第八章常用试验设计的方差分析
医学统计学 -第08章 方差分析
第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异
•
是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙
甲
乙
丙
3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)
实验设计的方差分析与正交试验
实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。
在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。
通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。
1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。
该方法通过比较不同组之间的方差来判断各组均值是否有差异。
步骤如下:(1)确定研究目的,选择合适的因变量和自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差和组间方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。
这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。
步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差、组间方差和交互方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。
1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。
通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。
2. 正交试验设计的步骤(1)确定要研究的因素和水平。
方差分析与试验设计
方差分析与试验设计方差分析是一种通过比较不同组之间的变差来判断均值差异是否显著的统计方法。
它通常用于试验设计中,用于分析不同处理组间的均值差异是否显著,从而评估不同处理的效果。
试验设计是科学研究中的一项重要工作,旨在通过科学的方法来验证研究假设。
试验设计涉及确定适当的样本大小、确定控制组和实验组、识别并控制潜在的影响因素等。
好的试验设计能够最大程度地减少偏差,提高实验的可靠性和准确性。
在方差分析中,我们通常将变量分为因素变量和响应变量。
因素变量是试验设置的处理组,例如不同的药物剂量或不同的施肥量。
响应变量是实验结果,可以是连续变量(如体重、收益等)或分类变量(如治疗成功与否)。
方差分析的基本原理是计算组内变差与组间变差之比,通过比较比值与理论的F分布来判断差异是否显著。
如果比值较大,则表明组间差异显著,即不同处理组的均值差异明显。
在进行方差分析时,我们需要满足一些前提条件,如独立性、正态性和方差齐性。
如果数据不符合这些条件,我们可以应用一些转换方法或进行非参数检验来处理。
完全随机设计是最简单的试验设计方法之一,它将实验对象随机分配到不同的处理组中。
这种设计方法适用于研究变量之间没有任何关系的情况,其优点是简单易行,但缺点是可能存在一些潜在的影响因素未被控制。
随机区组设计是一种常用的试验设计方法,它将实验对象分组后再随机分配到不同的处理组中。
这种设计方法能够控制部分潜在因素的影响,并提高实验的可靠性和准确性。
Latin square设计是一种更加复杂的试验设计方法,它在随机区组设计的基础上增加了均衡性。
Latin square设计通过交叉安排处理组和区块,使得每个处理出现在每个区块中,从而进一步控制潜在因素的影响。
除了上述常见的试验设计方法外,还有其他一些高级试验设计方法,如因子分析设计、回归分析设计等。
这些方法可以根据实验的具体要求来选择和应用。
综上所述,方差分析和试验设计是统计学中重要的概念和方法。
医学统计学-8-方差分析
第二节 单因素方差分析
单因素方差分析
单因素方差分析:研究的是一个处理因素的 不同水平间效应的差别。
处 理 因 素
水平1 水平2 水平1 水平2 水平c
单因素方差分析
例1、某地用A、B和C三种方案治疗血红蛋 白含量不满10g的婴幼儿贫血患者,A方案 为每公斤体重每天口服2.5%硫酸亚铁1ml, B方案为每公斤体重每天口服2.5%硫酸亚 铁0.5ml,C方案为每公斤体重每天口服3g 鸡肝粉,治疗一月后,记录下每名受试者血 红蛋白的上升克数,资料见下表,问三种治 疗方案对婴幼儿贫血的疗效是否相同?
A、B、C三种方案治疗婴幼儿贫血的疗效观察表
治疗方案 A n=20
血红蛋白增加量(g) 1.8 1.4 0.5 1.2 2.3 2.3 3.7 0.7 2.4 0.5 2.0 1.4 1.5 1.7 2.7 3.0 1.1 3.2 0.9 2.5
B
n=19
0.2
0.0 2.1 -0.7
0.5
1.6 1.9 1.3
q XA XB
MSe 1 1 2 nA nB
ν=νe
一、q检验
例、在前面对某地用A、B和C三种方案治疗 血红蛋白含量不满10g的婴幼儿贫血患者的 例题(完全随机设计方差分析例1)进行了 方差分析,我们得出三组总体不等的结论。 究竟哪些总体均数之间存在着差别,我们需 要在前方差分析基础之上,再对该资料作两 两比较的q检验。
随机因素是无法避免的,而实质性差异是我们 需要得到的。 如何排除随机因素的干扰,利用样本信息对总 体均数间是否存在差异作出推断?
方差分析的基本思想
按照设计类型将总变异分解为处理因素引 起的变异和随机因素造成的变异; 以处理因素变异与随机因素变异之比来构 造检验统计量F。
医学统计学8 方差分析
组间变异 组内变异
总变异
观察值总变异可以分解为组间变异和组内变异
14
变异
1. 总变异(Total variation): 全部测量值Xij与总 均数X 间的差异
2. 组间变异(between group variation ): 各组的 均数 Xi 与总均数 X 间的差异
3. 组内变异(within group variation ):每组的 每个测量值 X ij与该组均数 X i 的差异
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 7.19
基本步骤
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员的 体重指数总体均数相等
(x j
x)2,自由度ni-1
组内:SS总-SS处理-SS区组,自由度N-k-ni-1
案例分析
为探讨Rgl对镉诱导大鼠睾丸损伤的保护作用, 某研究者将同一窝别的3只大鼠随机地分到T1、T2 、T3三组,进行不同处理, 共观察了10个窝别大 鼠的睾丸MT含量(μg/g)。试问不同处理对大鼠 MT含量有无影响?
可用离均差平方和反映变异的大小
总变异
所有测量值之间总的变异程度,SS总
第八章 一般线性模型――General Linear Model菜单详解
第八章一般线性模型――General Linear Model菜单详解请注意,本章的标题用了一些修辞手法,一般线性模型可不是用一章就可以说清楚的,因为它包括的内容实在太多了。
那么,究竟我们用到的哪些分析会包含在其中呢?简而言之:凡是和方差分析粘边的都可以用他来做。
比如成组设计的方差分析(即单因素方差分析)、配伍设计的方差分析(即两因素方差分析)、交叉设计的方差分析、析因设计的方差分析、重复测量的方差分析、协方差分析等等。
因此,能真正掌握GLM菜单的用法,会使大家的统计分析能力有极大地提高。
实际上一般线性模型包括的统计模型还不止这些,我这里举出来的只是从用SPSS作统计分析的角度而言的一些。
好了,既然一般线性模型的能力如此强大,那么下属的四个子菜单各自的功能是什么呢?请看:∙Univariate子菜单:四个菜单中的大哥大,绝大部分的方法分析都在这里面进行。
∙Multivariate子菜单:当结果变量(应变量)不止一个时,当然要用他来分析啦!∙Repeted Measures子菜单:顾名思义,重复测量的数据就要用他来分析,这一点我可能要强调一下,用前两个菜单似乎都可以分析出来结果,但在许多情况下该结果是不正确的,应该用重复测量的分析方法才对(不能再讲了,再讲下去就会扯到多水平模型去了)。
∙Variance Components子菜单:用于作方差成份模型的,这个模型实在太深,不是一时半会说的请的,所以我在这里就干脆不讲了。
出于模型复杂性、篇幅、应用范围及乱七八糟一系列的理由,当然主要是我懒得一一解释,我决定本章采用举例讲解的方式,及讲解一些常见的分析实例,通过这种方法来熟悉那些最为常用的分析方法。
对统计分析的数据格式不太熟悉的朋友,请一定先去看看统计软件第一课:论统计软件中的数据录入格式,会大有帮助的。
§8.1两因素方差分析下面的这个例子来自《卫生统计学》第四版,书还没有出来,大家先尝尝鲜。
正交试验设计中的方差分析
那么正交试验的方差分析可以从以下几步进行:
1.计算差方和(离差平方和): 包括以下几部分:
1)各因素差方和:
正交试验都是多因素多水平的试验,因此有必要对各因素的 差方和进行计算。 各因素差方和等于它的各水平均值k1A,k2A,…,kmA之间偏差平 方和。 以因素A为例,它在正交表中的某列,用xij表示A在第i个水 平的第j次试验结果,则;
即:fA×B=fA×fB 试验误差的自由度fe=fT-f因 。
3.计算平均差方和(均方): 在计算各因素的差方和时,按照前面的讲述,它是各水平的 偏差方的和,其大小与水平数有关,故此还不能确切的反映 各因素的情况。为了消除水平数的影响,可以计算其平均差 方和:
因素的平均差方和=因素差方和 =Q因 因素的自由度 f因
试验误差的差方和是所有试验结果在不同水平下的指标值与该 水平下的均值之间的差的平方和。它是由随机误差引起的,故 叫误差的差方和。
Qe QT ( QA QB QN )
2.计算自由度:
试验的总自由度: fT n 1
各因素自由度: f因 m 1
如果有交互作用,则交互作用的自由度为两因素自由度之积:
一.几个数据处理中常用的数理统计名词:
首先对几个数理统计名词进行回顾
1. 平均值 x
就是所有数据的和除以数据的个数。
x
1 n
n i 1
xi
1 n
x1
x2
xn
总体平均值:
1 n
n
xi
i 1
n
总体:数理统计学中指的是研究对象的某一特性值的全体; 样本:从总体中随机抽出的一组测量值。
2.极差 R: 就是一组数据中的最大值减去最小值得到的差值。 3.差方和Q: 测量值对平均值的偏差的平方和,就叫~。也叫离差平方和。
应用统计学8-方差分析(1)
Yi = µi + ε i
( 8-1)
其中, μi 纯属Ai作用的结果,称为在Ai条件下Yi的真值(也称为在 Ai条件下Yi的理论平均). εi 是试验误差(也称为随机误差)。
2 ε ~ N ( 0 , σ ) 且相互独立,则 Yi ~ N ( µ i , σ 2 ) 假定 i
且也是相互独立的
第八章
第八章
方差分析
8. 2 单因素试验的方差分析
数学模型和数据结构 参数点估计 分解定理 自由度 显著性检验 多重分布与区间估计
第八章
方差分析
8. 2. 1 数学模型和数据结构
在单因素试验中,为了考察因素A的k个水平A1, A2, …, Ak对Y的影响(如k 种型号对维修时间的影响),设想在固定的 条件Ai下作试验。所有可能的试验结果组成一个总体Yi (i=1, 2, …, k),它是一个随机变量,可以把它分解为两部分
第八章
方差分析
8. 2. 2 参数点估计
2 , , , , µ α α α σ 估计参数 1 2 k 和
估计方法:最小二乘法
最小偏差平方和原则:使观测值与真值的偏差平方和 达到最小
第八章
偏差平方和
方差分析
8. 2. 2 参数点估计
2 S ε = ∑∑ ε ij = ∑∑ (Yij − µ i ) 2 = ∑∑ (Yij − µ − α i ) 2 i =1 j =1 k m
eij = Yij − Y i
第八章
最小二乘估计量
方差分析
8. 2. 2 参数点估计
ˆ =Y µ ˆ i = Yi − Y α µ ˆ i = Yi
可以证明,这三个估计量均为参数μ、 αi和μi的无偏估计量
管理运筹学 第8章 方差分析
• H1: 1 , 2 , , r 不全等。
【案例1】哪种促销方式效果最好?
• 某大型连锁超市为研究各种促 销方式的效果,选择下属 4 个 门店,分别采用丌同促销方式, 对包装食品各迚行了4 个月的 试验。试验结果如下:
超市管理部门希望了解: ⑴丌同促销方式对销售量是否 有显著影响? ⑵哪种促销方式的效果最好?
X
.j
SS B a X
j 1 a b
b
.j
X
2
SS E
X
i 1 j 1
ij
X
i.
X
2
称为误差平方和,反映试验误差对试验指标的影响。
4. 检验用的统计量
同样可以证明:当 H01 为真时,统计量
FA S A /( a 1 ) S e /( a 1 )( b 1 )
• 问: • (1)不同品种的平均每公顷产 量是否存在显著差异? (2)任意两个品种的平均每 公顷产量是否都存在显著差异? 并确定适合该地区的高产小麦 品种。
方差分析与实验设计
方差分析与实验设计方差分析(Analysis of Variance,简称ANOVA)是一种统计方法,用于比较两个或多个样本均值之间的差异是否显著。
它是实验设计中常用的一种方法,可以帮助研究者确定实验结果是否受到不同因素的影响,并进一步分析这些因素对实验结果的贡献程度。
实验设计是科学研究中的重要环节,它涉及到如何选择实验对象、确定实验因素、设计实验方案等问题。
合理的实验设计可以提高实验的可靠性和有效性,减少误差的影响,从而得到更准确的结论。
方差分析与实验设计密切相关,下面将介绍方差分析的基本原理和实验设计的常用方法。
一、方差分析的基本原理方差分析的基本原理是通过比较组间变异与组内变异的大小来判断不同组别之间的均值是否存在显著差异。
具体步骤如下:1. 建立假设:首先,我们需要建立原假设和备择假设。
原假设通常是假设各组别之间的均值没有显著差异,备择假设则是假设各组别之间的均值存在显著差异。
2. 计算总平方和:总平方和是各观测值与总均值之差的平方和,表示了所有数据的总变异程度。
3. 计算组间平方和:组间平方和是各组均值与总均值之差的平方和,表示了不同组别之间的差异程度。
4. 计算组内平方和:组内平方和是各观测值与各组均值之差的平方和,表示了同一组别内部的差异程度。
5. 计算F值:F值是组间平方和与组内平方和的比值,用于判断组间差异是否显著。
如果F值大于临界值,则拒绝原假设,认为各组别之间的均值存在显著差异。
6. 进行事后比较:如果F值显著,我们可以进行事后比较,确定哪些组别之间存在显著差异。
二、实验设计的常用方法1. 完全随机设计:完全随机设计是最简单的实验设计方法,它要求实验对象随机分配到不同的处理组中。
这种设计方法适用于实验对象之间没有明显差异的情况。
2. 随机区组设计:随机区组设计是在完全随机设计的基础上引入区组因素,将实验对象分为若干个区组,然后在每个区组内进行随机分配。
这种设计方法可以减少误差的影响,提高实验的可靠性。
统计学(第四版)贾俊平 第八章 方差分析与实验设计 练习题答案
统计学(第四版)贾俊平 第八章 方差分析与实验设计 练习题答案8.10123411234:0:,,,0=0.01SPSS H H ααααααααα====至少有一个不等于用进行方差分析,表8.1-1填装量主体间效应的检验(单因素方差分析表)因变量: 填装量 源 III 型平方和df均方F Sig.偏 Eta 方非中心 参数观测到的幂b校正模型 .007a3 .002 10.098 .001 .669 30.295 .919 截距 295.7791 295.7791266416.430.000 1.000 1266416.4301.000 机器 .007 3 .002 10.098.001.66930.295.919误差 .004 15 .000总计 304.17119 校正的总计.01118a. R 方 = .669(调整 R 方 = .603)b. 使用 alpha 的计算结果 = .01由表8.1-1得:p=0.001<0.01,拒绝原假设,i 0α不全为,表明不同机器对装填量有显著影响。
8.201231123:0:,,0=0.05SPSS H H ααααααα===至少有一个不等于用进行方差分析,表8.2-1满意度评分主体间效应的检验(单因素方差分析表)因变量: 评分 源III 型平方和df 均方 F Sig.校正模型 29.610a2 14.805 11.756 .001 截距 975.156 1 975.156 774.324 .000 管理者 29.610 2 14.805 11.756.001误差 18.890 15 1.259总计 1061.000 18 校正的总计48.50017a. R 方 = .611(调整 R 方 = .559)由表8.2-1得:p=0.001<0.05,拒绝原假设,i 0α不全为,表明管理者水平不同会导致评分的显著差异。
8.301231123:0:,,0=0.05SPSS H H ααααααα===至少有一个不等于用进行方差分析,表8.3-1电池寿命主体间效应的检验(单因素方差分析表)因变量: 电池寿命 源III 型平方和df 均方 F Sig. 偏 Eta 方 非中心 参数 观测到的幂b校正模型 615.600a2 307.800 17.068 .000 .740 34.137 .997 截距 22815.000 1 22815.000 1265.157 .000 .991 1265.157 1.000 企业 615.600 2 307.800 17.068.000.74034.137.997误差 216.400 12 18.033总计 23647.000 15 校正的总计832.00014a. R 方 = .740(调整 R 方 = .697)b. 使用 alpha 的计算结果 = .05由表8.2-1得:p=0.001<0.05,拒绝原假设,i 0α不全为,表明3个企业生产的电池平均寿命之间存在显著差异。
统计学第八章 单因素方差分析(1)
称为处理平方 处理平方 和,记为 SSA
总平方和SST=处理平方和SSA+误差平方和SSe
即, ( y ij − y •• ) = n∑ ( y i • − y •• ) + ∑∑ ( y ij − y i• ) 2 ∑∑
2 i =1 j =1 i =1 i =1 j =1 a n 2 a a n
i =1 j =1
a
n
= n∑ ( y i• − y •• ) + 2∑ [( y i• − y •• )∑ ( y ij − y i• )] + ∑∑ ( y ij − y i • )
2 i =1 i =1 j =1 i =1 j =1
a
a
n
a
n
j =1
∑ ( y ij − y i • ) = 0
换句话说,采用两两t检验法,要进行45次t检验,程序太繁琐。
原因(2):检验的I 型错误增大,从而检验的 可靠性低
a = 2 时, H 0 只有一个,即
µ 1= µ 2
a = 3 时, H 0 有 3 个,即 µ 1= µ 2, µ 2= µ 3, µ 1= µ 3
a = 5时,H 0 有10个,即µ1=µ 2,µ 2=µ3, , µ 4=µ5 L
二、方差分析的几个概念
1、方差分析(analysis of variance):将试验数据的总变异分 解成不同来源的变异,从而评定不同来源的变异相对重要性 的一种统计方法。 2、试验指标(experiment index):为衡量试验结果的好坏或 处理效应的高低,在试验中具体测定的性状或观测的项目。 3、试验因素(experiment factor):试验中所研究的影响试验 指标的因素:单因素、双因素或多因素试验。 4、因素水平(level of factor):因素的具体表现或数量等级。
田间试验与统计分析 第八章 多因素试验设计与统计分析
两因素随机区组试验 总变异=区组间+处理间(A因素+B因素+ AXB互作)+误差
两因素裂区试验 总变异=区组间+处理间( A因素+B因素+ AXB互作)+主区 误差+副区误差
激素2
63
激素3
64
激素4
62
激素5
61
组(B)
II
III
IV
62
61
60
65
68
65
61
61
60
67
63
61
65
62
64
62
62
65
例2:两因素完全随机试验 -组合内有重复观察值
肥料 重复
土壤种类
施用A1、A2、A3三 种类
种肥料于B1、B2、
B1
B2
B3
B3 三 种 土 壤 , 以 A1 1
区组I 8 7 6 9 7 8 7 8 10 70 7.78
区组II 8 7 5 9 9 7 7 7 9 68 7.56
区组III T
8
24
6
20
6
17
8
26
6
22
6
21
6
20
8
23
9
28
63
201
7
平均 8 6.7 5.7 8.7 7.3 7 6.7 7.7 9.3
7.4
按品种和密度作两向分组整理成下表2: 表2 品种A和密度B的两向表
统计学(第四版)贾俊平 第八章 方差分析与实验设计 练习题答案
统计学(第四版)贾俊平 第八章 方差分析与实验设计 练习题答案8.10123411234:0:,,,0=0.01SPSS H H ααααααααα====至少有一个不等于用进行方差分析,表8.1-1填装量主体间效应的检验(单因素方差分析表)因变量: 填装量 源 III 型平方和df均方F Sig.偏 Eta 方非中心 参数观测到的幂b校正模型 .007a3 .002 10.098 .001 .669 30.295 .919 截距 295.7791 295.7791266416.430.000 1.000 1266416.4301.000 机器 .007 3 .002 10.098.001.66930.295.919误差 .004 15 .000总计 304.17119 校正的总计.01118a. R 方 = .669(调整 R 方 = .603)b. 使用 alpha 的计算结果 = .01由表8.1-1得:p=0.001<0.01,拒绝原假设,i 0α不全为,表明不同机器对装填量有显著影响。
8.201231123:0:,,0=0.05SPSS H H ααααααα===至少有一个不等于用进行方差分析,表8.2-1满意度评分主体间效应的检验(单因素方差分析表)因变量: 评分 源III 型平方和df 均方 F Sig.校正模型 29.610a2 14.805 11.756 .001 截距 975.156 1 975.156 774.324 .000 管理者 29.610 2 14.805 11.756.001误差 18.890 15 1.259总计 1061.000 18 校正的总计48.50017a. R 方 = .611(调整 R 方 = .559)由表8.2-1得:p=0.001<0.05,拒绝原假设,i 0α不全为,表明管理者水平不同会导致评分的显著差异。
8.301231123:0:,,0=0.05SPSS H H ααααααα===至少有一个不等于用进行方差分析,表8.3-1电池寿命主体间效应的检验(单因素方差分析表)因变量: 电池寿命 源III 型平方和df 均方 F Sig. 偏 Eta 方 非中心 参数 观测到的幂b校正模型 615.600a2 307.800 17.068 .000 .740 34.137 .997 截距 22815.000 1 22815.000 1265.157 .000 .991 1265.157 1.000 企业 615.600 2 307.800 17.068.000.74034.137.997误差 216.400 12 18.033总计 23647.000 15 校正的总计832.00014a. R 方 = .740(调整 R 方 = .697)b. 使用 alpha 的计算结果 = .05由表8.2-1得:p=0.001<0.05,拒绝原假设,i 0α不全为,表明3个企业生产的电池平均寿命之间存在显著差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 常用试验设计的方差分析
8.1 多因素随机区组试验和单因素随机区组试验的分析方法有何异同?多因素随机区组试验处理项的自由度和平方和如何分解?怎样计算和测验因素效应和互作的显著性,正确地进行水平选优和组合选优?
8.2 裂区试验和多因素随机区组试验的统计分析方法有何异同?在裂区试验中误差E a 和E b 是如何计算的,各具什么意义?如何估计裂区试验中的缺区?裂区试验的线性模型是什么?
8.3 有一大豆试验,A 因素为品种,有A 1、A 2、A 3、A 4 4个水平,B 因素为播期,有B 1、B 2、B 3 3个水平,随机区组设计,重复3次,小区计产面积25平方米,其田间排列和产量(kg )如下图,试作分析。
区组Ⅰ
区组Ⅱ
区组Ⅲ [答案:
e
MS
0.31,F 测验:品种、播期极显著,品种×播期不显著]
8.4 有一小麦裂区试验,主区因素A ,分A1(深耕)、A2(浅)两水平,副区因素B ,分B1(多肥)、B2(少肥)两水平,重复3次,小区计产面积15平方米,其田间排列和产量(假设数字)如下图,试作分析。
区组Ⅰ
区组Ⅱ
区组Ⅲ
[答案:
a
E MS
=0.58,
b
E MS
=2.50,F 测验:A 和B 皆显著,A ×B 不显著]
8.5 设若上题小麦耕深与施肥量试验为条区设计,田间排列和产量将相应如下图,试作分
析,并与裂区设计结果相比较)。
B 1 B 1B 2 B 2
B 2B 1
[答案:
A
E MS
=0.58,
B
E MS
=1.75,
c
E MS
=3.25,F 测验A 、B 均显著,A ×B 不显著]
8.6 江苏省淮南地区夏大豆区域试验部分资料摘录如下:
试点 年份 区组 CK 19—15 31—15 4—1 21—16 试点1 1977年
Ⅰ 134 160 168 226 196 Ⅱ 146 180 156 170 190 Ⅲ 148 206 188 216 200 1978年
Ⅰ 220 264 280 212 168 Ⅱ 228 260 276 208 156 Ⅲ 208 220 300 260 148 试点2 1977年
Ⅰ 137 236 197 196 155
Ⅱ 173 207 178 192 179 Ⅲ 110 171 223 208 125 1978年
Ⅰ 179 201 150 195 186
Ⅱ 182 224 189 203 191
Ⅲ
207
262
187
210
183
各年各点均为随机区组设计,试分析此试验结果。
[答案:
2
=3.67,e MS =406.06,Fv=12.89,Fvs=1.88,Fvy=5.18,Fvsy=10.35]
8.7 在药物处理大豆种子试验中,使用了大中小三种类型种子,分别用五种浓度、两种处理时间进行试验处理,播种后45天对每种各取两个样本,每个样本取10株测定其干物重,求其平均数,结果如下表。
试进行方差分析。
处理时间A 种子类型C 浓度B
B 1(0×10-6)
B 2(10×10-6) B 3(20×10-6) B 4(30×10-6) B 5(40×10-6)
A 1(12小时) C 1(小粒)
7.0 12.8 22.0 21.3 24.4
6.5 11.4 21.8 20.3 23.2 C 2(中粒)
13.5 13.2 20.4 19.0 24.6 13.8 14.2 21.4 19.6 23.8 C 3(大粒)
10.7 12.4 22.6 21.3 24.5
10.3 13.2 21.8 22.4 24.2 A 2(24小时) C 1(小粒)
3.6
10.7 4.7 12.4 13.6
1.5
8.8
3.4
10.5
13.7
C2(中粒) 4.7 9.8 2.7 12.4 14.0
4.9 10.5 4.2 13.2 14.2
C3(大粒) 8.7 9.6 3.4 13.0 14.8
3.5 9.7
4.2 12.7 12.6
[答案:B因素显著]
8.8 为了研究湿度和温度对粘虫卵发育历期的影响,用3种湿度、4种温度处理粘虫卵,采用随机区组设计,重复4次,结果如下表,试进行方差分析。
相对湿度(%) 温度(℃)
历期
1 2 3 4
100 26 93.2 91.2 90.7 92.2
28 87.6 85.7 84.2 82.4
30 79.2 74.5 79.3 70.4
32 67.7 69.3 67.6 68.1
70 26 89.4 88.7 86.3 88.5
28 86.4 85.3 86.7 84.2
30 77.2 76.3 74.5 75.7
32 70.1 72.1 70.3 69.5
40 26 99.9 99.2 93.3 94.5
28 91.3 94.6 92.3 91.4
30 82.7 81.3 84.5 86.8
32 75.3 74.1 72.3 71.4
[答案:湿度、温度间差异显著,湿度与温度互作显著,误差均方3.86]
8.9 有一施肥试验,N素4个水平,P、K肥料均为时施肥与不施肥(O)两种水平采用正交表为L8(4×24)的正交设计,小区面积20m2,重复3次,随机区组排列,试验结果如下。
试作分析。