高层建筑结构的荷载和地震作用
高层建筑结构设计荷载和地震作用
结构地震反应分析
结构地震反应分析是研究结构在地震作用下的反应,包括位移、速度、加速 度和内力等反应。通过结构地震反应分析,可以确定结构的动力特性、地震 作用效应以及结构薄弱环节。
抗震设计
抗震设计是根据结构地震反应分析和建筑物的使用要求,采取相应的抗震措 施,包括场地选择、地基处理、结构体系选择、构造措施等,以满足建筑物 在地震作用下的安全性和可靠性要求。
采用有限元分析法对结构进行离散化分析, 得到各种荷载作用下的应力、应变、位移等 响应,并进行组合计算。
03
地震作用分析
地震作用特点及影响因素
地震作用随震源深度的增加而减小; 地震作用随场地土质的承载能力增加而减小;
地震作用随震中距离的增加而减小; 地震作用随建筑物高度增加而增加。
地震烈度指标和地震动参数
04
高层建筑结构荷载和地震作用精细化设计
基于性能的设计理念和原则
基于性能的设计理念
强调结构设计的安全性、适用性和耐久性,以结构性能为核心,综合考虑结构安 全性、使用性能和耐久性等多方面因素。
基于性能的设计原则
采用合理、有效的设计方法和措施,提高结构性能指标,降低结构安全风险和经 济成本,实现结构设计的高效、经济和安全。
可变荷载
包括楼面活荷载、风荷载、雪荷 载等,其数值随时间变化且与结 构使用性能有关。
偶然荷载
包括地震作用、爆炸力、撞击力等 ,其数值巨大、作用时间短暂,具 有随机性和不可预测性。
结构荷载效应组合
承载能力极限状态
结构或构件达到最大承载能力或出现不适于继续承载的变形状态,需要进行承载 能力极限状态计算。
《高层建筑结构设计荷载和地震作 用》
高层建筑结构设计要求及荷载效应组合
结构的继续使用需要修复。
从抗震角度来看,出现超过设防烈度的地震是不可避 免的,结构应该具备足够的塑性变形能力。
但是结构过早地出现塑性变形也是十分不利的。结构 在小震、甚至风荷载作用下就出现塑性变形,必然导致裂 缝和变形过大,将影响到建筑物的正常使用。
② 短暂设计状况:适用于结构出现的临时情况,包括 结构施工和维修时的情况等;
③ 偶然设计状况:适用于结构出现的异常情况,包括结 构遭受火灾、爆炸、撞击时的情况等;
④ 地震设计状况:适用于结构遭受地震时的情况,在抗 震设防地区必须考虑地震设计状况。
1.1、持久设计状况和短暂设计状况下(无地震作用组合) 当荷载与荷载效应按线性关系考虑时,按下式:
结构顶点最大加速度
使用功能 住宅、公寓 办公、旅馆
alim (m / s盖竖向振动加速度限值
《高层规程》中规定楼盖结构的竖向振动频率不宜小于3Hz, 竖向振动加速度不应超过下表的限值。
2.4、稳定性与抗倾覆
结构整体稳定性是高层建筑设计的基本要求。研究表 明,高层建筑混凝土结构仅在竖向重力荷载作用下产生整 体丧失稳定的可能性很小。稳定性设计主要是控制在风荷 载或水平地震力作用下,重力荷载产生的二阶效应(P-Δ) 不致过大,以免引起结构的失稳、倒塌。
n—结构总层数。
2、高层建筑结构的稳定应符合下列规定
1)剪力墙、框架—剪力墙结构、筒体结构
n
EJd 1.4H 2 Gi i 1
2)框架结构:
n
Di 10 G j / hi j i
(i=1,2,…,n)
3、抗倾覆控制: ⑴、控制高宽比H/B; ⑵、控制基底零应力区面积,<15%总面积。
第3章高层建筑结构的荷载和地震作用(精)
第3章 高层建筑结构的荷载和地震作用[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030⨯,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。
已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。
已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。
为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。
解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=⨯==222210m s kN 62.19.145.0T w ⋅=⨯=(2)风荷载体型系数:对于矩形平面,由附录1可求得80.01=s μ57040120030480L H 0304802s .....-=⎪⎭⎫ ⎝⎛⨯+-=⎪⎭⎫ ⎝⎛+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。
脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =ϕ,i H 为第i 层标高;H 为建筑总高度。
则由式(3.2.8)可求得风振系数为:HH 478050211H H 11iz i z ⋅⨯+=⋅+=+=μμξνμϕνξβ.. z z z(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:()z z z z ....)z (q βμβμ6624=40×570+80×450=按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。
《高层结构设计》 02高层建筑结构的荷载计算
高层建筑结构的荷载计算高层建筑结构的竖向荷载包括自重等恒载及使用荷载等活载,其计算方法与一般建筑结构类似,在此不再重复。
本章主要介绍在高层建筑结构设计中起主导作用的水平荷载—风荷载和地震荷载作用的计算方法。
第一节 风荷载空气流动形成的风遇到建筑物时,在建筑物表面产生的压力或吸力即建筑物的风荷载。
风荷载的大小主要和近地风的性质、风速、风向有关;和该建筑物所在地的地貌及周围环境有关;同时和建筑物本身的高度、形状以及表面状况有关。
垂直于建筑物表面上的风荷载标准值可按下式计算:0ωµµβωz s z k =式中:k ω为风荷载标准值(kN/m 2);z β为z 高度处的风振系数;s µ为风荷载体型系数;z µ为风压高度变化系数; 0ω为基本风压(kN/m 2)。
1. 基本风压0ω我国《建筑结构荷载规范》(GB50009-2001),《全国基本风压分布图》中给出的基本风压值0ω,是用各地区空旷地面上离地10m 高、重现期为30年的10min 平均最大风速0υ(m/s )计算得到的,基本风压值1600/200υω=(kN/m 2)。
荷载规范给出的0ω值适用于多层建筑;对于一般高层建筑和特别重要的或有特殊要求的高层建筑可按《全国基本风压分布图》中的数值分别乘以1.1和1.2采用。
2. 风压高度变化系数z µ表1 风压高度变化系数风速大小与高度有关,一般近地面处的风速较小,愈向上风速逐渐加大,但风速的变化与地貌及周围环境有关。
在近海海面、海岛、海岸、湖岸及沙漠地区,地面空旷,空气流动几乎无阻挡物(A 类粗糙度),风速随高度的增加最快;在中小城镇和大城市的郊区(B 类粗糙度),风速随高度的增加减慢;在有密集建筑物的大城市市区(C 类粗糙度),和有密集建筑群,且房屋较高的城市市区(D 类粗糙度),风的流动受到阻挡,风速减小,因此风速随高度增加更缓慢一些。
表1列出了各种情况下的风压高度变化系数。
高层建筑结构的荷载和地震作用31竖向荷载ss=
第3章 高层建筑结构的荷载和地震作用高层建筑结构主要承受竖向荷载和和水平荷载。
恒荷载 风荷载 1) 竖向荷载 2)水平荷载活荷载 地震作用 本章主要内容z 竖向荷载(简介) z 风荷载(重点)z 地震作用(工程结构抗震课介绍此部分内容) 与多层建筑结构有所不同,高层建筑结构:z 竖向荷载效应远大于多层建筑结构;z 水平荷载的影响显著增加,成为其设计的主要因素; z 对高层建筑结构尚应考虑竖向地震的作用。
3.1 竖向荷载3.1.1 恒荷载1)恒荷载是指各种结构构件自重和找平层、保温层、防水层、装修材料层、隔墙、幕墙及其附件、固定设备及其管道等重量,其标准值可按构件尺寸、和材料密度(单位体积或面积的自重)计算确定。
2)材料容重可从《荷载规范》查取;固定设备由相关专业提供。
3.1.2 活荷载 1. 楼面活载1)高层建筑楼面均布活荷载的标准值及其组合值、频遇值和准永久值系数,可按《荷载规范》的规定取用。
2)在荷载汇集及内力计算中,应按未经折减的活荷载标准值进行计算,楼面活荷载的折减可在构件内力组合时进行。
2. 屋面活载1)屋面均布活荷载的标准值及其组合值、频遇值和准永久值系数,可按《荷载规范》的规定取用。
2)有些情况下,应考虑屋面直升机平台的活荷载:(优于五星级酒店的是,七星级酒店将提供秘书式的“管家服务”,辟有直升机停机坪,用直升机和“大奔”接送客人。
)3. 屋面雪荷载1)屋面水平投影面上的雪荷载标准值k s ,应按下式计算:0r k s s μ= (3.1.1)式中:0s 为基本雪压,系以当地一般空旷平坦地面上统计所得50年一遇最大积雪的自重确定,按《荷载规范》取用;μr为屋面积雪分布系数,屋面坡度α≤25°时,μr取1.0,其它情况可按《荷载规范》取用。
2)雪荷载的组合值系数可取0.7;频遇值系数可取0.6;准永久值系数按雪荷载分区Ⅰ、Ⅱ和Ⅲ的不同,分别取0.5、0.2和0。
3)雪荷载不应与屋面均布活荷载同时组合。
《高层建筑结构设计》第2章_高层建筑结
际风压与基本风压的比值,它表示不同体型建筑物表面
风力的大小。 • 当风流经过建筑物时, 通常在迎风面产生压力(风荷
载体型系数用+表示),在侧风面及背风面产生吸力
(风荷载体型系数用-表示)。
• 风压值沿建筑物表面
的分布并不均匀, 如
右图所示, 迎风面的
风压力在建筑物的中
部最大, 侧风面和背
风面的风吸力在建筑
2021/8/30
16
2.1 高层建筑结构上的荷载与作用
三、地震作用
2. 三水准抗震设计目标及一般计算原则
④ 一般计算原则
a) 一般情况下, 应至少在结构两个主轴方向分别考虑水平 地震作用计算;有斜交抗侧力构件的结构,当相交角度 大于15°时,应分别计算各抗侧力构件方向的水平地震 作用。
b) 质量与刚度分布明显不对称、不均匀的结构,应计算双 向水平地震作用下的扭转影响。其他情况,应计算单向 水平地震作用下的扭转影响。
周期应根据场地类别和设计地震分组按附表8.5 采用,
计算8、9 度罕遇地震作用时, 特征周期应增加0.05s。
2021/8/30
20
2.1 高层建筑结构上的荷载与作用
三、地震作用 4. 反应谱理论
2021/8/30
21
2.1 高层建筑结构上的荷载与作用
4. 反应谱理论
附表8.4 水平地震影响系数最大值
② 当建筑结构的阻尼比不等于0.05时,地震影响系数曲线
的形状参数和阻尼比调整应符合下列要求:
a) 曲线水平段地震影响系数应取
。
b) 曲线下降段的衰减指数应按下式确定:
γ=0.9+(0.05 - ζ)/(0.3+6ζ)
式中 γ ——曲线下降段的衰减指数;ζ ——阻尼比。
风荷载和地震作用对高层钢结构建筑的影响及设计方法
高层钢结构设计论文
风荷载和地震作用对高层钢结构建筑的影响及设计方法
摘 要:随着建筑科技的日益进步,高层钢结构建筑得到迅猛发展,人们对于高 层钢结构体系的研究日趋完善, 包括理论研究和工程设计。 风荷载和地震作用是 钢结构设计中至关重要的两大动力荷载, 这两种荷载对高层钢结构的强度和稳定 都会产生很大影响。 本文详细介绍了高层钢结构建筑在风荷载和地震作用下的动 力响应, 并根据规范要求以及国内外学者的相关研究,总结概括了针对风荷载和 地震作用的设计理论和设计方法。 关键词:高层钢结构;风荷载;抗风设计;地震作用;反应谱
2 / 24
高层钢结构设计论文
第二章. 高层钢结构建筑风荷载作用与抗风设计
2.1 风荷载作用
2.1.1 风荷载的形成 风指的是空气的水平运动, 一般是由气压高处向气压低处流动而形成。太阳 的辐射热在地球周围的分布不均匀使得大气是不断运动的。大气是物质,自然就 有能量, 从地表面一直向上的整个大气柱对它下面的地表面和物体便有压力,单 位面积上承受的这种压力,叫做气压。各个地方大气压有高有低,例如一个地方 上面的空气冷,密度就大,气压也就大些;另一个地方上面的空气暖,密度就小 些,气压也就小些,这样,空气就从气压大的地方向气压小的地方流动。因此风 产生的直接原因是气压在水平方向上的不均匀分布。 风速的主要部分是大小和方向保持不变的平均风, 另外叠加一部分在方向和 大小上不断变化的脉动风。表征风特性的参数包括: (1)平均风速剖面; (2)紊 流风速剖面; (3)脉动风速谱以及(4)湍流积分强度等等。可以根据伯努利方 程由风速来确定风压。 风压对于结构或构件将产生过大的内力和不稳定,使得结 构物产生过大挠度或者变形,有可能引起外墙和装饰材料的破坏。 2.1.2 风荷载的组成与特性 风荷载对于建筑物的作用是一个随机的过程,其包括三个部分:平均风压产 生的平均力, 脉动风压所引起的随机脉动力以及由于风致建筑物振动产生的惯性 力。平均风是在给定的时间间隔内,把风对建筑物的作用力的速度、方向以及其 他物理量都看成不随时间而改变的量, 由于风的长周期远远大于结构的自振周期。 可等效为静态作用处理,应用结构静力 计算。脉动风的强度是随时间按随机规 律变化的,由于周期较短,应用随机振动理论进行分析。 按照风对于建筑物作用力的方向不同可以分为:1)在建筑物的迎风面上产 生的压力(气流流动产生的阻力) ;2)在横风向产生的横风向干扰力(气体流动 产生的漩涡扰力与湍流脉动压力) ;3)空气流经建筑物后在建筑物的背后产生的 涡流干扰力(包括背风向的吸力) 。当需要准确确定风荷载分布时,需要依靠模 型风洞试验来实现。 风荷载的作用与空间位置及时间的不确定性有关,受地形、地貌、周围建筑 环境等因素共同影响, 其具有静力和动力的双重特点,动力部分即脉动风的作用 会引起高层钢结构建筑的振动。除此之外,风荷载也与结构的几何外形相关,结 构体系的不同部分对风的敏感程度也不尽相同, 当结构尺寸在多个方向上比较接 近时,需要考虑空间相关性对风荷载的影响。对于具有显著非线性特征的结构,
高层建筑设计理论第3章
2、风压高度变化系数 μ Z 风速大小不仅与高度有关,一般越靠近地面风速越小,
愈向上风速越大,而且风速的变化与地貌及周围环境有直 接关系。
风压高度变化系数
表 3-7 风压高度变化系数 z
风压的高度变化
单位面积风荷载标准值
(1)当计算主要承重结构时
wk z s z w0
式中 wk ——风荷载标准值(kN/m2); w0 ——基本风压(kபைடு நூலகம்/m2);
s ——风压高度变化系数; z ——风荷载体型系数; z ——z 高度处的风振系数。
(2)当计算围护结构时
wk gz s z w0
式中 gz ——高度 z 处的阵风系数。
基本风压
作用在建筑物上的风压力与风速有关,可表示为:
0
1 2
2
式中 0 ——用于建筑物表面的风压(N/m2); ——空气的密度,取 =1.25k9/m3; ——平均风速(m/s)。
全国l0年、50年和l00年一遇的风压标准值可由《建筑结 构荷载规范》(GB50009--2012)附表中查得。
屋面活荷载
屋面活荷载一般可按下述方法进行取值: 1.房屋建筑的屋面,其水平投影面上的屋面均布活荷载的标准值 及其组合值系数、频遇值系数和准永久值系数的取值,不应小于 表3-3的规定。 2.屋面直升机停机坪荷载应按局部荷载考虑,或根据局部荷载换 算为等效均布荷载考虑,其等效均布荷载不应低于5.0kN/m2。
2.风力受建筑物周围环境影响较大,处于高层建筑群中的高层建筑,有时会 出现受力更为不利的情况。例如,由于不对称遮挡而使风力偏心产生扭转;相邻 建筑物之间的狭缝风力增大,使建筑物产生扭转等等。在这些情况下要适当加大 安全度。
高层建筑 第三章荷载作用与组合
(3) 偶然荷载:在结构使用期间不一定出现,一旦出现, 其量值很大且持续时间较短的荷载。如地 震、爆炸力、撞击力等。 按作用方向:(1) 竖向荷载:荷载作用方向沿垂直方向的 荷载。如结构自重、楼屋面活荷载等。 (2)水平荷载:荷载作用方向沿水平方向的荷 载。如风荷载、水平地震作用等。 与多层建筑相比,高层建筑层数多、高度较大,其竖向荷 载的影响是与建筑高度成正比的线性关系,而水平作用所 产生的作用效应随建筑高度成非线性的增长。并逐渐成为 设计控制指标。 三、荷载代表值 荷载代表值是指为了方便设计给荷载规定以一定的量值。 包括:标准值、组合值、频遇值和准永久值。 其中标准值指正常情况下在设计基准期(如50年)内可能 出现的最不利荷载值,是荷载的基本代表值,而其他代表
离地面或海 平面高度
A 5 1.09 1.00 0.65 10 1.28 1.00 0.65 20 1.52 1.23 0.74 30 1.67 1.39 0.88 40 1.79 1.52 1.00 50 1.89 1.62 1.10 60 1.97 1.71 1.20 70 2.05 1.79 1.28 80 2.12 1.87 1.36 90 2.18 1.93 1.43 100 2.23 2.00 1.50 150 2.46 2.25 1.79 200 2.64 2.46 2.03
值是采用相应的系数乘以其标准值得出。系数查现行《建 筑结构荷载规范》(GB50009-2012)。 永久荷载应采用标准值作为代表值;可变荷载应根据设 计要求采用标准值、组合值、频遇值或准永久值作为代表 值;偶然荷载应按建筑结构使用特点确定其代表值。 建筑结构设计应根据使用过程中在结构上可能同时出现 的荷载,按承载能力极限状态和正常使用极限状态分别进 行荷载组合,并应取各自的最不利的效应组合进行设计。 对于承载能力极限状态,应按荷载效应的基本组合或偶 然组合进行荷载组合。对于正常使用极限状态,应根据不 同的设计要求,采用荷载的标准组合或偶然组合、频遇组 合或准永久组合进行荷载组合。
高层建筑结构抗震设计中的挑战与创新
高层建筑结构抗震设计中的挑战与创新随着城市化进程的加速,高层建筑如雨后春笋般在城市中拔地而起。
这些高层建筑不仅是城市现代化的象征,也为人们提供了更多的居住和工作空间。
然而,高层建筑在面临地震等自然灾害时,其结构的安全性和稳定性面临着巨大的挑战。
因此,高层建筑结构抗震设计成为了工程领域中至关重要的研究课题。
在高层建筑结构抗震设计中,首先面临的挑战就是地震作用的复杂性。
地震是一种随机的、多维的动力作用,其频谱特性、持续时间和强度都具有很大的不确定性。
对于高层建筑来说,由于其自振周期较长,容易与地震波中的长周期成分发生共振,从而导致结构的破坏。
此外,地震作用在不同方向上的强度和频谱特性也可能存在差异,这就要求在设计中考虑多维地震作用的影响。
高层建筑的结构形式多样,常见的有框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
每种结构形式都有其特点和适用范围,但在抗震设计中也存在着各自的难点。
例如,框架结构在水平地震作用下容易出现梁柱节点的破坏;剪力墙结构虽然具有较好的抗侧力性能,但在施工过程中可能会出现混凝土开裂等问题;框架剪力墙结构需要合理地协调框架和剪力墙之间的受力关系,以保证结构的整体性能;筒体结构在角部容易产生应力集中,从而导致局部破坏。
高层建筑的高度和复杂性也给抗震设计带来了诸多困难。
随着建筑高度的增加,风荷载和地震作用对结构的影响也越来越大。
在设计过程中,需要考虑结构的稳定性、抗倾覆能力和整体变形等问题。
同时,高层建筑中的竖向构件往往承受着巨大的轴力,这对混凝土的强度和钢筋的配置提出了更高的要求。
而且,高层建筑中的设备和管道系统也会增加结构的自重和非结构构件的影响,进一步加大了抗震设计的难度。
为了应对这些挑战,工程师们在高层建筑结构抗震设计中不断进行创新。
在结构体系方面,出现了一些新型的结构形式,如巨型框架结构、悬挂结构和隔震结构等。
巨型框架结构通过设置大型的主框架和次框架,有效地提高了结构的抗侧力性能;悬挂结构将建筑物的大部分重量通过吊杆悬挂在核心筒上,减小了结构的地震响应;隔震结构则是在建筑物基础与上部结构之间设置隔震装置,如橡胶支座等,将地震能量隔离和消耗,从而保护上部结构的安全。
高层建筑结构设计水平地震作用
水平荷载与结构计算简化原则
第二节 地震作用
一、特点
地震时,地震波产生地面运动,通过房屋基础使上部结构产生振动, 这就是地震作用。地震作用使结构产生的运动称为地震反应,包括位移、 速度、与加速度,加速度将使结构产生惯性力,过大的惯性力将会影响 结构的正常使用,甚至造成结构的破坏。 地震波使建筑房屋产生竖向振动和水平振动,一般对房屋的破坏主要 由水平振动造成。设计中主要考虑水平地震作用,只有震中附近的高烈 度区域才考虑竖向地震作用。 地震动三要素: 1、强度:反应地震波的幅值,烈度大,强度大。 2、频谱:反应地震波的波形,1962年墨西哥地震时,墨西哥市a=0.05g, 但由于地震卓越周期与结构接近,从而破坏严重。 3、持时:反应地震波的持续时间,短则对结构影响不大。
动速度和位移可能对结构的破坏具有更大影响,但振型反应谱法或底部剪力尚无 法对此作出估计。出于结构安全的考虑,《高层规程》规定了结构各楼层水平地 震剪力最小值的要求,给出了不同烈度下的楼层地震剪力系数(即剪重比),结 构的水平地震作用效应应据此进行相应的调整。 水平地震作用计算时,结构各楼层对应于地震作用标准值的剪力应符合下式要 求:
1、计算范围: 水平地震作用:
• 6度区 (除甲类建筑和IV类场地上的较高房屋
外)可不算 • 7-9度区 (除可不进行上部结构抗震验算的房 屋外)均算
竖向地震作用:
•8、9度大跨度结构和长悬臂结构 •9度的高层建筑
2、水平地震作用的计算原则: – 一般正交布置抗侧力构件的结构,可沿纵横主轴方向分别计算 – 斜交布置抗侧力构件的结构,宜按平行于抗侧力构件方向计算 – 质量和刚度明显不均匀、不对称的结构,应考虑水平地震作用的 扭转影响
5、动力时程分析法
[整理版]科学出版社高层建筑结构设计(第二版)史庆轩主编国家..
第3章 高层建筑结构的荷载和地震作用——局部修改P39:作用在楼面上的活荷载,不可能以标准值的大小布满在所有楼面上,因此在设计梁、墙、柱和基础时,还要考虑实际荷载沿楼面分布的变异情况,对活荷载标准值乘以规定的折减系数。
折减系数的确定比较复杂,目前大多数国家均通过从属面积来考虑,具体可参考《荷载规范》的规定。
P46:表3.2.2 脉动增大系数ξ注:计算201T ω时,对地面粗糙度B 类地区可直接代入基本风压,而对A 类、C 类和D 类地区应按当地的基本风压分别乘以1.38、0.62和0.32后代入。
P47:表3.2.4 振型系数ϕP49:表3.2.5 风荷载作用下各区段合力的计算P50:结构地震动力反应过程中存在着地面扭转运动,而目前这方面的强震实测记录很少,地震作用计算中还不能考虑输入地面运动扭转分量。
为此,《高层规程》规定,计算单向地震作用时应考虑偶然偏心的影响,每层质心沿垂直于地震作用方向的偏移值可按下式采用,即0.05i i e L =± (3.3.1)式中:i e 为第i 层质心偏移值(m),各楼层质心偏移方向相同;i L 为第i 层垂直于地震作用方向的建筑物总长度(m)。
P51:表 3.3.2 时程分析时输入地震加速度的最大值 (cm/s 2)P53:表3.3.5 水平地震影响系数最大值αP59:2)跨度大于24m 的楼盖结构、跨度大于12m 的转换结构和连体结构、悬挑长度大于5m 的悬挑结构,结构竖向地震作用效应标准值宜采用时程分析法或振型分解反应谱方法进行计算。
时程分析计算时输入的地震加速度最大值可按规定的水平输入最大值的65%采用,反应谱分析时结构竖向地震影响系数最大值可按水平地震影响系数最大值的65%采用,但设计地震分组可按第一组采用。
3)高层建筑中,大跨度结构、悬挑结构、转换结构、连体结构的连接体的竖向地震作用标准值,不宜小于结构或构件承受的重力荷载代表值与表3.3.9所规定的竖向地震作用系数的乘积。
基于规范的高层建筑风荷载与地震作用对比分析
基于规范的高层建筑风荷载与地震作用对比分析高层建筑在设计与施工过程中需要考虑到多种因素,其中包括风荷载与地震作用。
风荷载是指建筑物受到风的作用而产生的荷载,地震作用是指建筑物受到地震震动的影响而产生的荷载。
本文将基于规范对高层建筑的风荷载与地震作用进行比较分析。
首先,风荷载与地震作用的产生机理不同。
风荷载是由风向、风速、风压等因素决定的,而地震作用是由地震的震级、频率、振动周期等因素决定的。
风荷载作用于建筑物的外墙、屋顶等表面,而地震作用主要作用于建筑物的结构体系。
其次,风荷载与地震作用的特点也存在差异。
风荷载具有不均匀性和非静止性,即风的力量会不断变化,而且不同方向的风荷载也不同。
相比之下,地震作用具有不确定性和瞬时性,即地震会在短时间内产生瞬时的巨大力量。
风荷载对建筑物的作用是周期性的,而地震作用是一次性的。
此外,规范对于高层建筑的风荷载与地震作用有不同的计算方法和安全系数要求。
对于风荷载,规范一般采用了静力学方法进行计算,并根据建筑物的形状、高度、使用范围等参数来确定相应的风荷载系数。
而对于地震作用,规范会根据地震活动的频率、地震带的情况等因素,采用动力学方法来计算结构的地震反应,并要求建筑物在地震作用下具有足够的抗震安全储备。
最后,高层建筑的结构设计也存在差异。
为了能够承受风荷载和地震作用,高层建筑的结构体系通常采用了钢结构或混凝土结构,并结合适当的剪力墙、框架结构等来提高其抗风抗震能力。
而在设计时,需要根据规范对风荷载与地震作用的计算结果进行结构的优化设计,以确保高层建筑的安全性。
综上所述,高层建筑的风荷载与地震作用是设计与施工中需要考虑的重要因素。
虽然二者在产生机理、特点和计算方法上存在差异,但都要求建筑物具有足够的抗风抗震能力。
因此,在高层建筑的设计与施工过程中,需要根据规范对风荷载与地震作用进行合理的分析与比较,以确保建筑物的安全性。
高层建筑受力分析
高层建筑受力分析高层建筑是现代城市发展的重要标志,然而,由于其高度和结构的复杂性,受力分析成为设计和施工的关键问题。
本文将对高层建筑的受力特点、受力分析方法以及常见的受力问题进行探讨。
一、高层建筑的受力特点高层建筑由于自身重量的影响,以及外界风力、地震力等因素的作用,存在着复杂的受力情况。
为了确保高层建筑的结构稳定和安全性,需要对其受力特点进行全面分析。
1. 自重受力:高层建筑的自重主要由建筑材料的重量构成,包括楼板、墙体、柱子等。
自重受力是高层建筑最基本也是最直接的受力形式。
2. 垂直荷载受力:除了自重外,高层建筑还需要承受来自人们活动、家具设备以及各种设施的垂直荷载。
在设计和施工过程中,需要对这些荷载进行准确合理的估计和计算。
3. 风荷载受力:高层建筑由于其外形特殊,容易受到风的作用,尤其是靠近沿海或者山区的高层建筑更容易受到强风的影响。
设计和施工过程中,需要预先估计风荷载并进行合理的受力分析。
4. 地震荷载受力:地震是高层建筑最大的威胁之一,特别是在地震多发地区。
鉴于地震的不确定性,设计者需要合理地预测地震的荷载,并采取相应的防护措施。
二、高层建筑的受力分析方法为了对高层建筑的受力情况进行准确的分析和计算,工程师们采用了各种分析方法,包括静力分析、弹性分析和有限元分析等。
1. 静力分析:静力分析是最常见的高层建筑受力分析方法之一。
通过假设结构和外界荷载静止不变,采用力学平衡原理对结构进行受力分析。
这种方法适用于受力简单、结构稳定的情况。
2. 弹性分析:弹性分析是一种更为精确的分析方法,通过考虑结构的变形和刚度的影响,在分析过程中考虑结构的弹性变形。
这种方法适用于受力复杂、结构刚度较大的情况。
3. 有限元分析:有限元分析是一种更加综合和精确的受力分析方法,可用于高层建筑的复杂受力情况。
通过将结构分割成有限个小单元,将结构的受力和变形问题转化为求解各个单元的受力和变形问题。
三、高层建筑的常见受力问题在高层建筑的设计和施工过程中,存在一些常见的受力问题,需要进行仔细的分析和解决。
高层建筑结构设计荷载和地震作用
要点三
温度变化的取值标准
根据现行国家规范和标准,结合结构 设计实际情况确定温度变化值。
土壤-结构相互作用
土壤-结构相互作用的概念
土壤-结构相互作用是指高层建筑结构与地基之间的相互作用,包括侧向力和垂直向下的 重力。
土壤-结构相互作用对高层建筑结构的影响
土壤-结构相互作用对高层建筑结构的影响主要体现在结构的稳定性、沉降和侧移等方面 ,可能影响结构的正常使用和耐久性。
土壤-结构相互作用的取值标准
根据高层建筑结构的类型、地质条件等因素,按照现行国家规范和标准确定土壤-结构相 互作用的数值。同时根据实际情况进行地基处理和加固措施,以保障高层建筑结构的稳定 性。
05
设计案例分析
某高层办公楼结构设计方案
01
结构形式
采用钢筋混凝土框架-核心筒结构形式,具有较高的承载力和侧向刚度Leabharlann 结构设计中的荷载组合和分布
荷载组合
根据结构设计需要,将不同荷载进行组合,以考虑其对结构 的影响。
荷载分布
分析不同荷载在结构中的分布情况,以确定结构设计的重点 和难点。
荷载对结构安全和使用寿命的影响
结构安全性
荷载对结构安全性影响较大,过大的荷载可能导致结构失稳或破坏。
使用寿命
荷载对结构使用寿命有很大影响,过大的荷载可能缩短结构使用寿命。
目前对于高层建筑结构设计荷载和地震作用的研究数据仍不充足 ,需要加强实测数据的积累和整理。
研究方法的局限性
现有的研究方法主要基于理论分析和数值模拟,对于真实情况下 的高层建筑结构设计荷载和地震作用仍存在一定的误差。
未来研究的需求
需要加强高层建筑结构设计荷载和地震作用的多学科交叉研究,包 括结构工程、地震工程、地理信息科学等领域。
高层建筑结构的荷载和地震作用
第3章 高层建筑结构的荷载和地震作用[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030⨯,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。
已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。
已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。
为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。
解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=⨯==222210m s kN 62.19.145.0T w ⋅=⨯=(2)风荷载体型系数:对于矩形平面,由附录1可求得80.01=s μ57040120030480L H 0304802s .....-=⎪⎭⎫ ⎝⎛⨯+-=⎪⎭⎫ ⎝⎛+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。
脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =ϕ,i H 为第i 层标高;H 为建筑总高度。
则由式(3.2.8)可求得风振系数为:HH 478050211H H 11iz i z ⋅⨯+=⋅+=+=μμξνμϕνξβ.. z z z(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:()z z z z ....)z (q βμβμ6624=40×570+80×450=按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。
高层建筑结构设计难点分析
高层建筑结构设计难点分析
高层建筑是如今城市中常见的建筑形式,其不仅可以提供更多的空间,同时也是城市
发展的标志。
由于高层建筑的结构设计需要考虑的因素较多,所以其设计难度也相对较大。
本文将从地基承载、风荷载、地震作用等方面分析高层建筑结构设计的难点。
一、地基承载
地基承载是高层建筑结构设计中的一大难点。
在选择地基承载方式时,需要考虑建筑
物的自重、荷载、地基土壤的承载力等因素。
地基土壤的承载力对地基承载能力起着至关
重要的作用。
不同地基土壤的承载力不同,所以需要根据实际情况进行地基土壤勘察,以
确定地基承载方式和地基基础结构。
高层建筑地基承载还需要考虑地铁、地下管线等因素
的影响,这些都会对地基承载产生一定的影响,需要结构设计师进行合理的考虑和设计。
二、风荷载
风荷载是高层建筑结构设计中的另一大难点。
由于高层建筑受到风力的作用,所以需
要考虑风荷载对建筑物的影响。
通常情况下,高层建筑结构设计中会对建筑物采取一些措
施来减小风荷载的影响,比如采用空气动力学设计、采用减震措施等。
高层建筑结构设计
中还会考虑到建筑的稳定性和抗风性能,这些也是结构设计中需要进行综合考虑的因素。
所以,在高层建筑结构设计中,风荷载是需要进行综合分析和设计的一大难点。
地基承载、风荷载、地震作用等因素都是高层建筑结构设计中的难点。
尽管如此,随
着科技的发展和建筑技术的不断进步,相信这些难点在未来会得到更好的解决。
相信在不
久的将来,高层建筑的结构设计将更加完善,也将为城市的发展和规划带来更多的可能。
高层结构设计第3章 高层建筑的荷载和地震作用
3、抗震设防目标
具体通过“三水准”的抗震设防要求和 “两阶段”的抗震设计方法实现。
三水准地震作用的标定
三水准:“小震”“中震”“大震” 地震影响 众值烈度(多遇地震)小震 基本烈度(设防烈度地震)中震 罕遇烈度(罕遇地震)大震 50年超越概率 63.2% 10% 2-3% 地震重现期 50年 475年 1642-2475年
:空气密度
2014-11-16
15
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
2014-11-16
16
(2)风荷载体型系数 s 风对建筑表面的作用力并不等于基本风压值,而是随建筑物的 体型、尺度、表面位臵等而改变,其大小由实测或风洞试验确定 s =垂直于建筑表面的平均风作用力/基本风压值
吸力
2014-11-16
27
4、总风荷载
各个表面承受风力的合力,沿高度变化的分布荷载
Z Z 0 (1 B1 cos1 Zn Bn cos n )
α2 =900 α1=0 μs= +0.8 B1 wind B4
μs=-0.6
2014-11-16 28
μs=-0.6
4、地震作用计算原则
一般情况下,计算两个主轴方向的地震作用;有斜交抗 侧力构件(角度大于 15 度)时应分别计算各抗侧力构件 方向的地震作用 质量与刚度分布明显不对称、不均匀的结构,应计算双 向水平地震作用下的扭转影响,其他情况应计算单向地 震作用下的扭转影响 8 度和 9 度抗震设计时,高层建筑中的大跨度和长悬臂结 构应考虑竖向地震作用 9度抗震设计时应计算竖向地震作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、风振系数 z
1)风速特点: 风速的变化可分为两部分:一种是长周期的成分,其值一般在10min以上;另一种 是短周期成分,一般只有几秒左右。因此,为便于分析,通常把实际风分解为平均风 (稳定风)和脉动风两部分。稳定风周期长,对结构影响小;脉动风周期短,对结构 影响大。
2)风的动力效应:对于高度较大、刚度较小的高层建筑,脉动风压会产生不可
2)定义:风荷载体型系数是指风作用在建筑物表面所引起的压力(吸力)与原 始风速算得的理论风压的比值。
3)特点:风荷载体型系数一般都是通过实测或风洞模拟试验的方法确定,它 表示建筑物表面在稳定风压作用下的静态压力分布规律,主要与建筑物的体型与尺 度有关。
3.2 风荷载
+0.8 -(0.48+0.03H/L)
0.8+1.2/n1/2
3)计算:在计算风荷载对建筑物的整体作用时,只需按各个表面的平 均风压计算,即采用各个表面的平均风荷载体型系数计算。
4)风荷载体型系数的确定:根据设计经验和风洞试验 (1)单体风压体型系数
例:
-0.6
当表面粗糙时取μs = 0.8
-0.6
3.2 风荷载
(2)群体风压体型系数 对建筑群,尤其是高层建筑群,当房屋相互间距较近时,由于漩涡
第3章 高层建筑结构的荷载和地震作用
高层建筑结构主要承受竖向荷载和水平荷载。
1)竖向荷载
恒荷载 活荷载
2)水平荷载
风荷载 地震作用
与多层建筑结构有所不同,高层建筑结构—— 1)竖向荷载效应远大于多层建筑结构; 2)水平荷载的影响显著增加,成为其设计的主要因素; 3)对高层建筑结构尚应考虑竖向地震的作用。
3.1 竖向荷载
3.1 恒荷载
恒荷载是指各种结构构件自重和找平层、保温层、防水层、装修材料 层、隔墙、幕墙及其附件、固定设备及其管道等重量,其标准值可按构 件及其装修的设计尺寸和材料单位体积或面积的自重计算确定。
材料容重可从《荷载规范》查取;固定设备由相关专业提供。
3.1 竖向荷载
3.2 活荷载
(3)雪荷载不应与屋面均布活荷载同时组合。
4、施工活荷载
施工活荷载一般取 1.0~1.5kN/m2。
对高层建筑结构,计算活荷载产生的内力时,可不考虑活荷载的最不利布置。 为简化计算,可按活荷载满布进行计算,然后将这样求得的梁跨中截面和支座截 面弯矩乘以 1.1~1.3 的放大系数。
3.1 竖向荷载
3.2 风荷载
1、楼面活载 1)高层建筑楼面均布活荷载的标准值及其组合值、频遇值和准永久值
系数,可按《荷载规范》的规定取用。 2)在荷载汇集及内力计算中,应按未经折减的活荷载标准值进行计算,
楼面活荷载的折减可在构件内力组合时取用。 2、屋面活载 1)屋面均布活荷载的标准值及其组合值、频遇值和准永久值系数,可
按《荷载规范》的规定取用。 2)有些情况下,应考虑屋面直升机平台的活荷载。
海洋
风压沿高度的变化规律一般用指数函数表示,即
vz vH z H
H vH ——分别为标准高度(例如10m)及该处的平均风速;
——地面粗糙度系数;地表粗糙程度由于《规范》只给出了10m高度处的风压,则其他高度处的风压可由此求得。
风压高度变化系数:为某类地表上空高度处的风压与基本风压的比值, 该系数取决于地面粗糙程度指数。 现行规范将地面粗糙程度分为四类:
的相互干扰,房屋某些部位的局部风压会显著增大。 《高层规程》规定,当多栋或群集的高层建筑相互间距较近时,宜
考虑风力相互干扰的群体效应。一般可将单体建筑的体型系数乘以相互干 扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞 试验确定。
(3)局部风压体型系数 在计算风荷载对建筑物某个局部表面的作用时,要采用局部风荷载 体型系数,用于验算表面围护结构及玻璃等强度和构件连接强度。 檐口、雨蓬、遮阳板、阳台等水平构件计算局部上浮风荷载时,风 荷载体型系数不宜小于2.0。设计建筑幕墙时,应按有关的标准规定采用。
3.1 竖向荷载
3、屋面雪荷载
(1)屋面水平投影面上的雪荷载标准值:Sk r S0
S0为基本雪压,系以当地一般空旷平坦地面上统计所得 50 年一遇最大积雪的 自重确定。按《荷载规范》取用;μr为屋面积雪分布系数,可按《荷载规范》取 用。
(2)雪荷载的组合值系数可取 0.7;频遇值系数可取 0.6;准永久值系数按雪 荷载分区Ⅰ、Ⅱ和Ⅲ的不同,分别取 0.5、0.2 和 0。
2、风压高度变化系数 z
风速大小与高度有关,一般近地面处的风速较小,愈向上风速逐步加大。当
达到一定高度时(300~500m),风速不受地表影响,达到所谓梯度风。而且风速的
变化还与地面粗糙程度有关。
离地高度(m)
梯度风 100
89
77
梯度风 100
90
梯度风 100
61
76
91
59
79
49
70
城市
乡村
忽略的动力效应,在设计中必须考虑,目前采用加大风荷载的办法来考虑这个动力效
应,即对风压值乘以风振系数。
3.2 风荷载
3.2.1 风荷载标准值 wk
1、基本风压 w0
我国《荷载规范》规定,基本风压系以当地比较空旷平坦地面上离地 10m高, 统计所得的 50 年一遇 10 分钟平均最大风速v0(m/s)为标准,按风速确定的风压值, 但不得小于 0.3kN/m2。特别重要的高层建筑,取100年。
3.2 风荷载
空气从气压大的地方向气压小的地方流动就形成了风,与建筑物有关的是靠 近地面的流动风,简称为近地风。 当风遇到建筑物时在其表面上所产生的压力或吸力即为建筑物的风荷载。
标准地貌
建筑高度
标准风速
风荷载标准值
建筑外型
风向
风的动力作用
对于高层建筑,一方面风使建筑物受到一个基本上比较稳定的风压,另一
方面风又使建筑物产生风力振动。(静力+动力)
A类——指近海海面、海岛、海岸、湖岸及沙漠地区; B类——指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; C类——指有密集建筑群的城市市区;
D类——指密集建筑群且房屋较高的城市市区。
3、风荷载体型系数 s
1)风压分布系数——风压与体型的关系
迎风面的风压力在建筑物的中间偏上为最大,两边及底下最小;侧风面一般近 侧大,远侧小,分布也极不均匀;背风面一般两边略大,中间小。