聚苯胺英文文献及翻译
导电高分子材料聚苯胺
导电高分子材料聚苯胺(PAn)的研究进展摘要:本文主要结合导电高分子材料聚苯胺(PAn)目前现状,综述了聚苯胺的结构、特性、合成方法、用途。
指出了聚苯胺的发展方向和前景.关键词:性质、应用、合成方法、发展引言聚笨胺(olyaniline)即导电塑料,是一种高分子合成材料。
它是一类特种功能材料,有塑料的性质——密度和可加工性,又具有金属的导电性,还具备金属和塑料所欠缺的化学和电化学性能,在生活中有许多应用。
1聚苯胺的性质聚苯胺的主链上含有交替的苯环和氮原子,是一种稳定性较好的导电高分子材料,而且它的实际应用前景很广阔。
它具有优良的环境稳定性,是一种具有金属光泽的粉末。
聚苯胺是典型的高分子半导体,本身导电性很差(纯的聚苯胺不导电),需要掺杂以后才能提高导电性。
聚苯胺能被氧化,最终是白色。
1.1聚苯胺的结构1.2 聚苯胺的性质(1)导电性聚苯胺本身的导电性差,需要掺杂以后才能提高电性,它是典型的高分子半导体。
聚苯胺的导电性受很多因素的影响,除了分子链本身的结构外,还有PH值和温度等等。
导电性是聚苯胺的一个非常重要的特性,完全还原的聚苯胺是白色,不导电;再经氧化掺杂后显蓝色,不导电(如果完全氧化则不能导电);再经酸掺杂后显绿色,导电。
PH值与聚苯胺导电率的依赖关系:当PH>4时,导电率与PH值无关,呈绝缘体性质;当2<PH<4时,导电率随溶液PH值的降低而迅速增加,其表现为半导体特性;当PH<2时,导电率与ph值无关,呈金属特性。
温度对聚苯胺导电性的影响也很大,在一定的温度范围内,导电性会有规律的变化,但温度超过后会改变聚苯胺的微观结构。
(2)热稳定性聚苯胺的热稳定性是待解决的问题,它的环境稳定性强,但它的加工强度和机械性能差。
聚苯胺难以保证经过常见工程塑料加工温度热处理后电导率不发生大幅度减弱甚至变为绝缘体。
(3)聚苯胺的溶解性由于聚苯胺链间的相互作用使得它的溶解性极差,相应地可加工性也差,限制了它在技术上的广泛应用。
聚苯胺复合材料应用研究进展
聚苯胺复合材料应用研究进展才宇飞;付永伟【期刊名称】《山东化工》【年(卷),期】2017(046)006【摘要】The application research of polyaniline composites has received the widespread attention, modification technology by composition could not only effetrively optimize the performances of polyaniline, but also improve its value of practical application.Recent advances in application of polyaniline composites were summarized,what's more, the application of polyaniline composites in sensor materials, coatings, capacitor materials, antistatic materials and electronic-magnetic shielding materials were introduced.%聚苯胺复合材料的应用研究受到了广泛关注,复合改性技术优化了聚苯胺的性能,提高了其实际应用价值.综述了聚苯胺复合材料在传感材料、涂料、电容器材料、抗静电材料和电磁屏蔽材料中的应用研究最新进展.【总页数】3页(P54-56)【作者】才宇飞;付永伟【作者单位】桦甸市疾病预防控制中心,吉林桦甸 132400;桦甸市疾病预防控制中心,吉林桦甸 132400【正文语种】中文【中图分类】TQ324【相关文献】1.纳米结构聚苯胺及聚苯胺纳米复合材料的研究进展 [J], 张悦;汪广进;孙爽;潘牧2.界面聚合法制备管状聚苯胺/聚苯胺包覆镍纳米复合材料及其电磁特性 [J], 陈祥凤;姜均涛;3.碳纳米管/聚苯胺复合材料的制备及应用研究进展 [J], 冉青彦;乔聪震;石家华4.碳纳米管/聚苯胺复合材料修饰电极制备及应用研究进展 [J], 方渊;江奇;温琦;王铭飞;赵勇5.多孔材料/聚苯胺复合材料应用研究进展 [J], 杨丽坤因版权原因,仅展示原文概要,查看原文内容请购买。
高分子英语课文翻译修订版
高分子英语课文翻译集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]unit1all polymers are built up from bonding together a single kind of repeating unit. At the other extreme ,protein molecules are polyamides in which n amino acide repeat units are bonded together. Although we might still call n the degree of polymerization in this case, it is less usefull,since an amino acid unit might be any one of some 20-odd molecules that are found in proteins. In this case the molecular weight itself,rather than the degree of the polymerization ,is generally used to describe the molecule. When the actual content of individual amino acids is known,it is their sequence that is of special interest to biochemists and molecular biologists.并不是所有的聚合物都是由一个重复单元链接在一起而形成的。
在另一个极端的情形中,蛋白质分子是由n个氨基酸重复单元链接在一起形成的聚酰胺。
尽管在这个例子中,我们也许仍然把n称为聚合度,但是没有意义,因为一个氨基酸单元也许是在蛋白质中找到的20多个分子中的任意一个。
211064115_聚苯胺
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 3 期聚苯胺/碳纳米管气敏材料的研究进展薛博,杨婷婷,王雪峰(太原理工大学安全与应急管理工程学院,山西 太原 030024)摘要:聚苯胺具有良好的氧化还原性和环境稳定性以及优异的导电性,是一种良好的气敏材料。
但是聚苯胺的共轭离域结构使其在中性和碱性环境中的应用受到制约。
碳纳米管具有比表面积大、可在常温下表现出对于不同气体良好的吸附能力的特点,但是单纯的碳纳米管对气体的吸附选择性较差。
文章主要介绍了采取金属、金属氧化物或者聚合物掺杂等不同手段改性的聚苯胺、碳纳米管以及聚苯胺/碳纳米管复合材料分别作为气敏材料的气敏性能及气敏机理的研究进展,得出经过改性的聚苯胺/碳纳米管复合材料具备更加优良的气敏特性,但也指出存在复合材料各部分协同作用机理尚不明确,除氨气外其余气体的气敏反应机理研究较少的问题,提出未来应进一步探索复合材料气敏反应机理与复合材料各部分的协同作用机制,设计出所需要材料的分子结构,进而有针对性地对聚苯胺和碳纳米管进行功能化掺杂,合成优良的复合气敏材料。
关键词:聚合物;纳米材料;复合材料;聚苯胺;碳纳米管;改性;气敏性能;气敏机理中图分类号:TB34 文献标志码:A 文章编号:1000-6613(2023)03-1448-09Research progress of polyaniline/carbon nanotube gas sensing materialsXUE Bo ,YANG Tingting ,WANG Xuefeng(School of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China)Abstract: Polyaniline has the advantages of good redox properties, environmental stability and excellent electrical conductivity, and thus polyaniline is a good gas-sensing material. However, the conjugated delocalized structure of polyaniline restricts its application in neutral and alkaline environments. Carbon nanotubes have the characteristics of large specific surface area and can show good adsorption capacity for different gases at room temperature, but simple carbon nanotubes have poor adsorption selectivity to gases. This paper mainly introduces the gas-sensing properties and gas-sensing mechanism of polyaniline, carbon nanotubes and polyaniline/carbon nanotube composites modified by different means such as metal, metal oxide or polymer doping as gas-sensing materials. The research progress shows that the modified polyaniline/carbon nanotube composite material has better gas-sensing properties, but it is also pointed out that the synergistic mechanism of each part of the composite material is not clear, and there are few studies on the gas-sensing reaction of other gases except ammonia gas. It is proposed that in the future the gas-sensing reaction mechanism of the composite material and the synergistic mechanism of each part of the composite material should be further explored, the molecular structure of the required material should be designed, and then the function of polyaniline and carbon nanotubes should be综述与专论DOI :10.16085/j.issn.1000-6613.2022-0787收稿日期:2022-04-29;修改稿日期:2022-05-27。
聚苯胺_新一代环境友好防腐材料
第 30 卷 第 8 期 2011 年 8 月
中国材料进展
MATERIALS CHINA
Vol. 30 No. 8 Aug. 2011
特约专栏
聚 苯 胺 ——— 新 一 代 环 境 友 好 防 腐 材 料
李应平1,2 ,王献红1 ,李 季1 ,王佛松1
( 1. 中国科学院长春应用化学研究所 先进生态环境材料国家重点实验室,吉林 长春 130022) ( 2. 中国科学院研究生院,北京 100039)
第8 期
李应平等: 聚苯胺———新一代环境友好防腐材料
19
要指出的是,聚苯胺的电化学沉积电位一般要高于金属 基底的钝化电位。因此在电化学沉积聚苯胺后,电极表 面往往会形成一层钝化层,这层钝化层是保护金属不受 腐蚀的关 键,而 聚 苯 胺 只 是 起 到 了 稳 定 钝 化 层 存 在 的 作用。
Wessling[12] 首 先 采 用 化 学 合 成 的 聚 苯 胺 来 涂 覆 金 属 电极,他将各种金属电极浸入聚苯胺分散液中,从而获 得聚苯胺涂覆的金属电极。与电化学沉积聚苯胺的方法 相比,这种方 法 在 引 入 聚 苯 胺 涂 层 的 同 时 不 会 在 聚 苯 胺 /金属界面形成钝化层,因此更能准确地评估聚苯胺 的防腐机理。在浸泡期间,聚苯胺涂层能使金属表面形 成钝化层,钝化层的形成可以被描述为: 纯聚苯胺涂层 或含聚苯胺的底漆在 Fe 表面涂覆后与 Fe 发生反应,使 Fe 表面生成由 Fe3 O4 和 γ-Fe2 O3 组成的钝化层,钝化层 的形成总是伴随着电位显著地移向高电位,并且使极化 电阻增高和腐蚀电流减小。Wessling 认为聚苯胺可逆的 氧化 - 还原 特 性 是 其 发 挥 钝 化 作 用 的 重 要 保 证[13],腐 蚀介质中的溶解 O 能将被 Fe 还原的聚苯胺重新氧化生 成氧化态聚苯胺,有利于形成致密的钝化层。
聚苯胺的合成 文献综述
聚苯胺的合成及应用聚苯胺(Polyaniline)一种重要的导电聚合物,是研究最为广泛的导电高分子材料之一,其具有原料价廉、工艺简单、导电性优良、耐高温及抗氧化性能好等优点,受到人们普遍青睐,应用前景十分广阔,使其成为导电高分子研究的主流和热点(1)。
一、研究背景20世纪70年代后期由于聚乙炔的发现,人们对共轭聚合物的结构和认识不断深入和提高,逐渐产生了导电高分子这门新兴学科。
由于导电高分子材料作为新兴不可替代的基础有机材料之一,几乎可以用于现代所有新兴产业及高科技领域之中,因此对导电高分子研究不仅具有重大的理论价值,而且具有巨大的应用价值。
聚苯胺自从1984年,被美国宾夕法尼亚大学的化学家MacDiarmid等重新开发以来,以其良好的热稳定性,化学稳定性和电化学可逆性,优良的电磁微波吸收性能,潜在的溶液和熔融加工性能,原料易得,合成方法简便,还有独特的掺杂现象等特性(2),成为现在研究进展最快的导电高分子材料之一,以其为基础材料,目前正在开发许多新技术,例如全塑金属防腐技术、船舶防污技术、太阳能电池、电磁屏蔽技术、抗静电技术、电致变色、传感器元件、催化材料和隐身技术等。
但是聚苯胺分子链上的苯环结构,导致高分子链的刚性较大,并且分子间氢键导致其难溶、难熔、可加工性能比较差。
这些问题又严重限制了聚苯胺的应用范围,因此,如何克服这些缺点制备溶解性和稳定性好,具有高导电性等优良性质的聚苯胺成为急需解决的问题。
目前的研究中,为了克服上述问题采用的措施主要有:(1)引入环取代基或N 取代基,利用取代基的位阻效应,降低分子链的共平面性,降低分子链的刚性,从而提高聚苯胺的溶解性。
(2)采用质子酸掺杂,尤其的大分子有机质子酸,降低分子链之间的相互作用,达到提高溶解性的目的。
(3)可以和可溶性的高分子共混,制备聚苯胺复合材料,既可以提高其在有机溶剂中的溶解性,又可以得到更多的复合性能。
(4)制备亚微米或者纳米级聚苯胺颗粒,可以提高其的热稳定性和可加工性。
关于聚苯胺
研究历史编辑导电高分子用途[5]从1977年日本Shirakawa,美国MacDiarmid、Heeger发现掺杂聚乙炔(PA)呈现金属特性并由此荣获诺贝尔化学奖至今,相继发现的较常用的导电高分子有聚对苯(PPP)、聚吡咯(PPY)、聚噻吩(PTH)、聚苯基乙炔(PPV)和聚苯胺(PANI)。
由于导电高分子特殊的结构和物化性能,使其在电子工业、信息工程、国防工程及其新技术的开发和发展方面都具有重大的意义。
其中因聚苯胺具有原料易得、合成工艺简单、化学及环境稳定性好等特点而得到了广泛的研究和应用。
[5-8] 1826年,德国化学家Otto Unverdorben通过热解蒸馏靛蓝首次制得苯胺(aniline),产物当时被称为“Krystallin”,意即结晶,因其可与硫酸、磷酸形成盐的结晶。
1840年,Fdtzsche从靛蓝中得到无色的油状不同氧化态聚苯胺之间的可逆反应(3张)物苯胺,将其命名为aniline,该词源于西班牙语的anti(靛蓝)并在1856年用于染料工业。
而且他可能制得了少量苯胺的低聚物,1862年HLhetbey也证实苯胺可以在氧化下形成某些固体颗粒。
但由于对高分子本质缺乏足够的认知,聚苯胺的实际研究拖延了几乎一个世纪,直到1984年,MacDiarmid提出了被广泛接受的苯式(还原单元)-醌式(氧化单元)结构共存的模型。
随着两种结构单元的含量不同,聚苯胺处于不同程度的氧化还原状态,并可以相互转化。
不同氧化还原状态的聚苯胺可通过适当的掺杂方式获得导电聚苯胺。
[9-13]不同氧化态聚苯胺之间的可逆反应图册参考资料。
[结构聚苯胺的实际合成与结构研究始于20世纪初,英国的Green和德国的Willstatter两个研究小组采用各种氧化聚苯胺氧化态结构[17]剂和反应条件对苯胺进行氧化,得到一系列不同氧化程度的苯胺低聚物。
Willstatter将苯胺的基本氧化产物和缩合产物通称为苯胺黑。
而Green分别以H2O2,NaClO3为氧化剂合成了五种具有不同氧化程度的苯胺八隅体,并根据其氧化程度的不同分别命名为全还原式(leucoemeraldine)、单醌式(protoemeradine)、双醌式(emeraldine)、三醌式(nigraniline)、四醌式即全氧化式(pernigraniline)。
导电材料聚苯胺
导电聚苯胺的基础性介绍摘要:简要介绍了聚苯胺的导电原理、合成方法、可加工性及有关应用,为制备聚苯胺导电复合材料、导电纤维、导电织物等做好理论基础。
关键词:聚苯胺、导电原理、合成方法、可加工性Abstract:This paper introduces the conductive polymer polyaniline, including that conduction mechanism, synthesis methods, workability and applications, in order to make the preparation of polyaniline conductive composited materials, conductive fiber, conductive fabric.Keyword:polyaniline,conduction mechanism,synthesis methods,workability1.前言:与导电金属相比,导电聚苯胺(conductive polyaniline,cPANi)的密度小,质量轻;在所有导电聚合物中,导电聚苯胺的制备简便且成本较低。
PANi具有电导率高,环境稳定性好,具有良好的抗氧化性能及耐高温特性,易成膜且形成的膜具有坚韧、柔软等优点[1]。
由于是PANi电极材料具有高比电容和高功率密度,因此PANi在传感器、储能和能量转化领域都有潜在的应用价值[2]。
现阶段,对聚苯胺导电高聚物的研究有:借助于π-π相互作用,在碳纳米管(Carbon nanotube,CNT)表面原位聚合苯胺获得碳纳米管/聚苯胺复合材料[3];采用盐酸为掺杂酸、以聚丙烯基吡咯烷酮(PVPK90)为空间稳定剂,在过硫酸铵(APS)氧化体系中通过原位聚合制备聚苯胺/石墨烯导电复合材料[4];利用“硬模板法”[5]、“软模板法”[6]、界面聚合[7]、静电纺丝技术等,制备聚苯胺的一维纳米纤维。
聚苯胺的合成与应用
导电聚苯胺的合成与应用摘要:主要介绍了导电聚苯胺的合成、结构以及其在导电防腐方面的应用,并对它的应用前景进行了展望。
关键词:导电聚苯胺合成应用前景Synthesis and Application of Conductive Polyaniline Abstract: The synthesis, structure and application in electric conduction and anticorrosion of conductive polyaniline were mainly introduced. Application prospect of polyaniline was prospected.Keywords: Conductive Polyaniline Synthesis Application Prospect引言自从1976年,美国宾夕法尼亚大学的化学家MacDiarmid教授及其研究小组首次发现掺杂后的聚乙炔具有类似于金属的导电性后,关于聚合物一定是绝缘体的说法被打破,人们开始了对导电聚合物的研究。
在以后的研究中逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚苯胺等导电高分子。
在这些高分子聚合物中,聚苯胺由于原料易得、合成简便、具有优良的环境稳定性以及可逆的氧化还原特性,受到大家的关注,成为研究的焦点。
1聚苯胺的分子结构由聚苯胺的红外光谱(IR)和Raman光谱可知聚苯胺中存在苯环单元和醌环单元。
1987年,王佛松等人明确指出“苯环单元与醌环单元的比约为3:1”[1]。
刘丹丹等人[2-4]在其文章中指出聚苯胺的结构如下图所示:NH NHyN NI-y n图1 聚苯胺的分子结构Fig. 1 Molecular structure of polyaniline其中,y表征聚苯胺的氧化还原程度,当y=1时,聚苯胺处于全还原态;当y=0时,聚苯胺处于全氧化态;当y介于0与1之间时,聚苯胺处于中间氧化态,其中y=0.5时的聚苯胺经掺杂后导电效果最好。
文献报告
Figure 4. (a) XRD patterns and (b) Raman spectra
Figure 5.(a) Nitrogen adsorption and desorption isotherms (b) pore size distribution
Literatures Review
(可控模板法对制备纳米结构聚苯胺赝电容相关形态的改进)
汇报人:史知昊
Contents
1 2 3
Introduction
Experimental section
Results and discussion
4
Conclusions
Ⅰ.
Introduction
超级电容器(Supercapacitor)
Ⅳ.
Conclusions
1.牺牲模板法可以制备形貌良好的聚苯胺纳米 结构 2.聚苯胺赝电容的性能很大程度受形貌影响
3.电化学表征实验证明纳米管结构的聚苯胺最 适合做超容电极材料
Figure 6. (a) Cyclic voltammetry (b) galvanostatic charge−discharge curves
Figure 7. (a) cyclic voltammetry (b) galvanostatic charge−discharge curves (c) specific capacitance vs current density (d) electrochemical impedance spectroscopy.
双电层电容器
金属氧化物超 级电容
碳超级电容
导电聚合物超 级电容
双电层电容器(Electrical double-layer capacitor)
聚苯胺
A BSTRACTThe purpose of this research is to investigate the release of phenylpropanolamine from oxidized cellulose-phenyl-propanolamine (OC-PPA) complexes prepared using aqueous OC dispersions (degree of neutralization, DN, 0-0.44) and phenylpropanolamine-hydrochloride (PPA.HCl) (concentra-tion, 0.5 M or 1.4 M) in vitro and in vivo. The results showed a faster drug release from the OC-PPA complex made using the OC dispersion with a DN value of 0.22 than from those pre-pared using dispersions with DN values of 0.29 to 0.44. No sig-nificant difference existed between the release profiles of OC-PPAmicroparticles made using OC dispersions with DN values of 0.29 to 0.44. OC-PPA complexes that contained smaller size particles or higher drug levels, or that were processed by freeze drying released PPA faster. Compared with microparticles, the pellets of OC-PPAcomplexes released PPAmore slowly initial-ly. An increase in pH or ionic strength of the dissolution medi-um increased the release of PPA, which is attributable to increased polymer hydration and solubilization at higher pH and ionic strength conditions. The OC-PPA pellets implanted subcutaneously in rats released 100% of their PPA in 9 to 12hours. A good correlation was found between the in vivo and in vitro release data. Tissue pathology results showed no signifi-cant inflammatory tissue reactions. In conclusion, the partially ionized aqueous OC dispersions have the potential to be used as an implantable biodegradable carrier for amine drugs.K EYWORDS :oxidized cellulose, oxycellulose, aqueous oxi-dized cellulose dispersions, phenylpropanolamine hydrochlo-ride, oxidized cellulose-phenylpropanolamine ionic complexI NTRODUCTIONOxidized cellulose (OC; 6-carboxycellulose) is an important but relatively little used class of biodegradable polymers. It has been investigated as an immobilizing matrix for drugs,enzymes, and proteins. V arious bioactive agents immobilized on OC gauze or viscose fabric include (1) antibiotics, such as sulfanilamide, kanamycin sulfate, lincomycin, and gen-tamycin 1-4; (2) antiarrhythmic drugs, such as trimecaine and verapamil 5; and (3) antitumor agents, such as photrin, spiro-bromine, and prospidine, and a mixture of methotrexate and hydroxythiamine.6-8These products showed either enhanced activities or sustained drug release. Studies show that OC also possesses antibacterial 9and antitumor activities.10Recently, anionic polysaccharides, such as sodium alginate,have been used as immobilizing matrices to produce sus-tained-release delivery systems.11Using phenylpropanolamine (PPA) as a model amine drug, it was found that partially neu-tralized aqueous OC dispersions are superior complexing agents compared with OC powder, resulting in both higher drug loading and drug loading efficiencies (see preceding arti-cle). In this article, we report the results of an in vitro and in vivo evaluation of the OC-PPA complexes. A good correlation was found between in vitro and in vivo release data. There was no inflammatory reaction following implantation of the com-plex in rats. The results suggest that the partially neutralized OC dispersions have the potential to be used as a biodegrad-able implantable sustained-release carrier for amine drugs.M ATERIALS AND M ETHODSMaterialsPhenylpropanolamine hydrochloride (PPA.HCl), 1-heptanesul-fonic acid sodium salt, and triethylamine were purchased from Fisher Scientific (Fair Lawn, NJ). The OC-PPA microparticles used in the study were prepared using partially neutralized aqueous OC dispersions and PPA.HCl, as described in the pre-ceding article. The OC-PPA microparticles were dried in an oven at 40°C for 24 hours or by lyophilization at –60°C and 200 millitorr using a Freeze Mobile 6 drier (The Virtis Co Inc,Gardiner, NY). The dried product sufficient to make ~50 tablets for the release study was lightly ground using a mortar and pes-tle and sieved on a set of US standard mesh screens. Powder fractions with particles ranging in size from 45 to 106 µm and between 180 and 250 µm were collected and used in the study.Bulk and Tap DensitiesAbout 1 g of the sample was accurately weighed and put in a 10-mL graduated cylinder. The cylinder was lightly tapped to Corresponding Author:Vijay Kumar, Division of Pharmaceutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242. Tel: (319) 335-8836. Fax:(319) 335-9349. E-mail: vijay-kumar@.Examination of Aqueous Oxidized Cellulose Dispersions as a Potential Drug Carrier. II. In Vitro and In Vivo Evaluation of Phenylpropanolamine Release From Microparticles and PelletsSubmitted: February 4, 2004; Accepted: August 6, 2004.Lihua Zhu 1, Vijay Kumar 2and Gilbert S. Banker 21Current address: Hospira Inc., Pharmaceutical R&D, 275 North Field Drive AP4/D438, Lake Forest, IL 600452Division of Pharmaceutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242ensure that no powder was sticking to the walls of the cylin-der. The powder volume was recorded. The cylinder was then tapped on a hard surface from a distance of 1.5 inches, until a constant powder volume reading was obtained. The bulk and tap densities of the powder were calculated using the relation-ships: bulk density = sample mass/bulk volume, and tap den-sity = sample mass/tapped volume.Preparation of PelletsThe OC-PPA complexes dried in an oven and containing par-ticles ranging in size from 180 to 250 µm were used in the study. Fifty pellets, each weighing 50 ± 0.5 mg, were prepared on a Carver Laboratory Press (model C, Fred S. Carver Inc, Menomonee Falls, WI) using a 1/8-inch die and standard con-cave punch set, a loading force of 600 pounds, and a dwell time of 10 seconds. After ejection from the die, the pellets were measured for thickness using a digital electronic caliper (Marathon Management Co Ltd, Richmond Hill, Ontario, Canada). The hardness of the pellets was measured on a Computest hardness tester (V ector Corp, Marion, Iowa). High-Performance Liquid Chromatography Analysis of PPAThe analysis of PPA was performed by high-performance liq-uid chromatography (HPLC) according to the United States Pharmacopeia (USP)procedure,12with minor modifications as noted in the preceding article.In Vitro Drug ReleaseIn vitro drug release studies were performed in water, NaCl solution (ionic strength 0.15 or 0.25), or phosphate buffer solutions (PBS) (pH 6.0 and 7.4; ionic strength 0.15 or 0.25). Fifty milligrams of the OC-PPA sample (microparticles or a pellet prepared using them) and 1 mL of the dissolution medi-um were placed in a pleated dialysis tubing (SnakeSkin; molecular weight cut-off [MWCT]3500; surface area 4.2-4.8 cm2; Pierce Chemical Co, Rockford, IL). After securely clamping the ends, the dialysis bag was placed in a flask con-taining 50 mL of the dissolution medium. The flask was shak-en at 20 cycles per minute (cpm) at 37°C in a controlled-envi-ronment incubator shaker. At predetermined time intervals, 1 mL of the dissolution medium was removed. This was imme-diately replaced with an equal volume of the fresh dissolution medium. The removed dissolution sample was appropriately diluted with 0.01 N HCl and analyzed by HPLC.In Vivo Drug ReleaseMale Sprague-Dawley rats, each weighing 280 to 300 g, were used in the study. The rats were anesthetized with an intraperi-toneal (IP) dose of ketamine (40 mg/kg) and xylazine (5 mg/kg). They were then placed on a heating pad, and their hair was removed from the back (~3 × 4 cm2), near the neck, using an electric clipper. The site of the incision was scrubbed using a surgical Betadine scrub (povidone-iodine, Purdue Frederick Co, Norwalk, CT) and 70% ethyl alcohol. The rats were then covered with a sterile Poly-Lined Towel (Allegiance Healthcare Corp, McGaw Park, IL). An incision was made through the skin using a scalpel to allow the pellet to be placed subcutaneously. The incision was closed with a sterile absorbable Vicryl (Polyglactin 910) surgical suture (Ethicon Inc, Somerville, NJ). The rats were put back in separate cages and monitored periodically until they regained consciousness. The rats were euthanized by inhalation of carbon dioxide at pre-determined time points. The remaining pellet was removed from the implantation site and placed in a glass vial. The sur-rounding tissues were repeatedly washed with water. The wash-ings were collected in the same vial that contained the removed pellet. The collected sample was suspended in 0.01 N HCl, transferred into a 5-mL volumetric flask, and then the volume was brought to mark with HCl. The sample solution was fur-ther diluted to an appropriate volume, if necessary, for HPLC analysis. Before injection, the sample solution was filtered through a syringe filter unit (nylon, 0.45 µm). The amount of PPA remaining in the implant was calculated using the calibra-tion curve method. The percentage of PPA released in vivo was calculated by subtracting the remaining PPA in the retrieved pellet and washings from the initial drug loading in the pellet. Tissue Preparation for Histological ExaminationFour rats were used for examination of tissue reactions to OC. Two of them were used as surgical controls and the other 2 were used for pellet implantation. The surrounding tissue at the implantation site was fully excised and then placed in 10% neutral buffered formalin for fixing. A representative section of the fixed tissue was selected for morphological evaluation. The tissue was embedded in paraffin and 4- to 5-µm sections were cut from the blocked tissue, followed by staining with hemotoxylin-eosin (H&E). The slides were examined under an Olympus BH-2 microscope (Olympus, Melville, NY); rep-resentative areas were photographed using a Sony 3CCD color video camera and were printed on a Sony UP-5200MD color video printer (Sony Corporation, New York, NY).R ESULTS AND D ISCUSSIONIn Vitro Drug Release From MicroparticlesEffect of the Degree of Neutralization of Oxidized Cellulose Dispersions and Drug Loading on ReleaseFigure 1 shows the percentage PPA released as a function of time from various OC-PPA complexes prepared using OCdispersions with DN values of 0.22 to 0.44. The PPA content in the products ranged from 12.6% to 26.7%. Also included with these plots are the dissolution profiles of free PPA and of a physical mixture of OC and PPA(composition: 83.4% and 16.6%, respectively). As is evident from Figure 1, both free drug and drug in the physical mixture dissolved rapidly, whereas the complexes showed a significantly slower PPA release. The OC-PPA complexes made from OC dispersions with DN values of 0.29 to 0.44 had very similar control release profiles (P> .05) (Table 1). The OC dispersion with a DN value of 0.22 released PPA faster.At 3 hours of release, all OC-PPA particles appeared hydrat-ed. However, only those made using the OC dispersion with a DN value between 0.29 and 0.44 and that contained the PPA content from 12.6% to 18.4% converted into a uniform gelatinous mass. The pH of each hydrated mass was meas-ured and ranged from 2.5 to 2.9. The inability of the OC-PPA complex with a DN value of 0.22 to convert into a uniform gel was attributed to the lower pH environment of the hydrat-ed mass, which also explains why PPA was released faster from the complex (Figure 1).to study the effect of drug loading on drug release. Since all par-ticles appeared hydrated within 6 hours, the initial drug release was compared at 6 hours. The results presented in Table 1 show that, for the products made using the same OC dispersion (ie, with the same DN value), the higher the drug loading, the greater the percentages of drug release at 6 hours. This finding indicated that the extent of initial drug release was faster when the drug loading was higher. This may be due to the larger amount of drug bound on the particle surface being dissolved more rapidly after hydration, which would be expected because PPA in the protonated form is highly soluble in water.The results in Table 1 also show that the effect of the 2 dif-ferent PPA loading levels on the percentage release of PPA at 6 hours tended to decrease as the DN levels increased. For example, at a DN of 0.22, the difference in percentage release at 6 hours for the products at a 12.6% PPA loading and at 19.0% PPA loading differed by 19.4% (26.4% vs 45.8%). For the complexes made using the OC dispersions with DN values of 0.29, 0.37, and 0.44, the percentage release differed by 12.0%, 10.5%, and 10.4%, respectively. From a comparison of the t0.5values of each pair of samples with the same DN value, the product containing a lower per-centage of PPA loading had a higher t0.5value than the prod-uct having a higher drug loading.Effect of Particle Size on Drug ReleasePowder fractions ranging in size from 45 µm to 106 µm and from 180 µm to 250 µm were used in the study. The results presented in Figure 2 show a faster drug release profile from smaller size particles (P< .05) (Figure 2). This should be expected since hydration would occur more rapidly as parti-cle size decreased and surface area increased.Figure 1.PPA release profiles in water at 37°C from the OC-PPA complexes prepared using aqueous OC dispersions (DN 0.22-0.44).Effect of Drying Method on Drug ReleaseThe effect of the drying method on the PPA release rate was compared using OC-PPA complexes (particle size 180-250µm) containing 16.6% and 26.7% PPA. The drug release was faster from the products prepared by freeze drying than from the oven-dried products (P< .05) (Figure 3). The freeze-dried powders were less dense compared with those prepared by oven drying (Table 2), suggesting that more void space existed in the freeze-dried matrix, which facilitated matrix hydration and subsequent drug parison of Drug Release From Microparticles and PelletsThe OC-PPA complex (PPA loading 16.6%, particle size 180-250 µm) prepared using the OC dispersion with a DN value of 0.37 was used in the study. Pellets, each weighing ~50 mg, with an average thickness of 5.2 mm and an average hardness value of 4.0 kp, were made according to the procedure described in the experimental section. The results are depicted in Figure 4. Except for the initial time points, the release of PPA was simi-lar from both microparticles and pellets. The initial slowerFigure 2.PPA release profiles from the OC-PPA complexes as a function of particle size (PS). Figure 3.PPA release profiles from oven-dried and freeze-dried OCA-PPA complexes.was primarily owing to the slower hydration of the pellet. Upon hydration, the pellet converted into a gelatinous mass, which probably served as a barrier and led to the slower PPA release. Effect of Media on Drug Release From PelletsThe release studies were performed in pH 6.0 and 7.4 normal saline (ionic strength 0.15 or 0.25) and PBS (ionic strength 0.15 or 0.25). The results are shown in Figure 5. The release of PPA was substantially faster in solutions with an ionic strength of 0.25 than in solutions with an ionic strength of 0.15. The percentage drug release at 6 hours and the time for 50% drug release (t0.5) at the 4 pH-ionic strength conditions are listed in Table 3. Since the sodium salt of OC is soluble in the dissolution medium, it is plausible that the exposure of OC to more highly concentrated salt solutions results in an increased interaction between sodium and carboxylate ions, which, in turn, causes the OC to more rapidly hydrolyze and solubilize. Thus, drug release would be expected to be fasteralso reported for the morphine release from the Eudragit-mor-phine complex13and for the o-pivaloylpropranolol release from a cation exchange polystyrene sulfonic acid resin.14 The mean effect of pH or ionic strength (IS) on the percentage PPA released at 6 hours as well as t0.5was analyzed by a 2-fac-tor-2-level experimental analysis and the results are presented in Table 4. These results indicate that the effect of the pH of the dissolution media was less than the effect of ionic strength on percentage drug release at 6 hours. A higher pH value should favor the solubilization of the OC polymer (pK a3.6-4.0) and decrease the solubility of PPA(pK a9.4). The results show that the drug release increased with an increase in pH, indicating that the effect due to the solubilization of the OC polymer is larger than the effect due to the reduced solubility of PPA with increasing pH. These results suggest that the hydration of the OC matrix and its solubilization are the controlling factors for drug release from this system with PPA.Pellets of the OC-PPAcomplex (containing 16.6% PPA)made using the OC dispersion with a DN value of 0.37 were subcutaneously implanted in rats. After 3, 6, 9, or 12 hours of implantation, the incision was opened and the remaining pel-let or gelatinous mass was removed. Representative photo-graphs of pellets in their implantation site are shown in Figure6. These photographs show the incision before implantation,and pellets at 3, 6, and 12 hours postimplantation. It can be seen that the pellet was hydrated at 3 hours, and its size wassubstantially larger than the original pellet. The pellet was fully hydrated and became a gelatinous mass at 6 hours, and at 12 hours the volume of the remaining gelatinous fluid was considerably reduced compared with at 6 hours.The percentage drug released was calculated by subtracting the remaining PPA in the implantation site at the specified time point from the initial PPA loading in the pellet. The in vivo release profile shown in Figure 7 indicates that the drug was completely released within 9 to 12 hours. A good corre-lation was observed between the in vivo results and the in vitro release data determined in pH 7.4 PBS (ionic strength 0.25). This correlation implies that the in vitro condition used in this study can be applied to estimate the in vivo drug release for a very soluble drug from an OC-based subcuta-neous implant. As observed by the in vivo testing, hydration also appeared to be the controlling factor for drug release in rat tissue from the pellets.Tissue Reaction After ImplantationRepresentative photomicrographs of the tissue samples from a control rat after a surgical incision and from a rat bearing a pellet implantation for 12 hours are compared in Figures 8and 9, respectively. In both the control and pellet-implanted rats, there was some tissue reaction. No rats showed any sign of an acute inflammatory reaction. A lymphocytic reaction,however, was noted in the surrounding tissue. Based on a comparison of the density of lymphocytes present in the sur-rounding tissue, pellet implantation did not appear to cause a significant inflammatory response compared with the sur-gery control. These histological results clearly suggest that OC may be biocompatible as a subcutaneous implant.Figure 6.Photographs showing surgical incision (A) and the remaining pellets at 3 hours (B), 6 hours (C), and 12 hours (D)postimplantation in rats.C ONCLUSIONThe OC-PPA complexes prepared from partially neutralized OC dispersions and PPA.HCl release drug slowly. A higher drug loading, smaller particle size, and drying of the complex by freeze drying, all caused the drug to be released faster. An increase in pH or ionic strength of the dissolution medium also led to faster release of drug from the complex. This occurs because of increased polymer hydration and solubi-lization at higher pH and ionic strength conditions. These results show that drug complexes of OC, prepared using the partially neutralized dispersion, may have potential for implantable drug delivery.R EFERENCES1. Yasnitskii BG , Dol’berg EG . Bactericidal hemostatic. USSR patent 389:794. July 11, 1973.2. Dol’berg EB, Shuteeva LN, Yasnitskii BG , Obolentseva GV , Khadzha YI, Furmanov Y A. Certain aspects of interaction of oxidized cellulose with pharmaceutical compounds. III. Synthesis and biological propertiesFigure 7.Correlation between in vitro and in vivo drug release data obtained from OC-PPA pellets containing 16.6% PPA.Figure 8.Photographs of tissue reaction for surgical control rat. Photographs (A) and (B) show the biopsy cavity, and photographs (C)and (D) show a mild inflammatory cell infiltrate composed primarily of lymphocytes.of the product of interaction of oxidized cellulose with kanamycin sul-fate. Khim Farm Zh.1974;8:23-26.3. Stel’makh V A, Apshchenko MI, Lyakov VVS, Soroka LI. Toxicological characteristics of a lincomycin-containing polymer com-plex. Ser Biya. Navuk. 1994;2:67-72.4. Firsov AA, Nazarov AD, Formina IP. Biodegradable implants contain-ing gentamycin: drug release and pharmacokinetics. Drug Dev Ind Pharm.1987;13(9-11):1651-1674.5. Sidorenko GI, Gurin A V, Kolyadko MG, Y urkshtovich Tl, Nedorezov VL. Antiarrhythmic activity of polymeric formulations of quinidine, trimecaine, ethacizine, propranolol and verapamil. Eksp Klin Farmakol. 1993;56:27-30.6. Kaputskii FN, Bychkovskii PM, Y urkshtovich TL, Butrim SM, Korolik EV, Buslov DK. Study of photrin sorption by monocarboxycellu-lose. Colloid J. 1995;57:41-45.7. Bychkovskii PM, Kaputakii FN, Y urkshtovich TL. Sorption of antitu-mor drugs by cellulose oxidized by nitrogen (IV) oxide. Ser Khim Navuk. 1993;3:41-45.8. Zimatkina T, Zimatkin S, Kaputsky F. Antitumor activity of hydrox-ythiamine and methotrexate immobilized on monocarboxycellulose. Pol J Pharmacol. 1996;48:163-169.9. Dineen P. Antibacterial activity of oxidized regenerated cellulose. Surg Gynecol Obstet.1976;142:481-486.10. Tokunaga YK, Naruse T. Antitumor effect of oxycellulose as a hemo-static during operation. Cancer Biother Radiopharm. 1998;13:437-445.11. Giunchedi P, Gavini E, Moretti MD, Pirisino G. Evaluation of algi-nate compressed matrices as prolonged drug delivery systems. AAPS PharmSciTech. 2000;1:E19.12. United States Pharmacopeial Convention. Phenylpropanolamine Hydrochloride Extended Release Capsules.In:United States Pharmacopeia/National Formulary(USP23/NF 18). Rockville, MD: United States Pharmacopeial Convention Inc; 1995:2114-2115.13. Fernandez M, Alvarez-Fuentes J, Iruin A, Holgado MA. In vitro eval-uation of a morphine polymeric complex: flowability behavior and disso-lution study. AAPS PharmSciTech. 2004;5:E39.14. Irwin WJ, Belaid KA, Alpar HO. Drug-delivery by ion-exchange. III: Interaction of ester prodrugs of propranolol with cationic exchange resins. Drug Dev Ind Pharm.1987;13(9-11):2047-2066.Figure 9.Photographs of tissue reaction after pellet implantation for 12 hours in the rat. Photographs (A) and (B) show the implanta-tion cavity, and photographs (C) and (D) show a mild inflammatory cell infiltrate composed primarily of lymphocytes.。
(整理)聚苯胺的合成 文献综述
聚苯胺的合成及应用聚苯胺(Polyaniline)一种重要的导电聚合物,是研究最为广泛的导电高分子材料之一,其具有原料价廉、工艺简单、导电性优良、耐高温及抗氧化性能好等优点,受到人们普遍青睐,应用前景十分广阔,使其成为导电高分子研究的主流和热点(1)。
一、研究背景20世纪70年代后期由于聚乙炔的发现,人们对共轭聚合物的结构和认识不断深入和提高,逐渐产生了导电高分子这门新兴学科。
由于导电高分子材料作为新兴不可替代的基础有机材料之一,几乎可以用于现代所有新兴产业及高科技领域之中,因此对导电高分子研究不仅具有重大的理论价值,而且具有巨大的应用价值。
聚苯胺自从1984年,被美国宾夕法尼亚大学的化学家MacDiarmid等重新开发以来,以其良好的热稳定性,化学稳定性和电化学可逆性,优良的电磁微波吸收性能,潜在的溶液和熔融加工性能,原料易得,合成方法简便,还有独特的掺杂现象等特性(2),成为现在研究进展最快的导电高分子材料之一,以其为基础材料,目前正在开发许多新技术,例如全塑金属防腐技术、船舶防污技术、太阳能电池、电磁屏蔽技术、抗静电技术、电致变色、传感器元件、催化材料和隐身技术等。
但是聚苯胺分子链上的苯环结构,导致高分子链的刚性较大,并且分子间氢键导致其难溶、难熔、可加工性能比较差。
这些问题又严重限制了聚苯胺的应用范围,因此,如何克服这些缺点制备溶解性和稳定性好,具有高导电性等优良性质的聚苯胺成为急需解决的问题。
目前的研究中,为了克服上述问题采用的措施主要有:(1)引入环取代基或N 取代基,利用取代基的位阻效应,降低分子链的共平面性,降低分子链的刚性,从而提高聚苯胺的溶解性。
(2)采用质子酸掺杂,尤其的大分子有机质子酸,降低分子链之间的相互作用,达到提高溶解性的目的。
(3)可以和可溶性的高分子共混,制备聚苯胺复合材料,既可以提高其在有机溶剂中的溶解性,又可以得到更多的复合性能。
(4)制备亚微米或者纳米级聚苯胺颗粒,可以提高其的热稳定性和可加工性。
聚苯胺禁带宽度
聚苯胺禁带宽度聚苯胺(Polyaniline,简称PANI)是一种具有导电性的高分子材料,在电化学传感器、储能器件、涂料等领域有着广泛的应用。
聚苯胺的禁带宽度是指电子从价带跃迁到导带所需的最小能量。
聚苯胺的禁带宽度是其导电性质的重要指标,其值与聚苯胺的导电性能密切相关。
聚苯胺的禁带宽度可通过多种实验手段进行测量,常见的有紫外-可见光谱(UV-Vis)、电学测量以及扫描电子显微镜(SEM)等技术。
在紫外-可见光谱测量中,通过测量聚苯胺在不同波长下的吸收光谱,可以得到聚苯胺的能带结构信息。
根据Tauc方法,通过绘制聚苯胺的吸收系数与波长的关系曲线,可以得到聚苯胺的禁带宽度。
该方法适用于各种类型的聚苯胺材料。
然而,需要注意的是,紫外-可见光谱法仅适用于具有明显可见吸收峰的聚苯胺材料。
电学测量是另一种常用的确定聚苯胺禁带宽度的方法。
通过测量聚苯胺薄膜的电阻率或导电率,可以间接地推断出其禁带宽度。
该方法适用于金属电极/聚苯胺材料结构的电阻或电导测量。
此外,可以通过电化学质谱仪等设备,测量聚苯胺薄膜的功函数和吸电子亲和能,结合外加电位,得到聚苯胺禁带宽度的估计值。
然而,这种方法需要复杂的实验装置且操作较为复杂。
SEM观察是一种确定聚苯胺禁带宽度的形貌方法。
通过SEM观察,可以得到聚苯胺材料的表面形貌和纤维的直径。
然后,通过描绘聚苯胺材料的能带结构,可以得到禁带宽度。
总结来说,确定聚苯胺禁带宽度的方法主要有紫外-可见光谱、电学测量和SEM观察。
其中,紫外-可见光谱方法适用范围较广,而电学测量和SEM观察则需要较为复杂的实验条件。
不同的方法可以互相验证,得到更准确的结果。
参考文献:1. Bhowmik, P., & Mandal, D. (2019). Highly efficient enzyme-free glucose sensor based on sponge-like polyaniline nanostructures. Journal of Industrial and Engineering Chemistry, 70, 501-511.2. Huang, J., Kaner, R. B., & Zhang, X. (2018). Nanostructured polyaniline sensors. Chemical Society Reviews, 47(12), 422-500.3. Eftekhari, A. (2017). Conducting polymers: a review on recent advances in synthetic protocols, properties and applications. Polymer International, 66(11), 1719-1745.4. Xu, Z., Liu, R., Chen, Y., Xu, Y., Wei, S., Li, N., ... & Li, C. (2017). Synthesis of Polyaniline Nanostructures: Ultrathin Nanosheets, Large Area Nanofibers, and Their Photocatalytic Properties. ACS Applied Materials & Interfaces, 9(51), 44408-44418.。
聚苯胺英文文献及翻译
聚苯胺的应用
聚苯胺具有优良的环境稳定性。可用于制备传感 器、电池、电容器等。 聚苯胺由苯胺单体在 酸性水溶液中经化学氧化或电化学氧化得到,常 用的氧化剂为过硫酸铵(APS)。中性条件下聚 合的聚苯胺常含有枝化结构。 绿色聚苯胺由 苯胺单体在酸性水溶液中经化学氧化或电化学氧 化得到,具有良好的导电性能,具有优良的环境 稳定性。可用于制备传感器、电池、电容器等。 聚苯胺通过“氧化还原掺杂”处理,掺杂后的聚 苯胺导电率提高10个数量级以上,并改善了其在 溶剂中的溶解性和加工性能。
聚苯胺的性质
聚苯胺随氧化程度的不同呈现出不同的颜色。
完全还原的聚苯胺(Leucoemeraldine碱)不导
电,为白色,主链中各重复单元间不共轭;经氧
化掺杂,得到Emeraldine碱,蓝色,不导电;再
经酸掺杂,得到Emeraldine盐,绿色,导电;如
果Emeraldine碱完全氧化,则得到
Pernigraniline碱,不能导电。
聚苯胺
Subheading goes here
聚苯胺
• 聚苯胺(Polyaniline)一种重要的导电聚合
物。 聚苯胺的主链上含有交替的苯环和氮
原子,是一种特殊的导电聚合物。可溶于
N-甲基吡咯烷酮中。
聚苯胺结构:
现已公认的聚苯胺的结构式是1987年由MacDiarmid提出的:即 结构式中含有“苯-苯”连续的还原形式和含有“苯-醌”交替 的氧化形式,其中y值表征PAN的氧化还原程度,不同的结构,组 分和颜色及导电率。当y=1是完全还原的全苯式结构,对应着 “Leucoemeraldine”;y=0是“苯-醌”交替结构,对应着 “Prenigraniline”,均为绝缘体。而y=0.5为苯醌比为3∶1的半 氧化和还原结构,对应着“Emeral-dine”,即本征态。
聚苯胺
聚苯胺科技名词定义中文名称:聚苯胺英文名称:polyanilene定义:由苯胺单体聚合而成的高分子。
主链有三种结构形式:氧化掺杂态、全氧化态和中性态。
氧化掺杂态为导电态,其导电率一般为1011~101S/cm。
应用学科:材料科学技术(一级学科);高分子材料(二级学科);功能高分子材料(二级学科)以上内容由全国科学技术名词审定委员会审定公布百科名片聚苯胺(Polyaniline)一种重要的导电聚合物。
聚苯胺的主链上含有交替的苯环和氮原子,是一种特殊的导电聚合物。
可溶于N-甲基吡咯烷酮中。
目录性质应用性能特点用途性质聚苯胺随氧化程度的不同呈现出不同的颜色。
完全还原的聚苯胺(Leucoemeraldine碱)不导电,为白色,主链中各重复单元间不共轭;经氧化掺杂,得到Emeraldine碱,蓝色,不导电;再经酸掺杂,得到Emeraldine盐,绿色,导电;如果Emeraldine碱完全氧化,则得到Pernigraniline碱,不能导电。
应用聚苯胺具有优良的环境稳定性。
可用于制备传感器、电池、电容器等。
聚苯胺由苯胺单体在酸性水溶液中经化学氧化或电化学氧化得到,常用的氧化剂为过硫酸铵(APS)。
中性条件下聚合的聚苯胺常含有枝化结构。
绿色聚苯胺由苯胺单体在酸性水溶液中经化学氧化或电化学氧化得到,具有良好的导电性能,具有优良的环境稳定性。
可用于制备传感器、电池、电容器等。
聚苯胺通过“氧化还原掺杂”处理,掺杂后的聚苯胺导电率提高10个数量级以上,并改善了其在溶剂中的溶解性和加工性能。
另外,通过特殊方法处理得到的水溶性好的聚苯胺,可以在水性体系里面使用。
聚苯胺可以作为电磁波屏蔽材料,耐腐蚀材料,同时可以吸收微波,还可以用来作为检测空气中氮氧化物的含量的材料以及H2S,SO2等有害气体的含量。
聚苯胺的应用及市场简介如下:聚苯胺是一种高分子合成材料,俗称导电塑料。
它是一类特种功能材料,具有塑料的密度,又具有金属的导电性和塑料的可加工性,还具备金属和塑料所欠缺的化学和电化学性能,在国防工业上可用作隐身材料、防腐材料,民用上可用作金属防腐蚀材料、抗静电材料、电子化学品等。
导电材料聚苯胺
导电材料聚苯胺的最新研究进展周光举,李青山,徐明双(燕山大学亚稳材料制备技术与科学国家重点实验室,秦皇岛 066004)摘要 介绍了聚苯胺的结构、导电机理;综述了国内外有关导电聚苯胺,如聚苯胺纳米纤维、聚苯胺复合材料、水溶性聚苯胺、聚苯胺导电薄膜、聚苯胺纳米管的制备方法以及导电聚苯胺在电磁屏蔽材料、吸波材料、电致变色材料、防腐材料、电极材料等领域的应用,并指出了聚苯胺应用方面存在的问题以及解决问题的方法和建议。
关键词 纳米技术 综述 聚苯胺 应用 制备方法Polyaniline Conductive Material on the Latest ProgressZHOU Guangju, LI Qingshan, XU Mingshuang(Metastable Materials Science & Technology of SKL,Yanshan University, Qinhuangdao 066004)Abstract In this paper the PAn structure, conducting mechanism are introduced, the relevant domestic and internationalpreparation methods of conductive PAn, such as PAn nanofibers, PAn composite materials, water-soluble PAn, conductive film PAn , PAn nanotubes are reviewed,and conducting PAn used as electromagnetic shielding materials, absorbing materials, electrochromic materials, anti-corrosion materials, the electrode materials in various fields are introduced also. The existing problems of the application are point out and the possible solutions and recommendations are proposed.Key words nanotechnology, review, PAn, application, preparation methods聚苯胺(PAn)是目前研究最为广泛的导电高分子材料之一,具有原料易得、合成简便、耐高温及抗氧化性能良好等优点,是目前公认的最具有应用潜力的导电高分子材料之一。
, 2021 chemical engineering journal聚苯胺锌离子电池
, 2021 chemical engineering journal聚苯胺锌离子电池
化学工程杂志是一个广泛涵盖化学工程领域的学术期刊,涉及各种化学工程研究和应用。
聚苯胺锌离子电池是一种新型的电化学能量存储设备,该设备利用聚苯胺基质和锌离子之间的相互作用来实现能量的储存和释放。
该电池的工作原理是,当充电时,锌离子从阳极溶解,并在聚苯胺基质中形成锌金属。
当放电时,锌金属氧化成锌离子,并释放出储存在聚苯胺基质中的能量。
聚苯胺作为基质具有良好的电化学性能和储能能力,使得聚苯胺锌离子电池成为一种有潜力的能量存储解决方案。
关于聚苯胺锌离子电池的研究在化学工程杂志中可能包括以下方面:
1. 电池材料的开发和优化:研究人员可以通过改变聚苯胺的结构和与锌离子的相互作用,来改善电池的性能和循环寿命。
2. 电池性能的表征与评估:利用物理化学分析技术,如循环伏安法和电化学阻抗谱,评估聚苯胺锌离子电池的电化学性能,并研究其动力学过程。
3. 电池应用领域的探索:研究人员可以探索聚苯胺锌离子电池在可再生能源存储、电动车辆和移动电源等领域的应用潜力,并评估其与传统锂离子电池的比较优势。
总之,化学工程杂志可能会发表关于聚苯胺锌离子电池的研究论文,旨在推动该新型电池技术的发展和应用。
导电聚苯胺化合物在纺织中的应用
导电聚苯胺化合物在纺织中的应用摘要:聚苯胺是一种典型的导电高分子材料。
由于具有结构多样化,电导率较高,搀杂机制独特,物理性能优良,环境稳固性好,且原料廉价易患,合成方式简便等一系列优势,而成为现今最具应用前景的导电高分子材料之一,由于结构的特殊性,使其能够在生活的各个领域发挥功用[10]。
关键词:聚苯胺、导电织物、纺织、应用Application of Conducting Polyaniline Compounds in Textile Industry Abstract : Polyaniline is a classic conducting polymer. It has emerged as one of the most promising conducting polymer materials for commercial application because of its diversified structure, relatively high conductivity. Special doping mechanism. superior physical properties , good environmental stability , low cost and simple polymerization process. It could be used in lots of fields in our lives because of its special structure. The structure, conducting mechanism, and main synthesize methods have been summarized in this text. The function and the application prospects have also been introduced.Key Word:polyaniline、conductive fabric、textile、application前言:导电聚合物基导电织物除具有传统导电织物的导电、电磁屏蔽及抗静电性能外[1-4],由于导电聚合物所具有的机灵敏应特点,它们还具有电致变色[5-6]、电致发光[7]、浸润性开关[8 ]等特殊功能,在新型显示器件、信息存储器件、传感器、药物传输、微流体器件等领域表现出庞大的应用潜力。
检索 (3)
【一】
中国优秀硕士学位论文全文数据库 中国博士论文全文数据库
使用
中国重要会议论文全文数据库
检索
【二】
使用万方数据库检ቤተ መጻሕፍቲ ባይዱ 万方数据库检索 万方数据库
【三】 使用中国科技论文在线检索 使用中国科技论文在线检索 中国科技论文在线
【四】
在中华人民共和国国家知识产权局检索 中华人民共和国国家知识产权局检索
网络数据库检索实习 检索题目
聚苯胺纳米纤维的制备研究
简介: 简介:
聚苯胺是在1834年Runge在水溶液中氧化苯胺得到了难加工的黑绿色 聚苯胺是在 年 在水溶液中氧化苯胺得到了难加工的黑绿色 的固体,发现这种物质具有染色的功能,称之为“苯胺黑” 的固体,发现这种物质具有染色的功能,称之为“苯胺黑”。到二十世纪 初,Green和Fritzsche 等研究了聚苯胺的分子结构,人们对聚苯胺的认识 和 等研究了聚苯胺的分子结构, 才开始深入。二十世纪六十年代末,Jozefowicz 等用过硫酸铵为氧化剂, 才开始深入。二十世纪六十年代末, 等用过硫酸铵为氧化剂, 制备出了电导率为10.0 S/cm的聚苯胺。研究结果表明,该聚苯胺具有质子 制备出了电导率为 的聚苯胺。研究结果表明, 的聚苯胺 交换、氧化/还原和吸附水蒸汽的能力,并且组装了以聚苯胺为电极的二 交换、氧化 还原和吸附水蒸汽的能力, 还原和吸附水蒸汽的能力 次电池。遗憾的是这一结果当时未能引起人们的重视。自从1977年, 次电池。遗憾的是这一结果当时未能引起人们的重视。自从 年 Macdiarmidhe和Shirakawa等发现了聚乙炔薄膜经过碘掺杂后出现导电特 和 等发现了聚乙炔薄膜经过碘掺杂后出现导电特 使人们认识到高分子聚合物并非都是绝缘体, 性,使人们认识到高分子聚合物并非都是绝缘体,因此导电聚合物的出现 使人们开拓了新的研究领域。1985年MacDiarmid 及其合作者报导了聚苯 使人们开拓了新的研究领域。 年 胺的质子酸掺杂,才使这种材料被迅速研究和开发[1]。现在已研究出来 胺的质子酸掺杂,才使这种材料被迅速研究和开发 。 导电聚苯胺具有较高的电导率、环境稳定性好、合成方法简单, 导电聚苯胺具有较高的电导率、环境稳定性好、合成方法简单,并且其掺 杂程度亦可以控制,由于导电聚苯胺合成的复合材料在力学、光学、 杂程度亦可以控制,由于导电聚苯胺合成的复合材料在力学、光学、电学 和磁学等方面也显示出许多优异性能,已成为当今高分子化学、物理化学、 和磁学等方面也显示出许多优异性能,已成为当今高分子化学、物理化学、 无机化学和材料科学等多学科交叉的前沿研究领域。 无机化学和材料科学等多学科交叉的前沿研究领域。 聚苯胺纳米材料作为低维材料,纳米材料的尺寸效应、量子效应等 聚苯胺纳米材料作为低维材料,纳米材料的尺寸效应、 赋予其特异的物理性能和化学性能,因此, 赋予其特异的物理性能和化学性能,因此,聚苯胺纳米材料合成及应用研 究已经引起了人们广泛的兴趣,已成为人们研究的热点之一。 究已经引起了人们广泛的兴趣,已成为人们研究的热点之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 二、聚苯胺可用作抗静电和电磁屏蔽材料 由于它具有良好的导电性,且与其它高聚 物的亲合性优于碳黑或金属粉,可以作为 添加剂与塑料、橡胶、纤维结合,制备出 抗静电材料及电磁屏蔽材料(如用于手机外
壳以及微波炉外层防辐射涂料、和军用隐
形材料等)。
报告人:杨稳华 高分子0902班 2012年3月22日
聚苯胺
Subheading goes here
聚苯胺
• 聚苯胺(Polya氮
原子,是一种特殊的导电聚合物。可溶于
N-甲基吡咯烷酮中。
聚苯胺结构:
现已公认的聚苯胺的结构式是1987年由MacDiarmid提出的:即 结构式中含有“苯-苯”连续的还原形式和含有“苯-醌”交替 的氧化形式,其中y值表征PAN的氧化还原程度,不同的结构,组 分和颜色及导电率。当y=1是完全还原的全苯式结构,对应着 “Leucoemeraldine”;y=0是“苯-醌”交替结构,对应着 “Prenigraniline”,均为绝缘体。而y=0.5为苯醌比为3∶1的半 氧化和还原结构,对应着“Emeral-dine”,即本征态。
聚苯胺的应用
另外,通过特殊方法处理得到的水溶性好的聚苯胺,可以在 水性体系里面使用。聚苯胺可以作为电磁波屏蔽材料,耐腐 蚀材料,同时可以吸收微波,还可以用来作为检测空气中氮 氧化物的含量的材料以及H2S,SO2等有害气体的含量。 聚苯胺的应用及市场简介如下:聚苯胺是一种高分子合成材 料,俗称导电塑料。它是一类特种功能材料,具有塑料的密 度,又具有金属的导电性和塑料的可加工性,还具备金属和 塑料所欠缺的化学和电化学性能,在国防工业上可用作隐身 材料、防腐材料,民用上可用作金属防腐蚀材料、抗静电材 料、电子化学品等
聚苯胺的性质
聚苯胺随氧化程度的不同呈现出不同的颜色。
完全还原的聚苯胺(Leucoemeraldine碱)不导
电,为白色,主链中各重复单元间不共轭;经氧
化掺杂,得到Emeraldine碱,蓝色,不导电;再
经酸掺杂,得到Emeraldine盐,绿色,导电;如
果Emeraldine碱完全氧化,则得到
Pernigraniline碱,不能导电。
聚苯胺的应用
聚苯胺具有优良的环境稳定性。可用于制备传感 器、电池、电容器等。 聚苯胺由苯胺单体在 酸性水溶液中经化学氧化或电化学氧化得到,常 用的氧化剂为过硫酸铵( APS)。中性条件下聚 合的聚苯胺常含有枝化结构。 绿色聚苯胺由 苯胺单体在酸性水溶液中经化学氧化或电化学氧 化得到,具有良好的导电性能,具有优良的环境 稳定性。可用于制备传感器、电池、电容器等。 聚苯胺通过“氧化还原掺杂”处理,掺杂后的聚 苯胺导电率提高 10个数量级以上,并改善了其在 溶剂中的溶解性和加工性能。
聚苯胺性能特点
聚苯胺作为高分子材料的最大特点是 :
其导电性。
下面具体谈谈聚苯胺作为导电材料的应用。
聚苯胺的导电性
• 聚苯胺具有优良的环境稳定性。可用于制备传感器、电池、 电容器等 • 聚苯胺是一种具有金属光泽的粉末,因分子内具有大的线 型共轭 π电子体系,其自由电子可随意迁移和传递,而成 为最具代表性的有机半导体材料。与其他导电聚合物相比, 聚苯胺具有结构多样化、耐氧化和耐热性好等特点,同时 还具有特殊的掺杂机制。聚苯胺及其衍生物不仅可通过质 子酸的掺杂获得良好的导电性,而且可通过加入氧化剂或 还原剂来使其骨架中的电子迁移发生改变,即“氧化还原 掺杂”。掺杂后,聚苯胺及其衍生物的导电率可提高10个 数量级以上,并可改善其在溶剂中的溶解性和加工性能。