佛山市顺德区七年级下期末考试数学试题(有答案)

合集下载

广东省佛山市顺德区2018-2019学年七年级(下)期末数学试卷解析版

广东省佛山市顺德区2018-2019学年七年级(下)期末数学试卷解析版

广东省佛山市顺德区2018-2019学年七年级(下)期末数学试卷一、选择题(10个题,每题3分,共30分)1.(3分)下列图形不是轴对称图形的是()A.线段B.角C.直角三角形D.等腰三角形2.(3分)数0.000075用科学记数法表示为()A.7.5×105B.75×10﹣4C.7.5×10﹣5D.75×10﹣53.(3分)下列运算正确的是()A.m2•m3=m5B.(mn)2=mn2C.(m3)2=m9D.m6÷m2=m34.(3分)已知∠A=40°,那么∠A的补角的度数等于()A.50°B.60°C.140°D.1505.(3分)整式的乘法计算正确的是()A.(x+3)(x﹣3)=x2+3B.(x+y)2=x2+y2C.6x2•x3=3x6D.(2x+y)(x﹣y)=2x2﹣xy﹣y26.(3分)以每组数为线段的长度,可以构成三角形三边的是()A.13、12、20B.7、8、15C.7、2、4D.5、5、117.(3分)下列变形正确的是()A.10a4b3÷5a2b=2a2b3B.(﹣bc)4÷(﹣bc)2=﹣b2c2C.(3xy+y)÷y=3x+yD.a﹣p=(a≠0,P是正整数)8.(3分)直线a、b被c、d所截.若∠1=80°,∠2=100°,下列结论不正确的是()A.a∥b B.∠3+∠4=180°C.∠3=∠4D.∠5=80°9.(3分)如图,在四边形ABCD中,AB∥CD,不能判定△ABD≌△CDB的条件是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C10.(3分)如图是一辆汽车行驶的速度(千米/时)与时间(分)之间变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.从3分到12分,汽车行驶的路程是150千米C.时间每增加1分钟,汽车的速度增加10千米/时D.第3分钟时汽车的速度是30千米/时二、填空题(6个题,每题4分,共24分)11.(4分)计算:(﹣2)2×23=.12.(4分)计算:(x﹣1)2=.13.(4分)对某批乒乓球的质量进行随机抽查,结果如下表所示:随机抽取的乒乓球数n1020501002005001000优等品数m7164381164414824优等品率0.70.80.860.810.820.8280.824当n越大时,优等品率趋近于概率.(精确到0.01)14.(4分)在一次实验中,A同学把一根弹簧的上端固定,在其下端悬挂物体,测弹簧长度y(cm)随所挂物体的质量x(kg)变化关系如下表:x(kg)012345y(cm)81012141618根据表格中数据写出y与x关系式:.15.(4分)在直角三角形中,一个锐角比另一个锐角的3倍还多10°,则较小的锐角度数是.16.(4分)如图,在△ABC中,AC=BC,∠C=90°,AD是∠BAC的平分线,折叠△ACD使得点C落在AB边上的E处,连接DE、CE.下列结论:①∠CAD=∠EAD;②△CDE是等腰三角形;③AD⊥CE;④AB=AC+CD,其中正确的结论是.(填写序号)三、解答题(一)(3个题,每题6分,共18分)17.(6分)计算:(﹣1)2009+()﹣1﹣(3.14﹣π)0+|﹣4|18.(6分)先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)]÷2y,其中x=,y=﹣2.19.(6分)如图,Rt△ABC中,∠A=90°.(1)用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法);(2)在(1)的条件下,当∠C=30°时,求∠BDC的度数.四、解答题(二)(3个题,每题7分,共21分)20.(7分)某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到绿灯的概率是多少?21.(7分)如图,一条输电线路需跨越一个池塘,池塘两侧A、B处各立有一根电线杆,但利用皮尺无法直接量出A、B间的距离.请设计一个方案测出A、B间的距离,要求画出方案的几何图形,并说明理由.22.(7分)如图,AC与BD相交于点E,AB=CD,∠A=∠D.(1)试说明△ABE≌△DCE;(2)连接AD,判断AD与BC的位置关系,并说明理由.五、解答题(三)(3个题,每题9分,共27分)23.(9分)已知A=x3÷x2+x•x2,B=(x+1)2﹣(x﹣1)2(1)求A•B;(2)若变量y满足4A÷B﹣2y=0,用x表示变量y,并求出x=﹣2时y的值;(3)若A=B+1,求x5﹣x2﹣9x+5的值.24.(9分)如图,在△ABC中,AB=AC,AD是中线,作AD关于AC的轴对称图形AE.(1)直接写出AC和DE的位置关系.(2)连接CE,写出BD和CE的数量关系,并说明理由;(3)当∠BAC=90°,BC=8时,在AD上找一点P,使得点P到点C与到点E的距离之和最小,求△BCP的面积.25.(9分)已知,AB=18,动点P从点A出发,以每秒1个单位的速度向点B运动,分别以AP、BP为边在AB的同侧作正方形.设点P的运动时间为t.(1)如图1,若两个正方形的面积之和S,当t=6时,求出S的大小;(2)如图2,当t取不同值时,判断直线AE和BC的位置关系,说明理由;(3)如图3,用t表示出四边形EDBF的面积y.参考答案一、选择题(10个题,每题3分,共30分)1.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选:C.2.【解答】解:0.000075=7.5×10﹣5.故选:C.3.【解答】解:A、m2•m3=m5,正确;B、(mn)2=m2n2,错误;C、(m3)2=m6,错误;D、m6÷m2=m4,错误;故选:A.4.【解答】解:根据互为补角的概念,得∠A的补角为:180°﹣40°=140°.故选:C.5.【解答】解:A.(x+3)(x﹣3)=x2﹣9,故A错误;B.(x+y)2=x2+y2+2xy,故B错误;C.6x2•x3=3x5,故C错误;D.(2x+y)(x﹣y)=2x2﹣xy﹣y2,故D正确.故选:D.6.【解答】解:A、13+12=25>20,能构成三角形;B、7+8=15,不能构成三角形;C、2+4<7,不能构成三角形;D、5+5<11,不能构成三角形.故选:A.7.【解答】解:A.10a4b3÷5a2b=2a2b2,此选项计算错误;B.(﹣bc)4÷(﹣bc)2=b2c2,此选项计算错误;C.(3xy+y)÷y=3x+1,此选项计算错误;D.a﹣p=(a≠0,p是正整数),此选项计算正确;故选:D.8.【解答】解:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴a∥b,∴∠3=∠4,∠5=∠1=80°,而∠3+∠4=180°不成立,故选:B.9.【解答】解:∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,∴当AB=CD时,根据“SAS”可判断△ABD≌△CDB;当∠A=∠C时,根据“AAS”可判断△ABD≌△CDB;当∠ADB=∠CBD或AD∥BC时,根据“ASA”可判断△ABD≌△CDB.故选:B.10.【解答】解:速度是因变量,时间是自变量,故选项A不合题意;从3分到12分,汽车行驶的路程是30×(8﹣3)+30=180千米,故选项B不合题意;从汽车出发到第3分钟,时间每增加1分钟,汽车的速度增加10千米/时,第3分钟到第8分钟,汽车匀速行驶,故选项C不合题意;第3分钟时汽车的速度是30千米/时,正确,故选项D符合题意.故选:D.二、填空题(6个题,每题4分,共24分)11.【解答】解:(﹣2)2×23=4×8=32.故答案为:3212.【解答】解:(x﹣1)2=x2﹣2x+1.故答案为:x2﹣2x+1.13.【解答】解:当n越大时,优等品率趋近于概率0.82,故答案为:0.82.14.【解答】解:由表格中的数据,得物体每增加1千克,弹簧伸长2厘米,y=2x+8.故答案为:y=2x+8.15.【解答】解:设另一个锐角为x°,则一个锐角为(3x+10)°,由题意得,x+(3x+10)=90,解得x=20,3x+10=3×20+10=70,所以,这两个锐角的度数分别为20°,70°,其中较小的锐角度数是20°.故答案是:20°.16.【解答】解:∵AC=BC,∠C=90°,∴∠ABC=45°∵折叠△ACD使得点C落在AB边上的E处∴△ACD≌△AED∴AC=AE,CD=DE,∠CAD=∠EAD,∠DEA=∠ACD=90°∴△CDE是等腰三角形,AD⊥CE,∠B=∠EDB=45°∴DE=BE=CD,∴AB=AE+BE=AC+CD,故正确的结论有①②③④故答案为:①②③④三、解答题(一)(3个题,每题6分,共18分)17.【解答】解:(﹣1)2009+()﹣1﹣(3.14﹣π)0+|﹣4|=﹣1+2﹣1+4=418.【解答】解:原式=(x2+4xy+4y2﹣x2+y2)÷2y=(5y2+4xy)÷2y=y+2x,当x=,y=﹣2时,原式=1﹣5=﹣4.19.【解答】解:(1)如图,∠ABD为所作;(2)∵∠ABC+∠C+∠A=90°,∴∠ABC=180°﹣90°﹣30°=60°,∵∠ABD=∠C=30°,∴∠BDC=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠BDC=180°﹣30°﹣30°=120°.四、解答题(二)(3个题,每题7分,共21分)20.【解答】解:(1)∵红灯40s、绿灯60s、黄灯3s.∴他遇到绿灯的概率大;(2)遇到绿灯的概率=,故遇到绿灯的概率是.21.【解答】解:测量出DE的长度即为AB的长.理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=ED.22.【解答】证明:(1)∵AB=CD,∠A=∠D,∠AEB=∠DEC ∴△ABE≌△DCE(AAS)(2)AD∥BC理由如下:如图,连接AD∵△ABE≌△DCE;∴AE=DE,BE=CE,∴∠ADE=∠DAE,∠BCE=∠CBE∵∠AEB=∠ADE+∠DAE=∠BCE+∠CBE∴∠ADE=∠EBC∴AD∥BC五、解答题(三)(3个题,每题9分,共27分)23.【解答】解:(1)∵A=x3÷x2+x•x2=x+x3,B=(x+1)2﹣(x﹣1)2=4x,∴A•B=(x+x3)×4x=4x2+4x4.(2)由4A÷B﹣2y=0得4(x3÷x2+x•x2)÷4x﹣2y=0,则y=,当x=﹣2时,y=;(3)∵A=B+1,∴x+x3=4x+1,即x3﹣3x=1,x3﹣1=﹣3x,∴x5﹣x2﹣9x+5=x2(x3﹣1)﹣9x+5=x2×3x﹣9x+5=3x3﹣9x+5=3(x3﹣3x)+5=3+5=8∴x5﹣x2﹣9x+5的值为8.24.【解答】解:(1)∵AD,AE关于AC对称,∴DE⊥AC,故答案为DE⊥AC.(2)连接EC.结论:BD=CE.理由:∵AD是中线,∴BD=CD,∵AD,AE关于AC对称,∴CD=CE,∴BD=CE.(3)连接BE交AD于点P,此时PE+PC的值最小.∵AB=AC,∠BAC=90°,BD=DC=4,∴AD=AE=4,由题意AE∥BD,AE=AD=BD,∴四边形ABDE是平行四边形,∴PA=PD=2,∵PD⊥BC,∴S △BCP =×4×2=4.25.【解答】解:(1)当t =6时,PA =6,PB =18﹣6=12, ∴S =62+122=180.(2)如图2中,结论:AE ⊥BC .理由:延长BC 交AE 于K .∵四边形APCD ,四边形PEFB 都是正方形,∴PA =PC ,PE =PB ,∠APE =∠BPC =90°,∴△APE ≌△CPB (SAS ),∴∠AEP =∠CBP ,∵∠CBP +∠BCP =90°,∠BCP =∠ECK ,∴∠AEP +∠ECK =90°,∴∠EKC =90°,∴AE ⊥BC .(3)如图3中,连接PD ,PE .∵四边形APCD ,四边形PEFB 都是正方形,∴∠APD =∠ABE =45°,∴PD ∥BE ,∴S △BED =S △BEP ,∴S 四边形DEFB =S 正方形PEFB ,∴y =(18﹣t )2=t 2﹣36t +324(0<t <18).。

佛山市顺德区2017-2018学年七年级下期末考试数学试题(有答案)

佛山市顺德区2017-2018学年七年级下期末考试数学试题(有答案)

顺德区2017—2018学年度第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()()m=m9 D.m6 ÷m2=mn=mn2 C. 32m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使2+m+4=(+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线第6题图C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º ,那么 ∠1 的大小是( )A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰 △ABC 中,∠A =40º,则的大小为( )A. 40ºB. 70ºC. 100ºD. 40º 或 70º 9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是( )A. B. C. D.10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点, AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( ①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分 ∠DEF ; ④ AD 垂直平分CE ;⑤AD =CE .A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯= . 12. 计算:(25)(3)a a +-= .13. 如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得 A B ''=8厘米,则工件内槽AB 宽为厘米.第13题图 第16题图第7题图第10题图14.已知 2019m n +=,20182019m n -=,则 22m n - 的值为 . 15. 下表是某种数学报纸的销售份数(份)与价钱y (元)的统计表,观察下表: 则买48份这种报纸应付 元.16. 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC = ,AD =,点E 、F 是AD 的三等分点,则阴影部分的面积为 .三、解答题(一)(每小题6分,共18分)17. 计算:()011||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分)20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当 m =4时,求小李摸到红球的概率是多少?(2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC , 第20题图图1∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由;(2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”.(1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由;(3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”.如图1,平行四边形MNPQ 的一边作左右平移,图2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况.请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.第22题图图225. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.。

佛山市顺德区最新七年级下期末考试数学试卷试题(有答案)

佛山市顺德区最新七年级下期末考试数学试卷试题(有答案)

顺德区2018—2019学年度第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2m=m9()mn=mn2 C. 32()D. m6 ÷m2=m34. 气象台预报“明天下雨的概率是85%”.对此信息,下列说法正确的是()A. 明天将有 85% 的地区下雨B. 明天将有 85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -2A CBFED6. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A 处垂直拉至起跳线 l 的点B 处,然后记录 AB 的长度,这样做的理由是( )A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º ,那么 ∠1 的大小是( ) A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰 △ABC 中,∠A =40º,则的大小为( )A. 40ºB. 70ºC. 100ºD. 40º 或 70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是( )A. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点, AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( )①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分 ∠DEF ; ④ AD 垂直平分CE ;⑤AD =CE . A. ①②⑤B. ①②③④第6题图第7题图C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯= . 12. 计算:(25)(3)a a +-= .13. 如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得 A B ''=8厘米,则工件内槽AB 宽为 厘米.第13题图 第16题图14.已知 2019m n +=,20182019m n -=,则 22m n - 的值为 . 15. 下表是某种数学报纸的销售份数x (份)与价钱y (元)的统计表,观察下表:份数x (份) 1 2 3 4 价钱y (元)0.51.01.52.0则买48份这种报纸应付 元.16. 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC = ,AD =,点E 、F 是AD 的三等分点,则阴影部分的面积为 .三、解答题(一)(每小题6分,共18分)17. 计算:()11||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°. (1)写出AB =DE 的理由;(2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”.第20题图第22题图图1NMQ P(1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”.如图1,平行四边形MNPQ 的一边作左右平移,图2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.图2PQ 边的运动时间/s 8 9 10 11 12 13 14 NP 的长度/cm 1815126325. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、 N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.。

佛山市顺德区2018-2019学年七年级下期末考试数学试题(有答案)

佛山市顺德区2018-2019学年七年级下期末考试数学试题(有答案)

顺德区2018—2019学年度第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()m=m9mn=mn2 C. 32()D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨A CBFE5. 要使x 2+mx+4=(x+2)2成立,那么m 的值是( )A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A 处垂直拉至起跳线 l 的点B 处,然后记录 AB 的长度,这样做的理由是( )A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º ,那么 ∠1 的大小是( ) A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰 △ABC 中,∠A =40º,则的大小为( )A. 40ºB. 70ºC. 100ºD. 40º 或 70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是( )A. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点, AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( )①∠ADE =∠ADC ;②△CDE 是等腰三角形;第6题图第7题图③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯=.12. 计算:(25)(3)a a+-=.13. 如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得A B''=8厘米,则工件内槽AB宽为厘米.第13题图第16题图14.已知2019m n+=,20182019m n-=,则22m n-的值为.15. 下表是某种数学报纸的销售份数x(份)与价钱y(元)的统计表,观察下表:份数x(份) 1 2 3 4价钱y(元)0.5 1.0 1.5 2.0则买48元.16. 如图,已知AD是等腰△ABC底边BC上的中线,BC=,AD=,点E、F是AD的三等分点,则阴影部分的面积为.三、解答题(一)(每小题6分,共18分)第10题图17. 计算:()11||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°. (1)写出AB =DE 的理由;(2)求∠BCE 的度数.第20题图第22题图图1N MQ P五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”.如图1,平行四边形MNPQ 的一边作左右平移,图2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.图2PQ 边的运动时间/s 8 9 10 11 12 13 14 NP 的长度/cm1815126325. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.。

佛山市顺德区七年级下册期末考试数学试题(有答案)

佛山市顺德区七年级下册期末考试数学试题(有答案)

顺德区七年级第二学期期末教学质量检测数学试卷说明:本试卷共4页,满分120分,考试时间100分钟. 注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B 处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()第6题图ACB FEDA. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()A. B. C. D.10. 如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯=.12. 计算:(25)(3)a a+-=.13. 如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得A B''=8厘米,则工件内槽AB宽为厘米.第13题图第16题图14.已知2019m n+=,20182019m n-=,则22m n-的值为.15. 下表是某种数学报纸的销售份数x(份)与价钱y(元)的统计表,观察下表:份数x(份) 1 2 3 4价钱y(元)0.5 1.0 1.5 2.0则买48份这种报纸应付元.16. 如图,已知AD是等腰△ABC底边BC上的中线,BC=,AD=,点E、F是AD的三等分点,则阴影部分的面积为.三、解答题(一)(每小题6分,共18分)第7题图第10题图17. 计算:()011||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由; (2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边第20题图第22题图形”.如图1,平行四边形MNPQ的一边作左右平移,图2反映它的边NP的长度l(cm)随时间t(s)变化而变化的情况.请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ向左平移前,边NP的长度是____________cm,请你根据图象呈现的规律写出0至5秒间l与t的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l与t的关系式.25. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.图2PQ边的运动时间/s8 9 10 11 12 13 14 NP的长度/cm 18 15 12 6 3 0。

最新广东省佛山市-七年级(下)期末数学试卷(含答案)

最新广东省佛山市-七年级(下)期末数学试卷(含答案)

2017-2018学年广东省佛山市顺德区七年级(下)期末数学试卷副标题题号-一--二二三四总分得分1. 已知等腰△ABC 中,ZA=40。

,则底角的大小为()A.B.C. D. 或2. 下列运算正确的是()A. B.C.D.3.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A 处垂直拉至起跳线I 的点B 处,然后记录AB 的长 度,这样做的理由是()BA.两点之间,线段最短B.过两点有且只有一条直线D.过一点可以作无数条直线如图,把一块三角板的直角顶点放在直尺的一边上,如果Z2=58 °那么Z 1的大小是()A. B. C. D.5.将常温中的温度计插入一杯60C 的热水中,温度计的度数与时间的关系可用下列_ 2 2 、7. 要使x+mx+4= (x+2) 成立,那么 m4.C.垂线段最短A. 4B.C. 2D. 8.人体内的淋巴细胞直径约是 0.0000051米,将0.0000051用科学记数法表示为()A.B. C.9.如图,AD 是△ABC 的角平分线,点 E 是AB 边上一点,AE=AC,EF //BC,交AC 于点F .下列结论正确的是()①/ADE = /ADC ;②A CDE 是等腰三角形; ③CE 平分 ZDEF ;④AD 垂直平分 CE ;⑤AD = CE .12. _____________________________________________ 已知 m+n=2019, m-n=—,贝U m-n 的值为 __________________________ 13. __________________________________________________ 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC=6cm ,AD=9cm , 点E 、F 是AD 的三等分点,则阴影部分的面积为 _____________________ .14. 计算:(2a+5)( a-3) = _________ 15.如图,把两根钢条 AA'、BB'的中点连在一起,可以 做成一个测量内槽宽的工具(卡钳),若测得A B =8厘米,则工件内槽 AB 宽为 ______________ 厘米.三、计算题(本大题共 4小题,共25.0分)16.如图,已知 BC 是A ABD 的角平分线,BC=DC ,Z /E=30 ° ZD=50 °(1) 写出AB=DE 的理由; (2)求ZBCE 的度数.2 217. 先化简,再求值:[(x-2y ) - (x+y )(x-y ) -7y ]乞y ,其中 x-, y=-2 .份数X (份) 1 2 3 4收入y (元)0.51.01.52.0A.①②⑤B.①②③④C.②④⑤二、填空题(本大题共 6小题,共24.0分)10. 计算:(-2) 3X22= _______ . 11.下表是某种数学报纸的销售份数 x (份)与价钱y (元)的统计表,观察下表:则买48份这种报纸应付 _______________ 元.D.D BD.①③④⑤18. 计算:(-3a4) 2-a?i3?Aa10P2119. 计算:|-卜2- - ( n2018)四、解答题(本大题共5小题,共41.0分)20. 一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m个,其它均为黄球•现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?21. 某公司技术人员用沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行(1)如图1,测得/仁Z2,可判定a /b吗?请说明理由;(2)如图2,测得/仁/2,且Z3= Z4,可判定a/b吗?请说明理由;(3)如图3,若要使a/b,贝U Z1与Z2应该满足什么关系式?请说明理由.22. 如图,已知AC 侶D . (1)作ZBAC 的平分线,交BD 于点M (尺规作图, 留作图痕迹,不用写作法); (2)在(1)的条件下,试说明 ZBAM = Z AMB .23. 已知点A 、D 在直线I 的同侧.(1) 如图1,在直线I 上找一点C .使得线段AC+DC 最小(请通过画图指出点 C 的位置);(2) 如图2,在直线I 上取两点B 、E ,恰好能使△ABC 和A DCE 均为等边三角形.M 、N 分别是线段 AC 、BC 上的动点,连结 DN 交AC 于点G ,连结EM 交CD 于点F .① 当点M 、N 分别是AC 、BC 的中点时,判断线段 EM 与DN 的数量关系,并说明 理由;② 如图3,若点M 、N 分别从点A 和B 开始沿AC 和BC 以相同的速度向点 C 匀速 运动,当M 、N 与点C 重合时运动停止,判断在运动过程中线段 GF 与直线1的位 置关系,并说明理由.24. 24.我们在小学已经学过了对边分别平行的四边形叫做平行四边形”,如图1,平行四边形MNPQ 的一边PQ 作左右平移,图2反映它的边NP 的长度(cm )随时间t ( s ) 变化而变化的情况,请解答下列问题: Hlb B(1)在这个变化过程中,自变量是_______________ ,因变量是___________ ;(2)观察图2,PQ向左平移前,边NP的长度是__________________ cm,请你根据图象呈现的规律写出0至5秒间I与t的关系式;()填写下表,并根据表中呈现的规律写出至秒间与的关系式.PQ边的运动时间/s 891011121314NP的长度/cm 181512630答案和解析1. 【答案】D【解析】解:当40°的角是底角时,三角形的底角就是40°;当40°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是70°.故选:D.等腰三角形的两个底角相等,已知一个内角是40°,则这个角可能是底角也可能是顶角.要分两种情况讨论.本题考查了等腰三角形的性质;全面思考,分类讨论是正确解答本题的关键.2. 【答案】A【解析】解:A、m2?m3=m5,正确;B、(mn)2 = m 2 n2,错误;3 2 6C、(m )=m ,错误;6 2 4D、m苛n =m ,错误;故选:A.根据同底数幂的乘法、积的乘方、幂的乘方与同底数幂的除法逐一计算即可得.本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、积的乘方、幂的乘方与同底数幂的除法的运算法则.3. 【答案】C【解析】解:这样做的理由是垂线段最短.故选:C.垂线段的性质:垂线段最短.考查了垂线段最短•垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.4. 【答案】D【解析】解:如图所示:•••2=58° ,•••2=58 °,•••2=90 -58 =32 °.故选:D.直接利用平行线的性质结合互余的性质得出答案.此题主要考查了平行线的性质,正确得出同位角是解题关键.5. 【答案】B【解析】解:将常温中的温度计插入一杯60C的热水中,温度计的度数与时间的关系,图象是B;故选:B.根据温度计上升到一定的温度后不变,可得答案;本题考查了函数图象,注意温度计的温度升高到60度时温度不变.6. 【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.7. 【答案】A【解析】解:X+2)2=x2+4x+4,5=4,根据完全平方公式:a2坐ab+b2= a±)可得答案.此题主要考查了公式法因式分解,关键是掌握完全平方公式.8. 【答案】C【解析】解:0.0000051=5.1 10-6, 故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为axi0-n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a X10-n,其中K |牡10, n为由原数左边起第一个不为零的数字前面的0的个数所决定.9. 【答案】B【解析】解:①V AD是△ABC的角平分线,•••EAD= /CAD,在△AED和△ACD中,AE=AC£EAD=Z.CAD,AD=AD/.zAED ^△X CD SAS),•••/DE= /ADC故①正确;②•••△AED^△X CD,.•ED=DC,•••ZCDE是等腰三角形;故②正确;@V DE=DC,•••/EC= ZDCE,••EF/BC, •••/CE=/CEF, •••/EC= /CEF,精品文档••CE平分/DEF,故③ 正确;®V DE=DC,••点D在线段EC的垂直平分线上,••AE=AC ,••点A在线段EC的垂直平分线上,••AD垂直平分CE.故④ 正确;⑤AD垂直平分CE,但无法确定AD=CE ,故⑤ 不正确;故选:B.根据三角形全等和等腰三角形的判定、垂直平分线的判定进行依次判断即可. 此题考查了全等三角形的判定与性质,等腰三角形的性质、线段垂直平分线的性质以及平行线的性质.此题难度适中,注意掌握数形结合思想的应用.10. 【答案】-32【解析】【分析】本题主要考查实数的运算,解题的关键是掌握乘方的运算法则与实数的运算顺序.先计算立方和平方,再计算乘法即可得.【解答】解:原式=-8 >4=-32 ,故答案为-32.11. 【答案】24 【解析】解:由统计表知这种报纸每份0.5元,则买48份这种报纸应付48X).5=24元,故答案为:24.由统计表得出每份0.5元,据此可得.本题主要考查统计表,解题的关键是根据统计表得出解题所需的数据.12. 【答案】2018【解析】 IJI) 1 U解:'.m+n=2019, m-n=2【1宙/m 2-n 2= m+n ) (-n )=2018.故答案为:2018.直接利用平方差公式将原式 变形进而得出答案.此题主要考查了平方差公式,正确将原式 变形是解题关键.13. 【答案】9cm 2【解析】 • BD=DC=3cm , AD IBC ,.//ABC 关于直线AD 对称, ••B 、C 关于直线AD 对称,• zCEF 和 ABEF 关于直线AD 对称, •°S A AF C =S A AF B ,••点E 、F 是AD 的三等分点,_ _ l•'S AAFB =S A BED = S /XBD2 2 I o••图中阴影部分的面 积是S®X BD = ・x X 3 X 9=9cm 2.故答案为:9cm 2.根据等腰三角形性 质求出BD=DC=3cm , AD I BC ,推出A CEF 和 ABEF 关于直 线AD 对称,得出S A AFC =S A AFB ,根据图中阴影部分的面 积是.S ^ABD 求出即 ■I J 可.本题考查了等腰三角形的性 质和轴对称的性质.通过观察可以发现是轴对称 图形,其中看出A CEF 和A BEF 关于直线AD 对称,面积相等是解决本题的关 键.214. 【答案】2a-a-15【解析】=2019x BA2019解:iBC=6cm,AD 是△ABC 的中线,A解:原式=2a2-6a+5a-15=2s?-a-15,故答案为:2a2-a-15.根据多项式乘以多项式的运算法则计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.15.【答案】8【解析】解:连接A B;••两根钢条AA'、BB'的中点连在一起,:OA=OA,OB=OB ,r 扼在△AOB和△ 0沖,緘富=X爐;隱I BO=BO•••/AOB望△<、OB'SAS).••AB=A‘ B、厘米,故答案为:8.连接A B;可判定/AOB也4V 0B,根据全等三角形的性质可得AB=A B' =8 厘米. 本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.16. 【答案】解:(1)--BC是4ABD的角平分线,•••zCBD= Z CBA,••BC=DC,•••zCBD= ZD=50 °•••zCBD= Z CBA,在4CDE和4CBA中,•••©DE 也4CBA,••DE=AB ;(2)由(1)知,ZCBD = ZD=50°,•••z6CD=80 °•••Z\CB=100 °由(1)知,4CDE 也△:BA,•••zDCE= ZBCA,•••zBCD= Z ACE=80 °•••zBCE= ZACB-ZACE=20 °【解析】1) 先判断出ZCBD= ZCBA , ZCBD= ZD=50,进而得出ZCBD= ZCBA,判断出△CDE^A^BA即可得出结论;2) 先求出ZACB=100,在求出ZACE=80,即可得出结论.此题主要考查了全等三角形的判断和性质,等边对等角,三角形的外角的性质,判断出A CDE也43BA是解本题的关键.2 2 2 2 217. 【答案】解:原式=(x -4xy+4y -x +y -7y )吃y2=(-4xy-2y )吃y=-2x-y,当x=_、y=-2 时,原式=-2 X+2=-1+2=1 .【解析】先根据整式混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得. 本题主要考查整式的混合运算-化简求值,解题的关键是掌握整式混合运算顺序和运算法则..- _ 8 8 8 818. 【答案】解:原式=9a -a -a =7a .【解析】先计算幕的乘方与积的乘方、同底数幕的乘法、同底数幕的除法,再合并即可得. 本题主要考查幕的运算,解题的关键是掌握幕的乘方与积的乘方、同底数幕的乘法、同底数幕的除法的运算法贝・19. 【答案】解:|-卜2-1- ( n-2018) 0=-1 .【解析】本题涉及零指数幕、负整数指数幕、绝对值3个考点•在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型•解决此类题目的关键是熟练掌握负整数指数幕、零指数幕、绝对值等考点的运算. 20. 【答案】解:(1 )当m=4时,红球有4个、白球有12个、黄球有14个,则小李摸到红球的概率是一=—;(2)若要是双方摸到红球和黄球的概率相等,则袋子中红球和黄球的数量相等,即m=30-m-3m,解得:m=6,即当m=6时,游戏对双方是公平的.【解析】1)由当m=4时,红球有4个、白球有12个、黄球有14个,用红球数量除以球的总数即可得;2)若要是双方摸到红球和黄球的概率相等知袋子中红球和黄球的数量相等, 据此列出关于m的方程,解之可得.本题主要考查游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.21. 【答案】解:(1)a/b,理由是:•••/ = Z2,•'a /b (内错角相等,两直线平行);(2)能,理由是:•••/ =亠,Z3= 74,Z1+ Z2=180°,/3+ 74=180°,•••/ = /2=90 ° 73= 74=90 °• 7 = 74,•'a /b;图3(3) 71+2 72=180°,理由是:根据折叠得:■•a /b,•••/ + /3+ /4=180 ° Z2= Z4,•••/+272=180 °【解析】1)根据平行线的判定得出即可;2)求出Z1和74的度数,再根据平行线的判定推出即可;3)根据折叠得出Z3=Z4,根据平行线的性质得出71 +Z3+74=180°, Z2=Z4, 即可得出答案.本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.22. 【答案】解:(1)如右图所示;(2) -.AM 平分/BAC,•••zCAM= /BAM ,••AC /BD ,•••zCAM= ZAMB ,•••zBAM= Z AMB .【解析】1)根据角平分线的作法可以解答本题;2)根据角平分线的性质和平行线的性质可以解答本题.本题考查基本作图、角平分线的性质、平行线的性质,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.23. 【答案】解:(1)如图1所示,点C就是所求作;(2)① EM = DN,理由:••点M、N分别是AC、BC的中点,••CM=-AC, CN=-BC,•/BC是等边三角形,•••ZXCB=60 ° AC=BC,•••JECM=120 : CM = CN,• ©DE是等边三角形,•••zDCE=60 °CE = CD, /-z NCD=120 °在△CDN和△CEM中,•••©DN也MEM ,••EM=DN ;②FG 化理由:如图3,连接FG , 由运动知,AM=BN , ••AC=BC ,••CM=BN ,在△CDN 和△CEM 中, •••©DN 也MEM ,•••zCDN = /CEM ,Vz ACB= /DCE=60 ° •••/\CD=60 ° ZDCE ,在ADCG 和AECF 中,• ZDCG ^△E CF ,••CF = CG ,•••/CG=60 °•©FG 是等边三角形,• zCFG=60 ° ZECF , ••FG /BC ,即:FG / .【解析】1) 先作出点A 关于直线I 的对称点A'连接DA'交直线l 于点C ;2) ①先判断出CM=CN , ZDCN= ZECM=120,进而判断出△CDN 也ZCEM , 即可得出结论;②同①的方法判断出△CDN 也ZCEM ,得出ZCDN= /CEM ,进而判断出△DCG ^△E CF ,得出CF=CG ,得出△CFG 是等边三角形即可得出结论. 此题是三角形综合题,主要考查了中垂线的作法,等边三角形的性质和判定, 全等三角形的判定和性 质,平行线的判定,判断出△CDN 也©EM 是解本题的 关键.24. 【答案】t ; NP ;( 2t+8); 9【解析】解:10这个变化过程中,自变量是时间t 、因变量NP 的长度, 故答案为:t ,NP ;2)咽2知,0至5秒间图象呈现的是一段线段,且过点0,8),5,(18),设此线段的解析式为NP=kt+8 0<t 菊5,•••18=5k+8,••k=2,••线段的解析式 为NP=2t+8 0< t 买5AB NC E 圉3故答案为2t+8);3)搁2知,8至14秒间图象呈现的也是一段线段,由表知,此线段过点8,佝,14,0),设此线段的解析式为NP=k't+b 8<t <14,{心+5=压:1: : :I ,.J —7-- 2,••NP=-3t+42 8< t <14当t=11 时,NP=-3X 11+42=9,故答案为9.1)根据自变量和因变量的概念即可得出结论;2)利用待定系数法即可得出结论;3)利用待定系数法即可得出结论.此题是一次函数综合题,主要考查了待定系数法,函数的概念,根据图形的变换和图2的函数图象求出函数关系式是解本题的关键.。

佛山市顺德区2017-2018学年七年级下期末考试数学试题(含答案)

佛山市顺德区2017-2018学年七年级下期末考试数学试题(含答案)

顺德区2017—2018学年度第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()A. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()第6题图第7题图ACBFEDA. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点,AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( )①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分 ∠DEF ; ④ AD 垂直平分CE ;⑤AD =CE . A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯= . 12. 计算:(25)(3)a a +-= .13. 如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得 A B ''=8厘米,则工件内槽AB 宽为厘米.第13题图 第16题图14.已知 2019m n +=,20182019m n -=,则 22m n - 的值为 . 15. 下表是某种数学报纸的销售份数x (份)与价钱y (元)的统计表,观察下表:份数x (份) 1 2 3 4 价钱y (元)0.51.01.52.0则买48份这种报纸应付 元.16. 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC = ,AD =,点E 、F 是AD 的三等分点,则阴影部分的面积为 .三、解答题(一)(每小题6分,共18分) 17. 计算:()011||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷第10题图图1NMQP19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由; (2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边 形”.如图1,平行四边形MNPQ 的一边作左右平移,图 2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;第20题图第22题图(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.25. 已知点A 、D 在直线l 的同侧.(1)如图1,在直线l 上找一点C ,使得线段AC+DC 最小(请通过画图指出点C 的位置);(2)如图2,在直线l 上取两点B 、E ,恰好能使△ABC 和△DCE 均为等边三角形.M 、N 分别是线段AC 、BC上的动点,连结DN 交AC 于点G ,连结EM 交CD 于点F .① 当点M 、N 分别是AC 、BC 的中点时,判断线段EM 与DN 的数量关系,并说明理由;② 如图3,若点M 、 N 分别从点A 和B 开始沿AC 和BC 以相同的速度向点C 匀速运动,当M 、N 与点C 重合时运动停止,判断在运动过程中线段GF 与直线l 的位置关系,并说明理由.图2PQ 边的运动时间/s 8 9 10 11 12 13 14 NP 的长度/cm 18151263。

广东省佛山市顺德区2019-2020学年第二学期七年级期末考试数学试卷 (解析版)

广东省佛山市顺德区2019-2020学年第二学期七年级期末考试数学试卷 (解析版)

2019-2020学年广东省佛山市顺德区七年级第二学期期末数学试卷一、选择题1.下列图形是轴对称图形的是()A.B.C.D.2.将0.0012用科学记数法表示为()A.1.2×10﹣2B.1.2×10﹣3C.1.2×10﹣4D.1.2×10﹣53.下列说法正确的是()A.明天会下雨是必然事件B.随机事件发生的概率为C.概率很小的事件不可能发生D.不可能事件发生的概率为04.三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.165.计算(x2)3的结果是()A.x6B.x5C.3x2D.6x6.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°7.下列计算正确的是()A.(3×103)2=6×105B.36×32=38C.(﹣)4×34=﹣1D.36÷32=338.若等腰三角形的顶角为50°,则它的底角度数为()A.40°B.50°C.65°D.60°9.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°10.小红从家出发去晨跑,她离开家和返回的距离y(米)与时间x(分)的关系图象如图所示.下列结论错误的是()A.出发10分钟时,小红距离家1000米B.整个晨跑过程一共走了3600米C.返回时速度为60米/分D.去时的平均速度小于返回速度二、填空题(7小题,每题4分,共28分)11.正方形有条对称轴.12.计算:2a•3a2=.13.计算:4x2÷(2x)=.14.如图,∠A=∠D,∠1=∠2,要得到△ABC≌△DEF,添加一个条件可以是.15.某路口东西方向红绿灯的设置时间为:红灯30s,绿灯27s,黄灯3s.司机甲随机的从东往西开车到达该路口,请问他遇到红灯的概率是.16.如图,AD为∠BAE的平分线,AB∥CD.若∠BAE=40°,则∠ADC=度.17.如图,△ABC沿DE折叠,点A落在边BC上的点A1处,连接AA1,△ABC的周长为C△ABC=8.给出下列结论:①AE=A1E;②∠BAC=∠EA1D;③DE垂直平分AA1;④C+C=8.正确结论的序号是.三、解答题(一)(3个题,每题6分,共18分)18.计算:()﹣1+(π﹣3)0﹣(﹣2)2.19.先化简,再求值:(a+2b)(a+b)+(a﹣b)2,其中a=﹣1,b=2.20.弹簧挂上物体后会伸长,测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)间有下面关系(假设弹簧在弹性限度内):x012345y1010.51111.51212.5(1)根据表格,直接写出y与x之间的关系式为;(2)求挂了10千克的物体后弹簧的长度.四、解答题(二)(3个题,每题8分,共24分)21.如图,在钝角△ABC中.(1)用尺规作图法作AC的垂直平分线,与边BC、AC分别交于点D、E(保留作图痕迹,不用写作法);(2)在(1)的条件下,画出△ABC的AC边上的高BH(可用三角板画图),连接AD,直接写出∠ADE和∠HBC的大小关系.22.一个不透明的盒子里装有红、蓝、黄三种颜色的小球共60个,它们除颜色外其它均相同,其中红球有20个,蓝球比黄球多4个,随机的从盒子里摸出一个球.(1)求摸出一球是红球的概率;(2)求摸出一球是黄球的概率.23.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.五、解答题(三)(2个小题,每小题10分,共20分)24.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.25.在△ABC中,AB=BC=12,∠ABC=90°.如图1,过点A作AH⊥AB,点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位.连结BD、DE,延长DE交直线BC于点M.当E到达点B时两点停止运动,设运动时间为t.(1)如图1,请直接写出AC与DM的位置关系和数量关系;(2)如图2,若改为在线段AB的上方作AH⊥AB,其它条件保持不变.①写出AC与DM的关系;当t=3时,判断△AEC和△MBD是否是全等三角形?并说明判断的理由;②连结CD和CE,求△CDE的面积y与t的关系式,并写出当t=3时y的值.参考答案一、选择题(10个题,每题3分,共30分)1.下列图形是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义分析得出答案.解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意.故选:D.2.将0.0012用科学记数法表示为()A.1.2×10﹣2B.1.2×10﹣3C.1.2×10﹣4D.1.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0012=1.2×10﹣3.故选:B.3.下列说法正确的是()A.明天会下雨是必然事件B.随机事件发生的概率为C.概率很小的事件不可能发生D.不可能事件发生的概率为0【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.解:A.明天会下雨是随机事件,故此选项错误;B.随机事件发生的概率为0到1之间;故此选项错误;C.概率很小的事件也有可能发生,故此选项错误;D.不可能事件发生的概率为0,此选项正确;故选:D.4.三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.5.计算(x2)3的结果是()A.x6B.x5C.3x2D.6x【分析】根据幂的乘方,底数不变指数相乘计算即可.解:(x2)3=x2×3=x6.故选:A.6.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°【分析】根据直角三角形两锐角互余列式计算即可得解.解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:C.7.下列计算正确的是()A.(3×103)2=6×105B.36×32=38C.(﹣)4×34=﹣1D.36÷32=33【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.解:A、(3×103)2=9×106,故此选项错误;B、36×32=38,正确;C、(﹣)4×34=1,故此选项错误;D、36÷32=34,故此选项错误;故选:B.8.若等腰三角形的顶角为50°,则它的底角度数为()A.40°B.50°C.65°D.60°【分析】等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和定理直接求出底角,答案可得.解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°﹣50°)÷2=65°.故选:C.9.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°【分析】直接利用平行线的判定方法分别分析得出答案.解:A、当∠3=∠C时,DE∥AC,符合题意;B、当∠1=∠3时,EF∥BC,不符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意;故选:A.10.小红从家出发去晨跑,她离开家和返回的距离y(米)与时间x(分)的关系图象如图所示.下列结论错误的是()A.出发10分钟时,小红距离家1000米B.整个晨跑过程一共走了3600米C.返回时速度为60米/分D.去时的平均速度小于返回速度【分析】①由x=10时y=1000可得出A结论正确;②整个晨跑过程一共走了1800×2=3600米,B结论正确;③返回时速度为:1800÷(30﹣20)=180(米/分),可得C 结论错误;⑤去时的平均速度为:1800÷20=90(米/分),故D结论正确.解:由图象可得:x=10时y=1000,即出发10分钟时,小红距离家1000米,故本选项不合题意;B.整个晨跑过程一共走了1800×2=3600(米),故本选项不合题意;C.返回时速度为:1800÷(30﹣20)=180(米/分),故本选项符合题意;D.去时的平均速度为:1800÷20=90(米/分),即去时的平均速度小于返回速度,故本选项不合题意.故选:C.二、填空题(7小题,每题4分,共28分)11.正方形有4条对称轴.【分析】根据正方形是轴对称图形的性质分析.解:根据正方形的性质得到,如图:正方形的对称轴是两组对边中线所在直线和两组对角线所在直线,共有4条.故答案为:4.12.计算:2a•3a2=6a3.【分析】利用单项式与单项式相乘的乘法法则运算.解:原式=6a3.故答案为6a3.13.计算:4x2÷(2x)=2x.【分析】直接利用整式的除法运算法则计算得出答案.解:4x2÷(2x)=2x.故答案为:2x.14.如图,∠A=∠D,∠1=∠2,要得到△ABC≌△DEF,添加一个条件可以是DF=AC或CD=AF..【分析】根据ASA即可解决问题.解:∵∠1=∠2,∠D=∠A,∴要得到△ABC≌△DEF,必须添加条件DF=AC或CD=AF.故答案为:DF=AC或CD=AF.15.某路口东西方向红绿灯的设置时间为:红灯30s,绿灯27s,黄灯3s.司机甲随机的从东往西开车到达该路口,请问他遇到红灯的概率是.【分析】根据题目中的数据,可以计算出司机甲遇到红灯的概率.解:由题意可得,司机甲遇到红灯的概率是=,故答案为:.16.如图,AD为∠BAE的平分线,AB∥CD.若∠BAE=40°,则∠ADC=20度.【分析】根据角平分线的定义求出∠DAB,根据平行线的性质得出∠ADC=∠DAB,代入求出即可.解:∵AD为∠BAE的平分线,∠BAE=40°,∴∠DAB=BAE=20°,∵AB∥CD,∴∠ADC=∠DAB=20°,故答案为:20.17.如图,△ABC沿DE折叠,点A落在边BC上的点A1处,连接AA1,△ABC的周长为C△ABC=8.给出下列结论:①AE=A1E;②∠BAC=∠EA1D;③DE垂直平分AA1;④C+C=8.正确结论的序号是①②③④.【分析】由折叠的性质可得AE=A1E,AD=A1D,∠BAC=∠EA1D,可得DE垂直平分AA1,由线段的和差关系可求C+C=8,即可求解.解:∵△ABC沿DE折叠,点A落在边BC上的点A1处,∴AE=A1E,AD=A1D,∠BAC=∠EA1D,故①②正确,∴DE垂直平分AA1,故③正确,∵△ABC的周长为C△ABC=8,∴AB+AC+BC=8,∵C+C=BE+A1E+A1B+CD+A1D+CA1=BE+AE+BC+AD+DC=AB+AC+BC,∴C+C=8,故④正确,故答案为:①②③④.三、解答题(一)(3个题,每题6分,共18分)18.计算:()﹣1+(π﹣3)0﹣(﹣2)2.【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.解:原式=3+1﹣4=0.19.先化简,再求值:(a+2b)(a+b)+(a﹣b)2,其中a=﹣1,b=2.【分析】根据整式的混合运算顺序进行化简,然后代入值进行计算即可.解:原式=a2+ab+2ab+2b2+a2﹣2ab+b2=2a2+ab+3b2,当a=﹣1,b=2时,原式=2×(﹣1)2+(﹣1)×2+3×22=12.20.弹簧挂上物体后会伸长,测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)间有下面关系(假设弹簧在弹性限度内):x012345y1010.51111.51212.5(1)根据表格,直接写出y与x之间的关系式为y=0.5x+10;(2)求挂了10千克的物体后弹簧的长度.【分析】(1)根据表格中的数据可以求得y与x的函数关系式;(2)把x=10代入(1)的结论解答即可.解:(1)由表格的数据可知,当x=0时,y=10,x每增加1kg,弹簧伸长0.5cm,∴y=0.5x+10;故答案为:y=0.5x+10;(2)把x=10代入y=0.5x+10得:y=5+10=15.即挂了10千克的物体后弹簧的长度为15cm.四、解答题(二)(3个题,每题8分,共24分)21.如图,在钝角△ABC中.(1)用尺规作图法作AC的垂直平分线,与边BC、AC分别交于点D、E(保留作图痕迹,不用写作法);(2)在(1)的条件下,画出△ABC的AC边上的高BH(可用三角板画图),连接AD,直接写出∠ADE和∠HBC的大小关系.【分析】(1)利用尺规作图法作AC的垂直平分线即可;(2)在(1)的条件下,画出△ABC的AC边上的高BH(可用三角板画图)即可,进而可以写出∠ADE和∠HBC的大小关系.解:(1)如图,AC的垂直平分线DE即为所求;(2)在(1)的条件下,AC边上的高BH即为所求.∠ADE和∠HBC的大小关系为:相等.理由如下:∵DE是AC的垂直平分线,∴DA=DC,AE=EC,又DE=DE,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵BH⊥AC,DE⊥AC,∴DE∥BH,∴∠CDE=∠HBC,∴∠ADE=∠HBC.22.一个不透明的盒子里装有红、蓝、黄三种颜色的小球共60个,它们除颜色外其它均相同,其中红球有20个,蓝球比黄球多4个,随机的从盒子里摸出一个球.(1)求摸出一球是红球的概率;(2)求摸出一球是黄球的概率.【分析】(1)用红球的个数除以球的总个数即可得;(2)设黄球有x个,则篮球有(x+4)个,根据三种颜色球的总个数为60列方程求出x 的值,再用黄色球的个数除以总个数即可得.解:(1)摸出一球是红球的概率为=;(2)设黄球有x个,则篮球有(x+4)个,根据题意,得:20+x+x+4=60,解得:x=18,∴袋子中黄球有18个,∴摸出一球是黄球的概率为=.23.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.【分析】(1)根据SAS证明三角形全等即可.(2)证明∠B=∠ACB=∠ACE=40°,推出∠DCE=80°,利用等腰三角形的性质以及三角形内角和定理解决问题即可.【解答】(1)证明:∵∠BAC=∠DAE=100°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∠BAC=100°,∴∠B=∠ACB=40°,∵△BAD≌△CAE,∴∠B=∠ACE=40°,∴∠DCE=∠BCA+∠ACE=80°,∵DE=DC,∴∠DEC=∠DCE=80°,∴∠EDC=180°﹣80°﹣80°=20°.五、解答题(三)(2个小题,每小题10分,共20分)24.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.【分析】(1)利用多项式除以单项式法则,以及平方差公式计算确定出A与B即可;(2)把化简得到A与B代入y﹣A=B中计算,得到y与x的关系式即可;(3)把y=7代入(2)中关系式计算求出x的值,即可求出所求.解:(1)A=(4x4﹣x2)÷x2=4x2﹣1,B=(2x+5)(2x﹣5)+1=4x2﹣25+1=4x2﹣24;(2)由y﹣A=B,得到y=A+B=4x2﹣1+4x2﹣24=8x2﹣25;(3)把y=7代入(2)中关系式得:8x2﹣25=7,即x2=4,则原式=8×4+(8×4﹣7)2﹣30=32+625﹣30=627.25.在△ABC中,AB=BC=12,∠ABC=90°.如图1,过点A作AH⊥AB,点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位.连结BD、DE,延长DE交直线BC于点M.当E到达点B时两点停止运动,设运动时间为t.(1)如图1,请直接写出AC与DM的位置关系和数量关系AC∥DM,AC=DM;(2)如图2,若改为在线段AB的上方作AH⊥AB,其它条件保持不变.①写出AC与DM的关系;当t=3时,判断△AEC和△MBD是否是全等三角形?并说明判断的理由;②连结CD和CE,求△CDE的面积y与t的关系式,并写出当t=3时y的值.【分析】(1)易证△DAE是等腰直角三角形,得∠DAE=90°,∠AED=45°,证明△ABC是等腰直角三角形,得AC=AB,∠BAC=∠ACB=45°,推出∠BAC=∠AED,则AC∥DM,过点D作DN⊥CB交CB延长线于N,则DN∥AB,由ASA证得△ADB≌△NBD,得DN=AB,证明△DNM是等腰直角三角形,得DM=DN,即可推出AC=DM;(2)①设AC与DM交F,证明∠DAF=45°,∠ADE=45°,则∠DFA=180°﹣∠DAF﹣∠ADF=90°,得出AC⊥DM,△DFA是等腰直角三角形,得DF=AF,证明△CFM是等腰直角三角形,得CF=MF,即可得出AC=DM;当t=3时,易证AD=AE=BE,△EBM是等腰直角三角形,得BM=BE,∠BME=45°,推出BM=AE,即可由SAS证得△AEC≌△MBD;②由△AFE是等腰直角三角形,得AF=t,CF=AC﹣AF=12﹣t,由△DAE 是等腰直角三角形,得DE=2t,由S△CDE=DE•CF,即可得出y与t的关系式,当t=3时代入即可得出y的值.【解答】(1)解:AC与DM的位置关系和数量关系是:AC∥DM,AC=DM;理由如下:∵点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位,∴AD=AE,∵AH⊥AB,∴△DAE是等腰直角三角形,∴∠DAE=90°,∠AED=45°,∵∠ABC=90°,AB=BC,∴△ABC是等腰直角三角形,∴AC=AB,∠BAC=∠ACB=45°,∴∠BAC=∠AED,∴AC∥DM,过点D作DN⊥CB交CB延长线于N,如图1所示:则DN∥AB,∴∠ABD=∠NDB,∵∠DAE=90°,∠ABC=90°,∴AD∥CN,∴∠ADB=∠NBD,在△ADB和△NBD中,,∴△ADB≌△NBD(ASA),∴DN=AB,∵AC∥DM,∴∠DMN=∠ACB=45°,∴△DNM是等腰直角三角形,∴DM=DN,∴AC=DM,故答案为:AC∥DM,AC=DM;(2)①AC与DM的关系为:AC⊥DM,AC=DM,理由如下:设AC与DM交F,如图2所示:∵△ABC是等腰直角三角形,∴∠BAC=∠BCA=45°,∵HA⊥AB,∴∠DAE=90°,∴∠DAF=90°﹣45°=45°,同(1)得:△DAE是等腰直角三角形,∴∠ADE=45°,∴∠DFA=180°﹣∠DAF﹣∠ADF=180°﹣45°﹣45°=90°,∴AC⊥DM,△DFA是等腰直角三角形,∴DF=AF,∴∠CFM=∠DFA=90°,∵∠ACB=45°,∴△CFM是等腰直角三角形,∴CF=MF,∴AF+CF=DF+MF,即AC=DM;当t=3时,△AEC和△MBD是全等三角形,如图3所示,理由如下:当t=3时,AE=AD=2×3=6,∴BE=AB﹣AE=12﹣6=6,∴AD=AE=BE,∵∠BEM=∠AED=45°,∴△EBM是等腰直角三角形,∴BM=BE,∠BME=45°,∴BM=AE,∵∠BAC=45°,∴∠EAC=∠BMD,在△AEC和△MBD中,,∴△AEC≌△MBD(SAS);②如图4所示:∵∠AED=45°,AC⊥DE,∴△AFE是等腰直角三角形,∴AF=AE=×2t=t,∵AC=AB=12,∴CF=AC﹣AF=12﹣t,∵△DAE是等腰直角三角形,∴DE=AE=×2t=2t,∵S△CDE=DE•CF,∴y=×2t×(12﹣t)=24t﹣2t2(0≤t≤6),当t=3时,y=24×3﹣2×32=54.。

最新广东省佛山市-七年级(下)期末数学试卷(含答案)

最新广东省佛山市-七年级(下)期末数学试卷(含答案)

2021-2021学年广东省佛山市顺德区七年级〔下〕期末数学试卷副标题题号 一 一 三 四 总分 得分一、选择题〔本大题共 9小题,共27.0分〕 1 .等腰AABC 中,/A=40:那么底角的大小为〔〕 A. B. C. D. 或 2. 以下运算正确的选项是〔 〕 A. B. C. D.3 .如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从 1 . 后脚印的点A 处垂直拉至起跳线l 的点B 处,然后记录AB 的长 X, 度,这样做的理由是〔 〕| .沙坑 BA.两点之间,线段最短B.过两点有且只有 一条直线C.垂线段最短D.过一点可以作无数条直线 4 .如图,把一块三角板的直角顶点放在直尺的一边上,如果 NZ2=58 °,那么Z1的大小是A. B. C. D. 5 .将常温中的温度计插入一杯 图象近似刻画的是〔A-K C. U 6 .卜列是轴对称图形的是〔 A. 〃/, B. 7 . 要使 x 2+mx+4= 〔x+2〕 2 位 哼60c 的热水中,温度计的度数与时间的关系引用卜列’B.匕• d〕.精品文档A. 4B.C. 2D.8.人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为〔〕A. B. C.9.如图,AD是AABC的角平分线,点E是AB边上一点,AE=AC,EF/EC,交AC于点F.以下结论正确的选项是〔〕①/ADE = /ADC;②ACDE是等腰三角形;③CE平分ZDEF ;④AD垂直平分CE;⑤AD = CE.A.①②⑤B.①②③④C.②④⑤D.①③④⑤二、填空题〔本大题共6小题,共24.0分〕10.计算:〔-2〕3X22=.11.下表是某种数学报纸的销售份数x 〔份〕与价钱y 〔元〕的统计表,观察下表:份数X 〔份〕1234…收入y 〔元〕0.5 1.0 1.5 2.0…那么买48份这种报纸应付元.12.m+n=2021, m-n= -------------- ,贝U m2-n2的值为13.如图,AD是等腰AABC底边BC上的中线,BC=6cm ,AD=9cm, 点E、F是AD的三等分点,那么阴影局部的面积为 .14.计算:〔2a+5〕〔a-3〕 =15.如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具〔卡钳〕,假设测得AB=8厘米,那么工件内槽AB宽为厘米.三、计算题〔本大题共4小题,共25.0分〕16.如图, BC是小BD的角平分线,BC=DC,〃=/E=30.,ZD=50 °.〔1〕写出AB=DE的理由;〔2〕求ZBCE的度数.精品文档17.先化简,再求值:[(x-2y) 2- (x+y) (x-y) -7y2] -2y,其中x=-, y=-2.18.计算:(-3a4) 2-a^%4-a10〞219.计算:|-|-2-1-(乃2021)四、解做题(本大题共5小题,共41.0分)20. 一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m个,其它均为黄球.现小李从盒子里随机摸出一个球,假设是红球,那么小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,假设为黄球,那么小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?21.某公司技术人员用沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行(1)如图1,测得/1 = /2,可判定a/b吗?请说明理由;(2)如图2,测得/1 = /2,且/3=4,可判定a/b吗?请说明理由;(3)如图3,假设要使a/b,那么/1与Z2应该满足什么关系式?请说明理由.精品文档22.如图,AC/BD.(1)作/BAC的平分线,交BD于点M (尺规作图, 留作图痕迹,不用写作法);(2)在(1)的条件下,试说明ZBAM = ZAMB .23.点A、D在直线l的同侧.(1)如图1,在直线l上找一点C.使得线段AC+DC最小(请通过画图指出点C 的位置);(2)如图2,在直线l上取两点B、E,恰好能使UBC和4DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,假设点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线1的位置关系,并说明理由.精品文档24.25.我们在小学已经学过了对边分别平行的四边形叫做平行四边形〞,如图1,平行四边形MNPQ的一边PQ作左右平移,图2反映它的边NP的长度(cm)随时间t(s)变化而变化的情况,请解答以下问题: (1)在这个变化过程中,自变量是(2)观察图2, PQ向左平移前,边NP的长度是规律写出0至5秒间l与t的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间1与t的关系式.PQ边的运动时间/s 891011121314NP的长度/cm 181512630精品文档 ____ ,cm,请你根据图象呈现的答案和解析1.【答案】D【解析】解:当40.的角是底角时,三角形的底角就是40.;当40.的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是70..应选:D.等腰三角形的两个底角相等,一个内角是40.,那么这个角可能是底角也可能是顶角.要分两种情况讨论. 此题考查了等腰三角形的性质;全面思考,馔讨论是正确解答此题的关键.2.【答案】A【解析】解:A、m2?m3=m5,正确;B、mn)2二m2n2,错误;C、m3)2=m6,错误;D、m6^m2=m4,错误;应选:A.根据同底数幕的乘法、积的乘方、幕的乘方与同底数幕的除法逐一计算即可得.此题主要考查事的运算,解题的关键是掌握同底数幕的乘法、积的乘方、幕的乘方与同底数幕的除法的运算法那么.3.【答案】C【解析】解:这样做的理由是垂线段最短.应选:C.垂线段的性质:垂戋段最短.精品文档精品文档考查了垂线段最短.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.4.【答案】D【解析】解:女圈所示:•••2=58° ,3=58 ;.•2=90 -58 =32 1应选:D.直接利用平行线的性质结合互余的性质得出答案.此题主要考查了平行线的性质,正确得出同位角是解题关键.5.【答案】B【解析】解:将常温中的温度计插入一杯60c的热水中,温度计的度数与时间的关系,图象是B;应选:B.根据温度计上升到一定的温度后不变,可得答案;此题考查了函数图象,注意温度计的温度升高到60度时温度不变.6.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;应选:B.根据如果一个图形沿一条直线折叠,直线两旁的局部能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.7.【答案】A【解析】精品文档精品文档解:: K+2)2=x2+4x+4, . m=4,应选:A.根据完全平方公式:a2受ab+b2= a力〕2可得答案.此题主要考查了公式法因式分解,关键是掌握完全平方公式.8.【答案】C【解析】解:0.0000051=5.1 10-6,应选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为axi0-n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.此题考查用科学记数法表示较小的数,一般形式为aX0-n,其中10|亦10, n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.【答案】B【解析】解:①:AD是BBC的角平分线,・•. zEAD= /CAD , 在BED和BCD中,[AE=AC[AD=AD.-.zAED^^ACD SAS),・•. jADE= /ADC故①正确;②•. △AED0MCD , .ED=DC,・•.£DE是等腰三角形;故②正确;③「DE=DC, ・•.©EC=ZDCE, .EF/BC,・•.©CE=/CEF, .-./DEC=ZCEF,精品文档精品文档. CE平分/DEF,故③正确;®/DE=DC,.•点D在线段EC的垂直平分线上,.AE=AC ,••点A在线段EC的垂直平分线上,「AD垂直平分CE.故④正确;⑤AD垂直平分CE,但无法确定AD=CE ,故⑤不正确;应选:B.根据三角形全等和等腰三角形的判定、垂直平分线的判定进行依次判断即可. 此题考查了全等三角形的判定与性质,等腰三角形的性质、线段垂直平分线的性质以及平行线的性质.止胆难度适中,注意掌握数形结合思想的应用.10.【答案】-32【解析】【分析】此题主要考查实数的运算,解题的关键是掌握乘方的运算法那么与实数的运算顺序.先计算立方和平方,再计算乘法即可得.【解答】解:原先-8>4=-32,故答案为-32.11.【答案】24【解析】解:在统计表知这种报纸每份0.5元,那么买48份这种报纸应付48X0.5=24元,故答案为:24.由统计表得出每份0.5元,据此可得.此题主要考查统计表,解题的关键是根据统计表得出解题所需的数据.精品文档精品文档12 .【答案】2021【解析】iji) 1 x解:如+口=2021, m-n=-. m 2-n 2= m+n) M-n) =2021.故答案为:2021.直接利用平方差公式将原式 变形进而得出答案.此题主要考查了平方差公式,正确将原式 变形是解题关键.13 .【答案】9cm 2【解析】解:•.BC=6cm, AD 是小BC 的中线,. BD=DC=3cm , AD 1BC, 丁./ABC关于直线AD 对称,「B 、C 关于直线AD 对称,・••/CEF 和4BEF 关于直线AD 对称,• SAAFC =S AAFB ,• •点E 、F 是AD 的三等分点,O-O• SAAFB =S ABED = Sm BD• •图中阴影局部的面 积是.1S3BD = ; X 』]33 >9=9cm 2.1 $J -故答案为:9cm 2.根据等腰三角形性 质求出BD=DC=3cm , AD 1BC,推出z\CEF 和4BEF 关于直 线AD 对称,得出S AAFC =S AAFB,根据图中阴影局部的面 积是S M BD 求出即 ■I J 可.此题考查了等腰三角形的性 质和轴对称的性质.避过观察可以发现是轴对称 图形,其中看出ACEF 和4BEF 关于直线AD 对称,面积相等是解决此题的关 键.14 .【答案】2a 2-a-15【解析】 精品文档=2021x 2021精品文档解:原先2a2-6a+5a-15=2/-a-15,故答案为:2a2-a-15.根据多项式乘以多项式的运算法那么计算可得.此题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.15.【答案】8【解析】解:连接A' B;•・两根钢条AA'、BB'的中点连在一起,. OA=OA , OB=OB ,r在AAOB 和AA' O升,II BO=BO• .zAOBw从OB'§AS〕.. AB=A' B' 18^,故答案为:8.连接A' B;可判定?OB04C OB,根据全等三角形的性质可得AB=A B' =8 厘米.此题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者边上来,从而求解.16.【答案】解:〔1〕・.BC是那BD的角平分线,.-.zCBD=ZCBA, . BC=DC, .-.zCBD=ZD=50°, .-.zCBD=ZCBA,在ACDE和ACBA中,・ KDE0"BA,.DE=AB;〔2〕由〔1〕知,ZCBD = ZD=50° ,.,.zBCD=80°,.MCB=100 °由〔1〕知, /DE^&BA,••.zDCE=ZBCA,精品文档精品文档.•.zBCD=ZACE=80°,・•. zBCE= ZACB-ZACE=20°.【解析】Q)先判断出/CBD=/CBA, /CBD=ZD=50,进而得出/CBD=/CBA,判断出△CDE03BA即可得出结论;2)先求出/ACB=100 ,在求出/ACE=80 ,即可得出结论.此题主要考查了全等三角形的判断和性质,等边对等角,三角形的外角的性质,判断出△CDE03BA是解此题的关键.17.【答案】解:原式=(x2-4xy+4y2-x2+y2-7y2)小=(-4xy-2y2)攵y=-2x-y,当x= _、y=-2 时,原式二-2 X-+2=-1+2=1 .【解析】先根据整式混合运算顺序和运算法那么化简原式,冉将x、y的值代入计算可得. 此题主要考查整式的混合运算-化简求值,解题的关键是掌握整式混合运算顺序和运算法那么.18.【答案】解:原式=9a -a -a =7a . 【解析】先计算幕的乘方与积的乘方、同底数幕的乘法、同底数幕的除法,再合并即可得. 此题主要考查事的运算,解题的关键是掌握幕的乘方与积的乘方、同底数幕的乘法、同底数幕的除法的运算法那么.19.【答案】解:门-2-1-(兀-2021) 0=--一-1=-1 .【解析】精品文档此题涉及零指数幕、负整数指数幕、绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法那么求得计算结果.此题主要考查了实数的综合运算水平,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幕、零指数幕、绝对值等考点的运算.20.【答案】解:〔1〕当m=4时,红球有4个、白球有12个、黄球有14个,那么小李摸到红球的概率是一=—;〔2〕假设要是双方摸到红球和黄球的概率相等,那么袋子中红球和黄球的数量相等,即m=30-m-3m,解得:m=6,即当m=6时,游戏对双方是公平的.【解析】1〕由当m=4时,红球有4个、白球有12个、黄球有14个,用红球数量除以球的总数即可得;2〕假设要是双方摸到红球和黄球的概率相等知袋子中红球和黄球的数量相等, 据此列出关于m的方程,解之可得.此题主要考查游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比拟概率的大小,概率相等就公平,否那么就不公平.21.【答案】解:〔1〕 a/b,理由是:•・•/ = /2,「a/b 〔内错角相等,两直线平行〕;(2)能,理由是:・・•/ = Z2, /3=/4, Z1+Z2=180° , 73+74=180° ,,/ = /2=90 °, 73= 4=90 °,/ = /4,. a /b;(3) /1+2/2=180°,图3/3=/4,理由是:根据折叠得: 精品文档.a /b,・•・/ + /3+/4=180 : /2=/4,,/+2 72=180 :【解析】1〕根据平行线的判定得出即可;2〕求此1和/4的度数,再根据平行线的判定推出即可;3〕根据折叠得出/3=/4,根据平行线的性质得出/1 + /3+/4=180°, Z2=/4, 即可得出答案.此题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.22.【答案】解:(1)如右图所示;(2) .AM 平分/BAC, .-.zCAM=ZBAM,.AC /BD,••.zCAM=ZAMB,• .zBAM=/AMB.【解析】Q〕根据角平分线的作法可以解答本题;2〕根据角平分线的性质和平行线的性质可以解答此题.此题考查根本作图、角平分线的性质、平行线的性质,解答此题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.23.【答案】解:(1)如图1所示,点C就是所求作;(2)①EM = DN,理由:••点M、N分别是AC、BC的中点,. CM=-AC, CN=-BC,•.•第BC是等边三角形,zACB=60 °, AC=BC,.-.zECM=120 °, CM = CN,•DE是等边三角形,.,.zDCE=60 °, CE = CD, . . NCD=120 °,在房DN和ACEM中,. KDN0工EM , .EM=DN;精品文档②FG K理由:如图3,连接FG, 由运动知,AM=BN,.AC=BC,.CM=BN,在Z^CDN 和ACEM 中,. KDN0工EM ,,zCDN = /CEM ,••• zACB= ZDCE=60°, .MCD=60°= ZDCE,在ADCG和AECF中,.-.ZDCG^^ECF,.CF=CG,,.zFCG=60°,••・&FG是等边三角形,••.zCFG=60 = ZECF,. FG /BC,即:FG /L【解析】Q)先作出点A关于直线l的对称点A'连接DA'交直线l于点C;2)①先判断出CM=CN , /DCN=/ECM=120,进而判断出△CDNWZCEM ,即可得出结论;②同①的方法判断出△CDNWZCEM ,得出/CDN=/CEM ,进而判断出△DCG0在CF,得出CF=CG,得出^OFG是等边三角形即可得出结论.此题是三角形综合题,主要考查了中垂线的作法,等边三角形的性质和判定, 全等三角形的判定和性质,平行线的判定,判断出△CDN03EM是解此题的关键.24.【答案】t; NP; (2t+8) ; 9【解析】解:10这个变化过程中,自变量是时间3 展量NP的长度,故答案为:t, NP;精品文档精品文档2)伸2知,0至5秒间图象呈现的是一段线段,且过点0,8) ,5,(18),设此线段的解析式为NP=kt+8 0<t^5,.•.18=5k+8, . k=2,••线段的解析式为NP=2t+8 0& t癸.故答案为2t+8);3)伸2知,8至14秒间图象呈现的也是一段线段,由表知,此线段过点8,18) ,14,0),设此线段的解析式为NP=k't+b 8<t<14,{融'+&=妨1 1V - h 11 ,.(L一. NP=-3t+42 8< t <) 14当t=11 时,NP=-3X 11+42=9,故答案为9.1)根据酸量和因变量的概念即可得出结论;2)利用待定系数法即可得出结论;3)利用待定系数法即可得出结论.此题是一次函数综合题,主要考查了待定系数法,函数的概念,根据图形的变换和图2的函数图象求出函数关系式是解本题的关键.精品文档。

2019-2020学年广东省佛山市顺德区七年级(下)期末数学试卷 (含答案解析)

2019-2020学年广东省佛山市顺德区七年级(下)期末数学试卷 (含答案解析)

2019-2020学年广东省佛山市顺德区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个交通标志图中,是轴对称图形的是()A. B. C. D.2.用科学记数法表示−0.0000031,结果是()A. −3.1×10−4B. 3.1×10−6C. −0.31×10−5D. −3.1×10−63.必然事件的概率是()A. −1B. 0C. 0.5D. 14.已知三角形的两边长分别是3和5,那么第三边a的长的取值范围是()A. 3<a<5;B. 3<a<8;C. 2≤a≤8;D. 2<a<8.5.计算:(ab2)3=()A. 3ab2B. ab6C. a3b6D. a3b26.已知直角三角形的一个锐角是50 ∘,则另一个锐角的度数是()A. 40 ∘B. 60 ∘C. 45 ∘D. 30 ∘7.下列计算正确的是()A. x7÷x=x7B. (−3x2)2=−9x4C. x3⋅x3=2x6D. (x3)2=x68.等腰三角形的顶角的度数为70°,那么一个底角的度数为()A. 35°B. 55°C. 65°D. 110°9.如图,下列条件能判定AD//BC的是()A. ∠C=∠CBEB. ∠C+∠ABC=180°C. ∠FDC=∠CD. ∠FDC=∠A10.小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分,其中正确的有()A. ①④B. ②③C. ②③④D. ②④二、填空题(本大题共7小题,共28.0分)11.等边三角形有______条对称轴.12.计算:2a2⋅3ab=______.13.2a2÷4a=______ .14. 已知:如图,AB =DC ,BE =CF ,要得到△ABE≌△DCF ,添加的一个条件可以是________.15. 某路口的交通信号灯,红灯亮35 s 、绿灯亮25 s 、黄灯亮5 s ,依次循环,绿灯亮可以通行,则行人随意行走至该路口,可以通行的概率是__________.16. 如图,AB//ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG = ______ .17. 如图,△ABC 中,BA =BC ,∠ABC =40°,∠ABC 的平分线与BC 的垂直平分线交于点O ,E 在AB 边上,F 在AC 边上,将∠A 沿直线EF 翻折,使点A 与点O 恰好重合,则∠OEF 的度数是______.三、计算题(本大题共1小题,共6.0分) 18. 计算:−(−2)+(π−3.14)0+√273+(−13)−1四、解答题(本大题共7小题,共56.0分) 19. 先化简,再求值:(2x +3y)2−2(2x +3y)(2x −3y)+(2x −3y)2,其中x =12,y =13.20. 悬挂物体质量x(kg) 0 1 2 3 4 … 弹簧长度L(cm)1212.51313.514…试根据表中各对应值解答下列问题.(1)用代数式表示悬挂质量为x kg 的物体时的弹簧长度L ; (2)求所挂物体质量为10kg 时,弹簧长度是多少?(3)若测得弹簧长度为19cm ,判断所挂物体质量是多少千克?21. 如图,在△ABC 中,AC >BC .(1)尺规作图:在AC 上作点P ,使点P 到点A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)在(1)的条件下,连接PB.若AC =22cm ,BC =16cm ,AB =25cm ,求△BCP 的周长.22. 用4个除颜色外都相同的小球设计一种游戏,使得:(1)从中任意摸出1个球,摸到白球和红球的概率都为12;(2)从中任意摸出1个球,摸到红球的概率为12,摸到白球的概率为14.23.如图,已知:AB=AC,BD=CD,E为AD上一点.求证:(1)△ABD≌△ACD;(2)∠BED=∠CED.24.[(3x+4y)2−3x(3x+4y)]÷(−4y).25.(1)已知△ABC为等边三角形,动点D在边AC上,动点P在边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连结AP、BD交于Q,两点运动的过程中,AP=BD成立吗?请证明你的结论.(2)如果把原题中的“动点D在边AC上,动点P在边BC上,”改为:“动点D在射线CA上、动点P在射线BC上运动,”其他条件不变,如图2所示,AP=BD还成立吗?说明理由,并求出∠BQP的大小.(3)如果把原题中的“动点P在边BC上”,改为“动点P在射线AB上运动”,连结DP交BC于E,其他条件不变,如图3,则动点D、P在运动过程中,请你写出DE与PE的数量关系.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念对各选项分析判断后利用排除法求解即可.【解答】解:A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.2.答案:D解析:解:−0.0000031=−3.1×10−6,故选D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.答案:D解析:解:∵必然事件就是一定发生的事件∴必然事件发生的概率是1.故选D.根据必然事件就是一定发生的事件,即发生的概率是1的事件即可解答.本题主要考查随机事件的意义;事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中:①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.4.答案:D解析:【分析】本题考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边;根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【解答】解:∵三角形的两边长分别是3和5;∴第三边a的长的取值范围是5−3<a<5+3即2<a<8.5.答案:C解析:【分析】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号的运算.根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.【解答】解:(ab2)3,=a3(b2)3,=a3b6故选:C.6.答案:A解析:【分析】本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵直角三角形中,一个锐角等于50°,∴另一个锐角的度数=90°−50°=40°.故选A.7.答案:D解析:解:A、x7÷x=x6,故此选项错误;B、(−3x2)2=9x4,故此选项错误;C、x3⋅x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.8.答案:B解析:【分析】本题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为(180°−70°)÷2=55°.故选B.解析:【分析】本题考查的是平行线的判定,熟练掌握内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行是本题的关键.根据平行线的判断对每一项分别进行分析即可得出答案.【解答】解:A、∵∠C=∠CBE,∴DC//AB,故本选项错误;B、∵∠C+∠ABC=180°,∴DC//AB,故本选项错误;C、∵∠FDC=∠C,∴AD//BC,故本选项正确;D、∵∠FDC=∠A,∴DC//AB,故本选项错误;故选C.10.答案:C解析:解:①小明上学途中下坡路的长为1800−600=1200(米).②小明上学途中上坡速度为:600÷4=150(米/分),下坡速度为:1200÷6=200(米/分).③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,小明返回时经过这段路所用时间为:600÷200+1200÷150=11(分钟),所以小明返回时经过这段路比上学时多用1分钟;④设上坡速度为x(米/分),根据题意得,1200x +6001.5x=10,解得x=120,经检验,x=160是原方程的解.所以返回时上坡速度是160米/分.综上所述,正确的有②③④.故选:C.①根据题意和函数图象可以得到下坡路的长度;②利用路程除以时间求得上坡速度和下坡的速度;③根据“路程除以速度=时间”求解即可;④设上坡速度为x(米/分),根据题意列方程即可求解.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.11.答案:3解析:解:等边三角形有3条对称轴.故答案为:3.轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.正确理解轴对称图形的定义是解决本题的关键,本题是一个基础题.12.答案:6a3b解析:解:2a2⋅3ab=6a3b,故答案为:6a3b.根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,计算可得.本题主要考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.13.答案:a2解析:解:2a2÷4a=a2.故答案为:a2.直接利用整式除法运算法则求出答案.此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.14.答案:AE=DF解析:【分析】此题考查了全等三角形的判定,熟练掌握三角形全等的判定方法并根据已知条件确定使用的方法是解题的关键.由已知可得两三角形两组对应边相等,然后根据全等三角形的判定方法解答即可.【解答】解:由题意两三角形的两组对应边相等,所以可利用SSS得全等三角形,则可添加AE=DF.故答案为AE=DF.15.答案:513解析:【分析】本题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据红灯亮35s、绿灯亮25s、黄灯亮5s,一共为35+25+5=65s,但绿灯有25s,则概率为2565=513.【解答】解:可以通行的概率是2535+25+5=513故答案为:513.16.答案:145°解析:解:∵AB//ED,∠ECF=70°,∴∠BAC=∠FCE=70°,∴∠BAF=180°−70°=110°,∵AG平分∠BAC,∴∠BAG=12∠BAC=35°,∴∠FAG=∠BAF+∠BAG=110°+35°=145°,故答案为:145°.根据平行线的性质求出∠BAC,求出∠BAF和∠BAG,即可得出答案.本题考查了平行线的性质和角平分线定义,能正确根据平行线的性质求出∠BAC是解此题的关键,注意:两直线平行,内错角相等.17.答案:70°解析:解:如图,连接OA、OC,∵∠ABC=40°,BO为∠ABC的平分线,∴∠OBD=12∠ABC=20°.又∵BA=BC,∴∠BAC=∠BCA=12(180°−∠ABC)=12×(180°−40°)=70°.∵DO是BC的垂直平分线,∴OB=OC.∴∠OCB=∠OBC=20°.在△AOB和△COB中,{AB=BC∠ABO=∠CBO BO=BO,∴△AOB≌△COB,∴∠BAO=∠OCB=20°.由翻折的性质可知:OA⊥EF,∠AEF=∠OEF.∴∠AEF=90°−20°=70°.∴∠OEF=70°.故答案为:70°.连接OA、OC,根据角平分线的定义求出∠DBO=20°,根据等腰三角形两底角相等求出∠BAC=∠BCA=70°,再根据线段垂直平分线上的点到线段两端点的距离相等可得OB=OC,根据等边对等角可得∠DCO=∠DBO=20°,然后证明△ABO≌△CBO,于是得到∠EAO=∠BCO=20°,根据翻折的性质可知OA⊥EF,∠AEF=∠OEF,从而可求得∠OEF=70°.本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.18.答案:解:原式=2+1+3−3=3.解析:直接利用立方根的性质以及零指数幂的性质以及负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.答案:解:原式=[(2x+3y)−(2x−3y)]2=(2x+3y−2x+3y)2=(6y)2=36y2,当y =13时,原式=36×19=4.解析:本题主要考查整式的混合运算−化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.根据完全平方公式可得原式=[(2x +3y)−(2x −3y)]2,再进一步计算即可化简,再将y 的值代入计算可得.20.答案:解:(1)∵弹簧称所挂重物质量x(g)与弹簧长度L(cm)之间是一次函数关系,∴设L =kx +b ,取点(0,12)与(1,12.5),则{b =12k +b =12.5, 解得:{b =12k =0.5, 故L 与x 之间的关系式为L =0.5x +12;(2)当x =10时,L =0.5×10+12=17,答:当所挂物体的质量为10千克时,弹簧的长度是17厘米.(3)当L =19cm ,则19=0.5x +12,解得:x =14,答:所挂物体质量是14千克.解析:(1)观察即可得规律:弹簧称所挂重物质量x 与弹簧长度L 之间是一次函数关系,然后由待定系数法求解即可;(2)将x =10代入解析式,求出L 的值,即可求得答案;(3)将L =19代入求出即可.此题考查了一次函数的应用.解题的关键是根据题意求得一次函数的解析式.21.答案:解:(1)如图:(2)在△ABC 中,∵AC =22cm ,BC =16cm ,AB =25cm ,∵PE 为AB 的中垂线,∴PA=PB,∴△BCP的周长=BC+BP+CP=BC+AP+CP=BC+AC=22+16=38(cm).解析:本题考查了线段垂直平分线的性质以及作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)作线段AB的垂直平分线即可;(2)利用线段垂直平分线的性质得到PA=PB,则可把△BCP的周长转为AC与BC的和,从而解决问题.22.答案:解:(1)例如,4个球中设计2个白球,2个红球,则摸到白球和红球的概率都为12;(2)例如,4个球中,设计2个红球,1个白球,1个黄球,则摸到红球的概率为12,摸到白球的概率为14.解析:本题考查概率公式,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件甲出现m种结果,那么事件甲的概率P(A)=mn.(1)只包含白球和红球且白球与红球的个数相同即可;(2)只要红球的个数占总球个数的一半,白球的个数占总球个数的四分之一即可.23.答案:证明:(1)在△ABD和△ACD中,{AB=AC BD=CD AD=AD,∴△ABD≌△ACD(SSS).(2)∵△ABD≌△ACD,∴∠ADB=∠ADC,在△EDB和△EDC中,{DB=DC∠BDE=∠CDE DE=DE,∴△EDB≌△EDC(SAS),∴∠BED=∠CED.解析:(1)根据SSS即可证明△ABD≌△ACD;(2)只要证明△EDB≌△EDC(SAS),即可推出∠BED=∠CED;本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.24.答案:解:[(3x+4y)2−3x(3x+4y)]÷(−4y)=(9x2+16y2+24xy−9x2−12xy)÷(−4y)=(16y2+12xy)÷(−4y)=−4y−3x.解析:首先利用完全平方公式以及单项式乘以多项式将原式化简,进而利用整式除法运算法则求出答案.此题主要考查了完全平方公式以及单项式乘以多项式和整式除法运算等知识,正确掌握相关运算法则是解题关键.25.答案:解:(1)成立,理由如下:∵△ABC是等边三角形,∴∠C=∠ABP=60°,AB=BC,由题意得,CD=BP,在△ABP和△BCD中,{AB=BC∠ABP=∠C BP=CD,∴△ABP≌△BCD,∴AP=BD;(2)AP=BD成立,理由如下:由题意得,CP=AD,∴CP+BC=AD+AC,即BP=CD,在△ABP和△BCD中,{AB=BC∠ABP=∠BCD BP=CD,∴△ABP≌△BCD,∴AP=BD,∠APB=∠BDC,∵∠APC+∠PAC=∠ACB=60°,∠DAQ=∠PAC,∴∠BQP=∠DAQ+∠BDC=60°;(3)DE=PE,理由如下:作DH//AB交BC于H,则△CDH为等边三角形,∠HDE=∠P,∴DH=CD,∵CD=BP,∴DH=BP,在△HDE和△BPE中,{∠HDE=∠P∠HED=∠BEP DH=BP,∴△HDE≌△BPE,∴DE=PE.解析:(1)根据等边三角形的性质得到∠C=∠ABP=60°,AB=BC,证明△ABP≌△BCD,根据全等三角形的性质解答;(2)证明△ABP≌△BCD,根据全等三角形的性质得到AP=BD,根据三角形的外角的性质求出∠BQP;(3)作DH//AB交BC于H,得到△CDH为等边三角形,得到DH=CD,证明△HDE≌△BPE,根据全等三角形的性质证明.本题考查的是全等三角形的判定和性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

佛山顺德区2018-2019学度初一下年末考试数学试题(含解析).doc

佛山顺德区2018-2019学度初一下年末考试数学试题(含解析).doc

AC BF ED佛山顺德区2018-2019学度初一下年末考试数学试题(含解析)七年级数学试卷说明:本试卷共4页,总分值120分,考试时刻100分钟.考前须知:1.所有解答全部写〔涂〕在答题卡相应旳位置上,不能答在试卷上.2.用铅笔进行画线、绘图时,要求痕迹清晰.【一】选择题〔每题3分,共30分〕1.以下是轴对称图形旳是〔〕A.B. C.D.2.人体内旳淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为〔〕A.0.51×10-5B.0.51×105C.5.1×10-6D.0.51×1063.以下运算正确旳选项是〔〕A.m2•m3=m5B.2()mn=mn2C.32()m=m9D.m6÷m2=m34.气象台预报“改日下雨旳概率是85%”.对此信息,以下说法正确旳选项是〔〕A.改日将有85%旳地区下雨B.改日将有85%旳时刻下雨C.改日下雨旳可能性比较大D.改日确信下雨5.要使x2+mx+4=(x+2)2成立,那么m旳值是〔〕A.4B.-4C.2D.-26.如图是小希同学跳远时沙坑旳示意图,测量成绩时先用皮尺从后脚印旳点A处垂直拉至起跳线l 旳点B处,然后记录AB旳长度,如此做旳理由是〔〕A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点能够作许多条直线7.如图,把一块三角板旳直角顶点放在直尺旳一边上.假如∠2=58º,那么∠1旳大小是〔〕A.58ºB.48ºC.42ºD.32º8.等腰△ABC中,∠A=40º,那么旳大小为〔〕A.40ºB.70ºC.100ºD.40º或70º9.将常温中旳温度计插入一杯旳热水中,温度计旳度数与时刻旳关系可用以下图象近似刻画旳是〔〕A.B.C.D.10.如图,AD是△ABC旳角平分线,点E是AB边上一点,第6题图第7题图AE =AC ,EF ∥BC ,交AC 于点F 、以下结论正确旳选项是〔〕①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分∠DEF ;④AD 垂直平分CE ;⑤AD =CE 、A.①②⑤B.①②③④C.②④⑤D.①③④⑤【二】填空题〔每题4分,共24分〕11.计算:()3222-⨯= 、12.计算:(25)(3)a a +-= 、13.如图,把两根钢条AA '、BB '旳中点连在一起,能够做成一个测量内槽宽旳工具〔卡钳〕、假设测得A B ''=8厘米,那么工件内槽AB 宽为 厘米、第13题图第16题图14.2019m n +=,20182019m n -=,那么22m n -旳值为 、 15.下表是某种数学报纸旳销售份数x 〔份〕与价钱y 〔元〕旳统计表,观看下表: 份数x 〔份〕 1 2 3 4 价钱y 〔元〕 0.5 1.0 1.5 2.0那么买48份这种报纸应付 元、16.如图,AD 是等腰△ABC 底边BC 上旳中线,BC =,AD =,点E 、F 是AD 旳三等分点,那么阴影部分旳面积为 、【三】解答题〔一〕〔每题6分,共18分〕 17.计算:()011||220182π----18.计算:4234102(3)a a a a a a --⋅⋅-÷19.先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==- 【四】解答题〔二〕〔每题7分,共21分〕20.如图,AC ∥BD.〔1〕作BAC ∠旳平分线,交BD 于点M 〔尺规作图,保留作图痕迹,不用写作法〕;〔2〕在〔1〕旳条件下,试说明BAM AMB ∠=∠.21.一个不透明旳盒子里装有30个除颜色外其它均相同旳球,其中红球有个,白球有3个,其它均为黄球、现小李从盒子里随机摸出一个球,假设是红球,那么小李获胜;小李把摸出旳球放回盒子里摇匀,由小马随机摸出一个球,假设为黄球,那么小马获胜、〔1〕当m =4时,求小李摸到红球旳概率是多少?〔2〕当m 为何值时,游戏对双方是公平旳?22.如图,BC 是△ABD 旳角平分线,BC =DC ,∠A =∠E =30°,∠D =50°、〔1〕写出AB =DE 旳理由;〔2〕求∠BCE 旳度数、 【五】解答题〔三〕〔每题9分,共27分〕第10题图第20题图 第22题图图1N M Q P 23.某公司技术人员用“沿直线AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”、〔1〕如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;〔2〕如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由;〔3〕如图3,假设要使a∥b ,那么∠1与∠2应该满足什么关系式?请说明理由、24.我们在小学差不多学过了“对边分别平行旳四边形叫做平行四边形”、如图1,平行四边形MNPQ 旳一边作左右平移,图2反映它旳边NP 旳长度l (cm)随时刻t (s)变化而变化旳情况、请解答以下问题: 〔1〕在那个变化过程中,自变量是﹏﹏﹏﹏﹏﹏,因变量是﹏﹏﹏﹏﹏﹏﹏; 〔2〕观看图2,PQ 向左平移前,边NP 旳长度是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏cm ,请你依照图象呈现旳规律写出0至5秒间l 与t 旳关系式;〔3〕填写下表,并依照表中呈现旳规律写出8至14秒间l 与t 旳关系式、25.点A 、D 在直线l 旳同侧.〔1〕如图1,在直线l 上找一点C ,使得线段AC+DC 最小〔请通过画图指出点C 旳位置〕;〔2〕如图2,在直线l 上取两点B 、E ,恰好能使△ABC 和△DCE 均为等边三角形.M 、N 分别是线段AC 、BC 上旳动点,连结DN 交AC 于点G ,连结EM 交CD 于点F .①当点M 、N 分别是AC 、BC 旳中点时,推断线段EM 与DN 旳数量关系,并说明理由;②如图3,假设点M 、N 分别从点A 和B 开始沿AC 和BC 以相同旳速度向点C 匀速运动,当M 、N与点C 重合时运动停止,推断在运动过程中线段GF 与直线l 旳位置关系,并说明理由.图2。

精选佛山市顺德区七年级下册期末考试数学试题(有答案)

精选佛山市顺德区七年级下册期末考试数学试题(有答案)

顺德区七年级第二学期期末教学质量检测数学试卷说明:本试卷共4页,满分120分,考试时间100分钟. 注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B 处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()第6题图ACB FEDA. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()A. B. C. D.10. 如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯=.12. 计算:(25)(3)a a+-=.13. 如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得A B''=8厘米,则工件内槽AB宽为厘米.第13题图第16题图14.已知2019m n+=,20182019m n-=,则22m n-的值为.15. 下表是某种数学报纸的销售份数x(份)与价钱y(元)的统计表,观察下表:份数x(份) 1 2 3 4价钱y(元)0.5 1.0 1.5 2.0则买48份这种报纸应付元.16. 如图,已知AD是等腰△ABC底边BC上的中线,BC=,AD=,点E、F是AD的三等分点,则阴影部分的面积为.三、解答题(一)(每小题6分,共18分)第7题图第10题图17. 计算:()011||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由; (2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边第20题图第22题图形”.如图1,平行四边形MNPQ的一边作左右平移,图2反映它的边NP的长度l(cm)随时间t(s)变化而变化的情况.请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ向左平移前,边NP的长度是____________cm,请你根据图象呈现的规律写出0至5秒间l与t的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l与t的关系式.25. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.图2PQ边的运动时间/s8 9 10 11 12 13 14 NP的长度/cm 18 15 12 6 3 0。

2019年佛山市顺德区七年级下期末考试数学试题(含答案)

2019年佛山市顺德区七年级下期末考试数学试题(含答案)

顺德区—度第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟. 注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()A. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()第6题图第7题图AC BFEDA. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点,AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( )①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分 ∠DEF ; ④ AD 垂直平分CE ;⑤AD =CE . A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯= . 12. 计算:(25)(3)a a +-= .13. 如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得 A B ''=8厘米,则工件内槽AB 宽为厘米.第13题图 第16题图14.已知 2019m n +=,20182019m n -=,则 22m n - 的值为 . 15. 下表是某种数学报纸的销售份数x (份)与价钱y (元)的统计表,观察下表:份数x (份) 1 2 3 4 价钱y (元)0.51.01.52.0则买48份这种报纸应付 元.16. 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC = ,AD =,点E 、F 是AD 的三等分点,则阴影部分的面积为 .三、解答题(一)(每小题6分,共18分) 17. 计算:()011||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷第10题图图1NMQP19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由; (2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边 形”.如图1,平行四边形MNPQ 的一边作左右平移,图 2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t的关系式;第20题图第22题图(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.25. 已知点A 、D 在直线l 的同侧.(1)如图1,在直线l 上找一点C ,使得线段AC+DC 最小(请通过画图指出点C 的位置);(2)如图2,在直线l 上取两点B 、E ,恰好能使△ABC 和△DCE 均为等边三角形.M 、N 分别是线段AC 、BC 上的动点,连结DN 交AC 于点G ,连结EM 交CD 于点F .① 当点M 、N 分别是AC 、BC 的中点时,判断线段EM 与DN 的数量关系,并说明理由;② 如图3,若点M 、 N 分别从点A 和B 开始沿AC 和BC 以相同的速度向点C 匀速运动,当M 、N 与点C 重合时运动停止,判断在运动过程中线段GF 与直线l 的位置关系,并说明理由.图2PQ 边的运动时间/s 8 9 10 11 12 13 14 NP 的长度/cm 18151263。

新编佛山市顺德区七年级下册期末考试数学试题(有答案)

新编佛山市顺德区七年级下册期末考试数学试题(有答案)

顺德区七年级第二学期期末教学质量检测数学试卷说明:本试卷共4页,满分120分,考试时间100分钟. 注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是 85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B 处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()第6题图ACB FEDA. 40ºB. 70ºC. 100ºD. 40º或70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()A. B. C. D.10. 如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯=.12. 计算:(25)(3)a a+-=.13. 如图,把两根钢条AA'、BB'的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得A B''=8厘米,则工件内槽AB宽为厘米.第13题图第16题图14.已知2019m n+=,20182019m n-=,则22m n-的值为.15. 下表是某种数学报纸的销售份数x(份)与价钱y(元)的统计表,观察下表:份数x(份) 1 2 3 4价钱y(元)0.5 1.0 1.5 2.0则买48份这种报纸应付元.16. 如图,已知AD是等腰△ABC底边BC上的中线,BC=,AD=,点E、F是AD的三等分点,则阴影部分的面积为.三、解答题(一)(每小题6分,共18分)第7题图第10题图17. 计算:()011||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由; (2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边第20题图第22题图形”.如图1,平行四边形MNPQ的一边作左右平移,图2反映它的边NP的长度l(cm)随时间t(s)变化而变化的情况.请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ向左平移前,边NP的长度是____________cm,请你根据图象呈现的规律写出0至5秒间l与t的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l与t的关系式.25. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.图2PQ边的运动时间/s8 9 10 11 12 13 14 NP的长度/cm 18 15 12 6 3 0。

佛山市顺德区七年级下期末考试数学试卷试题(有答案)

佛山市顺德区七年级下期末考试数学试卷试题(有答案)

七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是米,将用科学记数法表示为()A. ×10-5B. ×105C. ×10-6D. ×1063. 下列运算正确的是()A. m2•m3=m5B.2m=m9()()mn=mn2 C. 32D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -2ACBFED6. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A 处垂直拉至起跳线 l 的点B 处,然后记录 AB 的长度,这样做的理由是( )A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º ,那么 ∠1 的大小是( ) A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰 △ABC 中,∠A =40º,则的大小为( )A. 40ºB. 70ºC. 100ºD. 40º 或 70º9. 将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是( )A. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点, AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( )①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分 ∠DEF ; ④ AD 垂直平分CE ;⑤AD =CE . A. ①②⑤B. ①②③④第6题图第7题图C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯= . 12. 计算:(25)(3)a a +-= .13. 如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得 A B ''=8厘米,则工件内槽AB 宽为 厘米.第13题图 第16题图14.已知 2019m n +=,20182019m n -=,则 22m n - 的值为 . 15. 下表是某种数学报纸的销售份数x (份)与价钱y (元)的统计表,观察下表:份数x (份) 1 2 3 4 价钱y (元)则买48份这种报纸应付 元.16. 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC = ,AD =,点E 、F 是AD 的三等分点,则阴影部分的面积为 .三、解答题(一)(每小题6分,共18分)17. 计算:()11||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当 m =4时,求小李摸到红球的概率是多少 (2)当 m 为何值时,游戏对双方是公平的22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°. (1)写出AB =DE 的理由;(2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)第20题图第22题图图1N23. 某公司技术人员用“沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行”.(1)如图1,测得∠1=∠2,可判定a∥b吗请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a∥b吗请说明理由;(3)如图3,若要使a∥b,则∠1 与∠2 应该满足什么关系式请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”.如图1,平行四边形MNPQ的一边作左右平移,图2反映它的边NP的长度l(cm)随时间t(s)变化而变化的情况.请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ向左平移前,边NP的长度是____________cm,请你根据图象呈现的规律写出0至5秒间l与t的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l与t的关系式.图2PQ边的运动时间/s891011121314NP的长度/cm18151263025. 已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线l的位置关系,并说明理由.^。

2017-2018学年广东省佛山市顺德区七年级(下)期末数学试卷(解析版)

2017-2018学年广东省佛山市顺德区七年级(下)期末数学试卷(解析版)

2017-2018学年广东省佛山市顺德区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列是轴对称图形的是()A. B. C. D.2.人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A. 本市明天将有的地区下雨B. 本市明天将有的时间下雨C. 本市明天下雨的可能性比较大D. 本市明天肯定下雨5.要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B.C. 2D.6.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7.如图,把一块三角板的直角顶点放在直尺的一边上,如果∠2=58°,那么∠1的大小是()A.B.C.D.8.已知等腰△ABC中,∠A=40°,则底角的大小为()A. B. C. D. 或9.将常温中的温度计插入一杯60℃的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是()A. B.C. D.10.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(本大题共6小题,共24.0分)11.计算:(-2)3×22=______.12.计算:(2a+5)(a-3)=______.13.如图,把两根钢条AA′、BB′的中点连在一起,可以做成一个测量内槽宽的工具(卡钳),若测得A′B′=8厘米,则工件内槽AB宽为______厘米.14.已知m+n=2019,m-n=,则m2-n2的值为______.15.则买48份这种报纸应付______元.16.如图,已知AD是等腰△ABC底边BC上的中线,BC=6cm,AD=9cm,点E、F是AD的三等分点,则阴影部分的面积为______.三、计算题(本大题共3小题,共18.0分)17.计算:||-2-1-(π-2018)018.计算:(-3a4)2-a•a3•a4-a10÷a219.先化简,再求值:[(x-2y)2-(x+y)(x-y)-7y2]÷2y,其中x=,y=-2.四、解答题(本大题共6小题,共48.0分)20.如图,已知AC∥BD.(1)作∠BAC的平分线,交BD于点M(尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明∠BAM=∠AMB.21.一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?22.如图,已知BC是△ABD的角平分线,BC=DC,∠A=∠E=30°,∠D=50°.(1)写出AB=DE的理由;(2)求∠BCE的度数.23.某公司技术人员用“沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行”.(1)如图1,测得∠1=∠2,可判定a∥b吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a∥b吗?请说明理由;(3)如图3,若要使a∥b,则∠1与∠2应该满足什么关系式?请说明理由.24.我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”,如图1,平行四边形MNPQ的一边PQ作左右平移,图2反映它的边NP的长度(cm)随时间t(s)变化而变化的情况,请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是______;(2)观察图2,PQ向左平移前,边NP的长度是______cm,请你根据图象呈现的规律写出0至5秒间l与t的关系式;38141t25.已知点A、D在直线l的同侧.(1)如图1,在直线l上找一点C.使得线段AC+DC最小(请通过画图指出点C 的位置);(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线1的位置关系,并说明理由.答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.【答案】C【解析】解:0.0000051=5.1×10-6,故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】A【解析】解:A、m2•m3=m5,正确;B、(mn)2=m2n2,错误;C、(m3)2=m6,错误;D、m6÷m2=m4,错误;根据同底数幂的乘法、积的乘方、幂的乘方与同底数幂的除法逐一计算即可得.本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、积的乘方、幂的乘方与同底数幂的除法的运算法则.4.【答案】C【解析】解:本市明天下雨概率是85%,表示本市明天下雨的可能性很大,但是不是将有85%的地区下雨,不是85%的时间下雨,也不是明天肯定下雨,故选:C.根据概率是反映事件发生机会的大小,只是表示发生的机会的大小,机会大也不一定发生即可得出答案.此题考查了概率的意义,关键是掌握概率反映的只是这一事件发生的可能性的大小,概率大也不一定发生.5.【答案】A【解析】解:∵(x+2)2=x2+4x+4,∴m=4,故选:A.根据完全平方公式:a2±2ab+b2=(a±b)2可得答案.此题主要考查了公式法因式分解,关键是掌握完全平方公式.6.【答案】C【解析】解:这样做的理由是垂线段最短.故选:C.垂线段的性质:垂线段最短.考查了垂线段最短.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.7.【答案】D【解析】解:如图所示:∵∠2=58°,∴∠3=58°,∴∠1=90°-58°=32°.故选:D.直接利用平行线的性质结合互余的性质得出答案.此题主要考查了平行线的性质,正确得出同位角是解题关键.8.【答案】D【解析】解:当40°的角是底角时,三角形的底角就是40°;当40°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是70°.故选:D.等腰三角形的两个底角相等,已知一个内角是40°,则这个角可能是底角也可能是顶角.要分两种情况讨论.本题考查了等腰三角形的性质;全面思考,分类讨论是正确解答本题的关键.9.【答案】B【解析】解:将常温中的温度计插入一杯60℃的热水中,温度计的度数与时间的关系,图象是B;故选:B.根据温度计上升到一定的温度后不变,可得答案;本题考查了函数图象,注意温度计的温度升高到60度时温度不变.10.【答案】B【解析】解:①∵AD是△ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,,∴△AED≌△ACD,∴∠ADE=∠ADC②∵△AED≌△ACD,∴ED=DC,∴△CDE是等腰三角形;故②正确;③∵DE=DC,∴∠DEC=∠DCE,∵EF∥BC,∴∠DCE=∠CEF,∴∠DEC=∠CEF,∴CE平分∠DEF,故③正确;④∵DE=DC,∴点D在线段EC的垂直平分线上,∵AE=AC,∴点A在线段EC的垂直平分线上,∴AD垂直平分CE.故④正确;⑤∵AD垂直平分CE,∴当四边形ACDE是矩形时,AD=CE,故⑤不正确;故选:B.根据三角形全等和等腰三角形的判定、垂直平分线的判定进行依次判定即可.此题考查了全等三角形的判定与性质,等腰三角形的性质、线段垂直平分线的性质以及平行线的性质.此题难度适中,注意掌握数形结合思想的应用.11.【答案】-32【解析】解:原式=-8×4=-32,故答案为:-32.先计算立方和平方,再计算乘法即可得.本题主要考查实数的运算,解题的关键是掌握乘方的运算法则与实数的运算顺序.12.【答案】2a2-a-15解:原式=2a2-6a+5a-15=2a2-a-15,故答案为:2a2-a-15.根据多项式乘以多项式的运算法则计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.13.【答案】8【解析】解:连接A′B′,∵两根钢条AA′、BB′的中点连在一起,∴OA=OA′,OB=OB′,在△AOB和△A′OB′中,,∴△AOB≌△A′OB′(SAS).∴AB=A′B′=8厘米,故答案为:8.连接A′B′,可判定△AOB≌△A′OB′,根据全等三角形的性质可得AB=A′B′=8厘米.本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.14.【答案】2018【解析】解:∵m+n=2019,m-n=,∴m2-n2=(m+n)(m-n)=2019×=2018.故答案为:2018.直接利用平方差公式将原式变形进而得出答案.此题主要考查了平方差公式,正确将原式变形是解题关键.15.【答案】24【解析】解:由统计表知这种报纸每份0.5元,则买48份这种报纸应付48×0.5=24元,故答案为:24.由统计表得出每份0.5元,据此可得.本题主要考查统计表,解题的关键是根据统计表得出解题所需的数据.16.【答案】9cm2【解析】解:∵BC=6cm,AD是△ABC的中线,∴BD=DC=3cm,AD⊥BC,∴△ABC关于直线AD对称,∴B、C关于直线AD对称,∴△CEF和△BEF关于直线AD对称,∴S△AFC=S△AFB,∵点E、F是AD的三等分点,∴S△AFB=S△BED=S△ABD∴图中阴影部分的面积是S△ABD=××3×9=9cm2.故答案为:9cm2.根据等腰三角形性质求出BD=DC=3cm,AD⊥BC,推出△CEF和△BEF关于直线AD对称,得出S△AFC=S△AFB,根据图中阴影部分的面积是S△ABD求出即可.本题考查了等腰三角形的性质和轴对称的性质.通过观察可以发现是轴对称图形,其中看出△CEF和△BEF关于直线AD对称,面积相等是解决本题的关键.17.【答案】解:||-2-1-(π-2018)0=--1=-1.【解析】本题涉及零指数幂、负整数指数幂、绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.18.【答案】解:原式=9a8-a8-a8=7a8.【解析】先计算幂的乘方与积的乘方、同底数幂的乘法、同底数幂的除法,再合并即可得.本题主要考查幂的运算,解题的关键是掌握幂的乘方与积的乘方、同底数幂的乘法、同底数幂的除法的运算法则.19.【答案】解:原式=(x2-4xy+4y2-x2+y2-7y2)÷2y=(-4xy-2y2)÷2y=-2x-y,当x=、y=-2时,原式=-2×+2=-1+2=1.【解析】先根据整式混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.本题主要考查整式的混合运算-化简求值,解题的关键是掌握整式混合运算顺序和运算法则.20.【答案】解:(1)如右图所示;(2)∵AM平分∠BAC,∴∠CAM=∠BAM,∵AC∥BD,∴∠CAM=∠AMB,∴∠BAM=∠AMB.【解析】(1)根据角平分线的作法可以解答本题;(2)根据角平分线的性质和平行线的性质可以解答本题.本题考查基本作图、角平分线的性质、平行线的性质,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.21.【答案】解:(1)当m=4时,红球有4个、白球有12个、黄球有14个,则小李摸到红球的概率是=;(2)若要是双方摸到红球和黄球的概率相等,则袋子中红球和黄球的数量相等,即m=30-m-3m,解得:m=6,即当m=6时,游戏对双方是公平的.【解析】(1)由当m=4时,红球有4个、白球有12个、黄球有14个,用红球数量除以球的总数即可得;(2)若要是双方摸到红球和黄球的概率相等知袋子中红球和黄球的数量相等,据此列出关于m的方程,解之可得.本题主要考查游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.22.【答案】解:(1)∵BC是△ABD的角平分线,∴∠CBD=∠CBA,∵BC=DC,∴∠CBD=∠D=50°,∴∠CBD=∠CBA,在△CDE和△CBA中,,∴△CDE≌△CBA,∴DE=AB;(2)由(1)知,∠CBD=∠D=50°,∴∠BCD=80°,∴∠ACB=100°由(1)知,△CDE≌△CBA,∴∠DCE=∠BCA,∴∠BCD=∠ACE=80°,∴∠BCE=∠ACB-∠ACE=20°.【解析】(1)先判断出∠CBD=∠CBA,∠CBD=∠D=50°,进而得出∠CBD=∠CBA,判断出△CDE≌△CBA即可得出结论;(2)先求出∠ACB=100°,在求出∠ACE=80°,即可得出结论.此题主要考查了全等三角形的判断和性质,等边对等角,三角形的外角的性质,判断出△CDE≌△CBA是解本题的关键.23.【答案】解:(1)a∥b,理由是:∵∠1=∠2,∴a∥b(内错角相等,两直线平行);(2)能,理由是:∵∠1=∠2,∠3=∠4,∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=90°,∠3=∠4=90°,∴∠1=∠4,∴a∥b;(3)∠1+2∠2=180°,理由是:根据折叠得:∠3=∠4,∵a∥b,∴∠1+∠3+∠4=180°,∠2=∠4,∴∠1+2∠2=180°.【解析】(1)根据平行线的判定得出即可;(2)求出∠1和∠4的度数,再根据平行线的判定推出即可;(3)根据折叠得出∠3=∠4,根据平行线的性质得出∠1+∠3+∠4=180°,∠2=∠4,即可得出答案.本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.24.【答案】t NP(2t+8)9【解析】解:(1)这个变化过程中,自变量是时间t、因变量NP的长度,故答案为:t,NP;(2)由图2知,0至5秒间图象呈现的是一段线段,且过点(0,8),(5,18),设此线段的解析式为NP=kt+8(0≤t≤5),∴18=5k+8,∴k=2,∴线段的解析式为NP=2t+8(0≤t≤5),故答案为(2t+8);(3)由图2知,8至14秒间图象呈现的也是一段线段,由表知,此线段过点(8,18),(14,0),设此线段的解析式为NP=k't+b(8≤t≤14),∴,∴,∴NP=-3t+42(8≤t≤14),当t=11时,NP=-3×11+42=9,故答案为9.(1)根据自变量和因变量的概念即可得出结论;(2)利用待定系数法即可得出结论;(3)利用待定系数法即可得出结论.此题是一次函数综合题,主要考查了待定系数法,函数的概念,根据图形的变换和图2的函数图象求出函数关系式是解本题的关键.25.【答案】解:(1)如图1所示,点C就是所求作;(2)①EM=DN,理由:∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∴∠ECM=120°,CM=CN,∴△CDE是等边三角形,∴∠DCE=60°,CE=CD,∴∠NCD=120°,在△CDN和△CEM中,,∴△CDN≌△CEM,∴EM=DN;②FG∥l,理由:如图3,连接FG,由运动知,AM=BN,∵AC=BC,∴CM=BN,在△CDN和△CEM中,,∴△CDN≌△CEM,∴∠CDN=∠CEM,∵∠ACB=∠DCE=60°,∴∠ACD=60°=∠DCE,在△DCG和△ECF中,,∴△DCG≌△ECF,∴CF=CG,∵∠FCG=60°,∴△CFG是等边三角形,∴∠CFG=60°=∠ECF,∴FG∥BC,即:FG∥l.【解析】(1)先作出点A关于直线l的对称点A'连接DA'交直线l于点C;(2)①先判断出CM=CN,∠DCN=∠ECM=120°,进而判断出△CDN≌△CEM,即可得出结论;②同①的方法判断出△CDN≌△CEM,得出∠CDN=∠CEM,进而判断出△DCG≌△ECF,得出CF=CG,得出△CFG是等边三角形即可得出结论.此题是三角形综合题,主要考查了中垂线的作法,等边三角形的性质和判定,全等三角形的判定和性质,平行线的判定,判断出△CDN≌△CEM是解本题的关键.。

佛山市顺德区2017-2018学年七年级下期末考试数学试题(含答案)

佛山市顺德区2017-2018学年七年级下期末考试数学试题(含答案)

顺德区2017—2018学年度第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上.2. 用铅笔进行画线、绘图时,要求痕迹清晰.一、选择题(每小题3分,共30分)1. 下列是轴对称图形的是()A. B. C. D.2. 人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为()A. 0.51×10-5B. 0.51×105C. 5.1×10-6D. 0.51×1063. 下列运算正确的是()A. m2•m3=m5B.2()mn=mn2 C. 32()m=m9 D.m6 ÷m2=m34. 气象台预报“明天下雨的概率是85%”.对此信息,下列说法正确的是()A. 明天将有85% 的地区下雨B. 明天将有85% 的时间下雨C. 明天下雨的可能性比较大D. 明天肯定下雨5. 要使x2+mx+4=(x+2)2成立,那么m的值是()A. 4B. -4C. 2D. -26. 如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l 的点B处,然后记录AB的长度,这样做的理由是()A. 两点之间,线段最短B. 过两点有且只有一条直线C. 垂线段最短D. 过一点可以作无数条直线7. 如图,把一块三角板的直角顶点放在直尺的一边上.如果∠2=58º,那么∠1 的大小是()A. 58ºB. 48ºC. 42ºD. 32º8. 已知等腰△ABC中,∠A=40º,则的大小为()A. 40ºB. 70ºC. 100ºD. 40º或70º第6题图第7题图ACBFED9.将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是( )A. B. C. D. 10. 如图,AD 是△ABC 的角平分线,点 E 是AB 边 上一点,AE =AC ,EF ∥BC ,交 AC 于点F .下列结论正确的是( ) ①∠ADE =∠ADC ;②△CDE 是等腰三角形;③CE 平分 ∠DEF ; ④ AD 垂直平分CE ;⑤AD =CE . A. ①②⑤B. ①②③④C. ②④⑤D. ①③④⑤二、填空题(每小题4分,共24分)11. 计算:()3222-⨯= .12. 计算:(25)(3)a a +-= .13. 如图,把两根钢条AA '、BB '的中点连在一起,可以做成一个测量内槽宽的工具(卡钳).若测得 A B ''=8厘米,则工件内槽AB 宽为厘米.第13题图 第16题图14.已知 2019m n +=,20182019m n -=,则 22m n - 的值为 . 15. 下表是某种数学报纸的销售份数x (份)与价钱y (元)的统计表,观察下表:份数x (份) 1 2 3 4 价钱y (元)0.51.01.52.0则买48份这种报纸应付 元.16. 如图,已知AD 是等腰△ABC 底边BC 上的中线,BC = ,AD =,点E 、F 是AD 的三等分点,则阴影部分的面积为 .三、解答题(一)(每小题6分,共18分)第10题图17. 计算:()011||220182π----18. 计算:4234102(3)a a a a a a --⋅⋅-÷19. 先化简,再求值:22(2)()()72x y x y x y y y ⎡⎤--+--÷⎣⎦,其中1,22x y ==-四、解答题(二)(每小题7分,共21分) 20. 如图,已知AC ∥BD.(1)作BAC ∠的平分线,交BD 于点M (尺规作图,保留作图痕迹,不用写作法);(2)在(1)的条件下,试说明BAM AMB ∠=∠.21. 一个不透明的盒子里装有 30 个除颜色外其它均相同的球,其中红球有 个,白球有 3 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜. (1)当 m =4时,求小李摸到红球的概率是多少? (2)当 m 为何值时,游戏对双方是公平的?22. 如图,已知BC 是△ABD 的角平分线, BC =DC ,∠A =∠E =30°,∠D =50°.(1)写出AB =DE 的理由; (2)求∠BCE 的度数.五、解答题(三)(每小题9分,共27分)23. 某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线a 、b 是否互相平行”. (1)如图1,测得∠1=∠2,可判定a ∥b 吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a ∥b 吗?请说明理由; (3)如图3,若要使 a ∥b ,则 ∠1 与 ∠2 应该满足什么关系式?请说明理由.第20题图第22题图图1NMQ P24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边 形”.如图1,平行四边形MNPQ 的一边作左右平移,图 2反映它的边NP 的长度l (cm)随时间t (s)变化而变化的情况. 请解答下列问题:(1)在这个变化过程中,自变量是______,因变量是_______;(2)观察图2,PQ 向左平移前,边 NP 的长度是____________cm ,请你根据图象呈现的规律写出0至5秒间l 与t 的关系式;(3)填写下表,并根据表中呈现的规律写出8至14秒间l 与t 的关系式.25. 已知点A 、D 在直线l 的同侧.(1)如图1,在直线l 上找一点C ,使得线段AC+DC 最小(请通过画图指出点C 的位置); (2)如图2,在直线l 上取两点B 、E ,恰好能使△ABC 和△DCE 均为等边三角形.M 、N 分别是线段AC 、BC 上的动点,连结DN 交AC 于点G ,连结EM 交CD 于点F .① 当点M 、N 分别是AC 、BC 的中点时,判断线段EM 与DN 的数量关系,并说明理由; ② 如图3,若点M 、 N 分别从点A 和B 开始沿AC 和BC 以相同的速度向点C 匀速运动,当M 、N与点C 重合时运动停止,判断在运动过程中线段GF 与直线l 的位置关系,并说明理由.图2PQ 边的运动时间/s 8 9 10 11 12 13 14 NP 的长度/cm18151263。

顺德七年级期末数学试卷

顺德七年级期末数学试卷

一、选择题(每题4分,共20分)1. 下列数中,是质数的是()A. 15B. 17C. 20D. 252. 已知a=3,b=5,则a²+b²的值是()A. 34B. 35C. 36D. 373. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形4. 一个长方形的长是6cm,宽是4cm,它的周长是()A. 20cmB. 24cmC. 28cmD. 32cm5. 下列等式中,正确的是()A. 2(x+3)=2x+6B. 3(x-2)=3x-6C. 4(x+5)=4x+20D. 5(x-3)=5x-15二、填空题(每题5分,共25分)6. 3的平方根是______,它的立方是______。

7. (-2)的倒数是______,它的平方是______。

8. 0.25的平方根是______,它的立方根是______。

9. 若a=5,b=3,则a²-b²的值是______。

10. 一个等腰三角形的底边长是10cm,腰长是8cm,则它的面积是______cm²。

三、解答题(每题10分,共30分)11. (1)计算:3²×2²-4×2³(2)化简:a²-2a+112. (1)一个长方形的长是x+3cm,宽是2x-1cm,求它的周长。

(2)一个等腰三角形的底边长是4cm,腰长是6cm,求它的面积。

13. (1)解方程:2x+3=11(2)解方程:3(x-2)=12四、应用题(每题10分,共20分)14. 小明家养了x只鸡,养了y只鸭,鸡和鸭的总数是28只。

如果小明再买10只鸡,那么鸡和鸭的总数将是40只。

请列出方程组,并解出x和y的值。

15. 小明去书店买书,买了5本书,每本书的价格分别是15元、18元、22元、25元和30元。

求小明买书一共花了多少钱?注意:请将答案写在答题卡上,注意书写规范,保持卷面整洁。

顺德区七年级期末数学试卷

顺德区七年级期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列数中,是整数的是()A. √16B. 2.5C. -√9D. 0.012. 已知a、b、c是三个连续的自然数,且a+b+c=24,则a的值为()A. 7B. 8C. 9D. 103. 在直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)4. 下列方程中,是一元一次方程的是()A. 2x+5=3x-1B. 3(x+2)=2x+6C. 4x²-3x+1=0D. 5(x-1)=2x+35. 如果sin∠A=0.8,那么∠A的度数是()B. 45°C. 60°D. 90°6. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形7. 下列函数中,是正比例函数的是()A. y=2x+1B. y=3x²C. y=2/xD. y=3x8. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²9. 下列数中,是质数的是()A. 17B. 18C. 1910. 一个长方形的长是6cm,宽是4cm,那么这个长方形的周长是()A. 20cmB. 24cmC. 28cmD. 30cm二、填空题(每题4分,共40分)1. 2的平方根是______,3的立方根是______。

2. 在直角三角形ABC中,∠C=90°,∠A=30°,那么∠B的度数是______。

3. 如果x=2,那么x²-3x+2=______。

4. 下列函数中,y与x成反比例关系的是______。

5. 一个圆的半径是5cm,那么这个圆的面积是______cm²。

6. 下列数中,是偶数的是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上2. 用铅笔进行画线、绘图时,要求痕迹清晰.、选择题(每小题3分,共30 分)1.F列是轴对称图形的是(2.3.A. B.人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为(5 —6B. 0.51 X 10C. 5.1 X 10C.5A. 0.51 X 10F列运算正确的是(2 3 5A. m ?m = mD.0.51 x 106)B. (mn)2= mn23、2 9C. (m ) = mD.气象台预报“明天下雨的概率是85%” .对此信息,下列说法正确的是(A.明天将有85%的地区下雨C.明天下雨的可能性比较大5.要使x2+mx+4=(x+2)2成立,那么m的值是(A. 4B. —4C. 24.6.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A.两点之间,线段最短C.垂线段最短)B.明天将有85%的时间下雨D.明天肯定下雨D.A处垂直拉至起跳线I的点BB.过两点有且只有一条直线D.过一点可以作无数条直线.如果/ 2 =那么/1的大小是()A. 58oB. 48oC.8.已知等腰△ABC中,/ I A= 40o, 则的大小为(A. 40oB. 70oC. 100oD. 40o 或7.如图,把一块三角板的直角顶点放在直尺的一边上42o70o第6题图9.将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是10. 如图,AD是厶ABC的角平分线,点E是AB边上一点,AE= AC, EF // BC,交AC于点F.下列结论正确的是(①/ADE = Z ADC :②厶CDE是等腰三角形;③CE平分 / DEF ; ④ AD垂直平分CE;⑤AD = CE .A.①②⑤B.①②③④C.②④⑤D.①③④⑤二、填空题(每小题4分,共24分)3 211. 计算:-2 2 = __________________________________ .12. 计算:(2 a 5)(a -3) = _____________________________把两根钢条AAI BB •的中点连在一起,可以做成一个测量内槽宽的工具(卡.若测得AB = 8厘米,则工件内槽AB宽为________________________________________________________________14.已知m n -2019 , m-n 二空8,则201915.下表是某种数学报纸的销售份数x (份)份数x (份)1234价钱y (元)0.5 1.0 1.5 2.016. 如图,已知AD是等腰△ ABC底边BC上的中线,BC= , AD =,点E、F是AD的三等分点,则阴影部分的面积为_________________________ .三、解答题(一)(每小题6分,共18分)1 . t017•计算:|?|-2 2018、—,亠4、2 3 4 10・ 218. 计算:(一3a )-a a a -a " a19. 先化简,再求值:||(x -2y)2-(x • y)(x - y) -7y2亠 2y,其中x 二?,y - -2第16题图第13题图13.如图,钳厘米.m2 - n2的值为B四、解答题(二)(每小题7分,共21分) 20. 如图,已知 AC // BD.(1) 作乙BAC 的平分线,交BD 于点M (尺规作图, 保留作图痕迹,不用写作法);(2) 在(1)的条件下,试说明.BAM =/AMB .21. 一个不透明的盒子里装有 30个除颜色外其它均相同的球,其中红球有 个,白球有3个, 黄球•现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀, 由小马随机摸出一个球,若为黄球,则小马获胜.(1) 当m = 4时,求小李摸到红球的概率是多少? (2)当m 为何值时,游戏对双方是公平的?22.如图,已知 BC 是厶ABD 的角平分线,BC = DC ,Z A = Z E = 30°, Z D = 50°.(1) 写出AB = DE 的理由; (2) 求Z BCE 的度数.五、解答题(三)(每小题9分,共27 分) 23.某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线 a 、b 是否互相平行”.(1) 如图1,测得Z 1 = Z 2,可判定a // b 吗?请说明理由;(2) 如图2,测得Z 1 = Z 2,且Z 3 =Z 4,可判定a // b 吗?请说明理由; (3) 如图3,若要使a // b ,贝U Z 1与Z 2应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边 形”.如图1,平行四边形 MNPQ 的一边作左右平移,图 2反映它的边NP 的长度l(cm)随时间t(s)变化而变化的情况. 请解答下列问题: (1)在这个变化过程中,自变量是 __________ ,因变量是 ______(2)观察图2,PQ 向左平移前,边 NP 的长度是 ___________________ cm ,请你根据图象呈现的规律写出秒间I 与t 的关系式;其它均为第22题图25. 已知点A、D在直线I的同侧.(1) 如图1,在直线I上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2) 如图2,在直线I上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G ,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线I的位置关系,并说明理由.25 老3E 25总匪2七年级数学试卷参考答案一.选择题(共10小题.每小題3分.共30分)I. B 2. C 3. A 4. C 5.A 6. C 7. D & D 9. B 10. B二填空题(共6小题,每小题4分,共24分)II. -32 12. 2a2-a- 15 13. 8 14. 2018 15. 24 16. 9三解答题(一)(共3小题.每小题6分,共18分)17. ................................................................................................................................. 原式3 分=-1 ............................................................................................................... 6 分18. 原式=9a*-aE-a8 ........................................................................................................ 4分=7 a8............................................................................................................... 6分・19•原式=[(x2一4xy + 4y2)一(x2 - y2)一7y2] * 2y ......................................................... 2分=(x2 - 4xy + 4y2 - r2 + y2 - 7y2) * 2y ....................................................................... 3分=(- 4xy - 2y2)手2y.............................................................................................. 4分=一2x一y ....................................................................................................... 5 分当x = *• y =— 2 时■原式=-2 x 2 = 1.................................................................................... 6 分四、解答题i二)(共3小题,每小题7分,共21分)20・(1)作图眈.............. 4分(2)由作图可知.AM是ZBAC平分线.A ZR4A7 = .......................... 5 分又••• AC// BD.A LCAM = LAMB(两亶线平行.内错角相等)•・•・・•・・6分•••= Z4WB ........................... 7分21.(】)这是一个等可能事件 ..................................... ・•••・ (1)当m = 4时.小李同学摸到红球的概率为帶二春.......................... 3分(2)这是一个等可能事件.当小李同学摸到红球与小玄同学摸到黄冰的可能性相同时.游戏对双方是公平的4分•••当m = 6时.游戏对双方是公22•解:(I) TBC是△/4BD的角平分线:.LABC LDBC ......................................... 1 分又°; BC = DC:•乙DBC = ZD:.LABC = ZD............................................. 2分在me和△£»(?中^ABC=乙DLA =厶 EBC= DC•••△££?£?£△ (AAS) (3)惬得m = 6.:.AB = DE ............... 4 分(2) TN" NE = 3(T,乙0 = 50。

相关文档
最新文档