§1 第一型曲线积分 答案

合集下载

第一类曲线积分

第一类曲线积分

§1 第一类曲线积分的计算设函数(),,f x y z 在光滑曲线l 上有定义且连续,l 的方程为()()()()0x x t y y t t t T z z t =⎧⎪=≤≤⎨⎪=⎩则()()()(),,,,Tlt f x y z ds f x t y t z t =⎡⎣⎰⎰. 特别地,如果曲线l 为一条光滑的平面曲线,它的方程为()y x ϕ=,()a x b ≤≤,那么有((,) , ()blaf x y ds f x x ϕ=⎰⎰.例:设l 是半圆周t a y t a x sin , cos ==, π≤≤t 0。

求22()lx y ds +⎰。

例:设l 是曲线x y 42=上从点) 0 , 0 (O 到点) 2 , 1 (A 的一段,计算第一类曲线积分lyds ⎰。

例:计算积分2lx ds ⎰,其中l 是球面2222a z y x =++被平面0=++z y x 截得的圆周。

例:求()lI x y ds =+⎰,此处l 为连接三点()0,0O ,()1,0A ,()1,1B 的直线段。

§2 第一类曲面积分的计算一 曲面的面积(1)设有一曲面块S ,它的方程为(),z f x y =。

(),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的.则该曲面块的面积为xyS σ=。

(2)若曲面的方程为()()(),,,x x u v y y u v z z u v =⎧⎪=⎨⎪=⎩令222u u u E x y z =++,u v u v u v F x x y y z z =++,222v v vG x y z =++, 则该曲面块的面积为S ∑=。

例:求球面2222x y z a ++=含在柱面()220x y ax a +=>内部的面积。

例:求球面2222x y z a ++=含在柱面()220x y ax a +=>内部的面积. 二 化第一类曲面积分为二重积分(1)设函数(),,x y z φ为定义在曲面S 上的连续函数.曲面S 的方程为(),z f x y =。

1.第一型曲线积分

1.第一型曲线积分

存在
在区间 , ]中插入分点 [ t 0 t1 t i 1 t i t n , 并记t i t i t i 1 , 相应于这种对[ , ]的分割, 得到L的一种分割.设[t i 1 , t i ]对应的弧段为 M i 1 M i,其弧长为si ( i 1,2, n),则由弧 长公式及积分中值定理 知
§1 第一型曲线积分(对 弧长的曲线积分)
一、第一型曲线积分的概念 二、第一型曲线积分的性质
三、第一型曲线积分的计算
本章讨论的两种积分是定积分与重积 分的推广,其差别仅仅在于:在这里 “积分域”分别是坐标系中的曲线段 (平面曲线或空间曲线)及有界曲面; 被积函数是定义在相应“积分域”上的 有界函数.
lim
0
i 1
n
2 ( i ) 2 ( i ) t i f [ ( i ) , ( i ) ]
注意上式右端是连续函 数 f ( ( t ), ( t )) 2 ( t ) 2 ( t ) 在区间上的特殊分割、 取点的积分和的 极限,而连续函数一定 是可积分的,故 此积分和的极限应是定 积分
于是有
重要说明
定积分的下限 一定要小于上限 . 因为小弧段的 长度 si 总是大于零, 从而要求t i 0.
两种特殊情形
1. L : y y( x ), a x b. L : x x, y y( x ), a x b.
b a
L
f ( x , y )ds f [ x , y( x )] 1 y 2 ( x )dx (a b).
L L L
(2)若积分弧段L 可分成两段光滑曲线弧 L1和 L2 ,

L f ( x, y)ds L

第一型曲线积分

第一型曲线积分

L xyds


2 0
a cos t b sin t ( a sin t )2 (b cos t )2 dt

ab02 sin t cos t a 2 sin 2 t b 2 cos2 t dt
ab 02 (a 2 b 2 ) sin 2 t b 2 d (sin 2 t ) 2
( x ) 0.
L ( x y )ds
2 ( x 0 ) 1 0 dx 0
2
0 x dx
2
2.
(2) L: x ( y ) 2, 0 y 3.
( x ) 0.
L ( x y )ds
2 ( 2 y ) 1 0 dy 0
x2 y2
x2 y2
ds. 其中曲线 x 2 y 2 a 2 , 直
线 x 0, y x 在第一象限中所围的图 形边界。

Le
ds ds AB e
x2 y2
oA e
x2 y2
ds oB e
x2 y2
ds
oA : x 0, 0 y a .
I xyz ds
0 a 2 cos sin k ( a sin )2 (a cos )2 k 2 d
2 2 2 a k a k 2
2Байду номын сангаас
0 sin 2 d
2
1 ka 2 a 2 k 2 . 2
例5
计算
Le

0
ab(a 2 ab b 2 ) . 3(a b )
y
例2
计算
L ( x y ) ds.

曲线曲面积分部分难题解答

曲线曲面积分部分难题解答

曲线曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+l ds yx 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线;(ⅲ)⎰+lsd y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++l ds zy x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰l zds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫⎝⎛+=所以dy y y y xyds l2221..21+=⎰⎰(令t y tan =) tdtt 332arctan 0sec .tan21⎰= ()t td t sec sec .tan21222arctan 0⎰=()()t td t sec sec .1sec21222arctan 0-=⎰()()⎥⎦⎤⎢⎣⎡+---=⎥⎦⎤⎢⎣⎡-=315153155121sec 31sec 5121352arctan35|t t.15135515255315521+=⎥⎦⎤⎢⎣⎡+-=(ⅱ)解:()⎰+l ds yx 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx xds y xOA;,其中:.20,,0:≤≤⎩⎨⎧==x xx y OA()()[]()dy y y ds y xAB21222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y其中:.10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.22212222==++=+⎰⎰⎰dy y dy yds y xBO,其中:.10,,0:≤≤⎩⎨⎧==y y y x BO所以.3535+=++=⎰⎰⎰OAABOBI(ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt at a t a s d y x l2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+π()dt t a⎰+=π202cos 124dt t a⎰=π20222sin2.24dt t a⎰=π2022sin2.22cos 22sin2202202|a t a t d t a=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l 则()().22,s i n .c o s s i n,c o s c o s :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l ()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b aba[].433222222b a b a++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by ax l 上,其密度().,y y x =μ求它的总质量.解:不妨假设.b a >⎰⎰==14l lydsds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l ()()()().cos sincos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=所以dt t b t a t b yds M l 222220cos sinsin 441+==⎰⎰π()dt t b a a t b 222220cos sin 4--=⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 222214---=⎰()du u b a a b 222214--=⎰duu ba aba b ⎰---=22222224π(公式)|102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u ba au ba au ba ab a b ()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=21arcsin .2.42222222222ba aab a b a a b a b.arcsin..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b ab a ba ab 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明:()().max .P f L dsP f lP l∈≤⎰证明:由第一型曲线积分的定义()()ini id ls P f dsP f ∆=∑⎰=→.lim1故()()ini id ls P f dsP f ∆=∑⎰=→.lim1()ini id s P f ∆=∑=→.lim1()ini id sP f ∆≤∑=→.lim1()ini lp d sP f ∆≤∑=∈→.m a x lim1().m a x .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分.⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧;(3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA . 解: (1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.1=-=-⎰⎰⋂dxx x ydx xdy OA(2).1~0:,,2:2x x x x y OA ⎩⎨⎧==⋂[].323224.|10312==-=-⎰⎰⋂xdxx x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OBBAOAydx xdy其中,.1~0:,.,0:x x x y OB ⎩⎨⎧==();000.1=-=-⎰⎰dxx ydx xdy OB其中,.2~0:,.,1:y y y x BA ⎩⎨⎧== ().20.12=-=-⎰⎰dyy ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a xa y ;(2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+ 解: (1).~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+πcos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a.(2).~:,,0:a a x x x y l -⎩⎨⎧==().00.0=+=+⎰⎰-dxx xdy ydxaal(3).2~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin ==⎰dt t aπ2022cos 02sin 2|202=πt a.6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+lyx dyy x dxy x解:π2~0:,.sin ,cos :t t a y t a x l ⎩⎨⎧==,所以,()()⎰+--+lyx dyy x dxy x 22()()()()dtat a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos.22022ππ-=-=⎰dt aa7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()dy xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()dy y x dx yx l ⎰-++2222,l 为折线()2011≤≤--=x x y ;(ⅲ)()dz x yzdy dx zy l ⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l()()dy xy y dx xy xl⎰-+-2222()()[]d x x x x xxx x⎰--+-=1124222..2.2[].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dyyx dx y xL2222-++⎰()()dyyx dx y xOA2222-++=⎰()()dyyx dx y xAB2222-+++⎰其中 .1~0:,,:x x x x y OA ⎩⎨⎧==故()()()()[]d x xxxxdy yx dx y xOA⎰⎰-++=-++1022222222.32322|10312===⎰x dx x ;其中.2~1:,,2:x x x x y AB ⎩⎨⎧=-=故()()()()()()()[]d x x xx xdy yx dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x所以原式.343232=+=(ⅲ)()dz x yzdydx zy l ⎰-+-2222()[]d t t t t t ttt⎰-+-=102232643.2 (2)[].351527323|1571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dttt8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明:()).max ...P L d P f lP l∈≤⎰证明:设()()(){}.,21P f P f P f =由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f rd P f 121..lim.故()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f d P f 121..lim.()()[]∑=→∆+∆≤ni i i iid y P f xP f 121..lim()()()()2212221.limi i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.limi ini id y x P ∆+∆=∑=→)()())⎰∑=→=∆+∆≤li ini d ds P y x P .max .max lim221)P L =m a .9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22yx z +=被圆柱面x y x 222=+截下的那一部分;(ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=2z zx y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此d x d yyx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122bbra a ra a r d r d πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:yx z +=∑,得,22yx x xz +=∂∂,22yx y yz +=∂∂,所以,,2122d x d y d x d y y z x z dS =⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂+=.因此().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz 面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22ya x -=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d zya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此d y d zya a S S yzD ⎰⎰-==22188 ⎰⎰--=22228ya a dz ya a dy .882a a d z a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面;(ⅱ)()dS y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++= 其中,0:1=z S dxdy dS =1,()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++110222111111dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111|()212ln 211ln 2111|1010-=-+=⎪⎭⎫ ⎝⎛-+=⎰x dx x ;,0:2=x S d y d z dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++1102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=102102111211()2ln 11ln 12||110-=+-+-=y y;,0:3=y Sd z d x dS =3,()()()dzx dx dzdx x y x dSxD S zx⎰⎰⎰⎰⎰⎰-+=++=++1102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫ ⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=x x;,1:4y x z S --= d x d ydS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-1011021113113|().212ln 33211ln 321113|110⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x;所以()⎰⎰++Sy x dS21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中,0:1=z S d x d y dS =1,()()r d r r d d x d y y xdS y xaD S xy.420222221⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2h z S = d x d y dS =2,()()r d r r d d x d y y xdS y xaD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a yx S =+其向yoz面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d z ya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此()()d y d zya a yya dS y xyzD S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz ya dy a22312..2arcsin433|h a ayh a aπ==或者()..22..32232233h a ah a dS a dS y xS S ππ===+⎰⎰⎰⎰所以()⎰⎰++Sy x dS21()++=⎰⎰122S dSyx()++⎰⎰222S yx()dSy xS ⎰⎰+322().22223344h a ah a a a+=++=ππππ (ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dSx SdS y S⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a uf dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则 222cb a cz by ax u ++++=(1)(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为 1222=++w v u (2) (因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.)由(2)式可得: ()22221u w v -=+ (3)当u 固定时,(3)式其实就表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -='于是,;112222uw v u E u u u-='+'+'=;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv = (4)故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du cb a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量. 解:由公式 ()dSy xJ S⎰⎰+=22由对称性()dSy x J S ⎰⎰+=1228其中2221:yx a z S--=,则2z z x y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此()d x d yy x a a y x S S xyD ⎰⎰--+==222221.88 r d r ra rd a a.8022220⎰⎰-=πθ极()r d r r a aara a.4022222⎰-+-=πr d r r a a a.4022⎰--=πr d rra aa.140223⎰-+π()22022.2ra d r a a a--=⎰π()220223.12ra d ra a a---⎰π()|232232.2araa -=π|2232.2ara a --π434aπ-=44aπ+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z yx S的下侧,求曲面积分S d r S.⎰⎰,其中{}.,,z y x r =解:⎰⎰⎰⎰++=SSzdxdyydzdx xdydzS d r .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222yx y yx x z z n y x,所以{}.c o s ,c o s ,c o s21,2,22222γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==yx yyx x n 故⎰⎰⎰⎰++=SSzdxdyydzdx xdydzSd r . ()⎰⎰++=SdSz y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=SdSz yx y yx x222222222⎰⎰⎪⎪⎭⎫ ⎝⎛-+=SdS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .0222222214(P217,第2题)沿椭球面1222222=++cz by ax 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz解:把S 分割为21,S S 两个部分.其中,222211:by ax c z S --=(上侧);222221:by ax c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by ax D xy故dxdyby ax c zdxdy xyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.s i n,c o s θθbr y ar x由二重积分的换元法drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D所以=⎰⎰1S zdxdy drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d cab ⎰⎰-=πθ201211dr r rd cab ⎰⎰-=πθ201211所以,().212111|12212πππcab rcabrd rcab =⎥⎦⎤⎢⎣⎡--=---=⎰(1)同理 dxdy by ax c zdxdy xyD S ⎰⎰⎰⎰----=2222112.2112222πcab dxdy by ax c xyD =--=⎰⎰(2)所以=⎰⎰Szdxdy +⎰⎰1S zdxdy .42πcab zdxdy S =⎰⎰(3)由轮换对称性,知:πa bc x dzdy S4=⎰⎰;.4πbac ydzdx S=⎰⎰故⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz +=⎰⎰Szdxdy +⎰⎰Sxdzdy ⎰⎰Sydzdx+=πc ab4πabc4().44222222ac c b b a abc b ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故()()dxdy b y a x R c dxdy zxyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换:⎩⎨⎧+=+=.s i n ,c o sθθr b y r a x由二重积分的换元法()()[]r d r rR c d x d y b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.其中 ()()r r r y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D所以=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()drr rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R rR c c R⎰-+-+=02222222πrdr r R c rdr c RR⎰⎰-+=0222222ππ()rdr r RR⎰-+0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cRRc πππ++=(1)同理()()dxdy b y a x R c dxdy z xyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221[]rdr rR c D 222⎰⎰'---=()dr r rR c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ20222()rdr rR c R2222⎰---=π()r dr r R rR c c R⎰-+---=02222222πrdr r R c rdr cR R⎰⎰-+-=0222222ππ()rdr r RR⎰--0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ.2344322R cRRc πππ-+-=(2)所以=⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cRdxdy z S π=⎰⎰; (3)由轮换对称性,知:=⎰⎰Sdydz x 2338aRπ;=⎰⎰Sdzdx y 2.383bR π故.222⎰⎰++Sdxdy z dzdx y dydz x⎰⎰=Sdydzx2⎰⎰Sdzdxy 2⎰⎰Sdxdyz2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此=⎰⎰Sxyzdxdy+⎰⎰1S xyzdxdy⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy⎰⎰-xyD dxdyxy 0.c b a yd y x d x c ab.422⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫ ⎝⎛=+12222b ya x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI xxL-+-=⎰cos sin ,(m 为常数)其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆 周.(提示:作辅助线后用格林公式).解:cos ,cos xxP Q e y m e y yx∂∂=-=∂∂.所以,由格林公式:221...428A OO A D DQ P a dxdy m dxdy m m a x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰. 所以,2220.888AOOAma ma ma I πππ⋂==-=-=⎰⎰(因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx xl故有xQ yP ∂∂=∂∂即()()x f x x f x '+=34 化简,得()()241xx f xx f =+' (1)(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x e x f dx xdx x 1214[]()cdx xx c e x e x x +=+=⎰⎰-3ln 2ln 414().1134xcx c xx+=+=(2)代入条件()21=f ,得 .1=c故().13x x x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,= 在闭区域D 上具有连续的二阶偏导数且记 2222yu xuu ∂∂+∂∂=∆证明:⎰⎰⎰∆=∂∂Dludxdy ds nu其中()()y n yu x n xu nu ,cos ,cos ∂∂+∂∂=∂∂表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 故()()y x n ,c o s ,c o s τ=,()().,cos ,cos x y n τ-=()()ds x y u y xu ds nul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yu dy xul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫⎝⎛∂∂∂∂=Ddxdy y u y x u x=⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰Ddxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂证明:仿上题 ()()ds x y uy xu u ds nu ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系) dx yu udy xu ul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u u y u y u x u u x u x u 2222....dxdy y ux u u dxdy y u x u DD⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222udxdyu dxdy y u x u DD∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22移项,即得 .22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明: dsvun v n udxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆证明:我们有 ()()ds x y u y xu v ds nu vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ (由两型曲线积分之间的联系)dx yu vdy xu vl⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDdxdy y u x u v dxdy y v y u x v x u 22.. ...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDudxdy v dxdy y v y u x v x u (1)由轮换对称性,知 dsnv ul⎰∂∂ ...⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=DDvdxdy u dxdy y v y u x v x u (2)于是ds n v u n uv ds vun v n ul l⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰DDudxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰DD vdxdy u dxdy y v y u x v x u ..()⎰⎰∆-∆=Ddxdyv u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分 ()(b a I ⎰=,其中l 为简单(光滑)闭合曲线,r 为不在l 上的点()b a ,到l 上动点()y x ,的向量,而n 为l 上动点()y x ,处的法向量.解:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 又设()(){}y n x n n ,cos ,,cos 0= ,{}b y a x r --=,,则()()()()()()().,c o s .,c o s .,c o s ,c o s 2200b y a x y n b y x n a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]ds y n b y x n a x b y a x b a I l ,cos ,cos .1,22-+--+-=⎰()()()()()()[]ds x b y y a x b y a x l,cos ,cos .122ττ----+-=⎰()()()().22⎰-+----=l b y a x dx b y dya x记 ()()(),,22b y a x by y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y yP -+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xo y 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD . 则在'εD 由格林公式可得:)()()()⎰-+----lb y a x dxb y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dya x I 22()()⎰---=εεl dxb y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x .24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式d x d y yx zx yz z y x d x d y d z d x d y d z 2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=n ,.31,33,33⎭⎬⎫⎩⎨⎧-=n ) ()()()dSdxdy dz y x dy z x dx y z I l⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdydz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u(){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -=因为xQ x y y x yP ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x y y x sin cos22()dyy x x y sin cos 22-是某一个函数()y x u ,的全微分.故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dyy xx y dx x x yx⎰⎰-+-=0202sin cos 2sin 00cos 2[]||0222c o s c o s yx yx x y x++=()[]2222c o s c o s xy x x yx -++=.cos cos 22y x x y +=则,所求的位势为().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y ex z xef yy--=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xez y x P yy-=-==--。

数学分析简明教程答案

数学分析简明教程答案

第二十一章曲线积分与曲面积分§1 第一型曲线积分与曲面积分1.对照定积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质。

解:第一型曲线积分的性质:1(线性性)设⎰L ds z y x f ),,(,⎰L ds z y x g ),,(存在,21,k k 是实常数,则[]ds z y x g k z y x f kL ⎰+),,(),,(21存在,且[]ds z y x g k z y x f k L⎰+),,(),,(21⎰⎰+=LLds z y x g kds z y x f k ),,(),,(21;2l ds L=⎰1,其中l 为曲线L 的长度;3(可加性)设L 由1L 与2L 衔接而成,且1L 与2L 只有一个公共点,则⎰Lds z y x f ),,(存在⇔⎰1),,(Lds z y x f 与⎰2),,(L ds z y x f 均存在,且=⎰Lds z y x f ),,(⎰1),,(L ds z y x f +⎰2),,(L ds z y x f ;4(单调性)若⎰L ds z y x f ),,(与⎰L ds z y x g ),,(均存在,且在L 上的每一点p 都有),()(p g p f ≤则⎰⎰≤L L ds p g ds p f )()(;5若⎰L ds p f )(存在,则⎰L ds p f )(亦存在,且≤⎰ds p f L)(⎰Ldsp f )(6(中值定理)设L 是光滑曲线,)(p f 在L 上连续,则存在L p ∈0,使得l p f ds p f L)()(0=⎰,l 是L 的长度;第一型曲面积分的性质: 设S 是光滑曲面,⎰⎰S ds p f )(,⎰⎰S ds p g )(均存在,则有1(线性性)设21,k k 是实常数,则[]⎰⎰+Sds p g k p f k)()(21存在, 且[]⎰⎰+Sds p g k p f k )()(21⎰⎰⎰⎰+=SSds p g k ds p f k )()(21;2s ds S=⎰1, 其中s 为S 的面积;3(可加性)若S 由1S ,2S 组成21S S S =,且1S ,2S 除边界外不相交,则⎰⎰Sds p f )(存在⇔⎰⎰1)(S ds p f 与⎰⎰2)(S ds p f 均存在,且⎰⎰Sds p f )(=⎰⎰1)(S ds p f +⎰⎰2)(S ds p f4 (单调性)若在S 上的的每一点p 均有),()(p g p f ≤则⎰⎰⎰⎰≤SSds p g ds p f )()(;5⎰⎰S ds p f )(也存在,且≤⎰⎰Sdsp f )(⎰⎰Sds p f )(;6 (中值定理)若)(p f 在S 上连续,则存在S p ∈0,使得使得s p f ds p f S⎰⎰=)()(0,其中s 为S 的面积。

第一型曲线积分

第一型曲线积分
前页 后页 返回
0 z f ( x , y )的部分的面积就是 f ( x , y )ds .
L
z
z f ( x, y)
O
y
x
L
图 20 1
前页 后页 返回
二. 第一型曲线积分的计算
x ( t ), t [ , ], 定理20.1 设有光滑曲线 L : y ( t ), f ( x , y ) 为定义在 L 上的连续函数, 则

L
L
f ( x , y )ds f ( x , y )ds .
i 1 Li
k
3. f ( x , y )ds 与 g ( x , y )ds都存在, 且在 L 上 若
L
f ( x , y ) g( x , y ), 则


L
f ( x , y )ds g ( x , y )ds .

L
L
f ( x , y )ds cs ,
L
这里 inf f ( x , y ) c sup f ( x , y ).
6. 第一型曲线积分的几何意义 若 L 为坐标平面 Oxy上的分段光滑曲线, f ( x , y ) 为L 上定义的连续非负函数. 由第一型曲线的定义, 易见 以 L为准线, 母线平行于 z 轴的柱面上截取
(1) 分割:把 分成 n 个可求长度的小曲线段 i
( i 1, 2, , n).
(2) 近似求和:在每一个 i 上任取一点 Pi . 由于
前页 后页 返回
f ( P ) 为 上的连续函数, 故当 i 的弧长都很小时,
每一小段 i 的质量可近似地等于f ( Pi ) i , 其中 i

曲线积分习题答案

曲线积分习题答案

曲线积分习题答案曲线积分习题答案曲线积分是微积分中的一个重要概念,它在物理学、工程学等领域中有着广泛的应用。

在学习曲线积分的过程中,我们常常会遇到一些习题,通过解答这些习题可以加深对曲线积分的理解。

本文将给出一些曲线积分习题的详细解答,希望能够帮助读者更好地掌握曲线积分的概念和计算方法。

1. 计算曲线积分∮(x^2+y^2)ds,其中C为圆周x^2+y^2=a^2。

解答:首先,我们需要确定曲线C的参数方程。

由于C是一个圆周,我们可以选择极坐标系来描述它。

令x=a*cosθ,y=a*sinθ,其中0≤θ≤2π。

接下来,我们需要计算ds,即弧长元素。

根据极坐标系的定义,ds的表达式为ds=√(dx^2+dy^2)=√(a^2*cos^2θ+a^2*sin^2θ)dθ=a*dθ。

将ds代入曲线积分的定义中,得到∮(x^2+y^2)ds=∮(a^2*cos^2θ+a^2*sin^2θ)a*dθ=∮a^3dθ。

由于θ的取值范围为0到2π,所以曲线积分的结果为∮(x^2+y^2)ds=a^3∮dθ=a^3*2π=2πa^3。

2. 计算曲线积分∮(x^2+y^2)ds,其中C为抛物线y=x^2的一段,起点为(0,0),终点为(1,1)。

解答:为了计算曲线积分,我们需要确定曲线C的参数方程。

由于C是抛物线y=x^2的一段,我们可以选择直角坐标系来描述它。

令x=t,y=t^2,其中0≤t≤1。

接下来,我们需要计算ds,即弧长元素。

根据直角坐标系下的弧长元素表达式,ds的表达式为ds=√(dx^2+dy^2)=√(1+4t^2)dt。

将ds代入曲线积分的定义中,得到∮(x^2+y^2)ds=∮((t^2)+(t^2)^2)√(1+4t^2)dt=∮(t^2+t^4)√(1+4t^2)dt。

由于t的取值范围为0到1,所以曲线积分的结果为∮(x^2+y^2)ds=∫(0到1)(t^2+t^4)√(1+4t^2)dt。

在这个例子中,我们无法通过初等函数求出积分的解析表达式。

11.1第一型(关于弧长)曲线积分1

11.1第一型(关于弧长)曲线积分1

特别地,
如果平面曲线 L 由参数方程表示:
L : x x t , y y t , ( t )

2

L
f x, y dl
f x t , y t x t y t dt ;
2
如果平面曲线 L 的方程由直角坐标表示:
如果 L 是闭曲线 , 则记为:
L
思考:
(1) 若在曲线 Γ 上

积分
dl 表示什么?

(2) 定积分是否可看作对弧长曲线积分的特例 ?
否! 对弧长的曲线积分要求 dl 0 , 但定积分中 dx 可能为负。 注: 第一型(弧长)的曲线积分的无方向性。 即 则 f x, y, z dl f x, y, z dl f x, y, z dl
1
y
B(1,1)
yx L
2
1 5 5 1 . 12
机动


o
1x
上页 下页 返回 结束
目录
例 2. 计算曲线积分
解:
2 2 2 x y z dl
其中 为螺旋线:
的一段弧。
a k
2
2

2 0
2 2 2 a k t dt
2 3
a 2 k 2 3a 2 4 2 k 2 .
机动 目录 上页 下页 返回 结束
例 3. 计算
其中L为双纽线:
2
x y
2

2
a 2 x 2 y 2 ( a 0)
解: 在极坐标系下
它在第一象限部分为:
y
L1 : r a cos 2 , 0 4

数学分析22.1第一型曲面积分(含习题及参考答案)

数学分析22.1第一型曲面积分(含习题及参考答案)

第二十二章 曲面积分 1 第一型曲面积分一、第一型曲面积分的概念定义1:设S 是空间中可求面积的曲面,f(x,y,z)为定义在S 上的函数,对曲面S 作分割T ,它把S 分成n 个小曲面块S i (i=1,2,…,n), 以△S i 记小曲面块S i 的面积,分割T 的细度T =ni ≤≤1max {S i 的直径},在S i 上任取一点(ξi ,ηi ,ζi ) (i=1,2,…,n),若极限i ni i i i T S f ∆∑=→1),,(lim ζηξ存在, 且与分割T 及(ξi ,ηi ,ζi ) (i=1,2,…,n)的取法无关,则称此极限为f(x,y,z)在S 上的第一型曲面积分,记作⎰⎰SdS z y x f ),,(.性质:1、存在性:若f(x,y,z)在光滑曲面S 上连续,则第一型曲面积分存在.2、可加性:若曲面S 由互不相交的曲面S 1,S 2,…,S k 组成,且⎰⎰iS dS z y x f ),,((i=1,2,…,k)都存在,则⎰⎰SdS z y x f ),,(也存在,且⎰⎰SdS z y x f ),,(=∑⎰⎰=ki S idS z y x f 1),,(.3、线性:若⎰⎰Si dS z y x f ),,( (i=1,2,…,k)存在,c i (i=1,2,…,k)为常数,则⎰⎰∑=S k i ii dS z y x f c 1),,(=∑⎰⎰=ki SiidS z y x f c 1),,(.4、若⎰⎰SdS z y x f ),,(与⎰⎰SdS z y x g ),,(都存在,且f(x,y,z)≤g(x,y,z),则⎰⎰SdS z y x f ),,(≤⎰⎰SdS z y x g ),,(.5、若⎰⎰SdS z y x f ),,(存在,则⎰⎰SdS z y x f |),,(|也存在,且⎰⎰SdS z y x f ),,(≤⎰⎰SdS z y x f |),,(|.6、若⎰⎰SdS z y x f ),,(存在,S 的表面积为s ,则存在常数c ,使得⎰⎰SdS z y x f ),,(=cs, 这里),,(infz y x f S≤c ≤),,(sup z y x f S.注:当f(x,y,z)=1时, 曲面积分⎰⎰SdS 就是曲面块S 的面积.二、第一型曲面积分的计算定理22.1:设光滑曲面S :z=z(x,y), (x,y)∈D ,函数f(x,y,z)在S 上连续,则⎰⎰SdS z y x f ),,(=⎰⎰++Dy x dxdy z z y x z y x f 221)),(,,(. 证:由定义知⎰⎰SdS z y x f ),,(=i ni i i i T S f ∆∑=→1),,(lim ζηξ, 其中 △S i =⎰⎰∆++iD y x dxdy z z 221=i i i y i i xD z z ∆++),(),(122ηξηξ. ∴⎰⎰SdS z y x f ),,(=i i i y i i x ni i i i i T D z z z f ∆++∑=→),(),(1)),(,,(lim 221ηξηξηξηξ =⎰⎰++Dy x dxdy z z y x z y x f 221)),(,,(.例1:计算⎰⎰SzdS,其中S 是球面x 2+y 2+z 2=a 2被平面z=h(0<h<a)所截的顶部.解:曲面S 的方程为z=222y x a --, 定义域为圆域x 2+y 2≤a 2-h 2.∵221yxz z ++=222222221y x a y y x a x --+--+=222yx a a--,∴⎰⎰Sz dS =⎰⎰--⋅--D dxdy y x a ay x a 2222221=⎰⎰--D dxdy y x a a 222=⎰⎰--2202220h a rdr ra a d πθ=2a πln h a.例2:计算⎰⎰++SdS z y x )(222, 其中(1)S :x 2+y 2+z 2=a 2;(2)S :x 2+y 2+z 2=2az.解:(1)⎰⎰++SdS z y x )(222=⎰⎰SdS a 2= a 2·4πa 2=4πa 4.(2)⎰⎰++SdS z y x )(222=⎰⎰SazdS 2=⎰⎰12S azdS +⎰⎰22S azdS ,其中S 1=z 1=a+)222y x a --, (x,y)∈D; S 2=z 2=a-222y x a --, (x,y)∈D.∵21211⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =22221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =222yx a a --, ∴⎰⎰12S azdS =⎰⎰----+Ddxdy y x a a y x a a a 222222)(2,⎰⎰22S azdS =⎰⎰-----Ddxdy yx a ay x a a a 222222)(2,∴⎰⎰++SdS z y x )(222=4⎰⎰--Ddxdy y x a a 2223=4a3⎰⎰-ar a rdr d 02220πθ=8πa 4.注:在由参量形式表示的光滑曲面S :⎪⎩⎪⎨⎧===),(),(),(v u z z v u y y v u x x , (u,v)∈D上的第一型曲面积分的计算公式为:⎰⎰SdS z y x f ),,(=⎰⎰-Ddudv F EG v u z v u y v u x f 2)),,(),,(),,((, 其中E=x u 2+y u 2+z u 2, F=x u x v +y u y v +z u z v , G=x v 2+y v 2+z v 2, 且雅可比行列式),(),(v u y x ∂∂,),(),(v u z y ∂∂,),(),(v u x z ∂∂中至少有一个不等于0.例3:计算⎰⎰SzdS ,其中S 为螺旋面的一部分.⎪⎩⎪⎨⎧===vz v u y vu x sin cos , (u,v)∈D :⎩⎨⎧≤≤≤≤π200v a u . 解:E=x u 2+y u 2+z u 2=cos 2v+sin 2v=1; G=x v 2+y v 2+z v 2=u 2sin 2v+u 2cos 2v+1=u 2+1; F=x u x v +y u y v +z u z v =-usinvcosv+ucosvsinv=0;∴⎰⎰SzdS =⎰⎰+Ddudv u v 12=dv v du u a⎰⎰+π20021=2π2[])1ln(122++++a a a a .习题1、计算下列第一型曲面积分:(1)⎰⎰++SdS z y x )(,其中S 为上半球面x 2+y 2+z 2=a 2, z ≥0;(2)⎰⎰+SdS y x )(22,其中S 为立体22y x +≤z ≤1的边界曲面;(3)⎰⎰+Syx dS 22,其中S 为柱面x 2+y 2=R 2被平面z=0, z=H 所截取的部分; (4)⎰⎰SxyzdS ,其中S 为平面x+y+z=1在第一卦限中的部分.解:(1)∵z=222yx a --, z x 2=22z x , z y 2=22z y , ∴221y x z z ++=222zx a a --. 又D={(x,y)|x 2+y 2≤a 2}. ∴⎰⎰++SdS z y x )(=()⎰⎰----++Ddxdyz x a y x a y x a 222222 =a ⎰⎰+-+πθθθ20220)1sin cos (rd r a r r dr a=2πa ⎰ardr 0=πa 3.(2)S=S 1+S 2, 其中S 1:z 1=22y x +, S 2:z 2=1.∵21⎪⎭⎫⎝⎛∂∂x z =222y x x +; 21⎪⎪⎭⎫ ⎝⎛∂∂y z =222y x y +; ∴21211⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =2. 又22221⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =1, D={(x,y)|x 2+y 2≤1}; ∴⎰⎰+1)(22S dS y x =⎰⎰+Ddxdy y x )(222=⎰⎰103202dr r d πθ=22π; ⎰⎰+2)(22S dS y x =⎰⎰+Ddxdy y x )(22=⎰⎰1320dr r d πθ=2π; ∴⎰⎰+SdS y x )(22=⎰⎰+1)(22S dS y x +⎰⎰+2)(22S dS y x =)12(2+π.(3)⎰⎰+Sy x dS 22=⎰⎰SdS R 21=21R ·2πRH=RH π2. (4)z=1-x-y, z x =-1, z y =-1, ∴221y x z z ++=3.又D={(x,y)|x+y ≤1,0≤x ≤1}, ∴⎰⎰SxyzdS =⎰⎰--Ddxdy y x xy )1(3=⎰⎰---xdyy x xy dx 1010)1(3=⎰⎥⎦⎤⎢⎣⎡-+-10432612121613dx x x x x =1203.2、求均匀曲面:x 2+y 2+z 2=a 2, x ≥0,y ≥0,z ≥0的质心. 解:∵z=222yx a --, z x 2=2222y x a x --, z x 2=2222yx a y --,∴221y x z z ++=222y x a a--, 又曲面面积为21πa 2,D 为四分之一圆域x 2+y 2≤a 2在第一象限部分.∴x =⎰⎰SxdS a22π=dr r a ar d a a⎰⎰-022222cos 2θθππ=⎰20cos 2πθθd a =2a ;y =⎰⎰SydS a 22π=dr r a ar d a a⎰⎰-022222sin 2θθππ=⎰20sin 2πθθd a =2a;z =⎰⎰SzdS a22π=dr ar d a a⎰⎰222πθπ=2a . ∴曲面的质心为(2a ,2a ,2a ).3、求密度为ρ的均匀球面x 2+y 2+z 2=a 2 (z ≥0)对于z 轴的转动惯量. 解:J z =⎰⎰SdS z ρ2=ρdr r a ar d a⎰⎰-02220πθ=34πa 4ρ.4、计算.⎰⎰SdS z2, 其中S 为圆锥表面的一部分S :⎪⎩⎪⎨⎧===θθϕθϕcos sin sin sin cos r z r y r x , (r,φ)∈D :⎩⎨⎧≤≤≤≤πϕ200a r ,θ为常数(0<θ<2π). 解:E=x r 2+y r 2+z r 2=cos 2φsin 2θ+sin 2φsin 2θ+cos 2θ=1; G=x φ2+y φ2+z φ2=r 2sin 2φsin 2θ+r 2cos 2φsin 2θ=r 2sin 2θ; F=x r x φ+y r y φ +z r z φ=-rsin φcos φsin θ+rsin φcos φsin θ=0; ∴⎰⎰S dS z 2=⎰⎰⋅Ddrd r r ϕθθsin cos 22=sin θcos 2θdr r d a⎰⎰0320πϕ=24a πsin θcos 2θ.。

第一型曲线积分

第一型曲线积分

于是曲面的面积微元
′ dS = 1 + ( z ′ 1 + 4 x 2 + 4 y 2 dσ x ) + ( z y ) dσ =
2 2
所以
∫∫
Σ
zdS = ∫∫ ( x + y ) 1 + 4 x + 4 y dσ =
2 2 2 2 Dxy


0
dθ ∫ r 2 1 + 4 x 2 rdr
1 2 0
2 2 2
例 2.1 计算 解
∫∫

( x + y + z )dS , ∑ : x 2 + y 2 + z 2 = a 2
z≥0
曲面 ∑ 在 x0 y 平面上的投影区域
Duv = {( x, y ) x 2 + y 2 ≤ a 2 }
因为 z =
a 2 − x 2 − y 2 ,所以
∂z −x = 2 ∂x a − x2 − y 2
12.2
12.2.1 光滑曲面
第一型曲线积分
所谓的光滑曲面, 是指曲面上每点都有切平面, 且切平面的法方向随着曲面上的点的连 续变动而连续变化。而所谓的逐片光滑曲面,是指曲面是由有限个光滑曲面逐片并起来的。 例如椭球面是光滑曲面, 立方体的边界面是逐片光滑曲面。 本节所指的曲面都是有界的光滑 或逐片光滑曲面。 如果曲面
上的连续函数。 将曲面

任意分割成 n 个
小曲面片(图 2.1)
∑1 , ∑ 2 L ∑ n 其面积分别记为 ∆S1 , ∆S 2 ,L ∆S n 。记曲面 ∑ 的这种分法为 ∆ 。对于任意点
处的密度 ρ
Pk (ξ k ,η k , ζ k ) ∈ ∑ k ,当曲面片 ∑ k 很小时,由于 ρ ( x, y, z ) 的连续性,可用曲面 ∑ 在点 Pk

线面积分

线面积分

第十章 曲线积分与曲面积分1-1 第一型曲线积分基础题1.光滑曲线(),()()x t t y t =ϕ⎧α≤≤β⎨=ψ⎩的弧微分d s = 。

由此,圆周cos ,(02)sin x R y R =θ⎧≤θ<π⎨=θ⎩的弧微分d s = 。

2.算下列对弧长的曲线积分:(1)⎰+Lds y x )(,其中L 为连接(1,0)及(0,1)两点的直线段;(2)⎰+L y x ds e22,其中L 为圆周222x y R +=,直线x y =及x 轴在第一象限内所围成的扇形的整个边界;3)⎰Γ++ 2221ds zy x ,其中Γ为曲线t t t e z t e y t e x ===,sin ,cos 上相应于t 从0变到2的这段弧;4)⎰+Lds y x )(22,其中L 为曲线)cos (sin ),sin (cos t t t a y t t t a x -=+= )20(π≤≤t 。

提高题1.计算2L x ds ⎰,其中L 为球面2222x y z a ++=被平面0x y z ++=所截得的圆周。

1-2 第二型曲线积分基础题1.力(,)((,),(,))F x y P x y Q x y =沿光滑曲线弧L 所做功的微元d W = ,其中(,),(,)P x y Q x y 在L 上连续。

2.计算第二型曲线积分 1)⎰L xydx ,其中L为圆周222()(0)x R y R R -+=>及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行)。

2)⎰Γ-+++dz y x ydy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线。

(3) 22L xdx ydy x y -++⎰,其中L 是圆周222x y a +=以逆时针方向。

提高题1. 计算⎰-++L dyx y dx y x )()(,其中L 是: (1)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (2)曲线1 1222+=++=t y t t x , 上从点(1,1)到点(4,2)的一段弧。

1 第一型曲线积分解析

1 第一型曲线积分解析


y

R cos R sin
( )
O

L Rx
R2 sin 2 (R sin )2 (R cos )2d

R3 sin 2
d

2
R3

2
sin 2
4
0
R3( sin cos )
例8. 设均匀螺旋形弹簧L的方程为

I y L
x2 y 1 x2
ds
2 1
x2 ln x 1 x2
1 1 x2 dx

2
1
x
ln
xdx

ln
4

3 4
.
例7. 计算半径为R ,中心角为
的圆弧 L 对于它的对
称轴的转动惯量 I (设线密度 = 1).
解: 建立坐标系如图, 则
y
I y2 ds L
L
:
x

cos t d t 0
0
a
a2 k2

sin t d t
0
0
k
a2 k2

tdt
2π2k
0
a2 k2
故质心坐标为 ( 0, 0, k π )
内容小结
1. 定义 f (x, y) ds L
f (x, y, z)ds
2. 性质
(1) f (x, y, z) g(x, y, z) ds g(x, y, z)ds (, 为常数)
2 (
i)

2 (

i
)ti


.

数学分析22.1第一型曲面积分(含习题及参考答案)

数学分析22.1第一型曲面积分(含习题及参考答案)

第二十二章 曲面积分 1 第一型曲面积分一、第一型曲面积分的概念定义1:设S 是空间中可求面积的曲面,f(x,y,z)为定义在S 上的函数,对曲面S 作分割T ,它把S 分成n 个小曲面块S i (i=1,2,…,n), 以△S i 记小曲面块S i 的面积,分割T 的细度T =ni ≤≤1max {S i 的直径},在S i 上任取一点(ξi ,ηi ,ζi ) (i=1,2,…,n),若极限i ni i i i T S f ∆∑=→1),,(lim ζηξ存在, 且与分割T 及(ξi ,ηi ,ζi ) (i=1,2,…,n)的取法无关,则称此极限为f(x,y,z)在S 上的第一型曲面积分,记作⎰⎰SdS z y x f ),,(.性质:1、存在性:若f(x,y,z)在光滑曲面S 上连续,则第一型曲面积分存在.2、可加性:若曲面S 由互不相交的曲面S 1,S 2,…,S k 组成,且⎰⎰iS dS z y x f ),,((i=1,2,…,k)都存在,则⎰⎰SdS z y x f ),,(也存在,且⎰⎰SdS z y x f ),,(=∑⎰⎰=ki S idS z y x f 1),,(.3、线性:若⎰⎰Si dS z y x f ),,( (i=1,2,…,k)存在,c i (i=1,2,…,k)为常数,则⎰⎰∑=S k i ii dS z y x f c 1),,(=∑⎰⎰=ki SiidS z y x f c 1),,(.4、若⎰⎰SdS z y x f ),,(与⎰⎰SdS z y x g ),,(都存在,且f(x,y,z)≤g(x,y,z),则⎰⎰SdS z y x f ),,(≤⎰⎰SdS z y x g ),,(.5、若⎰⎰SdS z y x f ),,(存在,则⎰⎰SdS z y x f |),,(|也存在,且⎰⎰SdS z y x f ),,(≤⎰⎰SdS z y x f |),,(|.6、若⎰⎰SdS z y x f ),,(存在,S 的表面积为s ,则存在常数c ,使得⎰⎰SdS z y x f ),,(=cs, 这里),,(infz y x f S≤c ≤),,(sup z y x f S.注:当f(x,y,z)=1时, 曲面积分⎰⎰SdS 就是曲面块S 的面积.二、第一型曲面积分的计算定理22.1:设光滑曲面S :z=z(x,y), (x,y)∈D ,函数f(x,y,z)在S 上连续,则⎰⎰SdS z y x f ),,(=⎰⎰++Dy x dxdy z z y x z y x f 221)),(,,(. 证:由定义知⎰⎰SdS z y x f ),,(=i ni i i i T S f ∆∑=→1),,(lim ζηξ, 其中 △S i =⎰⎰∆++iD y x dxdy z z 221=i i i y i i xD z z ∆++),(),(122ηξηξ. ∴⎰⎰SdS z y x f ),,(=i i i y i i x ni i i i i T D z z z f ∆++∑=→),(),(1)),(,,(lim 221ηξηξηξηξ =⎰⎰++Dy x dxdy z z y x z y x f 221)),(,,(.例1:计算⎰⎰SzdS,其中S 是球面x 2+y 2+z 2=a 2被平面z=h(0<h<a)所截的顶部.解:曲面S 的方程为z=222y x a --, 定义域为圆域x 2+y 2≤a 2-h 2.∵221yxz z ++=222222221y x a y y x a x --+--+=222yx a a--,∴⎰⎰Sz dS =⎰⎰--⋅--D dxdy y x a ay x a 2222221=⎰⎰--D dxdy y x a a 222=⎰⎰--2202220h a rdr ra a d πθ=2a πln h a.例2:计算⎰⎰++SdS z y x )(222, 其中(1)S :x 2+y 2+z 2=a 2;(2)S :x 2+y 2+z 2=2az.解:(1)⎰⎰++SdS z y x )(222=⎰⎰SdS a 2= a 2·4πa 2=4πa 4.(2)⎰⎰++SdS z y x )(222=⎰⎰SazdS 2=⎰⎰12S azdS +⎰⎰22S azdS ,其中S 1=z 1=a+)222y x a --, (x,y)∈D; S 2=z 2=a-222y x a --, (x,y)∈D.∵21211⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =22221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =222yx a a --, ∴⎰⎰12S azdS =⎰⎰----+Ddxdy y x a a y x a a a 222222)(2,⎰⎰22S azdS =⎰⎰-----Ddxdy yx a ay x a a a 222222)(2,∴⎰⎰++SdS z y x )(222=4⎰⎰--Ddxdy y x a a 2223=4a3⎰⎰-ar a rdr d 02220πθ=8πa 4.注:在由参量形式表示的光滑曲面S :⎪⎩⎪⎨⎧===),(),(),(v u z z v u y y v u x x , (u,v)∈D上的第一型曲面积分的计算公式为:⎰⎰SdS z y x f ),,(=⎰⎰-Ddudv F EG v u z v u y v u x f 2)),,(),,(),,((, 其中E=x u 2+y u 2+z u 2, F=x u x v +y u y v +z u z v , G=x v 2+y v 2+z v 2, 且雅可比行列式),(),(v u y x ∂∂,),(),(v u z y ∂∂,),(),(v u x z ∂∂中至少有一个不等于0.例3:计算⎰⎰SzdS ,其中S 为螺旋面的一部分.⎪⎩⎪⎨⎧===vz v u y vu x sin cos , (u,v)∈D :⎩⎨⎧≤≤≤≤π200v a u . 解:E=x u 2+y u 2+z u 2=cos 2v+sin 2v=1; G=x v 2+y v 2+z v 2=u 2sin 2v+u 2cos 2v+1=u 2+1; F=x u x v +y u y v +z u z v =-usinvcosv+ucosvsinv=0;∴⎰⎰SzdS =⎰⎰+Ddudv u v 12=dv v du u a⎰⎰+π20021=2π2[])1ln(122++++a a a a .习题1、计算下列第一型曲面积分:(1)⎰⎰++SdS z y x )(,其中S 为上半球面x 2+y 2+z 2=a 2, z ≥0;(2)⎰⎰+SdS y x )(22,其中S 为立体22y x +≤z ≤1的边界曲面;(3)⎰⎰+Syx dS 22,其中S 为柱面x 2+y 2=R 2被平面z=0, z=H 所截取的部分; (4)⎰⎰SxyzdS ,其中S 为平面x+y+z=1在第一卦限中的部分.解:(1)∵z=222yx a --, z x 2=22z x , z y 2=22z y , ∴221y x z z ++=222zx a a --. 又D={(x,y)|x 2+y 2≤a 2}. ∴⎰⎰++SdS z y x )(=()⎰⎰----++Ddxdyz x a y x a y x a 222222 =a ⎰⎰+-+πθθθ20220)1sin cos (rd r a r r dr a=2πa ⎰ardr 0=πa 3.(2)S=S 1+S 2, 其中S 1:z 1=22y x +, S 2:z 2=1.∵21⎪⎭⎫⎝⎛∂∂x z =222y x x +; 21⎪⎪⎭⎫ ⎝⎛∂∂y z =222y x y +; ∴21211⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =2. 又22221⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+y z x z =1, D={(x,y)|x 2+y 2≤1}; ∴⎰⎰+1)(22S dS y x =⎰⎰+Ddxdy y x )(222=⎰⎰103202dr r d πθ=22π; ⎰⎰+2)(22S dS y x =⎰⎰+Ddxdy y x )(22=⎰⎰1320dr r d πθ=2π; ∴⎰⎰+SdS y x )(22=⎰⎰+1)(22S dS y x +⎰⎰+2)(22S dS y x =)12(2+π.(3)⎰⎰+Sy x dS 22=⎰⎰SdS R 21=21R ·2πRH=RH π2. (4)z=1-x-y, z x =-1, z y =-1, ∴221y x z z ++=3.又D={(x,y)|x+y ≤1,0≤x ≤1}, ∴⎰⎰SxyzdS =⎰⎰--Ddxdy y x xy )1(3=⎰⎰---xdyy x xy dx 1010)1(3=⎰⎥⎦⎤⎢⎣⎡-+-10432612121613dx x x x x =1203.2、求均匀曲面:x 2+y 2+z 2=a 2, x ≥0,y ≥0,z ≥0的质心. 解:∵z=222yx a --, z x 2=2222y x a x --, z x 2=2222yx a y --,∴221y x z z ++=222y x a a--, 又曲面面积为21πa 2,D 为四分之一圆域x 2+y 2≤a 2在第一象限部分.∴x =⎰⎰SxdS a22π=dr r a ar d a a⎰⎰-022222cos 2θθππ=⎰20cos 2πθθd a =2a ;y =⎰⎰SydS a 22π=dr r a ar d a a⎰⎰-022222sin 2θθππ=⎰20sin 2πθθd a =2a;z =⎰⎰SzdS a22π=dr ar d a a⎰⎰222πθπ=2a . ∴曲面的质心为(2a ,2a ,2a ).3、求密度为ρ的均匀球面x 2+y 2+z 2=a 2 (z ≥0)对于z 轴的转动惯量. 解:J z =⎰⎰SdS z ρ2=ρdr r a ar d a⎰⎰-02220πθ=34πa 4ρ.4、计算.⎰⎰SdS z2, 其中S 为圆锥表面的一部分S :⎪⎩⎪⎨⎧===θθϕθϕcos sin sin sin cos r z r y r x , (r,φ)∈D :⎩⎨⎧≤≤≤≤πϕ200a r ,θ为常数(0<θ<2π). 解:E=x r 2+y r 2+z r 2=cos 2φsin 2θ+sin 2φsin 2θ+cos 2θ=1; G=x φ2+y φ2+z φ2=r 2sin 2φsin 2θ+r 2cos 2φsin 2θ=r 2sin 2θ; F=x r x φ+y r y φ +z r z φ=-rsin φcos φsin θ+rsin φcos φsin θ=0; ∴⎰⎰S dS z 2=⎰⎰⋅Ddrd r r ϕθθsin cos 22=sin θcos 2θdr r d a⎰⎰0320πϕ=24a πsin θcos 2θ.。

1 第一型曲线积分 (1)

1 第一型曲线积分  (1)

每一小段 i 的质量可近似地等于f ( Pi ) i , 其中 i
为小曲线段 i 的长度. 于是在整个 上的质量就近似地等于和式
f ( P ) .
i 1 i i
n
(3) 当对 的分割越来越细密(即 d max i 0 )
1i n
时, 上述和式的极限就应是该物体的质量.
注2: 当曲线 L 由方程 y ( x ), x [a , b] 表示, 且 ( x ) 在
[a , b] 上有连续的导函数时, (1)式成为

L
f ( x, y )ds f ( x, ( x )) 1 2 ( x )dx;
a
b
注3: 当曲线 L由方程 x ( y ), y [c , d ] 表示, 且 ( y )在
(0 π ) 4
π 4 r cos
L1 : r a cos 2
利用对称性 , 得
O
x
4 4
π 0 4 a 2 cos
0
r 2 ( ) r 2 ( ) d
d
x2 y2 练习. 已知椭圆 L : 1 周长为a , 求 y 4 3 2 2 3 ( 2 xy 3 x 4 y ) d s
t 0
因为复合函数 f ( ( t ), ( t )) 关于 t 连续, 所以在闭区 间 [ , ]上有界, 即存在常数 M , 使对一切 t [ , ] 都有
| f ( ( t ), ( t )) | M .
再由 2 ( t ) 2 ( t ) 在 [ , ] 上连续, 所以它在

L
f ( x , y , z )ds .
如果 L 是闭曲线 , 则记为

西工大—高数答案—曲线积分与曲面积分

西工大—高数答案—曲线积分与曲面积分

第十章 曲线积分与曲面积分第一节 第一类曲线积分1.设xOy 平面内有一分布着质量的曲线弧L ,在点(,)x y 处它的线密度为(,)x y ρ,用对弧长的曲线积分表示:(1)这曲线弧L 的长度_______S =; (2)这曲线弧L 的质量_______M =;(3)这曲线弧L 的重心坐标:___x =;___y =;(4)这曲线弧L 对x 轴,y 轴及原点的转动惯量____x I =;____y I =;0____I =. 解 (1)d LS s =⎰;(2)(,)d LM x y s μ=⎰;(3)(,)d (,)d L Lx x y s x x y s μμ=⎰⎰, (,)d (,)d LLy x y s y x y sμμ=⎰⎰, (4)2(,)d x LI y x y s μ=⎰, 2(,)d y LI x x y s μ=⎰, 220()(,)d LI x y x y s μ=+⎰2.(1)设L 为椭圆22143x y +=,其周长为a ,求⎰+L s y x d )43(22. (2)设L 为圆周2264x y +=,求⎰+Ls y x d 22.解 (1)L :22143x y +=,即223412x y +=, 从而⎰+Ls y xd )43(22=⎰Ls d 12=⎰Ls d 12=12a .(2)L :2264x y +=, 从而⎰+Ls y x d 22=⎰Ls 8d =⎰Ls d 8=8π28⋅⋅=128π.3.计算22()d Lx y s +⎰,其中L 是以(0,0),(2,0),(0,1)为顶点的三角形. 解 如图所示,1L :0y =,x 从02→,2L :0x =,y 从01→, 3L :22x y =-,y 从01→,图d s y y ==. 从而22()d Lxy s +⎰=122()d L x y s +⎰+222()d L x y s +⎰+322()d L x y s +⎰=21122220d d [(22)]d x x y y y y y +-+⎰⎰=12081(485)d 33y y y +-+=3+4.计算s ⎰,其中L 为曲线222x y x +=.解1 L 的参数方程为 L :1cos ,sin ,x y θθ=+⎧⎨=⎩02πθ≤≤. 计算出d d s θ=,于是s ⎰=20θ⎰=2π02cos d 2θθ⎰2u θ=π4cos d u u ⎰=π208cos d u u ⎰=8.解2 在极坐标系下,L :2cos ,r θ= ππ22θ-≤≤.计算出d s θ==2d θ,于是s ⎰=222cos 2d ππθθ-⋅⎰=208cos d πθθ⎰=8.5.求空间曲线e cos tx t -=,e sin ty t -=,e (0)tz t -=<<+∞的弧长.解 d s t =td tt -,从而 0e d t s t +∞-==.6.有一铁丝成半圆形cos x a t =,sin y a t =,0t π≤≤,其上每一点处的密度等于该点的纵坐标,求铁丝的质量.解 d s t =t =d a t . d L m s ρ=⎰=d L y s ⎰=πsin d a t a t ⋅⎰=π2sin d a t t ⎰=22a . 7.计算22()d Lx y z s +-⎰,其中L 为球面222x y z a ++=与平面0x y z ++=的交线.解 由于222x y z a ++=与0x y z ++=对x ,y ,z 都具有轮换对称性,故 2d Lx s ⎰=2d Ly s ⎰=2d Lz s ⎰,d Lx s ⎰=d Ly s ⎰=d Lz s ⎰.于是2d L x s ⎰=2221(d d d )3LL L x s y s z s ++⎰⎰⎰ =2221()d 3Lx y z s ++⎰=2d 3L a s ⎰=22π3a a ⋅=32π3a . 其中d Ls ⎰为圆周2222x y z a x y z ⎧++=⎨++=⎩的周长,显然平面0x y z ++=过球面2222x y z a ++=的球心(0,0,0)O ,所以L 为该球面上的大圆,即半径为a ,故周长为2a π.又因为()d Ly z s -⎰=d d LLy s z s -⎰⎰=0,所以22()d Lx y z s +-⎰=32π3a .第二节 第二类曲线积分1.计算⎰+--+Lyx y y x x y x 22d )(d )(,其中L 为圆周222x y a +=(按逆时针方向绕行). 解 L :cos ,sin x a t y a t ==,t 由0到2π, 从而I =⎰+--+L y x yy x x y x 22d )(d )(=20[(cos sin )(sin )(cos sin )cos ]d t t t t t t t π+---⎰=20d t π-⎰=2π-.2.计算22()d Lx y x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧.解 I =22()d Lx y x -⎰=2240()d x x x -⎰=5615-. 3.计算(2)d d La y x x y -+⎰,其中L 为摆线(sin )x a t t =-,(1cos )y a t =-图上对应t 从0到π2的一段弧(图). 解 I =(2)d d La y x x y -+⎰=20{[2(1cos )](1cos )(sin )sin }d a a t a t a t t a t t π---+-⎰=22sin d a t t t π⎰=22πa -.4.计算22[1()sin ]d [()sin ]d Lxy y x x x xy y y ++++⎰,其中L 为上半椭圆221(0)x xy y y ++=≥,从点(1,0)-到点(1,0)的一段弧.解 由221x xy y ++=可得221xy y x +=-,221x xy y +=-,代入积分式,得22[1()sin ]d [()sin ]d Lxy y x x x xy y y ++++⎰=22[1(1)sin ]d (1)sin d Lx x x y y y +-+-⎰=10221[1(1)sin ]d (1)sin d x x x y y y -+-+-⎰⎰=2.5.计算222d d d x x y y z z Γ++⎰,其中Γ是从点(1,1,1)到点(2,3,4)的直线段.解 Γ的点向式方程为:111123x y z ---==,从而Γ得参数方程为 1x t =+,12y t =+,13z t =+,t 由0到1.I =12220[(1)2(12)3(13)]d t t t t +++++⎰=111333000111(1)(12)(13)333t t t +++++=32.6.计算⎰Γ+-z y y x d d d ,其中Γ为有向闭折线ABCA ,这里的A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1).解 如图,AB :1x y =-,0z =,y 由0到1.d d d ABx y y z -+⎰=12d y -⎰=2-;BC :1y z =-,0x =,z 由0到1;d d d BC x y y z -+⎰=1(2)d z z -⎰=32; CA :1z x =-,0y =,x 由0到1;图d d d CAx y y z -+⎰=1d x ⎰=1,故 I =()d d d AB BC CAx y y z ++-+⎰⎰⎰=3212-++=12. 7.有一质量为m 的质点,除受重力的作用外,还受到一个大小等于该质点到原点的距离,方向指向原点的力f 的作用,设该质点沿螺旋线:cos L x t =,sin y t =,z t =从点π(0,1,)2A 移动到点(1,0,0)B 移动到点,求重力与力f 的合力所作的功.解 依据题意,力f =x y z ---i j k ,故质点所受的合力 ()mg x y z mg =-=---+F f k i j k 在螺旋线L 上,起点A 对应于π2t =,终点B 对应于0t =,即π:02t →. 因此,力F 所作的功 d d ()d LW x x y y z mg z =---+⎰=0π2[cos (sin )sin cos ()]d t t t t t mg t ----+⎰=π20()d t mg t +⎰=2ππ82mg +.第三节 格林公式1.设xOy 平面上闭曲线L 所围成的闭区域为D ,将给定的二重积分与其相应的曲线积分用线连接起来. (1)d d Dx y ⎰⎰ (a) ⎰-Lx y y x d d(2) 2d d D x y ⎰⎰ (b)⎰-L y x x x d d 21(3)d d Dx y -⎰⎰ (c)⎰-Lx y y x d d 212.利用曲线积分计算星形线3cos x a t =,3sin y a t=所围成图形的面积.解 如图,因为33cos sin x a tx a t⎧=⎨=⎩ t 由0到2π. 从而图S =d Dσ⎰⎰=⎰-Lx y y x d d 21=2π32321[cos 3sin cos sin (3cos sin )]d 2a t a t t a t a t t t ⋅--⎰ =2π22203sin cos d 2a t t t ⎰=2π2203sin 2d 8a t t ⎰=2π231cos 4d 82t a t -⎰=23π8a .3.证明2322(6)d (63)d Lxyy x x y xy y -+-⎰只与L 的起始点有关,而与所取路径无关,并计算积分(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰.解 236P xy y =-,2263Q x y xy =-,2123P Qxy y y x∂∂=-=∂∂,所以积分与路径无关, 故(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰=34212(248)d (549)d x x y y y -+-⎰⎰=2323412[128][273]x x y y -+-=80156236+=. 或者 (3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰ =(3,4)2232(1,2)(6d 6d )(d 3d )xy x x y y y x xy y +-+⎰=(3,4)223(1,2)d(3)x y xy -⎰=223(3,4)(1,2)[3]x y xy -=236. 4.计算e (1cos )d e (sin )d x xLI y x y y y =-+-⎰,其中L 为从(0,0)O 到(,0)A π的正弦曲线sin y x =. 解 如图所示,由格林公式 I =e (1cos )d e (sin )d x x Ly x y y y -+-⎰=y y y x y x x AO AOL d )(sin e d )cos 1(e )(-+--⎰⎰+=(e )d d 0xDy x y ---⎰⎰=πsin 0e d d x x x y y ⎰⎰=π201e sin d 2x x x ⎰=π01e (1cos 2)d 4xx x -⎰图=ππ0011e d e cos 2d 44x x x x x -⎰⎰=ππ11(e 1)(e 1)420---=π1(e 1)5-.其中π0e cos 2d x x x ⎰=πcos 2de x x ⎰=ππe cos 2|e dcos 2xx x x -⎰=π0e 12sin 2d x e x x π-+⎰=ππe 12sin 2de x x -+⎰=πππ0e 12e sin 2|2e dsin 2xx x x -+-⎰=ππ0e 14e cos2d x x x --⎰.移项解之,得ππ01e cos 2d (e 1)5x x x =-⎰.注意 本题易犯两个错误: (1)I =y y y x y x x AO AOL d )(sin e d )cos 1(e )(-+--⎰⎰+=(e )d d x Dy x y -⎰⎰.产生错误的原因是,没有注意格林公式使用时的条件:⎰⎰⎰+=∂∂-∂∂DL y Q x P y x yPx Q d d d d )(,其中C 是D 的取正向的边界曲线.而本题的闭曲线L AO +是D 的取负向的边界曲线,所以二重积分()d d DQ Px y x y∂∂-∂∂⎰⎰前面必须添加负号. (2)计算定积分π0e cos 2d x x x ⎰是连续两次使用部分积分法后移项解出来的.对此积分有些同学束手无策,有些则在连续使用分布积分法d d u v uv v u =-⎰⎰时,每次选取函数()u x ,不注意必须是同类函数(如选三角函数作为()u x 就一直选三角函数,如选e x 作为()u x 就一直选e x ),结果就出现了恒等式d d u v u v =⎰⎰,即前进一步又倒退一步,致使积不出来.5. 已知()x ϕ'连续,且(0)(1)0ϕϕ==,(0,0)A ,(1,1)B ,计算⎰-'+-=AMBx x y y x y y I d ]1e )([d ]e )([ϕϕ其中AMB 是以AB 线段为直径的上半圆周.解 如图所示⎰-'+-=AMBx x y y x y y I d ]1e )([d ]e )([ϕϕ=⎰⎰+-'+--BAAMB BA x x y y x y y d ]1e )([d ]e )(][[ϕϕ=d d [()e ]d [()e 1]d x xABDx y y y x y y ϕϕ'-+-+-⎰⎰⎰ =10π[(()())e (1)]d 4x x x x x ϕϕ'-++-+⎰ =111000π()e d ()e d (1)d 4x x x x x x x x ϕϕ'-++-+⎰⎰⎰ =1100π3()e d e d ()42x xx x x ϕϕ-++-⎰⎰=111000π3()e d e ()|()e d 42x x xx x x x x ϕϕϕ--++-⎰⎰=π342--=π3()42-+. 本题需注意两点:(1)同上题一样,使用格林公式时要注意边界曲线的方向,本题因是负向,故二重积分前必须添上负号;(2)因()x ϕ是抽象函数,不可能直接将11()e d ()e d xx x x x x ϕϕ'+⎰⎰积出来,请不要先急于积分,先用分布积分法将10()e d x x x ϕ'⎰表示为11100e d ()e ()|()e d x x xx x x x ϕϕϕ=-⎰⎰,则两项抽象函数的定积分就抵消了,问题就可得到解决,因此在解题过程中一定要善于思考,从中 发现解题技巧.6.证明22()d ()d x y x x y yx y -+++在右半平面(0)x >内为某一函数(,)u x y 的全微分,并求出一个这样的函数(,)u x y .解 22x y P x y -=+,22x yQ x y +=+,由于222222()P y xy x Q y x y x ∂--∂==∂+∂,所以 22()d ()d x y x x y yx y -+++为某一函数(,)u x y 的全微分.取定点0(1,0)M ,对于右半平面上任一点(,)M x y ,令 (,)u x y =(,)22(1,0)()d ()d x y x y x x y yx y -+++⎰=222100d d 0x y x x y x y x x y -++++⎰⎰ =22221001d d d xy y x yx y y xx y x y ++++⎰⎰⎰ 图=221ln arctan ln()ln 2y x x y x x +++- =221arctanln()2y x y x ++. 7.已知曲线积分⎰-++Ly x x x y d )9(d )1(33,其中L 为圆周222()x a y a -+= (0)a >,取逆时针方向,求a 的值,使得对应曲线积分的值最大.解 显然31P y =+,39Q x x =-在区域:D 222()x a y a -+≤内有一阶连续的偏导数,由格林公式()I a =⎰+Ly Q x P d d =()d d DQ Px y x y ∂∂-∂∂⎰⎰=22(933)d d Dx y x y --⎰⎰ =229d d 3()d d DDx y x y x y -+⎰⎰⎰⎰=2cos 232029π3d d a a r r πθπθ--⎰⎰=244229π34cos d a a ππθθ--⎰=2442924cos d a aππθθ-⎰=2431π9π24422a a -⋅⋅⋅=2499ππ2a a -. 2()18π(1)I a a a '=-,令()0I a '=,解得1a =(依题意设0a >,故将0a =和1a =-舍去),因为1a =是()I a 在(0,)+∞内唯一的驻点,且()18π54πI a ''=-=36π0-<,故()I a 在1a =处取得最大值,因此1a =,即当积分路径为22(1)1x y -+=时,对应曲线积分 的值最大.8.求⎰+---Ly x yx x y 22)1(d )1(d ,其中(1)L 为圆周2220x y y +-=的正向;(2)L 为椭圆22480x y x +-=的正向.解 令22(,)(1)y P x y x y =-+,22(1)(,)(1)x Q x y x y--=-+,则当22(1)0x y -+≠时,有22222(1)[(1)]Q x y Px x y y∂--∂==∂-+∂, 记L 所围成的闭区域为D , (1)L:2220x y y +-=,即22(1)1x y +-=,此时(1,0)D ∉,(如图(a)所示). 由于Q Px y∂∂=∂∂,由格林公式, 0)1(d )1(d 22=+---⎰L y x y x x y . (2)L :22480x y x +-=,即22(1)14y x -+=,此时(1,0)D ∈,以(1,0)为圆心,以充分小的0ε>为半径作圆周1cos :sin x C y εθεθ-=⎧⎨=⎩,θ由0到2π,取逆时针方向(如图(b)所示).记L 和C 所围成的闭区域为1D ,对复连通区域1D 应用格林公式,得 0)1(d )1(d 22=+---⎰-+C L yx yx x y , 从而I =⎰+---Ly x y x x y 22)1(d )1(d =⎰+---C yx yx x y 22)1(d )1(d =2π2sin (sin )cos cos d εθεθεθεθθε--⋅⎰=2π0d θ-⎰=2π-.注意 (2)中由于点(1,0)位于L 所围成的闭区域D 内,需用复连通域上的格林公式,以避开(1,0)点,考虑到被积函数的分母为22(1)x y -+,故取圆周1cos :sin x C y εθεθ-=⎧⎨=⎩,有同学不考虑“洞”,即点(1,0),直接用格林公式,得到0)1(d )1(d 22=+---⎰Lyx yx x y 是错误的. 9.求[esin ()]d (e cos )d xx LI y b x y x y ax y =-++-⎰,其中a 、b 为正常数,L 为从点(2,0)A a 沿曲线22y ax x =-到点(0,0)O 的弧.解 添加从点(0,0)O 沿0y =到点(2,0)A a 的有向直线段1L ,则⎰⎰-++---++-=+11d )cose (d )](sin e [d )cos e (d )](sin e [L x x L L x x yax y x y x b y y ax y x y x b y I 图 (a)图 (b)=20[(ecos )(e cos )]d d d a xxD y a y b x y bx x -----⎰⎰⎰=20()d d d a Db a x y b x -+⎰⎰⎰=22π()(2)22bb a a a -+=23ππ(2)22a b a +-.第四节 第一类曲面积分1.设有一分布着质量的曲面∑,在点(,,)x y z 处它的面密度为(,,)x y z ρ.用曲面积分表示:(1)这曲面∑的面积A =______; (2)这曲面∑的质量M =______;(3)这曲面∑的重心坐标为x =______,y =______,z =______; (4)这曲面∑对于x 轴,y 轴,z 轴及原点的转动惯量x I =__,y I =__,z I =______,0I =______.解 (1)A =d S ∑⎰⎰.(2)M =(,,)d x y z S μ∑⎰⎰.(3)x =(,,)d (,,)d x x y z Sx y z Sμμ∑∑⎰⎰⎰⎰,y =(,,)d (,,)d y x y z Sx y z Sμμ∑∑⎰⎰⎰⎰,z =(,,)d (,,)d z x y z Sx y z Sμμ∑∑⎰⎰⎰⎰.(4)x I =22()(,,)d yz x y z S μ∑+⎰⎰, y I =22()(,,)d x z x y z S μ∑+⎰⎰,z I =22()(,,)d x y x y z S μ∑+⎰⎰, 0I =222()(,,)d x y z x y z S μ∑++⎰⎰. 2.计算4(2)d 3z x y S ∑++⎰⎰,其中∑为平面1234x y z++=在第一卦限中的部分. 解 如图所示,∑:1234x y z ++=,2zx ∂=-∂,43z y ∂=-∂,d d S x y =d x y ,在积分曲面上,被积函数423z x y ++=4()4234x y z++=, 303:202xy y x D x ⎧≤≤-⎪⎨⎪≤≤⎩,从而4(2)d 3z x y S ∑++⎰⎰=614d d xyD x y ⋅⎰⎰ =461d d 3xy D x y ⎰⎰=46133⋅=461. 3.计算⎰⎰∑+S y xd )(22,其中∑是锥面22z x y =+及平面1z =所围成的区域的整个边界曲面. 解 如图所示,1∑:22z x y =+,22zxx y∂=∂+,22z yx y∂=∂+,22d 1()()d d z z S x y x y∂∂=++∂∂=2d d x y ,22:1xy D x y +≤. 2∑:1z =,d d d S x y =,22:1xy D x y +≤,⎰⎰∑+S y x d )(22=122222()d ()d x y S x y S ∑∑+++⎰⎰⎰⎰ =2π12π1220d ρ2ρd ρd ρρd ρθθ+⎰⎰⎰⎰=11330022πρd ρ2πρd ρ+⎰⎰=π(21)2+. 4.计算I =()d xy yz zx S ∑++⎰⎰,其中∑为锥面22z x y =+被柱面222x y ax +=所截成的部分(0)a >.解 因为积分曲面∑关于zOx 坐标面(即0y =平面)对称,xy yz +()y x z =+是关于y 的奇函数,所以 I =()d d y x z S zx S ∑∑++⎰⎰⎰⎰=0d zx S ∑+⎰⎰此外,在∑上,22z x y =+,d 2d d S x y =,且∑在xOy 面上的投影为x图图22:2xy D x y ax +≤,因此I =d zx S ∑⎰⎰=22d x x y S ∑+⎰⎰=222d d xyD x x y x y +⎰⎰=π2cos 32π022d cos d a r r θθθ-⎰⎰=452082cos d aπθθ⎰=4428253a ⋅⋅=464215a . 5.计算d S ∑⎰⎰,其中∑为抛物面222()z x y =-+ 在xOy 面上方的部分.解 如图所示,222()z x y =-+,2zx x∂=-∂,2z y y ∂=-∂,22d 1()()d d z z S x y x y∂∂=++∂∂=22144d d x y x y ++, 22:2xy D x y +≤,d S ∑⎰⎰=22144d d xyD x y x y ++⎰⎰=2π220d 14ρρd ρθ+⎰⎰=12222012π(14ρ)d(14ρ)8++⋅⎰=2223π2(14ρ)|43⋅+=13π3. 6.计算()d x y z S ∑++⎰⎰,其中∑为球面2222x y z a ++=上(0)z h h a ≥<<的部分. 解 ∑在xOy 面上的投影为圆域:2222:xy D x y a h +≤-, d S =222222221()()d d x y x y a x ya x y--++----=222d d x y a x y --,故()d x y z S ∑++⎰⎰=222222()d d xyD x y a x y x y a x y++--⋅--⎰⎰由积分区域的对称性可得:222d d xyD x x y a x y⋅--⎰⎰=0,222d d xyD y x y a x y⋅--⎰⎰=0,图又积分区域xy D 的面积为22π()a h -,故()d x y z S ∑++⎰⎰=d d xyD a x y ⎰⎰=22π()a ah -.7.求柱面220x y ax +-=在球面2222x y z a ++=内部的部分的表面积(0)a >. 解 由对称性,所求面积A 为其位于第一卦限部分面积的4倍,即4d A S ∑=⎰⎰,其中曲面∑为y =求得面积元素d d S x z =d x z ,由22z x y ax⎧⎪=⎨+=⎪⎩,消去y ,得z =由此得∑在zOx 坐标面上的投影为::0xz D z ≤≤0x a ≤≤,因此,曲面∑的面积 4d A S ∑=⎰⎰=4d xzD x z ⎰⎰=02d a ax ⎰⎰=02a ax ⎰=02a ax ⎰=24a . 8.设S 为椭球面222122x y z ++=的上半部分,点(,,)P x y z S ∈,π为S 在点P 处的切平面,(,,)f x y z 为点(0,0,0)O 到平面π的距离,求d (,,)SzS f x y z ⎰⎰解 设(,,)X Y Z 为π上任意一点,则π的方程为122xX yY zZ ++=,从而知 (,,)f x y z =12222()44x y z -++,由z =有z x ∂∂,z y∂∂d Sd x yd x y ,从而d (,,)Sz S f x y z ⎰⎰=221(4)d d 4Dx y x y --⎰⎰=2π201d ρ)ρd ρ4θ-⎰⎰=3π2.第五节 第二类曲面积分1.当∑是xOy 面内的一个闭区域D 时,(,,)d f x y z S ∑⎰⎰与二重积分的关系为(1)(,,)d f x y z S ∑⎰⎰=____d d D x y ⎰⎰,(2)(,,)d R x y z S ∑⎰⎰=____d d Dx y ⎰⎰.解 (1)(,,0)f x y , (2)(,,0)R x y ±.注意 因第一类曲面积分与所给曲面的侧无关,所以(1)中应填(,,0)f x y ;而第二类曲面积分与曲面的侧有关,所以(2)中应填(,,0)R x y ±,有个别同学常疏忽这一点,只填(,,0)R x y ,这是不对的.2.计算222d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为半球面z =. 解 记1∑:x =取前侧,2∑:x =,1∑与2∑在yoz 面的投影区域相同,记为yz D .2d d x y z ∑⎰⎰=12d d x y z ∑⎰⎰+22d d x y z ∑⎰⎰ =222222()d d ()d d yzyzD D ay z y z a y z y z -----⎰⎰⎰⎰=0.同理2d d y z x ∑⎰⎰=0, 而 2d d z x y ∑⎰⎰=222222()d d x y a a x y x y +≤--⎰⎰=2220d (ρ)ρd ρaa πθ-⎰⎰=4π2a . 从而I =222d d d d d d x y z y z x z x y ∑++⎰⎰=2d d x y z ∑⎰⎰+2d d y z x ∑⎰⎰+2d d z x y ∑⎰⎰=0+0+4π2a =4π2a .注意 常见的错误是:2d d x y z ∑⎰⎰=12d d x y z ∑⎰⎰+22d d x y z ∑⎰⎰=2222()d d yzD a y z y z --⎰⎰ 或2d d y z x ∑⎰⎰=2222()d d zxD ax z z x --⎰⎰.产生错误的原因是忽视了将第二类曲面积分化为二重积分时,应根据积分曲面的侧选择二重积分前的正、负号.(,,)d d f x y z x y ∑⎰⎰=[,,(,)]d d xyD f x y z x y x y ±⎰⎰,(,,)d d g x y z y z ∑⎰⎰=[(,),,]d d yzD g x y z y z y z ±⎰⎰,(,,)d d R x y z z x ∑⎰⎰=[,(,),]d d zxD R x y z x z z x ±⎰⎰.将第二类曲面积分化为二重积分时,究竟什么时候二重积分前面写正号,什么时候写负号,这与所给曲面的侧有关.切记:上侧取正,下侧取负; 前侧取正,后侧取负; 右侧取正,左侧取负;3.计算⎰⎰∑y x xz d d ,其中∑是平面0x =,0y =,0z =,1x y z ++=所围成的空间区域的整个边界曲面的外侧.解 如图所示,1234∑=∑+∑+∑+∑,其中1234,,,∑∑∑∑各自对应于四面体的一个表面,可表示为1∑:0z = 下侧; 2∑:0y = 左侧;3∑:0x = 后侧; 4∑:1x y z ++= 上侧.由于1∑在0z =平面上,故在1∑上的曲面积分为0; 同理,在2∑,3∑上的曲面积分也都为0,所以,所求积分⎰⎰∑y x xz d d =4d d xz x y ∑⎰⎰由4∑得方程得1z x y =--,4∑在xoy 面上的投影域为:01xy D y x ≤≤-,01x ≤≤, 于是⎰⎰∑y x xz d d =4d d xz x y ∑⎰⎰=4(1)d d x x y x y ∑--⎰⎰=(1)d d xyD x x y x y --⎰⎰=110d (1)d x x x x y y ---⎰⎰=124. 4.计算d d d d d d x y z y z x z x y ∑++⎰⎰,其中∑为球面2222x y z R ++=的外侧. 解 由题设,∑的单位法向量 n =(cos ,cos ,cos )αβγ,2,2)x y z =1(,,)x y z R. 由两类曲面积分的关系,可得d d d d d d x y z y z x z x y ∑++⎰⎰=(cos cos cos )d x y z S αβγ∑++⎰⎰=2221()d x y z S R ∑++⎰⎰=21d R S R ∑⎰⎰ =d RS ∑⎰⎰几何意义24πR R⋅=34πR .5.计算I =y x z h x z y g z y x f d d )(d d )(d )d (++⎰⎰∑,其中,,f g h 为连续函数,∑为平行六面体:0,0,0x a y b z c Ω≤≤≤≤≤≤表面的外侧. 解⎰⎰∑y x z h d d )(=()d d (0)d d xyxyD D h c x y h x y -⎰⎰⎰⎰=[()(0)]ab h c h -,⎰⎰∑x z y g d d )(=()d d (0)d d xzxzD D g b z x g z x -⎰⎰⎰⎰=[()(0)]ac g b g -,⎰⎰∑z y x f d d )(=()d d (0)d d yzyzD D f a y z f y z -⎰⎰⎰⎰=[()(0)]bc f a f -,从而 I =()(0)()(0)()(0)[]f a f g b g h c h abc a b c---++.注意 本题易犯的错误是利用高斯公式来解,题目中仅告诉我们,,,f g h 为连续函数,又如何对,,f g h 求导呢6.计算[(,,)]d d [2(,,)]d d [(,,)]d d f x y z x y z f x y z y z x f x y z z x y ∑+++++⎰⎰,其中(,,)f x y z 为连续函数,∑是平面1x y z -+=在第四卦限部分的上侧.解 平面1x y z -+=的法线向量为n ={1,1,1}-,方向余弦为cos α=,cos β=cos γ=, 则 I =[(,,)]d d [2(,,)]d d [(,,)]d d f x y z x y z f x y z y z x f x y z z x y ∑+++++⎰⎰=[()cos (2)cos ()cos ]d f x f y f z S αβγ∑+++++⎰⎰=[((2)((f x f y f z S ∑+++++⎰⎰()d x y z S ∑-+=1d 3S ∑⎰⎰d xy x y ⎰⎰d xy x y ⎰⎰=d d xyD x y ⎰⎰=12.第六节 高斯公式 通量与散度1.设计y x xy z x z zx y z y yz x d d )(d d )(d )d (222-+-+-⎰⎰∑,其中∑为平面 0x =,0,0,,,y z x a y a z a =====所围成的立体的表面的外侧. 解 由高斯公式, I =y x xy z x z zx y z y yz xd d )(d d )(d )d (222-+-+-⎰⎰∑=(222)d x y z v Ω++⎰⎰⎰=2()d x y z v Ω++⎰⎰⎰设该正方体的形心坐标为(,,)x y z ,则2ax y z ===, 而 d d d x v x vx vvΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,d y vy vΩ=⎰⎰⎰,d z vz vΩ=⎰⎰⎰,所以d ,x v xv Ω=⎰⎰⎰ d ,y v yv Ω=⎰⎰⎰ d ,z v zv Ω=⎰⎰⎰.从而 I =2()x y z v ++=31112()222a a a a ++=43a . 本题巧妙地利用了重心坐标公式,将利用高斯公式后得到的三重积分()d x y z vΩ++⎰⎰⎰的计算转化为计算()x y z v ++,从而使问题得到解决.2.计算24d d d d 2d d xz y z y z x yz x y ∑-+⎰⎰,其中∑是球面2222x y z a ++=外侧的上半部分(0)a >.解 补充平面2221:0()z x y a ∑=+≤取下侧,I =y x yz x z y z y xz d d 2d d d d 4)(211+--⎰⎰⎰⎰∑+∑∑=(422)d 0z y y v Ω-+-⎰⎰⎰=4d z v Ω⎰⎰⎰=2π04d ρd ρd az θ⎰⎰⎰=22ρρ8πρd ρ2aa -⋅⎰=4πa . 注意 易犯的错误是 (1)I =24d d d d 2d d xz y z y z x yz x y ∑-+⎰⎰=(422)d z y y v Ω-+⎰⎰⎰=4zdv Ω⎰⎰⎰=…产生错误的原因是,没有注意到∑仅是球面的上半部分,∑并非封闭曲面,不能直接用高斯公式.尽管本题中沿曲面1∑的积分:124d d d d 2d d 0xz y z y z x yz x y ∑-+=⎰⎰,致使题目答案未受任何影响,但对不封闭的曲面直接用高斯公式,显然是不对的.(2)有同学在补充平面2221:0()z x y a ∑=+≤时,不写取什么侧,这也不妥.3.计算y x z x z y x f x z y )y x f(y d d d d )(1d d 1++⎰⎰∑,其中()f u 具有一阶连续导数,∑为柱面222()()()2ax a y a -+-=及平面0,1(0)z z a ==>所围成立体的表面外侧.解 利用高斯公式,有I =y x z x z yxf x z y )y x f(y d d d d )(1d d 1++⎰⎰∑=2211[()()1]d x xf f v y y y y Ω''-+⎰⎰⎰=d v Ω⎰⎰⎰ =2π()12a ⋅⋅=2π4a . 4.计算y x z x z y z y x d d d d d d 333++⎰⎰∑,其中∑为球面2222x y z a ++=的内侧.解y x z x z y z y x d d d d d d 333++⎰⎰∑=2223()d xy z v Ω-++⎰⎰⎰=2ππ403d sin d ρd ρaθϕϕ-⎰⎰⎰=512π5a -. 注意 易犯的错误是y x z x z y z y x d d d d d d 333++⎰⎰∑=2223()d x y z v Ω++⎰⎰⎰ =23d a v Ω⎰⎰⎰=2343π3a a ⋅=54πa . 这里有两个错误:(1) 不注意高斯公式使用的条件:∑应是空间闭区域Ω的整个边界曲面的外侧. 本题所 给的闭曲面是球面的内侧. 因此在将闭曲面上的曲面积分y x z x z y z y x d d d d d d 333++⎰⎰∑化成三重积分2223()xy z dv Ω++⎰⎰⎰时,前面必须写上负号.(2) 将曲面积分与三重积分的计算法混为一谈. 计算三重积分222()d x y z v Ω++⎰⎰⎰时, 因为Ω为球体:2222x y z a ++≤,因此不能将三重积分中的被积函数222x y z ++用2a 代入,这种做法是常犯的错误. 只有计算曲面积分时,才能将曲面方程代入被积函数.5.计算322d d 2d d 3d d I x y z xz z x y z x y ∑=++⎰⎰,其中积分曲面∑为抛物面 z =22(01)x y z +≤≤的上侧.解 令221:1(1)z x y ∑=+≤,取下侧,则1∑+∑构成封闭曲面,取内侧. 于是y x y x z xz z y x d zd 3d d 2d d 2231++⎰⎰∑+∑=()d P Q Rv x y zΩ∂∂∂-++∂∂∂⎰⎰⎰ =223()d d d xy x y z Ω-+⎰⎰⎰=221223d d ()d xyx yD x y x y z +-+⎰⎰⎰=22π112003d d d r r r r z θ-⎰⎰⎰=13206π(1)d r r r --⎰=π2-.由于1∑在平面1z =上,1∑在,zOx yOz 坐标面上的投影为直线段,故d d z x =d d y z =0,1∑在xOy 坐标面上的投影域为22:1xy D x y +≤,于是322d d 2d d 3d d x y z xz z x y z x y ∑++⎰⎰=123d d y x y ∑⎰⎰=23d d xyD y x y -⎰⎰=212203d ρρsin d ρπθθ-⋅⎰⎰=212303sin d ρd ρπθθ-⎰⎰=3π4-. 所以11322322d d 2d d 3d d d d 2d d 3d d I x y z xz z x y z x y x y z xz z x y z x y ∑+∑∑=++-++⎰⎰⎰⎰=π3π()24---=π4. 6.计算⎰⎰∑++S z y x d )cos cos cos (222γβα,其中∑是由222x y z +=及z h = (0)h >所围成的闭曲面的外侧,cos ,cos ,cos αβγ是此曲面的外法线的方向余弦.解 ∑在xOy 平面上的投影区域为:222x y h +≤. I =⎰⎰∑++S z y x d )cos cos cos (222γβα =⎰⎰∑++y x z x z y z y x d d d d d d 222=(222)d x y z v Ω++⎰⎰⎰=2d d )d xyh D x y x y z z ++⎰⎰=2()d d 2d d d xyxyh h D D x y x y z x y z ++⎰⎰⎰⎰=222()2()(d 2d d 2xy xyD D h x y x y h x y x y -+++⎰⎰⎰⎰=2π2π22202(cos sin )d (ρ)ρd ρd (ρ)ρd ρh hh h θθθθ+-+-⎰⎰⎰⎰=23002π(ρρ)d ρhh +-⎰=442π[]24h h -=4π2h .7.已知向量场22xz x y y z =i +j +k A ,求A 的散度以及A 穿过∑流向∑指定侧的通量,其中∑为2222,1z x y x y =++=以及三个坐标面在第一卦限所围立体全表面的外侧. 解 令22,,P xz Q x y R y z ===,则A 的散度 22div P Q RA z x y x y z∂∂∂=++=++∂∂∂. 通量⎰⎰∑⋅=ΦS d n A =div d v Ω⎰⎰⎰A =22()d z x y v Ω++⎰⎰⎰=22220d d ()d xyx y D x y z x y z +++⎰⎰⎰22(:1,0,0)xy D x y x y +≤≥≥=2223()d d 2xyD x y x y +⎰⎰=142003d d 2r r r πθ⋅⎰⎰=π31226⋅⋅=π8.第七节 斯托克斯公式 环量与旋度1.利用斯托克斯公式计算⎰Γ++z x y z x y d d d ,这里Γ为曲线2222x y z a x y z ⎧++=⎨++=⎩ 从x 轴正向看去,Γ为逆时针方向.解 平面0x y z ++=的上侧法线的方向余弦为cos cos cos αβγ===设∑为平面0x y z ++=上由圆周Γ所围成的面域,取上侧,相应的单位法向量. 于是⎰Γ++z x y z x y d d d =cos cos cos d S x y z yzxαβγ∑∂∂∂∂∂∂⎰⎰=(cos cos cos )d S αβγ∑-++⎰⎰=d S ∑=2a .2.求向量场(sin )(-cos )z y z x y +A =i -j 的旋度.解 rot sin cos 0x y z z y z x y∂∂∂∂∂∂+-+ij k A ==+i j .3.求平面向量场22()2x y xy -A =i +j 沿闭曲线L 的环流量,其中L 是0x =,,0,x a y y b ===所围成的正向回路. 解 环向量⎰+-Ly xy x y x d 2d )(22=4d d xyD y x y ⎰⎰=004d d a bx y y ⎰⎰=22ab .4.利用斯托克斯公式计算⎰Lz xyz d ,其中Γ是用平面y z =截球面22x y +21z +=所得的截痕,若逆z 轴正向看去,取逆时针的方向. 解 由斯托克斯公式⎰Lz xyz d =d d d d d d 00y z z x x yx y z xyz∂∂∂∂∂∂=d d d d xz y z yz z x ∑-⎰⎰, 其中∑是平面y z =上以圆Γ为边界的平面,其侧与Γ的正向符合右手规则.显然,∑在yoz 坐标面上的投影为一线段,所以d d 0xz y z ∑=⎰⎰.∑在xoz 坐标面上的投影为一椭圆域22:21D x z +≤,且∑的法向量与y 轴成钝角, 从而2d d d d Dyz z x z z x ∑-=⎰⎰⎰⎰=2d z z x ⎰⎰=π22204sin cos d zt t t ⎰π2420(sin sin )d t t t -1π31π2()22422⋅-⋅⋅π.第十章 曲线积分与曲面积分(总习题)1.填空.(1)设平面曲线L为下半圆周y =则曲线积分22()d Lx y s +⎰的值是π;(2)向量场22(,,)ln(1)zx y z xy ye x z =+++u i j k 在点(1,1,0)P 处的散度div 2=u . (3)设L 为取正向的圆周229x y +=,则曲线积分⎰-+-Ly x x x y xy d )4(d )22(2的值是18π-.解 (1)22()d L x y s +⎰=d L s ⎰=12π12⋅⋅=π.(2)div u =P Q R x y z ∂∂∂++∂∂∂=222e 1Z z y x z ++⋅+, 从而 2(1,1,0)22div |e |21zP xzy z =++=+u . (3)⎰-+-Ly x x x y xy d )4(d )22(2=(2422)d d D x x x y --+⎰⎰=2d d Dx y -⎰⎰=22π3-⋅⋅=18π-. 2.计算⎰++ABCDA y x yx d d ,ABCDA 是以点(1,0),(0,1),(1,0),(0,1)A B C D --位顶点的正方形正向边界. 解 法1 ⎰⎰+=++=ABCDA ABCDA y x y x yx I d d d d (00)d d 0Dx y =-=⎰⎰.此法是先将正方形的边界1x y +=代入被积函数后,再用格林公式求解. 法2 因 :1,AB x y += :1,BC y x -= :1,CD x y --=:1DA x y -=. 从而d d ()ABBCCDDAx yI x y+=++++⎰⎰⎰⎰=()d d ABBCCDDAx y ++++⎰⎰⎰⎰=01111(11)d (11)d (11)d (11)d x x x x ---+++-++⎰⎰⎰⎰=112d 2d x x -+⎰⎰=0.法2是分段分别计算,比较一下还是法1简便.但切记不可直接对⎰++ABCDA y x yx d d 用格林公式.请同学们动脑筋想一下,这是为什么3.计算⎰-+-+-=ABz xy z y zx y x yz x I d )(d )(d )(222,B A 为螺线cos x ϕ=,y =sin ϕ,z ϕ=由点(1,0,0)到点(1,0,2π)的弧段. 解 ⎰-+-+-=ABz xy z y zx y x yz x I d )(d )(d )(222=22220[(cos sin )(sin )(sin cos )cos (sin cos )]d πϕϕϕϕϕϕϕϕϕϕϕϕ--+-+-⎰=22222 22200000cos dcos cos2d sin dsin d sin dsin πππππϕϕϕϕϕϕϕϕϕϕϕ-++-⎰⎰⎰⎰⎰=33322π2π2π2π0000 cos sin sin|0||| 3332ϕϕϕϕ-++-=31000(2π)03-++-=38π3.4.设BA))为连接点(1,2)A与(2,3)B的某曲线弧,又设BA))与直线段AB所包围图形的面积等于k,计算曲线积分yxxxxyBAd)1(d2⎰-+)).(直线段AB与曲线弧BA))除点,A B外无其它交点,曲线弧BA))不与y轴相交,且自身不相交).解2(,)yP x yx=,1(,)Q x y xx=-,则221111Q Px y x x∂∂-=+-=∂∂,直线段:1BA y x=+,x由2到1,记BA))与BA所围成的闭区域为D,由于要用到格林公式,所以要分两种情况讨论:BA))取逆时针方向(如图(a))(1)yxxxxyIBAd)1(d2⎰-+=))=yxxxxyBAAB BAd)1(d)(2-+-⎰⎰+=21d d d()dBADyx y x x yx x-+-⎰⎰⎰=12211()dxk x xx x+-+-⎰=1221()dk x xx-+⎰=2k+.(2)BA))取顺时针方向(如图(b)所示).图y x x x x y I BA d )1(d 2⎰-+=))=y x x x x y BA AB BA d )1(d )(2-+-⎰⎰+ =21d d d ()d BA Dy x y x x y x x--+-⎰⎰⎰=1221()d k x x x --+⎰=2k -+.注意 常见错误是不讨论B A ))是取逆时针方向,还是取顺时针方向,就直接利用了格林公式,这是不对的.5.计算曲线积分⎰++-L y x y x x y 22d d .(1)L 是圆周22(1)(1)1x y -+-=的正向; (2)L 是曲线1x y +=的正向.解 22(,)y P x y x y -=+, 22(,)x Q x y x y=+,当220x y +≠时, 22222()P y x Qy x y x∂-∂==∂+∂, 记曲线L 所围成的闭区域为D .(1) 如图(a )所示,此时(0,0),(,),(,)D P x y Q x y ∉在L 所围成的闭区域D 内有一阶连续偏导数,由格林公式: ⎰⎰⎰==++-=L Dy x y x yx x y I 0d d 0d d 22. c(2)如图(b )所示,此时(0,0),(,),(,)D P x y Q x y ∈在L 所围成的闭区域D 上有不连续点(0,0),以(0,0)为圆心,以充分小0ε>的为半径作圆周:cos ,sin ,02πC x y εθεθθ==≤≤,图C 取逆时针方向,记L 和C 所围成的闭区域为1D ,对复连通域1D 应用格林公式,有0d d 22=++-⎰-+C L y x yx x y从而⎰++-L y x y x x y 22d d =⎰++-C y x y x x y 22d d=2π2sin (sin )cos cos d εθεθεθεθθε--+⋅⎰=20d πθ⎰=2π.6.计算曲线积分⎰+-Cyx xy y x 224d d ,其中C 是(1,0)以为中心,(1)R R ≠为半径的圆周,逆时针方向.解 22(,)4y P x y x y -=+, 22(,)4xQ x y x y=+, 当2240x y +≠时,22224P y x Qy x y x∂-∂==∂+∂,C 所围成的闭区域记为D ,(0,0)究竟在不在以为(1,0)中心,R 为半径的圆内,要分两种情况讨论: (1)1R <时,(0,0)D ∉(图10-14(a)),则⎰=+-Cyx xy y x 04d d 22; (2)1R >时,(0,0)D ∈,作足够小的椭圆cos :2sin x L y εθεθ=⎧⎨=⎩,02πθ≤≤,L 取逆时针方向(图(b))于是由格林公式,有(a )1R <(b )1R >图04d d 22=+-⎰-+L C y x xy y x ,从而⎰+-Cy x x y y x 224d d =⎰+-L y x xy y x 224d d=2π22220cos 2cos )2sin (sin )d 4cos 4sin εθεθεθεθθεθεθ--+⎰=2π01d 2θ⎰=π. 注意 易犯错误是不分1,1R R <>两种情况讨论,未注意闭曲线L 所围成的闭区域D 内有无“洞”,即D 是否为“单连通域”7.设曲线积分2d ()d Lxy x y x y ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0ϕ=,计算(1,1)2(0,0)d ()d xy x y x y ϕ+⎰的值.解 2(,)P x y xy =,(,)()Q x y y x ϕ=,因曲线积分与路径无关,P Qy x∂∂=∂∂, 22(),()2,()xy y x x x x x C ϕϕϕ''===+, 由(0)0ϕ=,则0C =,从而2()x x ϕ=. (1,1)2(0,0)d ()d I xy x y x y ϕ=+⎰=(1,1)22(0,0)d d xy x x y y +⎰=10d y y ⎰=12. 8.质点P 沿着以AB 为直径的圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 的作用,F 的大小等于点P 到原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于2π,求变力F 对质点P 所做的功. 解 圆弧AB 的方程为22(2)(3)2x y -+-=,其参数方程为23x ty t⎧=⎪⎨=+⎪⎩, 3π(π)44t -≤≤y x =-+i j F ,所以434()d d )sin )cos ]d LW y x x y t t t t t ππ-=-+=⎰⎰2(π1)=-.9.计算⎰⎰∑+S y xd )(22,其中∑为球面2222x y z a ++=.解 :∑2222x y z a ++=对,,x y z 具有轮换对称性,所以⎰⎰∑S x d 2=⎰⎰∑S yd 2=⎰⎰∑S z d 2,。

第一类曲线积分例题与习题

第一类曲线积分例题与习题

d Fy

k
ds
R2
sin

R O R x
Fx
2k R
π cos d
0
2k R
sin cos
π
0
Fy
2k R
π sin d 2k
0
R
cos sin π
0
故所求引力为 F 4k , 2k π
RR
目录 上页 下页 返回 结束
第十一章 曲线积分与曲面积分
积分学 定积分二重积分三重积分曲线积分 曲面积分
积分域 区 间 平面域 空间域 曲线弧 曲面域
曲线积分 曲面积分
对弧长的曲线积分 对坐标的曲线积分 对面积的曲面积分 对坐标的曲面积分
第一节
第十一章
对弧长的曲线积分
一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法
第十一章积分学定积分二重积分三重积分积分域平面域空间域曲线积分曲线弧曲面域曲线积分曲面积分对弧长的曲线积分对坐标的曲线积分对面积的曲面积分对坐标的曲面积分曲面积分曲线积分与曲面积分目录上页下页返回结束精品第一节一对弧长的曲线积分的概念与性质二对弧长的曲线积分的计算法对弧长的曲线积分第十一章目录上页下页返回结束精品一对弧长的曲线积分的概念与性质假设曲线形细长构件在空间所占弧段为ab近交线长度为
l 3 ds 3 2 π R 3π R
L1
4
2
由对称性 , 形心坐标为
z y x 1
x ds
l L1L2 L3
z
R L2
L3 O
R
R y
x L1
1 x ds x ds x ds 2 x ds

1第一型曲面积分

1第一型曲面积分

二、第一型曲面积分的计算
第一型曲面积分需要化为二重积分来计算.
定理 22.1 设有光滑曲面
S : z z( x , y ) , ( x , y ) D ,
f ( x , y , z ) 为 S 上的连续函数, 则

S
2 f ( x , y , z )dS f ( x , y , z( x , y )) 1 z x z2 y dxdy . D
S i 上任取一点 ( i ,i , i ) ( i 1, 2,
n ||T ||0 i 1
, n), 若存在极限
lim f ( i ,i , i )Si I ,
且与分割 T 及 ( i ,i , i ) 的取法 无关, 则称此极限为
f ( x , y , z ) 在 S 上的第一型曲面积分, 记作
2 a
a
a2
a
2a 2 r 2 a2 r 2
0
r dr
0
a2 8 4 2 a t dt a . 2 3 a t
( 解法二 ) S 的参数方程为
x a sin cos , y a sin cos , z cos , ( , ) [0, ] [0,2 ].
前页 后页 返回
I f ( x , y, z )dS .
S
(1)
于是, 前述曲面块的质量可由第一型曲面积表示为:
m ( x , y, z )d S .
S
特别地, 当 f ( x , y , z ) 1 时,曲面积分 dS 就是曲面
S
块 S 的面积.
前页 后页 返回
z z ( x , y ), ( x , y ) D,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档