2≠++=a c bx ax x f 的图像与x 轴交点的横坐标是方程0)(=x f 的实根,根据二次函数)0()(2≠++=a c bx ax x f 与x 轴的交点情况就可以确定方程0)(=x f 的实根的情况,即通过)(0)(x f y x f =⇔=的相互转化,利用函数)(x f y =的图像可以直观解决问题.例1:a 为何值时,方程0122222=-++a ax x a 的两根在()1,1-之内? 分析:显然02≠a ,我们可从已知方程联想到相应的二次函数=y 222122a ax x a -++的草图(如图1所示),从图像上我们可以看出,要使抛物线与x 轴的两个交点在()1,1-之间,必须满足 ⎪⎩⎪⎨⎧>≤->-0)1(0)21(0)1(f a f f , 即 ⎪⎪⎩⎪⎪⎨⎧>+≤->-0)1(0210)1(222a a a ,从而可解得a 的取值范围为22≥a 或22-≤a 且1±≠a .图1 图2例2:如果方程05)2(2=++++k x k x 有两个不相等的正实根,求k 的范围.y xx y 0 -1 1 1x 2x a 21-解:设5)2()(2++++=k x k x x f因为01>=a , 抛物线开口向上,如图2所示,又因为方程有两个不相等的实根.故 ⎪⎪⎩⎪⎪⎨⎧>->>∆020)0(0a b f 45-<<-⇒k所以当45-<<-k 时,方程有两个不相等的正根.对于一些不规则的方程,通过构造两个函数,然后,把方程的根转化为两个函数的交点问题.例3:设方程112+=-k x ,试讨论k 取不同范围的值时其不同解的个数的情况.分析:我们可把这个问题转化为确定函数121-=x y 与12+=k y 的图像(图3)交点个数的情况,因函数12+=k y 表示平行于x 轴的所有直线,从图像可以直观看出:①当1-<k 时, 1y 与2y 没有交点,这时原方程无解;②当1-=k 时,1y 与2y 有两个交点,原方程有两个不同的解;③当01<<-k 时,1y 与2y 有四个不同交点,原方程不同解的个数有四个; ④当0=k 时,1y 与2y 有三个交点,原方程不同解的个数有三个;⑤当0>k 时1y 与2y 有两个交点,原方程不同解的个数有三个.图3 图4求不等式的解集时,只要联想对应的函数的图像,确定它们的交点情况,便可直观地看出所求不等式地解集.xy1-1 1 -1 o例4:不等式x x 1>的解集是? 分析:令x x f =)(,xx g 1)(=,在同一坐标系中画出这两函数图像.如图4所示,由图像可知:)(x f 与)(x g 的两个交点为)1,1(,)1,1(--.则不等式x x 1>的解集为(-1,0)∪(1,+∞). 这类求解像)()(x g x f >这样的不等式,跟上面所提的方程)()(x g x f =的类似,方程问题是看两个函数图像有几个交点这类的信息,而这里不等式问题的是看不同的区间内,两个函数图像谁上谁下,从而知道谁大谁小,也就是不等式的解区间,区间的端点就是方程问题所要讨论的.(二)利用数形结合思想解决数列问题等差数列的通项n a 是关于n 的函数,即()n f a n =,其图象是一群离散的点.等差数列的通项公式是)()1(11d a dn d n a a n -+=-+=,是关于n 的一次式.其各项的点(n ,n a )在同一直线上,等差数列的前n 项和公式n d a n d d n n na s n )2(22)1(121-+=++=,是关于n 的二次式,其对应点(n ,n s )在同一抛物线上,此抛物线一定过原点.而点(n ,n s n )在直线)2(21d a x d y -+=上.等比数列的通项公式n n n cq q a a ==-)1(1(q a c 1=)及前n 项和公式n n n Bq A q q a s +=--=1)1(1(0,11=+-=B A qa A ),其图像是指数型函数曲线.(三)利用数形结合思想解决最值问题例5:求函数的y =222+-x x +1362+-x x 的最小值.分析:本题难度较大,若从代数的角度思考,学生的思维受阻,不易求解且过程十分繁琐.这时利用数形结合为转化手段,引导学生探索函数背后的几何背景,巧用两点间距离公式,可化为:y =22)]1(0[)1(--+-x +22)20()3(-+-x解:如图5所示,所求函数的最小值可视为求点)0,(x p ,到)1,1(-A 及)2,3(B 的距离和的最小值.显然AB 的连线与x 轴的交点,即为所求的)0,(x p点.AB 的直线方程为:2523-=x y . 令y =0,解得35=x . 13)12()13(22min =++-==AB y 所以,当时35=x , 有最小值13=y .图5 图6(四)利用数形结合思想解决解析几何问题例6:过双曲线2x 2-y 2-8x+6=0的右焦点作直线L 交双曲线于A 、B 两点.若|AB|=4,这样的直线存在几条?分析:此题若从代数的角度去思考,则显得比较困难,无从下手,如换个角度,从数形结合方面去考虑,先画出图形,再对问题进行求解,则显得很简洁.解:如图6所示,双曲线C 的方程为121)2(22=--y x 其通径长为:422=a b 即通径所在直线符合题设条件,是所求的直线之一.又因为,双曲线的右焦点到左顶点的距离为413<+,所以当A 、B 分别在双曲线的两支上符合条件的直线有两条,故符合题意的直线有三条.(五)利用数形结合思想解决三角形问题在一些含有一般三角形的题目中,若要求其面积,都经常利用正弦定理、余弦定理以及三角恒等变换来解决,但若能利用三角函数的图像及数形结合思想,则可以简化计算过程.1 2 3 A(1,-1) -1 1 2 x P B(3,2) o 1 2 -1 -2 1 2 3 y xF 2 F 1 y例7:在△ABC 中,3,3==BC A π,则△ABC 的周长为是多少?分析:本题思路一般都是用三角恒等变形和正弦定理通过一定量的计算来完成,但是注意到数形结合,可以很快解决问题.为此,延长CA 到D ,使AB AD =(如图7),则 AC AB CD +=,6π+∠=∠CBA CBD ,由正弦定理⎪⎭⎫ ⎝⎛++=6sin sin πB AC AB D BC ,即⎪⎭⎫ ⎝⎛+=+6sin 6πB AC AB . 因此,△ABC 的周长为⎪⎭⎫ ⎝⎛++6sin 63πB.图7(六)利用数形结合思想解决定积分问题例8:求二重积分dxdy y x x D⎰⎰+22,其中D 是由抛物线y=22x 和直线y x =所围成.分析:1、求出围成 D 中各曲线间的交点由 ⎪⎩⎪⎨⎧==x y x y 22得到交点为(0,0)、(2,4)2、画出草图在该步骤中,可以用刚才讲到的垂直数轴判别法.我们先取定内积分,这一点在运用该方法时很重要,内积分的积分变量取定后,才能进一步确定是做 x 轴的垂线还是 y 轴的垂线.此题,我们可取 y 为内积分的积分变量,画出草图,同时,在围成区域 D 相应的曲线标出方程,并写成关于内积分变量的表达形式.即y=22x (1),x y =(2)(若 x 为内积分的积分变量,则写成y x =和y x 2=的形式),利用垂直数轴判别法,过)2,0(1∈∀x 作 x 轴垂线,单位、大小、方向同 y 轴,由判别法知,对应着较大单位的交点所在的曲线方程为内积分的上限,相应的较小交点所在的曲线方程为内积分的下限.图形如下:图 83、求体积dxdy y x x D ⎰⎰+22 =dy yx x dx x x ⎰⎰+20222220arctan 42x dx π⎛⎫=- ⎪⎝⎭⎰ 2ln 2=(七)利用数形结合思想解决实际问题在现实生活中,我们经常会遇到一些关于数学方面的问题,比如水、电费问题,打折销售问题,追击问题等等.此时若能对数学知识理解掌握好,巧用数形结合思想,在现实生活中有些问题便可迎刃而解.例9:某厂拟生产甲、乙两种试销产品,每件销售收入分别为3千元,2千元.甲、乙两种产品都需要在A 、B 两种设备上加工,在每台A 、B 上加工一件甲产品所需要的时间分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A 、B 两种设备每月有效使用台时数分别为400和500,如何安排生产可使收入最大?解:设加工甲产品x 件,加工乙产品y 件,目标函数y x z 23+=,线性约束条件为 ⎪⎩⎪⎨⎧>≤+≤+0,50024002y x y x y x ,作出可行域,如图9所示阴影部分.把yx (2,2) 2 22x y = x y =2y x z 23+=变形为平行直线系223:z x y l +-=,由图可知当l 经过可行域上点M 时,截距2z 最大. 解方程组⎩⎨⎧=+=+50024002y x y x 得)100,200(M ,80010022003max =⨯+⨯=z ,所以当生产甲产品200件,乙产品100件时,可使收入最大,最大为80万.图9六、数形结合思想在教学中的作用和意义在实际生活中,形与数是不可分离的结合在一起,这是直观与抽象、感知与思维相结合的体现.形与数的结合不仅是数学自身发展的需要,也是加深对数学知识理解,发展智力,培养能力的需要.数形结合是解决数学问题的一个有力工具,也是中学数学中极为重要的基本方法之一.[2]其在教学方面的作用有如下几个方面:(一)有助于学生形成合理、完整的数学概念.数学概念是数学逻辑思维的源头,是学生认知的基础,是学生数学思维的中心思想.但是由于数学中的概念往往是高度抽象,比较发散的.或许是一个理论,或许是一个公式,很难立刻被理解,给人一种单调、乏味的感觉.但利用数形结合的思想可以很好的帮助学生理解数学概念.1、化抽象为具体,化单调为丰富,有利于学生对数学概念的理解、记忆.这一点主要表现在以下几个方面:第一、利用数形结合,容易揭示数学概念的由来,学生易于感知和接受.第二、利用数形结合有利于学生对知识理论本质的理解,画图能力也会有明显的提升.第三、利用数形结合,为概念赋予图形信息,可以使学生通过看图形信息来加深理解其概念以及相关定理、性质的应用.2、提高和发展学生对数学结构的认知.数学结构的认知是学生头脑中的数学知识结构,即数学知识结构通过内化在学生脑海中所形成的理论内容和归纳整理.数形结合可以使学生的知识整体化、系统化,便于学生在各种知识背景下快速,有效的提取相关有用的信息,并且能从“数”与“形”两个方向去思考并解决问题.主要体现在下面几个方面:第一、数形结合加强了知识与图形之间的相互联系与转化,建立了有效的知识网络,提高了学生的数学认知层次.第二、通过数形结合不仅使学生原有的认知水平得到了明显提高,而且使学生对知识的理解更加深刻透彻,还能使学生的智力得到发展.(二)有助于拓展学生发现解决问题的的方法.1、数形结合思想对解决数学问题有着“导向功能”.我们知道,对于数学而言,具体问题,具体分析有多么重要.数形结合思想作为一种思维策略,虽然不能通过这种思想使之全部解决,但在解题过程中却可以作为寻求解法的一个途径,或在思路受阻时寻求新的突破口,所以这又是数形结合思想另一方面的积极意义.2、有助于学生积累数学理论知识、分清结构层次,简化思维过程.不同的学生对同一问题的思考方向不同,则思维过程也就不尽相同.思维能力强的学生思维过程短,思维链少,能力弱的同学往往表现出思维过程长,思维链多且无序,不能快速、清晰的表达出来.数形结合最大的特点就是模型化、直观化、明朗化,通过图形,可以快速的知道题里给出的已知条件和所隐含的条件.用简单直观的图形代替复杂的代数推理.学生的知识结构中要是有了一些丰富的图形模块和数式模块,将会快速、准确地解题.(三)有助于学生逻辑思维能力的发展.进入高中阶段的学生己完成了由直观形象思维到抽象逻辑思维的飞跃,但这并不是说我们在教学中就可以偏颇某一种思维方式.形象思维的培养在高中阶段是不容忽视的,也是很重要的.数形结合思想可以培养以下思维:1、有助于发展学生的形象思维.这一点主要表现在以下几个方面:第一、数形结合丰富了表象的储备,而表象的运动过程可促进形象思维发展.第二、数形结合有助于培养学生对图形的想象能力,促进学生形象思维的发展.2、有助于培养学生的直觉思维.运用数形结合解题能直接揭示问题的本质,直观、清楚地看到问题的结果,省掉了许多思维过程.只需稍加计算或推导,就能得到确切的答案,因此许多数学问题的解答过程都是先从几何图形的直觉感知中得到某种猜想、假设,然后再进行逻辑推理和证明,进而使问题得以解决的过程.3、有助于培养学生的抽象思维能力.这一点主要表现在以下几个方面:第一、数形结合从表面上看是代数与几何之间相结合.第二、我们知道任何的学习迁移都是通过概括这一思维过程来实现的.数形结合思想在应用的过程中,常常根据数量关系与图形特征之间的联系和规律,可以把一个形的问题等价转化迁移到与之相应的数的问题,反之数的问题等价转化迁移到与之相应的形的问题.在这方面,很好的体现了数形结合思想的等价性原则.(四)利用数形结合,唤起学生对数学美学的认识以及追求.数学本身就是一门美的学科,数学上的对称美、轮换美、简洁美、和谐美、奇异美等形式在图形上的体现更为直观、更为动人.利用数形结合,使学生具有发现美的眼睛,培养学生的审美情趣,提高审美意识和审美能力,以激励起学生学好数学的激情、动力和追求解题的艺术美,促进人的素质全面提高.美国著名数学教育家波利亚说过:“掌握数学就意味着要善于解题.”只有对数学思想、数学方法理解透彻并达到融会贯通时,才能提出新看法、巧解法.[3]我国现在不论是小学教育、中学教育、还是高中教育对数学思想的考察都十分重视,其解答过程中都蕴含着各式各样的数学思想,虽说数学思想的种类繁多,但在其中,我认为数形结合思想显得尤为重要.实际上数形结合思想的应用是很广泛的,只要我们用心去分析,动脑去思考,数学上有很多问题通过数形结合思想是很容易解决的.数形结合思想几乎贯穿了整个解析几何,可以说数形结合思想是解析几何的精髓所在.恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学”.数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻画与空间的直观图形巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决.“数”与“形”是一对矛盾,是抽象与直观在数学中的体现,二者的有机结合,是数学魅力之所在.宇宙间万物无不是“数”和“形”矛盾的统一.通过代数问题与几何图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.但在应用中也应该注意其应用的适用性、科学性、合理性等.七、数形结合思想对人类生活的影响从李文林的《数学史概论》和莫里斯·克莱因所著的《古今数学思想》两书中我们都可注意到:“数形结合”这一思想方法的产生与发展也是经历了一个曲折的变化过程,如公元前6世纪前,数学主要是关于“数”的研究与从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究,[4]最终作为人类几千年数学文化沉淀的结晶——数学中最基本的思想方法之一.这就如恩格斯所论述的那样:数学是关于现实世界的空间形式与数量关系的一门科学.然而,我认为数形结合思想的重要性不单单是体现在数学科学中,在我们的实际生活中也具有极其重要的作用.(一)“数形结合”的思想方法与人类生活的关系“我们认为,所谓数学思想是对数学知识本质的认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点”.[5]既然数学思想是一种认识和观点,也就可认为它是一种观念,而“数学观念系统与数学思想系统等基本认识对数学思维过程起着定向的作用”.[6]同时,“数学方法就是数学思维结构的主要成分”,其作用是“数学思维的操作手段”,[6]亦即“数学方法是指从数学角度提出问题、解决问题的过程中所采用的各种方式、手段、途径等”.[5]综上可知数学思想对数学思维具有导向功能,而数学方法是数学思维的具体方法,也是各种具体问题的实施方式、途径.因此,“日本数学家和数学教育家米山国臧在从事了多年数学教育之后,说过一段寓意深刻的话:学生们在初中或高中所学到的数学知识在进入社会后,几乎没有什么机会应用,因而这种作为知识的数学,通常在出校门后不到一两年就忘掉了,然而不管他们从事什么工作,那种铭刻于头脑中的数学精神和数学思想方法,却长期地在他们的生活和工作中发挥着重要作用.”[7]作为数学中一个最基本的思想方法——数形结合思想,它无疑地为人类的逻辑思维提供了导航作用和各种具体的方法与途径,为人们的提供了很好的思维模式,而这种思维模式已经刻画在了人们的脑海中,人们在生活中运用时却又感受不到其重要性,也就是说“数形结合”的思想方法在默默地指导着人类生活.(二)“数形结合”的思想方法对人类生活影响的具体体现“许多数学家在创立数学的时候,不断地从一般文化中汲取营养.许多数学的本原思想和人类普通的思想是相通的.文学中的“对仗”、“物理学中的能量守恒定理”与“数学中的对称”等等思想都是相通的.[8]同样,“数形结合”的思想与人类其他的诸多思想也是相通的,不过,通过对数形结合思。

高中数学教学论文《数形结合思想》在解题中应用

高中数学教学论文《数形结合思想》在解题中应用

《数形结合思想》在解题中的应用一、数形结合思想的提出在高中数学解析几何这一模块中,处理问题的方法常见有代数法和几何法。

代数法是从“数”的角度解决问题、几何法从“形”的角度解决问题,这两种方法相辅相成,相得益彰。

现举例如下:若直线k x y +=与曲线21y x -=恰有一个公共点,求k 的取值范围.解:(代数法)曲线方程可化为)0(122≥=+x y x ,把k x y +=代入)0(122≥=+x y x可得:012222=-++k kx x (0≥x ),由题意可知方程仅有一个非负根①当方程有等根时,即)1(8)2(22--=∆k k =0,可得2±=k ,当2=k 时,方程可化为012222=++x x ,得22-=x 不合题意;当2-=k 时,方程为012222=+-x x 得22=x 符合题意,可知2-=k ; ②当方程根为0=x 时,得012=-k ,1±=k ,当1-=k 时,方程为0222=-x x ,得方程两个根为01=x ,12=x 不合题意应舍去;当1=k 时,方程为0222=+x x ,得方程两个根为01=x ,12-=x 适合题意,可知1=k ; ③当方程根为一正一负时,只需021221<-=k x x ,可得11<<-k 。

综上所述:所求 k 的取值范围为2-=k 或11≤<-k 。

(几何法)曲线21y x -=是单位圆122=+y x 的右半圆(0≥x ),k 是直线k x y +=在y 轴上的截距.在同一坐标系中画出两曲线图像如图所示知:直线与曲线相切时,2-=k ,由图形:可得2-=k 或11≤<-k 。

上述两种解法可以看出利用代数法求解过程较为复杂、繁琐且容易错;而利用几何法即一种数形结合的思想方法,却能使复杂问题简单化,抽象问题具体化,它在数学解题中具有极为独特的指导作用。

二、数形结合思想的概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石。

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用

22教育版内容摘要:本文介绍了初中数学解题中的一种重要的思想方法——数形结合. 数形结合思想主要是利用了数的结构特征,绘制出同其相对应的数学图形,同时通过对图形特点及规律的运用,使数学问题得到解决,或是将图形转化为代数,无需进行推理,便将要解答的问题转变为数量关系.在数学教学中合理结合数形结合思想能够有效调动学生的积极性,让学生通过直观的视觉观察来理解数学的概念和知识,为学生解题提供一定的帮助.关键词:数形结合 初中数学 应用一、数形结合的本质和内涵:数形结合思想就是通过对数与形间关系的运用,对数学习题中的知识点及问题进行研究,从而使问题得到解决的一种方法.分析及研究数与形间的关系,学生会清晰地看到数与形之间在一定的状况之下是能实现转换的.它们之间具有一定的等量关联,能让学生更加深入地对知识进行理解,并解决相关问题.在初中数学中,数指的是方程、函数、指数等,形指的是函数图形与几何图形.学生若能把它们结合起来运用,就能使问题的解答更加容易,从而提升学生解题的能力。

二、数与形之间的转化:中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合.作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”.“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。

三、数形结合思想在初中数学解题中的应用:(一)数形结合思想在数与式问题中的应用。

数形结合的教学思想可以把有理数和数轴紧密联系起来.所有的有理数都可以在数轴.上找到相对应的唯一的点,如果想要对比两个有理数的大小,就可以通过比较分析在数轴上两个有理数的位置关系来得出结果.同时,依据数轴上原点与点的位a 、b .(图略)【分析】 由上a ,b 的位置可以得到a <b.∴a =−,ab b a −=−【解】 ()a b a +−除此以外,数形结合思想还运用于一些图形类的规律题中,比如下面这个题目.【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴______根。

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用数形结合思想是指在数学解题中,通过将数学问题转化成几何形状,并结合图形的性质来解决问题的一种思维方式。

这种思想可以帮助学生更好地理解数学概念,并能够将抽象的数学问题转化为具体的图形形状,通过观察和分析图形的特点,解决问题。

在初中数学解题中,数形结合思想可以运用在很多方面,下面就介绍几个典型的例子来说明。

对于如何求解一条线段的长度,数形结合思想非常有效。

对于一个线段,可以通过将它画成一个直角三角形来求解。

我们可以利用勾股定理或平行线性质,根据图形的特点来解决问题。

比如给定一条不在坐标轴上的线段AB,我们可以通过在平面直角坐标系上描绘出这个线段,并在两点连接垂直于坐标轴的直线,从而构成一个直角三角形,通过计算三个边的长度,利用勾股定理可以求出线段AB的长度。

对于解决面积和体积问题,数形结合思想也非常有用。

在计算一个图形的面积时,可以将图形进行分割,将其转化为若干个简单的几何形状,分别计算每个简单形状的面积,然后相加得到整个图形的面积。

比如计算一个梯形的面积,可以将其分割为一个矩形和两个直角三角形,分别计算它们的面积后相加即可得到梯形的面积。

对于体积问题,也可以通过数形结合思想来解决。

比如计算一个三棱柱的体积,可以将其看作由一个底面积为A的正三角形和一个高为h的矩形组成,根据体积的定义,体积等于底面积乘以高,所以可以计算出三棱柱的体积为A*h。

对于解决几何相似的问题,数形结合思想也非常重要。

通过观察和分析图形的特点,可以发现几何形状之间存在着很强的相似性,从而可以利用相似三角形的性质来解决问题。

比如在一个等腰三角形内切一个圆,可以发现三角形的三条边与圆的切点之间存在着相似关系,通过利用相似三角形的比例关系,可以计算出圆的半径和三角形的边长之间的关系。

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用

数形结合思想在初中数学解题中的应用1. 引言1.1 引入数形结合思想的概念数、排版格式等信息。

感谢配合!【引入数形结合思想的概念】数形结合思想是指在数学问题中运用数学方法和图形方法相结合的思维方式。

通过将抽象的数学概念与具体的图形形象相结合,可以更直观地理解和解决问题。

数形结合思想可以帮助学生从多个角度去思考和解决问题,提高他们的数学思维水平和创造力。

在数学学习中,我们经常遇到一些抽象的数学概念,例如代数式、方程等,这些概念往往让学生感到枯燥和难以理解。

而通过数形结合思想,我们可以将这些概念通过图形的方式呈现出来,使学生更容易理解和记忆。

引入数形结合思想可以让数学学习变得更加生动和有趣,让学生更加深入地理解数学知识。

数形结合思想不仅可以帮助学生提高数学解题能力,还可以培养他们的逻辑思维和创造力,为他们未来的学习和工作打下坚实的基础。

1.2 初中数学解题中的重要性在初中数学学习中,数形结合思想的应用起着至关重要的作用。

数学解题并不仅仅是简单地进行运算和推理,更是需要学生能够巧妙地结合数学知识和几何形态进行分析和解决问题。

数形结合思想可以帮助学生更加全面地理解和掌握数学知识,提高解题的效率和准确性。

数形结合思想可以帮助学生在解题过程中更加直观地理解问题,通过图形的直观展示,学生可以更快地找到问题的关键点,从而更加快速和准确地解决问题。

数形结合思想可以帮助学生跨学科思维,将数学知识与几何形态相结合。

这不仅可以提高学生对数学知识的综合运用能力,还可以培养学生的跨学科思维能力,使其能够更好地应对复杂的问题。

2. 正文2.1 数形结合思想在几何问题中的应用数形结合思想在几何问题中的应用对于初中数学学习具有重要意义。

几何问题是初中数学中的一个重要内容,通过数形结合思想能够帮助学生更深入地理解几何知识并且提高解题能力。

在几何问题中,数形结合思想可以帮助学生更直观地理解几何图形的性质和特点。

通过将数学知识与图形结合起来,学生可以更加清晰地认识到几何图形之间的关系,从而更好地解决几何问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合思想在解题中的应用
摘要:数形结合的解题思路在高中数学教学过程中占据着非常重要的地位,即使在高考时,数形结合思想的运用也是非常普遍的。

在利用数形结合思想来解决数学问题的过程中,必须认识到这一解题思想的灵魂,就是对数学知识有最基本的认知和掌握,只有熟练地运用各种数学知识、概念、公式,才有可能更好地应用数形结合的思想解决数学问题。

关键词:数形结合;高考解题;抽象概念;数学公式
一、绪言
新课标的背景之下,数形结合的解题思路运用非常广泛,这主要是由于这种解题方法可以将一些非常抽象的数学问题用一种生动直观的方式呈现,变抽象为形象,辅助高中生非常直观地把握数学问题的本质。

这种解题方法不仅可以调动学生学习数学的积极性,提高他们的思维能力,而且还可以使复杂的解题过程变得更为简单,减少解题过程中不必要的运算量,避免不必要的运算失误。

二、数形结合的概念以及解决问题的对象
数形结合,简单地说,就是通过对数学问题的内在层次与结构进行分析,理清各个条件与结论之间的内在联系,不仅分析它的代数含义,还能指出它的几何意义,将数学问题的各种关系以及空间形式有效地结合起来,并充分地利用这种结合,找出解决问题的思路和方向,从而使问题得到顺利解决。

它的本质在于将抽象的数学语言和直观形象的图形有效地结合起来,特别是一些代数问题和形象
的图表结合起来,将代数问题几何化,将抽象问题形象化。

数形结合思想在高中数学解题中的应用非常广泛,譬如说在处理函数问题的过程当中,建立有效的函数模型,结合函数的图像,求出参数的取值范围,当然也可以在这个过程之中分析方程根的有效范围,以及各量与量之间的有效关系。

除了函数问题之外,数形结合思想还可以将代数问题有效的几何化,建立几何模型,分析问题的本质,从而解决问题。

当然,也可以分析出几何问题中的斜率、截距,研究出最大最小值;最后,数形结合的思维方式还可以有效地研究图形的形状以及位置关系等,分析出图形之间的内在联系,并求出答案。

三、结合实例来分析数形结合的实际运用问题
(一)集合问题中的数形结合思想解决方案
我们在高中数学中遇到的集合问题非常多,在运算集合问题的过程中,我们需要借助于数轴和venn图对集合问题中的交集、并集以及补集进行运算,这样可以将集合问题简单化,从而使运算的过程更加简洁,学生也可以一下子就抓住问题的本质,从而很好地解决问题。

举一个全国理工科的高考例题来说明问题。

如图1,设想a和b 和i都是非空集合,且满足abi,则下列各式中不正确的是:
图1
a.ia∪b=i
b.ia∪ib =i
c.aib =φ
d.ia∪ib =ia
我们根据venn图,很容易判断出b选项是错误答案,由此顺利解决几何问题。

在集合问题上,我们还可以举出另外一个例子,2005年湖南高考中有一道题目:某一个班级一共有50名同学报名参加了两项比赛,其中a项有30人参加,而b项的有33人,我们还知道两项都不参加的同学比两项都参加的同学的三分之一还要多一个人,问题是:只参加了a项,但是没有参加b项的一共有多少人?
在这个题目中,我们也可以画出图形进行处理,见图2:
图2
在具体的解题过程中,我们假设两项都参加的人数有x人,都不参加的有y人,根据这个假设,可以得出两个方程式,分别是
30-x+33-x+x+y=50以及y=,将这两个方程式并列成一个方程组,就可以很容易得出x与y的值。

我们可以得出x=21,所以只参加a 项,但是没有参加b项的学生有30—21=9人,所以最后的答案应该是9人。

(二)概率问题中的数形结合思想解决方案
我们选择2011年安徽省的文科考试题目来进行分析概率问题中的数形结合思想解决方案,题目是:从正六边形的6个顶点中随机选择4个顶点(见图3),那么将这4个点作为顶点的四边形是矩形的概率是多少?
图3
根据图中所呈现的,我们从正六边形abcdef的6个顶点中随机
的选择出4个顶点,共有15种选法,其中能够构成矩形的有fecb、afdc、abde三种选法,所以概率为3/15,最后的答案是1/5。

我们可以看出,这个题目能够运用数形结合的思想成功的解决概率问题,我们也可以结合图形运用古典概率的模型来求出最后的概率。

(三)函数问题中的数形结合思想解决方案
在利用数形结合的思想解决函数问题的过程中,我们选择2011
年陕西省的理科试卷中的一个题目进行分析,题目是函数在[0, +∞)内有几个零点?
图4
我们可以知道,在同一个坐标系之中,分别画出函数和y=cosx
的图象,见图4,并且我们得知在x>1的情况下,,y=cosx<1,所以可以看出两个函数事实上只存在一个交点,就是方程-cosx=0在[0,+∞)内只有一个实根,所以函数f(x)=-cosx在[0,+∞)内只有一个零点,所以答案是有且仅有一个零点。

这一个题目,很巧妙地运用了数形结合的思想来解决函数问题,我们可以根据已知的条件,画出两个函数的图像,根据图像研究出函数的零点与方程的根之间的关系。

(四)数形结合解决数学问题必须要遵循的几个原则
我们在利用数形结合的方式解决数学问题的过程中,必须要遵循几个原则,包括等价转换原则以及数形互补原则等,在具体的解题过程之中,需要理清思路,具体来讲,首先需要根据条件绘制出正确的图形,所作出的图形必须要符合题干中的数量关系;其次,要
对图形进行仔细的观察分析,找出图形之中所蕴藏的数量关系;最后,必须要有效地把握数与形之间的有效关系,通过“数”来认识“形”,通过“形”来研究“数”。

需要认识到的是,无论什么样的数学方法,都是建立在数学基础上的,所以,我们必须首先要打好数学基础,对数学问题中的基本概念有一个清晰准确的认知,对基本公式也应该做到熟练的掌握。

数形结合的思想在高考数学中被广泛的应用和考核,几乎涉及了所有的高中数学知识和章节内容,这种解题思想能够很好地将数学学科中的各个知识点有效的结合起来,将抽象问题形象化,将复杂的问题简单化,因此,数形结合思想值得在高中数学教学和学习过程中广泛的推广和应用。

而这一方法的有效实施依赖于扎实的数学基础知识,只有对数学基础知识、基本概念、公式有一定的认知和掌握,才能更好地利用数形结合的思想解决数学问题。

参考文献:
1.张杨.感悟“数形结合”——从“方法”到“思想”的飞跃[j].北京教育教学研究,2008(6).
2.杨厥帅.不等式恒成立问题的常用解题策略[j].高中数学教与学,2008(12).
3.李祥.数形结合思想在高考中的应用[j].北京电力高等专科学校学报,2012(8).
作者简介:
韦柳荣(1980-),女,壮族,广西柳城人,中教一级教师,数学
与应用数学专业学士,从事高中数学教学工作。

相关文档
最新文档