《平面的基本性质》PPT课件
合集下载
平面的基本性质
![平面的基本性质](https://img.taocdn.com/s3/m/b91afb0d89eb172ded63b7ff.png)
∴过不共线的三点A,B,C有一个平面 (公理3)
∵B∈ ,C∈ ∴a (公理1)
∴过点A和直线a有一个平面
(唯一性)
又由公理3,经过不共线的三点A、B、C的平面
只有一个 ∴经过a和平点面的A基本的性质平面只有一个.
推论2.两条相交直线唯一确定一个平面。
a
βb
C
数学语言表示:
直 线 a bC 有 且 只 有 一 个 平 面 , 使 得 a, b.
平面的基本性质
一.平面的概念:
光滑的桌面、平静的湖面等都是我们熟悉的 平面形象,数学中的平面概念是现实平面加以抽 象的结果。
二.平面的特征:
观察思考
平面没有大小、厚薄和宽窄,平面在空间是 无限延伸的。
三.平面的表示方法:
平面可以用小写的希腊字母或大写的英文字 母表示,也可以用三个或三个以上字母表示。
察 思
问题2 如图,两个平面只有一个公共点,是吗? 考
?
问题3 照相机架为什么只有三只脚?自行车只用
一只撑脚?
平面的基本性质
公理一:如果一条直线上的两点在一个平面内, 那么这条直线上的所有点都在这个平面内
BAAB
B A α
l
如果直线l 上所有点都在平面α内就说直线l在平 面α内,或者说平面α经过直线l,否则,就说直 线l在平面α外 应用:
平面的基本性质
推论3.两条平行直线唯一确定一个平面。
βA
Ba b
C
数学语言表示:
直 线 a//b 有 且 只 有 一 个 平 面 , 使 得 a, b.
思考1:不共面的四点可以确定多少个平面? 思考2:四条相交于同一点的直线a,b,c,d并且任意三条都不在同一平 面内,有它们中的两条来确定平面,可以确定多少个平面。
《平面的基本性质》课件
![《平面的基本性质》课件](https://img.taocdn.com/s3/m/de6108a880c758f5f61fb7360b4c2e3f572725a7.png)
平面不能被弯曲或折叠,始终保持平直。
无厚度
平面没有高度,只具有长度和宽度。
由无数个线段组成
平面由无数条线段相连组成,形成各种图形。
平面的基本性质
1
平面上的直线相互作用的规定
2
平面上的直线可以平行、垂直或有其
他特定的相
角度是指由两个线段或直线围成的空 间。
平面上的点与直线的关系
总结
1 明确平面的特征与定义
了解平面的基本性质,包括无限大、无厚度和无法折叠曲折。
2 控制平面的性质和规则
理解平面上的点与直线的关系,以及角度和夹角的度量规则。
3 应用平面知识到实际中
将平面的应用领域应用到不同领域,如地理学、图形设计和工程学。
点和直线可以在平面上相互交叉、相 连或相切。
平面上直线的夹角
夹角是指两条直线在平面上的交叉程 度,可以是锐角、直角或钝角。
平面的相关性质
垂直、平行
垂直的线段间的夹角为90度, 平行线始终保持相同的距离。
完美相等与相似的关系
相等的图形的线段和角度完全 相同,相似的图形只需保持比 例关系。
角度的度量与求和
《平面的基本性质》PPT 课件
本课件详细介绍了平面的基本性质,包括定义、特征和应用。通过丰富的布 局和图像,旨在使演示内容更加生动有趣。
平面的定义
平面是指由无限个线段组成的,并且没有厚度的二维图形。与几何体相比,平面只有两个维度。
平面的特征
无限大
平面在两个方向上是无限延展的,没有边界 限制。
无法折叠曲折
角度通过度量单位(如度或弧 度)来表示,多个角度可以相 加为一个新角度。
平面的应用
地理学中的平面
地图是平面的应用之一,用于表示地球表面 的二维信息。
无厚度
平面没有高度,只具有长度和宽度。
由无数个线段组成
平面由无数条线段相连组成,形成各种图形。
平面的基本性质
1
平面上的直线相互作用的规定
2
平面上的直线可以平行、垂直或有其
他特定的相
角度是指由两个线段或直线围成的空 间。
平面上的点与直线的关系
总结
1 明确平面的特征与定义
了解平面的基本性质,包括无限大、无厚度和无法折叠曲折。
2 控制平面的性质和规则
理解平面上的点与直线的关系,以及角度和夹角的度量规则。
3 应用平面知识到实际中
将平面的应用领域应用到不同领域,如地理学、图形设计和工程学。
点和直线可以在平面上相互交叉、相 连或相切。
平面上直线的夹角
夹角是指两条直线在平面上的交叉程 度,可以是锐角、直角或钝角。
平面的相关性质
垂直、平行
垂直的线段间的夹角为90度, 平行线始终保持相同的距离。
完美相等与相似的关系
相等的图形的线段和角度完全 相同,相似的图形只需保持比 例关系。
角度的度量与求和
《平面的基本性质》PPT 课件
本课件详细介绍了平面的基本性质,包括定义、特征和应用。通过丰富的布 局和图像,旨在使演示内容更加生动有趣。
平面的定义
平面是指由无限个线段组成的,并且没有厚度的二维图形。与几何体相比,平面只有两个维度。
平面的特征
无限大
平面在两个方向上是无限延展的,没有边界 限制。
无法折叠曲折
角度通过度量单位(如度或弧 度)来表示,多个角度可以相 加为一个新角度。
平面的应用
地理学中的平面
地图是平面的应用之一,用于表示地球表面 的二维信息。
平面的基本性质
![平面的基本性质](https://img.taocdn.com/s3/m/298487cba1c7aa00b42acb05.png)
三、平面的基本性质: 平面的基本性质:
公理1:如果一条直线的两点在一个平面内 那么这条直线上 公理 如果一条直线的两点在一个平面内,那么这条直线上 如果一条直线的两点在一个平面内 的所有点都在这个平面内. 的所有点都在这个平面内 这时我们说直线在平面内或平面经过直线. 注 : ①这时我们说直线在平面内或平面经过直线 ②符号表示:若A∈l, B∈l,A∈α, B∈α, 则 l ⊂ α . 符号表示 若 ∈ ∈ ∈ ∈ 是借用集合的符号,点 不在直线 不在直线l上 直线 直线l不 ③∈, ⊂ 是借用集合的符号 点A不在直线 上,直线 不 内记作什么? 在平面α内记作什么 A∉l l⊄α ∉ ⊄ 作用: 判断直线在平面内的依据 直线在平面内的依据. ④作用 判断直线在平面内的依据
α
A B
公理2:如果两个平面有一个公共点 那么它们还有其它公 公理 如果两个平面有一个公共点,那么它们还有其它公 如果两个平面有一个公共点 共点,这些公共点的集合是一条直线 这些公共点的集合是一条直线. 共点 这些公共点的集合是一条直线 对于不重合的两个平面,只要它们有公共点 只要它们有公共点,它们就是相 注: ①对于不重合的两个平面 只要它们有公共点 它们就是相 交的位置关系,交集是一条直线 且交线有且只有一条.) α 交集是一条直线.(且交线有且只有一条 交的位置关系 交集是一条直线 且交线有且只有一条 符号表示:若 ∈ ②符号表示 若P∈α, P∈ β ,则 α ∩ β =l且P∈l . ∈ 且 ∈ A 作用:判断两个平面相交的依据 找两个平面的交线, 判断两个平面相交的依据,找两个平面的交线 ③作用 判断两个平面相交的依据 找两个平面的交线, 证明点共线或线共点的依据。 证明点共线或线共点的依据。 公理3:经过不在同一条直线上的三点有且只有一个平面 经过不在同一条直线上的三点有且只有一个平面. 公理 经过不在同一条直线上的三点有且只有一个平面 注: ①过一点、两点或一直线上的三点都可以有无数个平面, 过一点、两点或一直线上的三点都可以有无数个平面 过不在同一直线上的四点不一定有平面. 过不在同一直线上的四点不一定有平面 ②“有 是说明图形存在,即存在性 只有一个” 即存在性;“ ②“有”是说明图形存在 即存在性 “只有一个”说明图 形唯一,即唯一性 本定理强调的是存在和唯一两方面. 即唯一性;本定理强调的是存在和唯一两方面 形唯一 即唯一性 本定理强调的是存在和唯一两方面 符合某一条件的图形既然存在且只有一个,说明图形 ③符合某一条件的图形既然存在且只有一个 说明图形 是确定的,因此 有且只有一个” 因此“ 确定”是同义词; 是确定的 因此“有且只有一个”和“确定”是同义词 过不共线三点A、 、 的平面又可记为 平面ABC”; 的平面又可记为“ ④过不共线三点 、B、C的平面又可记为“平面 ” 作用:确定平面的依据 证明两个平面重合的依据. 确定平面的依据.证明两个平面重合的依据 ⑤作用 确定平面的依据 证明两个平面重合的依据
高教版中职数学基础模块《平面的基本性质》总复习课件
![高教版中职数学基础模块《平面的基本性质》总复习课件](https://img.taocdn.com/s3/m/e24e8202bf1e650e52ea551810a6f524ccbfcbde.png)
(3)经过两条平行直线,有且只有一个平面
图形描述
一课一案 高效复习
典型例题
题型1 用符号语言表示点、线、面之间的关系 【例1】用集合符号表示下列语句
(1)点A在直线l上,直线l在平面α内; (2)直线l,m在平面α内且相交于点A; (3)平面α与β的交线l,且l与直线m相交于点A.
解: (1) A∈l,l ⊆α; (2) l ⊆ α , m⊆α , m∩l =A; (3) α∩β=l , l ∩m =A.
2、平面的表示:
(1)
(2)
(3)
(4)
一课一案 高效复习
3、平面的基本性质:
性质
文字描述
符号描述
公理1
如果一条直线上的两个点 在一个平面上,那么这条 直线上的所有点都在这个 平面上
A∈l,B∈l A∈α,B∈α
⇒ l ⊆α
如果两平面有一个公共点,
公理2 那么他们有且只有一条通 过这个点的公共直线
D. 经过平面外一点有且只有一条直线与已知平面垂直
一课一案 高效复习
【举一反三】
3.下列说法正确的是( C ) A. 三点确定一个平面
B. 两条直线确定一个平面
C. 过一条直线的平面有无数多个 D. 两个相交平面的交线是一条线段
4.下列说法正确的是( D ) A. 两个平面相交只有一个公共点
B. 两个平面相交可以有两条不同的交线
C. 两个平面相交,公共点为有限个
D. 两个平面相交,它们的公共点共线
一课一案 高效复习
强化练习
一课一案 高效复习
强化练习
感谢今天努力的你!
题型2 应用公理判断命题的真假
【例2】(1)下列条件中,能确定一个平面的是( D )
1.2.1平面的基本性质
![1.2.1平面的基本性质](https://img.taocdn.com/s3/m/2f10812d58fb770bf78a5562.png)
例题讲解
例2、在长方体A C1中, P为棱BB1的中点, 画出 由A1 ,C1 ,P三点所确定的平面 与长方体 表面的交线.
D1 A1 D A B1 P B C C1
D1 A1 D A B1 P B
C1
C
例题讲解
例3、两两相交且不同点的三条直线必在同一个平面内 已知:AB∩AC=A, AB∩BC=B, AC∩BC=C
D A B C
D1
C1 B1
A1
3.根据下列符号表示的语句,说出有关 点、线、面的关系,并画出图形.
(1) A , B (2)l , m
(3) l
(4) P l , P , Q l , Q
4填空
点A在直线l上 点A在直线l外 点A在平面 内 点A在平面 外 直线l在平面 内 直线l在平面 外
推论1 经过一条直线和这条直线外一点,有且只有 一个平面. B a 已知:点A a. A C
推论2.两条相交直线唯一确定一个平面。
a
β
b
C
数学语言表示:
直线a b C 有且只有一个平面, 使得a ,b .
推论2的证明
推论2:经过两条相交直线,有且只有一个平面。 已知:直线a与b交与A 求证:经过直线a、b有且只有一个平面α。 【证明】(存在性)如图所示,在直线a,b上分别 取不同于点A的点C、B,得不在同一直线上的三 点A、B、C,过这三个点有且只有一个平面α(公 理2)。又 (公理1) 所以平面α是过相交直线a,b的平面。
B
A
C
求证:直线AB,BC,AC共面. 证法一: 因为AB∩AB=A 所以直线AB,AC确定一个平面.(推论2) 因为B∈AB,C∈AC,所以B∈,C∈, 故BC.(公理1) 因此直线AB,BC,CA共面.
三、平面的基本性质
![三、平面的基本性质](https://img.taocdn.com/s3/m/116a872d58fb770bf78a5528.png)
[解答] ∵E∈AB,H∈AD, ∴E∈平面 ABD,H∈平面 ABD, ∴EH⊂平面 ABD. ∵EH∩FG=O,∴O∈平面 ABD, 同理可证 O∈平面 BCD, ∴O∈平面 ABD∩平面 BCD,即 O∈BD, 所以 B、D、O 三点共线.
第44讲 │ 要点探究
[点评] 证明点共线的依据是公理 3, 其方 法是找出这些点所在的两个平面, 说明各个点 都是这两个平面的公共点, 则这些点必在这两 个平面的交线上;另外,证明三线共点的依据 也是公理 3,可证明其中两直线的交点在第三 条直线上, 把问题归结为证明点在直线上的问 题, 而第三条直线是经过这两条直线的两平面 的交线, 两个平面的公共点必在这两个平面的 交线上.下面变式题就是三线共点的问题:
[解答] 方法一: 由公理 2, 不共 线的三点 D1、E、F 确定平面 α, 由图可知 D1E 与 DA 共面(公理 2 的推论),且延长线交于点 G, 从而 G∈α(公理 1),同理 D1F 与 DC 延长线的交点 H∈α,
第44讲 │ 要点探究
∵G∈平面 AC,H∈平面 AC, ∴GH⊂平面 AC, 又 B∈平面 AC,则 G、B、H 共面, ∵E 为 AA1 中点,AE∥DD1, ∴AG=AD=AB,∠ABG=45° , 同理∠CBH=45° , ∴∠ABG+∠ABC+∠CBH=180° , ∴G、B、H 三点共线, 又 G∈α,H∈α,即 GH⊂α(公理 1), ∴B∈α,即点 D1、E、F、B 四点共面于平面 α.
第44讲 │ 要点探究
(4)正确.因为 A、C1、B1 不共线,∴A、C1、 B1 三点确定一个平面 α, 又 AB1C1D 为平行四边形,AC1、B1D 相交于 O2 点,而 O2∈α,B1∈α, ∴B1O2⊂α,而 D∈B1O2,∴D∈α; (5)正确.若 l 与 m 相交,则交点是两平面的 公共点,而直线 CD 为两平面的交线,所以交点一 定在直线 CD 上.
平面的基本性质ppt8 人教课标版
![平面的基本性质ppt8 人教课标版](https://img.taocdn.com/s3/m/cae1b92abed5b9f3f80f1c20.png)
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
平面的基本性质
公理1常用于判定点在面内: P∈l,l⊂P∈. 公理2常用于:
①找两平面的交线;
②判定点在线上: P∈,P∈,且∩=l P∈l.
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
推论1证明二: 在直线l上任取两点A,B. ∵P∈l ∴A,B,P确定一个平面.
又A∈l,B∈l,A∈,B∈,
∴l⊂. 故直线l和点A确定一个平面.
苏教版高中数学教材必修2
第1章 立体几何初步
1.2 点、线、面之间的位置关系
苏教版高中数学教材必修2
第1章 立体几何初步
1.2 点、线、面之间的位置关系
练习:
1.两个平面重合的条件是( D )
A.有三个公共点
B.有无数多个公共点 C.有一条公共直线 D.有三个公共点,且三点不共线
苏教版高中数学教材必修2
第1章 立体几何初步
1.2 点、线、面之间的位置关系
2.下列命题中正确的个数为( C ) a.三点确定一个平面;b.过三点至少 有一个平面;c.四条线段顺次首尾连接,所 得图形必为平面图形;d.两两平行的三条直 线必在同一平面内;e.两两相交的三条直线 必在同一平面内;f.在空间,两组对边分别 平行的四边形是平行四边形;g.在空间,两 组对边分别相等的四边形是平行四边形; h.梯形为平面图形. A. 1 个 B.2个 C. 3 个 D. 4 个
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
1.2 点、线、面之间的位置关系
平面的基本性质
公理1常用于判定点在面内: P∈l,l⊂P∈. 公理2常用于:
①找两平面的交线;
②判定点在线上: P∈,P∈,且∩=l P∈l.
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
推论1证明二: 在直线l上任取两点A,B. ∵P∈l ∴A,B,P确定一个平面.
又A∈l,B∈l,A∈,B∈,
∴l⊂. 故直线l和点A确定一个平面.
苏教版高中数学教材必修2
第1章 立体几何初步
1.2 点、线、面之间的位置关系
苏教版高中数学教材必修2
第1章 立体几何初步
1.2 点、线、面之间的位置关系
练习:
1.两个平面重合的条件是( D )
A.有三个公共点
B.有无数多个公共点 C.有一条公共直线 D.有三个公共点,且三点不共线
苏教版高中数学教材必修2
第1章 立体几何初步
1.2 点、线、面之间的位置关系
2.下列命题中正确的个数为( C ) a.三点确定一个平面;b.过三点至少 有一个平面;c.四条线段顺次首尾连接,所 得图形必为平面图形;d.两两平行的三条直 线必在同一平面内;e.两两相交的三条直线 必在同一平面内;f.在空间,两组对边分别 平行的四边形是平行四边形;g.在空间,两 组对边分别相等的四边形是平行四边形; h.梯形为平面图形. A. 1 个 B.2个 C. 3 个 D. 4 个
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
《平面的基本性质》课件
![《平面的基本性质》课件](https://img.taocdn.com/s3/m/7c93a32659fafab069dc5022aaea998fcc224084.png)
平面解析几何在实际问题中的应用案例
物理学中的应用
在物理学中,许多概念和公式可以通过平面解析几何来描述和解 释,例如力学、电磁学和光学中的许多概念。
工程学中的应用
在工程学中,平面解析几何被广泛应用于机械设计、建筑设计、航 空航天等领域。
计算机图形学中的应用
在计算机图形学中,平面解析几何是生成和处理二维图形的基础, 例如在游戏开发、动画制作和计算机视觉等领域的应用。
THANKS FOR WATCHING
感谢您的观看
平面与几何体的关系
总结词
平面是几何体的重要组成部分,它可以作为几何体的边界或 表面。
详细描述
在几何学中,许多常见的几何体都是由平面构成的。例如, 长方体的每个面都是一个平面,球体的表面也是一个平面。 此外,平面还可以用来定义其他几何体的形状和大小,例如 通过平面的交线来定义三维空间的形状。
CHAPTER 02
平面上的直线的方程
两点式方程
通过平面上两点的坐标,可以求出直 线的方程。
点斜式方程
已知直线上的一个点和直线的斜率, 可以求出直线的方程。
平面上的点与直线的位置关系
点在直线上
如果一个点的坐标满足直线的方程,则该点在直线上。
点在直线外
如果一个点的坐标不满足直线的方程,则该点在直线外。
CHAPTER 04
与线性代数的联系
线性代数提供了研究平面几何对象 (如向量、矩阵和线性变换)的工 具。
平面解析几何的发展历程与未来展望
发展历程
从早期的欧几里得几何到文艺复兴时 期的笛卡尔几何,再到现代的解析几 何,平面解析几何经历了漫长的发展 历程。
未来展望
随着数学和其他学科的发展,平面解 析几何将继续发展,与其他数学分支 的交叉将更加深入,新的研究方法和 视角也将不断涌现。
中职教育数学《平面及基本性质》课件
![中职教育数学《平面及基本性质》课件](https://img.taocdn.com/s3/m/358ca269b207e87101f69e3143323968011cf488.png)
例、求证三角形ABC的三条边在同一个平面内。
方法:利用推论2
B
C
题目变型:两两相交且不过同一点的三条直线共面。
如图,在长方体ABCD-A1B1C1D1中,
P为棱BB1的中点,画出 由A1,C1,P三点所确定
的平面 与长方体表面的交线.
分析:因为点P既在平面
证明:设直线a、b满足a平行于b ,由平行线的定义, 直线a、b在同一平面内,这就是说,过直线a、b有平 面α。
设点A为直线a上任一点,则点A在直线b外,点A 和直线b在过直线a、b的平面α内,由公理3的推论1, 过点A和直线b的平面只有一个。过直线a、b的平面只 有一个。
反馈练习
1、选择题:
D (1)两个平面的公共点的个数可能有......( )
图形语言:通常用平行四边形来表示平面.
D
C
A
B
平面α、平面AC 、平面ABCD
表示:1、通常用希腊字母 , , 等来表示,如:
平面 ,2、用表示平行四边形的两个相对顶点的字母 来表示,如:平面AC.3、用平面的顶点字母表示,如 平面ABCD
(1) 当平面是水平放置的时候,通常把平行 四边形的锐角画成45°,横边画成邻边长的2倍。
A
B
(2)点与平面的位置关系:
点A在平面α内: 记为:A∈α
点B不在平面α上: 记为:B∈ α α
B A
文字叙述
图形表示
符号表示
直线l在平 面α内
l α
直线l在平
l
l
面α外
α
α
直线l1 l2交于 点P
平面α 、 ß相 交于直线 l
P l1
l2
l
l l1 l2 P
08平面的基本性质课件
![08平面的基本性质课件](https://img.taocdn.com/s3/m/784d55c22cc58bd63186bd29.png)
图形语言:
A 符号语言:B 直 线 A B
性质1可以帮助我们解决哪些几何问题?
⑴判定直线或点是否在平面内; ⑵检验平面.
自行车的撑脚一般安装在自行车的什么 位置?能不能安装在前后轮一条直线的地方 ?
照相机支架需要几条腿?两条行不行?三 条在一条线上行不行?
根据上面的实例,你得到怎么样的一个结论? 如何用数学语言描述上述事实?
C AB
M 平 面 AC
A1 平 面 A C
A
C
AB BC B
AB 平 面 AC
A A1 平 面 A C
A
B
C B
A A A1
A C A A1
C
练习.正方体的各顶点如图所示,正方体的三个面所在平 面 A1C 1 , A1 B1 , B1C 1 ,分别记作 、 、 ,试用适当的 符号填空.
【例4】已知:ABC 在平面 外, P, AB
AC R, Q BC
求证:P,Q,R三点共线.
证明: A B P ,
Байду номын сангаас
P A B, P 平 面 ,
点 P 在 平 面 A B C 与 平 面 的 交 线 上 (性质3) .
同理可证:
数学理论
推论2:经过两条相交直线,有且只有一个 平面.
图形语言: a
b
符号语言:a b P 有 且 只 有 一 个 平 面 , 使 a , b
数学运用
【例2】两两相交且不共点 的三条直线必在同 一个平面内.
B A C
已知:AB∩AC=A,AB∩BC=B,AC∩BC=C 求证:直线AB,BC,AC共面. 证法一: 因为AB∩AC=A 所以直线AB,AC确定一个平面.(推论2) 因为B∈AB,C∈AC,所以B∈,C∈, 故BC.(性质1) 因此直线AB,BC,CA共面.
A 符号语言:B 直 线 A B
性质1可以帮助我们解决哪些几何问题?
⑴判定直线或点是否在平面内; ⑵检验平面.
自行车的撑脚一般安装在自行车的什么 位置?能不能安装在前后轮一条直线的地方 ?
照相机支架需要几条腿?两条行不行?三 条在一条线上行不行?
根据上面的实例,你得到怎么样的一个结论? 如何用数学语言描述上述事实?
C AB
M 平 面 AC
A1 平 面 A C
A
C
AB BC B
AB 平 面 AC
A A1 平 面 A C
A
B
C B
A A A1
A C A A1
C
练习.正方体的各顶点如图所示,正方体的三个面所在平 面 A1C 1 , A1 B1 , B1C 1 ,分别记作 、 、 ,试用适当的 符号填空.
【例4】已知:ABC 在平面 外, P, AB
AC R, Q BC
求证:P,Q,R三点共线.
证明: A B P ,
Байду номын сангаас
P A B, P 平 面 ,
点 P 在 平 面 A B C 与 平 面 的 交 线 上 (性质3) .
同理可证:
数学理论
推论2:经过两条相交直线,有且只有一个 平面.
图形语言: a
b
符号语言:a b P 有 且 只 有 一 个 平 面 , 使 a , b
数学运用
【例2】两两相交且不共点 的三条直线必在同 一个平面内.
B A C
已知:AB∩AC=A,AB∩BC=B,AC∩BC=C 求证:直线AB,BC,AC共面. 证法一: 因为AB∩AC=A 所以直线AB,AC确定一个平面.(推论2) 因为B∈AB,C∈AC,所以B∈,C∈, 故BC.(性质1) 因此直线AB,BC,CA共面.
平面的基本性质(2)课件
![平面的基本性质(2)课件](https://img.taocdn.com/s3/m/c52dc51ffc4ffe473368ab42.png)
4条直线相交于一点时: 条直线相交于一点时: (3)每 (3)每2条直线都 (1)4条直线 (1)4条直线 确定一平面时 全共面时
(2)有3条直线 有 条直线 共面时 三条直线相交于一点, 三条直线相交于一点,用其中的两条 确定平面,最多可以确定 可以确定6 确定平面,最多可以确定6个。
2个平面分空间有两种情况: 个平面分空间有两种情况: 个平面分空间有两种情况 (1)两平面没有 (1)两平面没有 (2)两平面有公 (2)两平面有公 公共点时 共点时
练习5 练习
有公共点, ① ×若直线 a 与平面 α 有公共点,则称 aα ②两个平面可能只有一个公共点. ×两个平面可能只有一个公共点. ③四条边都相等的四边形是菱形. ×四条边都相等的四边形是菱形.
(2)已知空间四点中,无三点共线,则可确定 已知空间四点中,无三点共线, A.一个平面 . B.四个平面 .
α 内,但不在平面 β 内 但不在平面
新疆 王新敞
奎屯
α
α
α
2.正方体的各顶点如图所示, 2.正方体的各顶点如图所示,正方体的三 正方体的各顶点如图所示 个面所在平面 A1C1 , A1 B, B1C 分别记作 α、β、γ 试用适当的符号填空。 试用适当的符号填空。
(1)A _______, B1 _______ α α 1
复习提问
点A在直 在直 线a上 上 点A在直 在直 线a外 外 点A在平 在平 面α内 内 点A在平 在平 面a外 外
●
A
●
a
A∈a ∈ a A
A
a
●
α
A A
●
A∈α
Aα
元素 (点) 与集合 (直线 与平面) 与平面) 之间的 关系
2.1.2平面的基本性质
![2.1.2平面的基本性质](https://img.taocdn.com/s3/m/cf2b2c91dd88d0d233d46ac0.png)
文字语言: 文字语言: 公理2:过不在同一直线上的三点, 公理 过不在同一直线上的三点, 过不在同一直线上的三点 有且只有一个平面. 有且只有一个平面 图形语言: 图形语言: A 符号语言: 符号语言: B C 公理 2mpeg.avi
A, B,C三 不 线 有 只 一 平 α 点 共 ⇒ 且 有 个 面 A 使 ∈α, B∈α,C∈α 公理2是确定一个平面的依据 是确定一个平面的依据. 公理 是确定一个平面的依据
⇒l ⊂α A ∈α , B ∈α
公理1是判定直线是否在平面内的依据 公理 是判定直线是否在平面内的依据. 是判定直线是否在平面内的依据
观察下图,你能得到什么结论 观察下图,你能得到什么结论?
B A C A
B C
公理2:过不在同一直线上的三点, 公理 过不在同一直线上的三点,有且只有 过不在同一直线上的三点 一个平面. 一个平面
D)
3.填空题 填空题: 填空题 三条直线相交于一点, 三条直线相交于一点,用其中的两条确 定平面,可以确定的平面数是 定平面,可以确定的平面数是_______; 四条直线过同一点, 四条直线过同一点,过每两条直线作一 个平面,则可以作 个平面,则可以作_____________个不同 个不同 的平面 .
文字语言: 文字语言: 公理3:如果两个不重合的平面有一个公共点 如果两个不重合的平面有一个公共点, 公理 如果两个不重合的平面有一个公共点, 那么这两个平面有且只有一条过该点的公共 直线. 直线 图形语言: 图形语言: 符号语言: 符号语言:
β
α
P
l 公理 3 β ⇒ P ∈l
观察下图,你能得到什么结论 观察下图,你能得到什么结论? 天花板α 天花板α 墙面γ 墙面β
第六章 立体几何.ppt
![第六章 立体几何.ppt](https://img.taocdn.com/s3/m/c3e6a74d0722192e4436f659.png)
上一页 下一页 返回
6.2空间两条直线
三、两条异面直线所成的角
直线a,b是异面直线,经过空间任意一点O,分别引直线a ′∥a,b′∥b,因为这两条相交直线和另外两条相交直线分别平行 时,两组直线所成的锐角(或直角)相等,所以直线a′和b′所成的 锐角(或直角)的大小,只由直线a、b的相互位置来确定,与点O 的位置无关,我们把直线a′和b′所成的锐角(或直角)叫做异面直 线和b所成的角,如图6-15(a)~(c)所示。
两个平面平行的判定定理1:如果一个平面内有两条相交直线都 平行于另一个平面,那么这两个平面平行. (三)二面角
修筑堤坝时,为了使它经济耐久,必须使水坝面和水平面成适当 角度;车刀刀口也要根据用途的不同,磨成不同的角度,这些都说明 有必要讨论两个平面相交所成的角的问题.
平面内的一条直线,把这个平面分面两部分,每一部分叫做半平 面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直 线叫做二面角的棱,两个半平面叫做二面角的面.
下一页 返回
6.1平面和平面的基本性质
图为几何里的平面是无限延展的,所以平行四边形仅是它所表 示的平面的一部分.平面通常用一个希腊字母α,β,γ等来表示。有 时亦用表示平面的平行四边形的两个相对顶点字母表示,如图6-1 (a)所示的平面记作平面AC。 (二)平面的基本性质
公理1 如果一条直线上的两个点在一平面内,那么这条直线上 所有的点都在这个平面内。如图6-2(a)所示。
下一页 返回
6.5多面体
(三)棱柱的种类 ①以侧棱的位置分 侧棱和底面斜交,叫做斜棱柱;侧棱和底面垂直,叫做直棱柱; 底面是正多边形的直棱柱,叫做正棱柱. ②以侧棱的条数分 一个棱柱有几条侧棱就是几棱柱,也可说底面是几边形就是几棱 柱.
6.2空间两条直线
三、两条异面直线所成的角
直线a,b是异面直线,经过空间任意一点O,分别引直线a ′∥a,b′∥b,因为这两条相交直线和另外两条相交直线分别平行 时,两组直线所成的锐角(或直角)相等,所以直线a′和b′所成的 锐角(或直角)的大小,只由直线a、b的相互位置来确定,与点O 的位置无关,我们把直线a′和b′所成的锐角(或直角)叫做异面直 线和b所成的角,如图6-15(a)~(c)所示。
两个平面平行的判定定理1:如果一个平面内有两条相交直线都 平行于另一个平面,那么这两个平面平行. (三)二面角
修筑堤坝时,为了使它经济耐久,必须使水坝面和水平面成适当 角度;车刀刀口也要根据用途的不同,磨成不同的角度,这些都说明 有必要讨论两个平面相交所成的角的问题.
平面内的一条直线,把这个平面分面两部分,每一部分叫做半平 面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直 线叫做二面角的棱,两个半平面叫做二面角的面.
下一页 返回
6.1平面和平面的基本性质
图为几何里的平面是无限延展的,所以平行四边形仅是它所表 示的平面的一部分.平面通常用一个希腊字母α,β,γ等来表示。有 时亦用表示平面的平行四边形的两个相对顶点字母表示,如图6-1 (a)所示的平面记作平面AC。 (二)平面的基本性质
公理1 如果一条直线上的两个点在一平面内,那么这条直线上 所有的点都在这个平面内。如图6-2(a)所示。
下一页 返回
6.5多面体
(三)棱柱的种类 ①以侧棱的位置分 侧棱和底面斜交,叫做斜棱柱;侧棱和底面垂直,叫做直棱柱; 底面是正多边形的直棱柱,叫做正棱柱. ②以侧棱的条数分 一个棱柱有几条侧棱就是几棱柱,也可说底面是几边形就是几棱 柱.
平面基本性质第二课时PPT课件
![平面基本性质第二课时PPT课件](https://img.taocdn.com/s3/m/c30c5234a45177232f60a280.png)
因为点A、B、C分别在直线a、b上,所以它们在过a、 b的平面内。由由公理3,过A、B、C三点的平面只有一个, 过直线a、b的平面只有一个。
平面的基本性质 推论3:经过两条平行直线,有且只 有一个平面.
b
a
a // b 有且只有一个平面,使a ,b
推论3 经过两条平行直线,有且只有一个平面
(3)空间四点中,三点共线是这四个点共面的( ) A.充分但不必要条件 B.必要但不充分条件 C.充分必要条件 D.既非充分条件,也非必要条件
直 l在 线 内 平l, 面 , 记 l不 直 作 在 内 线平 l, ;
直 l 和 线 m 相 直 A , 交 线 l m 记 于 A ( A 是 作 点 A 的简
直 l于 线 平 相面 交 A , 于 l记 点 A 作
平与 面平 相面 交l, 与记 直 作 线 l。
公理1:如果一条直线上的两个点在 平面内,那么这条直线上所有的点 都在这个平面内.
AB
符号语言 作用
怎样的直线a我们就说它在平面外?
平面的基本性质
公理2:如果两个平面有一个公共点, 那么它们还有其他的公共点,且所 有的这些点的集合是一条过这个点 的直线
符号语言 作用
l
P
平面的基本性质 公理3:经过不在同一条直线上的三 个点,有且只有一个平面.
推论1 经过一条直线和这条直线外的一点,有且只有一个平面
求证:过点A和直线a可以确定一个平面
唯一性: 如果经过点A和直线a的平面还有一个平面β,那么
A∈β, a β,因为B∈a,C∈a,所以B∈β,C∈β.(公理1)故不
共线的三点A,B,C既在平面α内又在平面β内.所以平面α和平面 β重合.(公理3)
(A)0 (B)1 (C)2 (D)0或无数
平面的基本性质 推论3:经过两条平行直线,有且只 有一个平面.
b
a
a // b 有且只有一个平面,使a ,b
推论3 经过两条平行直线,有且只有一个平面
(3)空间四点中,三点共线是这四个点共面的( ) A.充分但不必要条件 B.必要但不充分条件 C.充分必要条件 D.既非充分条件,也非必要条件
直 l在 线 内 平l, 面 , 记 l不 直 作 在 内 线平 l, ;
直 l 和 线 m 相 直 A , 交 线 l m 记 于 A ( A 是 作 点 A 的简
直 l于 线 平 相面 交 A , 于 l记 点 A 作
平与 面平 相面 交l, 与记 直 作 线 l。
公理1:如果一条直线上的两个点在 平面内,那么这条直线上所有的点 都在这个平面内.
AB
符号语言 作用
怎样的直线a我们就说它在平面外?
平面的基本性质
公理2:如果两个平面有一个公共点, 那么它们还有其他的公共点,且所 有的这些点的集合是一条过这个点 的直线
符号语言 作用
l
P
平面的基本性质 公理3:经过不在同一条直线上的三 个点,有且只有一个平面.
推论1 经过一条直线和这条直线外的一点,有且只有一个平面
求证:过点A和直线a可以确定一个平面
唯一性: 如果经过点A和直线a的平面还有一个平面β,那么
A∈β, a β,因为B∈a,C∈a,所以B∈β,C∈β.(公理1)故不
共线的三点A,B,C既在平面α内又在平面β内.所以平面α和平面 β重合.(公理3)
(A)0 (B)1 (C)2 (D)0或无数
平面的基本性质.ppt
![平面的基本性质.ppt](https://img.taocdn.com/s3/m/3db3ead80975f46527d3e15e.png)
于是可得到 M∈面 ABD∩面 BCD=BD. 即点 M 在直线 BD 上。
有关共面、共线、共点问题的证明方法 1.证明共面问题 证明共面问题,一般有两种证法:一是由某些元素确定一个 平面,再证明其余元素在这个平面内;二是分别由不同元素 确定若干个平面,再证明这些平面重合. 2.证明三点共线问题 证明空间三点共线问题,先考虑两个平面的交线,再证有关 的点都是这两个平面的公共点.或先由某两点作一直线,再 证明其他点也在这条直线上. 3.证明三线共点问题 证明空间三线共点问题,先证两条直线交于一点,再证明第 三条直线经过这点, 把问题转化为证明点在直线上的问题. 而 这条直线往往归结为平面与平面的交线.
A, B, C三点不共线
B A
C
有且只有一个平面,使A , B , C
基本性质3:如果不重合的两个平面有一个公共点,那么它们有且 只有一条过这个点的公共直线。 符号语言:
P P
l且P l
四、跟踪训练 巩固新知
问题4:(教材 P38—3)一扇门,可以想象成平面 的一部分,通常用两个合页把它固定在门框的一 边上,当门不锁上的时候,可以自由转动,如果 门锁上,则门就固定在墙面上,这个事实说明平 面具有哪条基本性质?
五、小结归纳 布置作业
课堂小结:
1、平面的基本性质、推论及应用:
2、有关共面、共线、共点问题的证明方法
作业: 1、教材P38----A组、 B组 2、学案
基本性质1:如果一条直线上的两点在一个平面内,那么这 条直线上所有的点都在这个平面内. B A A 符号语言: 直线 AB B 基本性质2:经过不在同一条直线上的三点,有且只有一个平面。 符号语言:
4、(教材P37——思考与讨论变式)
平面的基本性质共点共线共面
![平面的基本性质共点共线共面](https://img.taocdn.com/s3/m/39c6b7eca1c7aa00b52acbd8.png)
“共点”、“共线”、 “共面” 问题 1、理论依据:
(1)公理1: 判断或证明直线是否在平面内 确定两个平面的交线, (2)公理2: 判定两平面相交 (“点共线”,“线共 点”) (3)公理3, 推论 1、2、3: 确定平面 证点、线共面的依据, 也是作辅助面的依据 2、反证法
点共面、线共面、三点共线、三线共点 问题的一般方法.
例、两个平面两两相交,有三条交线,若其中两
条相交于一点,证明第三条交线也过这一点.
证法:先证两条交线交于一点,再证第三条直线也过改点
已知:如图1-26,α∩β=a,β∩γ=b,α∩γ=c,b∩c =p. 求证:p∈a. 证明:∵b∩c=p, ∴p∈b. ∵β∩γ=b, ∴p∈β. 同理,p∈α. 又∵α∩β=a, ∴个。
2个平面分空间有两种情况:
(1)两平面没有公共点时
(2)两平面有公共点时
两个平面把空间分成3或4个部分。
3个平面 个平面把空间分成4,6,7或8个部分。
( 1)
( 2)
( 3)
( 4)
( 5)
求证:直线AB和CD既不相交也不平行.
A
反证法
D B C
小结
1、要证“点共面” 、“线共面”可 先由部分点、直线确定一平面,在证 其余点、直线也在此平面内, 即纳入法 2、反证法的应用的意识
1.空间四点A、B、C、D共面但不共线,则下列 结论成立的是( ) A.四点中必有三点共线. B.四点中有三点不共线. C.AB、BC、CD、DA四条直线中总有两条 平行. D.直线AB与CD必相交.
例2、如图:在四面体ABCD中,E,F分别
是AB,BC的中点,G,H分别在CD,AD上,且 DG:DC=DH:DA=1:m(m>2) 求证:直线EH与FG,BD相交于一点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑵用表示平行四边形的两个相对顶
点的字母来表示,如平面AC.
D
C
A
B
⑶用三角形表示平面,用三角形三
个顶点的字母来表示,如平面ABC.
4. 点、直线、平面之间的基
本关系
空间图形的基本元素是点、直线、平 面,从运动的观点看,点动成线,线动成 面,从而可以把直线、平面看成是点的集 合.因此,它们之间的关系除了用文字和图 形表示外,还可以借用集合中的符号语言 来表示.
②有一个平面的长是50m,宽是20m; ③黑板面不是平面;
④平面是绝对的平,没有大小、没有
厚度,可以无限延展的抽象的数学
概念. 其中正确的的命题是__③__④______.
【例2】一条直线经过平面内一点与平面外一 点,它和这个平面有几个公共点?为 什么?
解: 这条直线和这个平面只有一个公共点. 假设这条直线和这个平面有两个公共点,
45°
如果是非水平平面,只要画成平行四 边形. 画直立的平面,一组对边为铅垂线 .
如果几个平面画在一起,当一个平面 有一部分被另一个平面遮住时,应把 被遮部分的线段画成虚线或不画.
3. 平面的表示法
⑴在一个希腊字母 , , 的前面加 “平面” 二字,如平面 ,平面 , 平面 等,且字母通常写在平行 四边形的一个锐角内.
【例4】已知:ABC 在平面 外,AB P,
AC R, BC Q
求证:P,Q,R三点共线.
证明: AB P,
P A B , P 平 面 ,
⑴判定直线或点是否在平面内; ⑵检验平面.
自行车的撑脚一般安装在自行车的什么 位置?能不能安装在前后轮一条直线的地方 ?
照相机支架需要几条腿?两条行不行?三 条在一条线上行不行?
根据上面的实例,你得到怎么样的一个结论? 如何用数学语言描述上述事实?
精选课件
15
基本性质2:经过不在同一条直线上的三点,
根据性质1可得, 这条直线上所有的点都在这个平面内,
故这条过平面外一点的直线也在这个平面内,
与已知矛盾. 所以这条直线与这个平面只有一个公共点.
【例3】如图,M是正方体ABCD-A1B1C1D1 棱BB1的中点.
(1)作出由A1,C1,M三点所确定的平面 与正方体表面的交线;
(2)试作出平面A1C1M与 平面ABCD的交 线.
(没有特别说明的“两个平面”以后均指不重合的两个平面.)
图形语言:
符号语言:P P l且Pl
性质3可以帮助我们解决哪些几何问题?
⑴判断两个平面是否相交;
⑵判定点是否在直线上.
如果两个平面有一条公共直线,则称这两个平面相交,这条 公共直线叫做这两个平面的交线.
数学运用
【例1】已知命题: ①10个平面重叠起来,要比5个平面 重叠起来厚;
5.平面的基本性质
请大家拿出你的一把尺,如果把桌 面看作一个平面,把你的尺看作是一条 直线的话,你觉得在什么情况下,才能 使你的尺所代表的直线上的所有点都能 在桌面上?
基本性质1:如果一条直线上的两点在一个平面 内,那么这条直线上所有的点都在这个平面内.
图形语言:
符号语言:B A 直线AB 性质1可以帮助我们解决哪些几何问题?
情境引入
问题1:平静的湖面,广阔的草原,这些 画面会给你留下怎样的印象呢?
问题2:如何形象直观的在纸上表示平面? 如何表示点与直线,直线与平面 的位置关系?
1. 平面的特点
意义建构
问题:请同学们观察下面的纸盒,它 是由几个面构成的?
问题:还有哪些面留给我们平面的形象 呢?
桌面、黑板、地面、海平面等.
有且只有一个平面.
不共线的三点A,B,C的
图形语言:
平面通常记作〝平面ABC 〞
符号语言: A ,B ,C 三 点 不 共 线
有 且 只 有 一 个 平 面 , 使 A ,B ,C
如何理解性质2中的“有且只有一个”?
“有”是说图形存在,“只有一个”是说图形惟一.
性质2可以帮助我们解决哪些几何问题?
(1)A1_∈_____, _B1__∈_____
(2)B1_∈_____, _C1__∈_____ (3)A1_∈_____, _D1 __∈_____
(4)_∩____A _1B_ 1 __∩____B_1B
(5)A1B1______,_B_B1 ________
A1B1 ________
∩∩ ∩
(或平面AC经过直线AB)
AA平面AC 直线AA1不在平面AC内
(或平面AC不经过直线AA1 )
1
A
图形语言
P
A
B
C
A
B
M A
A1
A
A
C
B
AB A
A A1 C A
C
C
C A C A1
练习.正方体的各顶点如图所示,正方体的三个面所在平
面 A1C1,A1B1,B1C1,分别记作 、、,试用适当的
符号填空.
文字语言
点P在直线AB上 (或直线AB经过点P)
点C不在直线AB上 (或直线AB不经过点C)
点M在平面AC内 (或平面AC经过点M)
点A1不在平面AC内 (或平面AC不经过点A1)
直线AB与直线BC交于点B源自符号语言PAB CAB M平面AC A1平面AC AB BCB
AB平 面 AC 直线AB在平面AC内
2. 平面的画法
通常我们画出直线的一部分来表示 直线;同样地,我们也可以画出平面的 一部分来表示平面.(“借代”)
当我们从适当的角度和距离来观察 桌面或黑板面时,感到它们都很象什么 图形呢? 平行四边形
通常画平行四边形来表示平面.
在画平行四边形表示平面时,所表示 的平面如果是水平平面,通常把锐角 画成45°,横边画成邻边的两倍.
⑴确定平面;⑵证明两个平面重合.
精选课件
16
请大家拿起一本书,把这本书的一个
角放在桌面上,如果我们分别把这本书和 桌面都看作一个平面的话,试问这两个平 面是否就只有这一个公共点,如果还有其 他公共点的话,它们和这个公共点有什么 关系?
基本性质3:如果两个平面有一个公共点,那 么它们还有其他公共点,这些公共点的集合 是经过这个公共点的一条直线.
问题:当我们想象海平面是一平如镜时, 它有什么特点?
很大、很平.
以上例子给我们“平面”的直观,平面 是一个不加定义的概念,具有“平”、 “无限延展”、“无厚薄”的特点.
l
一条直线可以把平面分成两部分, 我们所画的只是一条直线的一部分,因 此,刚才所说的物体如果是平的,也只 是它所在平面的一部分.
一个平面可以把空间分成两几部分呢. ?