Matlab神经网络30个案例第16案例代码
在Matlab中实现神经网络的方法与实例
在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。
在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。
而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。
本文将介绍在Matlab中实现神经网络的方法与实例。
首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。
一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。
每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。
这样,神经网络就能够模拟复杂的非线性关系。
常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。
前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。
神经网络的训练是通过最小化损失函数来优化模型的参数。
常用的训练算法包括梯度下降法和反向传播算法。
其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。
二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。
首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。
例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。
MatLab神经网络仿真实例
主要内容
• 单层感知机 • 自适应线性神经元
单层感知机(1)
• 例1:使用单层感知器实现与门、或门
例1:单层感知机,与门(1)
P=[0 0 1 1;0 1 0 1] T=[0 0 0 1] plotpv(P,T) Bound=[-1 1;-1 1] nn=1 net=newp(Bound,nn) watchon plotpv(P,T) linehandle=plotpc(net.iw{1},net.b{1}) E=1 while(sse(E)) [net,Y,E]=adapt(net,P,T) linehandle=plotpc(net.iw{1},net.b{1},linehandle) drawnow pause end pause watchoff
例5:自适应线性元(3)
P3=[P1 P2] T3=[T1 T2] net=init(net) net.trainParam.epochs=2000 net.trainParam.goal=0.001 net=train(net,P3,T3) Y=sim(net,[P1 P2])
例6:自适应线性网络的学习
• 观察在不同学习率情形下的收敛情况
P=[1 1.5 1.2 -0.3;-1 2 3 -0.5;2 1 -1.6 0.9] T=[0.5 3 -2.2 1.4;1.1 -1.2 1.7 -0.4;3 0.2 -1.8 -0.4;-1 0.2 -1.0 0.6] Maxlr=maxlinlr(P) net=newlin([-3 3;-3 3;-3 3],4 ,0, 2*Maxlr) net=init(net) net.trainParam.epochs=50000 net.trainParam.goal=1e-8 net=train(net,P,T) Y=sim(net,P)
《精通Matlab神经网络》例10-16的新写法
《精通Matlab神经⽹络》例10-16的新写法
《精通Matlab神经⽹络》书中⽰例10-16,在创建BP⽹络时,原来的写法是:
net = newff(minmax(alphabet),[S1 S2],{'logsig' 'logsig'},'traingdx');
因为运⾏过程中有提⽰,⾃然想改成新写法(参考之前的随笔《》):
net = newff(alphabet, targets, S1, {'logsig', 'logsig'}, 'traingdx');
net.divideFcn = '';
很不幸的是,结局惨不忍睹:
于是开始对⽐研究……最终发现,新式写法还需要去掉输⼊输出的处理函数。
于是,到⽬前为⽌,为了让新式写法等价于旧式写法,在newff()之后还需要添加以下⼏笔:
net.divideFcn = '';
net.inputs{1}.processFcns = {};
net.outputs{2}.processFcns = {}; % 若有n个隐层,则此处下标为n+1
【浅析】新式实现中,newff()的默认处理函数有:fixunknowns, removeconstantrows, mapminmax。
其中罪魁祸⾸是mapminmax,因为它把[0,1]的输⼊数据映射到了[-1,1]区间。
⽽
我们根据问题的实际情况,即⼆值图像像素值范围是[0,1],从⽽使⽤了定义域也[0,1]的传递函数logsig(),和mapminmax()是不匹配的。
30个智能算法matlab代码
30个智能算法matlab代码以下是30个使用MATLAB编写的智能算法的示例代码: 1. 线性回归算法:matlab.x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];coefficients = polyfit(x, y, 1);predicted_y = polyval(coefficients, x);2. 逻辑回归算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];model = fitglm(x, y, 'Distribution', 'binomial'); predicted_y = predict(model, x);3. 支持向量机算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [1, 1, -1, -1, -1];model = fitcsvm(x', y');predicted_y = predict(model, x');4. 决策树算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitctree(x', y');predicted_y = predict(model, x');5. 随机森林算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = TreeBagger(50, x', y');predicted_y = predict(model, x');6. K均值聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];idx = kmeans(data, 2);7. DBSCAN聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];epsilon = 2;minPts = 2;[idx, corePoints] = dbscan(data, epsilon, minPts);8. 神经网络算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];net = feedforwardnet(10);net = train(net, x', y');predicted_y = net(x');9. 遗传算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = gaoptimset('PlotFcns', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);10. 粒子群优化算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = particleswarm(fitnessFunction, nvars, lb, ub, options);11. 蚁群算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = antColonyOptimization(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);12. 粒子群-蚁群混合算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = particleAntHybrid(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);13. 遗传算法-粒子群混合算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;gaOptions = gaoptimset('PlotFcns', @gaplotbestf);psOptions = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = gaParticleHybrid(fitnessFunction, nvars, lb, ub, gaOptions, psOptions);14. K近邻算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcknn(x', y');predicted_y = predict(model, x');15. 朴素贝叶斯算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcnb(x', y');predicted_y = predict(model, x');16. AdaBoost算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [0, 0, 1, 1, 1];model = fitensemble(x', y', 'AdaBoostM1', 100, 'Tree'); predicted_y = predict(model, x');17. 高斯混合模型算法:matlab.x = [1, 2, 3, 4, 5]';y = [0, 0, 1, 1, 1]';data = [x, y];model = fitgmdist(data, 2);idx = cluster(model, data);18. 主成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = pca(x');transformed_x = x' coefficients;19. 独立成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = fastica(x');transformed_x = x' coefficients;20. 模糊C均值聚类算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; options = [2, 100, 1e-5, 0];[centers, U] = fcm(x', 2, options);21. 遗传规划算法:matlab.fitnessFunction = @(x) x^2 4x + 4; nvars = 1;lb = 0;ub = 5;options = optimoptions('ga', 'PlotFcn', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);22. 线性规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];lb = [0; 0];ub = [];[x, fval] = linprog(f, A, b, [], [], lb, ub);23. 整数规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];intcon = [1, 2];[x, fval] = intlinprog(f, intcon, A, b);24. 图像分割算法:matlab.image = imread('image.jpg');grayImage = rgb2gray(image);binaryImage = imbinarize(grayImage);segmented = medfilt2(binaryImage);25. 文本分类算法:matlab.documents = ["This is a document.", "Another document.", "Yet another document."];labels = categorical(["Class 1", "Class 2", "Class 1"]);model = trainTextClassifier(documents, labels);newDocuments = ["A new document.", "Another new document."];predictedLabels = classifyText(model, newDocuments);26. 图像识别算法:matlab.image = imread('image.jpg');features = extractFeatures(image);model = trainImageClassifier(features, labels);newImage = imread('new_image.jpg');newFeatures = extractFeatures(newImage);predictedLabel = classifyImage(model, newFeatures);27. 时间序列预测算法:matlab.data = [1, 2, 3, 4, 5];model = arima(2, 1, 1);model = estimate(model, data);forecastedData = forecast(model, 5);28. 关联规则挖掘算法:matlab.data = readtable('data.csv');rules = associationRules(data, 'Support', 0.1);29. 增强学习算法:matlab.environment = rlPredefinedEnv('Pendulum');agent = rlDDPGAgent(environment);train(agent);30. 马尔可夫决策过程算法:matlab.states = [1, 2, 3];actions = [1, 2];transitionMatrix = [0.8, 0.1, 0.1; 0.2, 0.6, 0.2; 0.3, 0.3, 0.4];rewardMatrix = [1, 0, -1; -1, 1, 0; 0, -1, 1];policy = mdpPolicyIteration(transitionMatrix, rewardMatrix);以上是30个使用MATLAB编写的智能算法的示例代码,每个算法都可以根据具体的问题和数据进行相应的调整和优化。
Matlab神经网络经典实例
clearclcclose allwarning off%数据输入huanghe_p=[370 503 434 575 490 420 560 640 558 343 326 405 446 423 422 697 598 377 435 472 451 667 601 689 541 485 425 389 382 707 422];huanghe_t=[515 713 586 753 720 567 717 987 810 489 453 589 639 568 595 982 849 519 615 652 599 941 893 999 758 701 630 561 520 1040 535];%归一化处理p=(huanghe_p-min(huanghe_p))/(max(huanghe_p)-min(huanghe_p));t=(huanghe_t-min(huanghe_t))/(max(huanghe_t)-min(huanghe_t));%网络有关参数EPOCHS=10000;GOAL=0.000005;LR=0.01;MAX_FAIL=100;%建立bp神经网络,并训练,仿真。
其中输入为p,输出为t%-------------------------隐层神经元确定-----------------------------s=3:15;%s 为常向量,表示神经元的个数res=zeros(size(s));%res将要存储误差向量,这里先置零pn=[p(1:5);p(6:10);p(11:15);p(16:20)];tn=[t(1:5);t(6:10);t(11:15);t(16:20)];for i=1:length(s)%7.0版本使用下面代码%输出层的神经元个数必须等于tn的行数%每层的传递函数可以自己指定%创建了2层网路,隐层s(i)(任意);输出层4(由tn决定不可改,但需输入)%net=newff(minmax(pn),[s(i),4],{'tansig','purelin'},'trainlm');%%7.6版本使用下面的代码%输出层神经元由tn决定,不需要输入,我们只需要确定输入层和隐层的神经元个数%所有层的传递函数都可以自己定义%创建3层网络,输入层8(任意);隐层s(i)(任意);输出层4(由tn决定,不可改,不需要输入)%%其实两个版本的区别在于7.6的bp网络创建函数直接给出了t,故最后一层不需要指定了,故相同的参数时,7.6的会多一层%net=newff(pn,tn,[4,s(i)],{'tansig','tansig','purelin'},'trainlm');net.iw{1,1}=zeros(size(net.iw{1,1}))+0.5;net.lw{2,1}=zeros(size(net.lw{2,1}))+0.75;net.b{1,1}=zeros(size(net.b{1,1}))+0.5;net.b{2,1}=zeros(size(net.b{2,1}));net.trainParam.epochs=EPOCHS;net.trainParam.goal =GOAL;net.trainParam.lr=LR;net.trainParam.max_fail=MAX_FAIL;net=train(net,pn,tn);y=sim(net,pn);e=tn-y;error=mse(e,net);res(i)=norm(error);end%选取最优神经元数,number为使得误差最小的隐层神经元个数[ttmp2,ind]=min(res);no=s(ind);%选定隐层神经元数目后,建立网络,训练仿真。
MATLAB_智能算法30个案例分析
MATLAB_智能算法30个案例分析1.线性回归:使用MATLAB的回归工具箱,对给定的数据集进行线性回归分析,获取拟合的直线方程。
2.逻辑回归:使用MATLAB的分类工具箱,对给定的数据集进行逻辑回归分析,建立分类模型。
3.K均值聚类:使用MATLAB的聚类工具箱,对给定的数据集进行K 均值聚类算法,将数据集分为多个簇。
4.支持向量机:使用MATLAB的SVM工具箱,对给定的数据集进行支持向量机算法,建立分类或回归模型。
5.决策树:使用MATLAB的分类工具箱,对给定的数据集进行决策树分析,建立决策模型。
6.随机森林:使用MATLAB的分类和回归工具箱,对给定的数据集进行随机森林算法,集成多个决策树模型。
7. AdaBoost:使用MATLAB的分类工具箱,对给定的数据集进行AdaBoost算法,提升分类性能。
8.遗传算法:使用MATLAB的全局优化工具箱,利用遗传算法进行优化问题的求解。
9.粒子群优化:使用MATLAB的全局优化工具箱,利用粒子群优化算法进行优化问题的求解。
10.模拟退火算法:使用MATLAB的全局优化工具箱,利用模拟退火算法进行优化问题的求解。
11.神经网络:使用MATLAB的神经网络工具箱,构建和训练多层感知机模型。
12.卷积神经网络:使用MATLAB的深度学习工具箱,构建和训练卷积神经网络模型。
13.循环神经网络:使用MATLAB的深度学习工具箱,构建和训练循环神经网络模型。
14.长短期记忆网络:使用MATLAB的深度学习工具箱,构建和训练长短期记忆网络模型。
15.GAN(生成对抗网络):使用MATLAB的深度学习工具箱,构建和训练生成对抗网络模型。
16.自编码器:使用MATLAB的深度学习工具箱,构建和训练自编码器模型。
17.强化学习:使用MATLAB的强化学习工具箱,构建和训练强化学习模型。
18.关联规则挖掘:使用MATLAB的数据挖掘工具箱,发现数据中的关联规则。
matlab 通用神经网络代码
matlab 通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下,希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。
P=[ -40; 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T);%描绘输入点图像net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc{1},{1});a=1:25%训练次数[net,Y,E]=adapt(net,P,T);linehandle=plotpc{1},{1},linehandle);drawnow;end%通用newlin程序%通用线性网络进行预测time=0::5;T=sin(time*4*pi);Q=length(T);P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。
P(1,2:Q)=T(1,1:(Q-1));P(2,3:Q)=T(1,1:(Q-2));P(3,4:Q)=T(1,1:(Q-3));P(4,5:Q)=T(1,1:(Q-4));P(5,6:Q)=T(1,1:(Q-5));plot(time,T)%绘制信号T曲线xlabel('时间');ylabel('目标信号');title('待预测信号');net=newlind(P,T);%根据输入和期望输出直接生成线性网络a=sim(net,P);%网络测试figure(2)plot(time,a,time,T,'+')xlabel('时间');ylabel('输出-目标+');title('输出信号和目标信号');e=T-a;figure(3)plot(time,e)hold onplot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold offxlabel('时间');ylabel('误差');title('误差信号');%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为;% lr_dec(学习率下降比,缺省为;max_perf_inc(表现函数增加最大比,缺省为%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda 的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为;delt_dec(权值变化减小量,缺省为;% delta0(初始权值变化,缺省为;deltamax(权值变化最大值,缺省为% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法; %训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr%训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为; % lambda(Hessian阵不确定性调节参数,缺省为% 缺少1个训练参数:lr%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);%最大训练次数(前缺省为10,自trainrp后,缺省为100)%学习率(缺省为%限时训练迭代过程(NaN表示不显示,缺省为25)%训练要求精度(缺省为0)% 最大失败次数(缺省为5)% 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6)% 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,P) %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[ ];net=newgrnn(P,T);%仿真验证p=;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1::1;T=[ ......];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas;a3=radbas(p+2);a4=a+a2*+a3*;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sceg=;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);%网络测试plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=;net=newgrnn(P,T,spread);%网络测试A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+,P(2,i),sprintf('class %g',Tc(i))) endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+,P(2,i),sprintf('class %g',Ac(i))) endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')。
MATLAB_智能算法30个案例分析
MATLAB_智能算法30个案例分析MATLAB是一种强大的数值计算和编程工具,教育和科研领域中广泛应用于数据分析、机器学习和智能算法的研究。
在本文中,我们将介绍30个MATLAB智能算法的案例分析,并探讨其用途和优势。
分析的案例包括分类、回归、聚类、神经网络和遗传算法等不同类型的智能算法。
1. K均值聚类:利用MATLAB中的kmeans函数对一组数据进行聚类分析,得到不同的簇。
2. 随机森林:利用MATLAB中的TreeBagger函数构建一个随机森林分类器,并通过测试数据进行分类预测。
3. 人工神经网络:使用MATLAB中的feedforwardnet函数构建一个人工神经网络,并通过训练集进行预测。
4. 遗传算法:利用MATLAB中的ga函数对一个优化问题进行求解,找到最优解。
5. 支持向量机:使用MATLAB中的svmtrain和svmclassify函数构建一个支持向量机分类器,并进行分类预测。
6. 极限学习机:使用MATLAB中的elmtrain和elmpredict函数构建一个极限学习机分类器,并进行分类预测。
7. 逻辑回归:使用MATLAB中的mnrfit和mnrval函数构建一个逻辑回归模型,并进行预测。
8. 隐马尔可夫模型:使用MATLAB中的hmmtrain和hmmdecode函数构建一个隐马尔可夫模型,对一系列观测数据进行预测。
9. 神经进化算法:利用MATLAB中的ne_train函数构建一个基于神经进化算法的神经网络分类器,并进行分类预测。
10. 朴素贝叶斯分类器:使用MATLAB中的NaiveBayes对象构建一个朴素贝叶斯分类器,并进行分类预测。
11. 高斯过程回归:使用MATLAB中的fitrgp函数构建一个高斯过程回归模型,并进行回归预测。
12. 最小二乘支持向量机:使用MATLAB中的fitcsvm函数构建一个最小二乘支持向量机分类器,并进行分类预测。
13. 遗传网络:利用MATLAB中的ngenetic函数构建一个基于遗传算法和人工神经网络的分类器,并进行分类预测。
MATLAB程序代码--神经网络应用实例
MATLAB程序代码--神经网络神经网络应用广泛,尤其在系统建模与控制方面,都有很好应用。
下面简要介绍神经网络在石灰窑炉的建模与控制中的应用,以便更具体地了解神经网络在实际应用中的具体问题和应用效果。
1 石灰窑炉的生产过程和数学模型石灰窑炉是造纸厂中一个回收设备,它可以使生产过程中所用的化工原料循环使用,从而降低生产成本并减少环境污染。
其工作原理和过程如图1所示,它是一个长长的金属圆柱体,其轴线和水平面稍稍倾斜,并能绕轴线旋转,所以又CaCO(碳酸钙)泥桨由左端输入迴转窑,称为迴转窑。
含有大约30%水分的3由于窑的坡度和旋转作用,泥桨在炉内从左向右慢慢下滑。
而燃料油和空气由右端喷入燃烧,形成气流由右向左流动,以使泥桨干燥、加热并发生分解反应。
迴转窑从左到右可分为干燥段、加热段、煅烧段和泠却段。
最终生成的石灰由右端输出,而废气由左端排出。
图1石灰窑炉示意图这是一个连续的生产过程,原料和燃料不断输入,而产品和废气不断输出。
在生产过程中首先要保证产品质量,包括CaO的含量、粒度和多孔性等指标,因此必须使炉内有合适的温度分布,温度太低碳酸钙不能完全分解,会残留在产品中,温度过高又会造成生灰的多孔性能不好,费燃料又易损坏窑壁。
但是在生产过程中原料成分、含水量、进料速度、燃油成分和炉窑转速等生产条件经常会发生变化,而且有些量和变化是无法实时量测的。
在这种条件下,要做到稳定生产、高质量、低消耗和低污染,对自动控制提出了很高的要求。
以前曾有人分析窑炉内发生的物理-化学变化,并根据传热和传质过程来建立窑炉的数学模型,认为窑炉是一个分布参数的非线性动态系统,可以用二组偏微方程来描述,给出的数学模型是S 11,2,3,4i i i X X S i V t z ∂∂+==∂∂ (1)g 11,2,3,4,5j j j Y Y G j V t z ∂∂+==∂∂ (2)在这些方程中,i X 是固体的第i 个状态变量,s V 是固体沿轴线的运动速度,i S 是与空间、固体的状态变量和气体的状态变量有关的一个非线性函数。
MATLAB智能算法30个案例分析
MATLAB 智能算法30个案例分析第1 章1、案例背景遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。
遗传算法的做法是把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。
在遗传算法中,染色体对应的是数据或数组,通常是由一维的串结构数据来表示,串上各个位置对应基因的取值。
基因组成的串就是染色体,或者叫基因型个体( Individuals) 。
一定数量的个体组成了群体(Population)。
群体中个体的数目称为群体大小(Population Size),也叫群体规模。
而各个个体对环境的适应程度叫做适应度( Fitness) 。
2、案例目录:1.1 理论基础1.1.1 遗传算法概述1. 编码2. 初始群体的生成3. 适应度评估4. 选择5. 交叉6. 变异1.1.2 设菲尔德遗传算法工具箱1. 工具箱简介2. 工具箱添加1.2 案例背景1.2.1 问题描述1. 简单一元函数优化2. 多元函数优化1.2.2 解决思路及步骤1.3 MATLAB程序实现1.3.1 工具箱结构1.3.2 遗传算法中常用函数1. 创建种群函数—crtbp2. 适应度计算函数—ranking3. 选择函数—select4. 交叉算子函数—recombin5. 变异算子函数—mut6. 选择函数—reins7. 实用函数—bs2rv8. 实用函数—rep1.3.3 遗传算法工具箱应用举例1. 简单一元函数优化2. 多元函数优化1.4 延伸阅读1.5 参考文献3、主程序:1. 简单一元函数优化:clcclear allclose all%% 画出函数图figure(1);hold on;lb=1;ub=2; %函数自变量范围【1,2】ezplot('sin(10*pi*X)/X',[lb,ub]); %画出函数曲线xlabel('自变量/X')ylabel('函数值/Y')%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=20; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(2,MAXGEN); %寻优结果的初始值FieldD=[PRECI;lb;ub;1;0;1;1]; %区域描述器Chrom=crtbp(NIND,PRECI); %初始种群%% 优化gen=0; %代计数器X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换ObjV=sin(10*pi*X)./X; %计算目标函数值while gen<MAXGENFitnV=ranking(ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异X=bs2rv(SelCh,FieldD); %子代个体的十进制转换ObjVSel=sin(10*pi*X)./X; %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群X=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=min(ObjV);trace(1,gen)=X(I); %记下每代的最优值trace(2,gen)=Y; %记下每代的最优值endplot(trace(1,:),trace(2,:),'bo'); %画出每代的最优点grid on;plot(X,ObjV,'b*'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(2,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestY=trace(2,end);bestX=trace(1,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\n'])2. 多元函数优化clcclear allclose all%% 画出函数图figure(1);lbx=-2;ubx=2; %函数自变量x范围【-2,2】lby=-2;uby=2; %函数自变量y范围【-2,2】ezmesh('y*sin(2*pi*x)+x*cos(2*pi*y)',[lbx,ubx,lby,uby],50); %画出函数曲线hold on;%% 定义遗传算法参数NIND=40; %个体数目MAXGEN=50; %最大遗传代数PRECI=20; %变量的二进制位数GGAP=0.95; %代沟px=0.7; %交叉概率pm=0.01; %变异概率trace=zeros(3,MAXGEN); %寻优结果的初始值FieldD=[PRECI PRECI;lbx lby;ubx uby;1 1;0 0;1 1;1 1]; %区域描述器Chrom=crtbp(NIND,PRECI*2); %初始种群%% 优化gen=0; %代计数器XY=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换X=XY(:,1);Y=XY(:,2);ObjV=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算目标函数值while gen<MAXGENFitnV=ranking(-ObjV); %分配适应度值SelCh=select('sus',Chrom,FitnV,GGAP); %选择SelCh=recombin('xovsp',SelCh,px); %重组SelCh=mut(SelCh,pm); %变异XY=bs2rv(SelCh,FieldD); %子代个体的十进制转换X=XY(:,1);Y=XY(:,2);ObjVSel=Y.*sin(2*pi*X)+X.*cos(2*pi*Y); %计算子代的目标函数值[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群XY=bs2rv(Chrom,FieldD);gen=gen+1; %代计数器增加%获取每代的最优解及其序号,Y为最优解,I为个体的序号[Y,I]=max(ObjV);trace(1:2,gen)=XY(I,:); %记下每代的最优值trace(3,gen)=Y; %记下每代的最优值endplot3(trace(1,:),trace(2,:),trace(3,:),'bo'); %画出每代的最优点grid on;plot3(XY(:,1),XY(:,2),ObjV,'bo'); %画出最后一代的种群hold off%% 画进化图figure(2);plot(1:MAXGEN,trace(3,:));grid onxlabel('遗传代数')ylabel('解的变化')title('进化过程')bestZ=trace(3,end);bestX=trace(1,end);bestY=trace(2,end);fprintf(['最优解:\nX=',num2str(bestX),'\nY=',num2str(bestY),'\nZ=',num2str(bestZ), '\n']) 第2 章基于遗传算法和非线性规划的函数寻优算法1.1案例背景1.1.1 非线性规划方法非线性规划是20世纪50年代才开始形成的一门新兴学科。
MATLAB智能算法30个案例分析
MATLAB智能算法30个案例分析1.线性回归:通过拟合数据,预测未知的连续变量。
2.逻辑回归:基于已知输入和输出数据,通过对数斯蒂格回归模型,进行二元分类。
3.决策树:通过对已知数据进行分类预测,构建一棵决策树模型。
4.随机森林:通过构建多个决策树模型,进行分类和回归分析。
5.支持向量机:通过找到一个最优超平面,对数据进行二元分类。
6.高斯混合模型:基于多个高斯分布,对数据进行聚类分析。
7.K均值聚类:通过对数据进行分组,找到数据的簇结构。
8.主成分分析:找到最具有代表性的主成分,实现数据的降维和可视化。
9.独立成分分析:在多变量数据中,找到相互独立的成分。
10.关联规则挖掘:通过分析大规模数据集,找到数据项之间的关联规则。
11.朴素贝叶斯分类器:基于贝叶斯理论,进行分类和预测。
12.遗传算法:通过模拟进化过程,找到最优解。
13.粒子群算法:通过模拟粒子在空间中的移动,优化问题的解。
14.蚁群算法:通过模拟蚂蚁在空间中的行为,解决优化问题。
15.神经网络:通过多层神经元之间的连接,进行模式识别和预测。
16.卷积神经网络:通过卷积层和池化层,进行图像分类和目标检测。
17.循环神经网络:通过循环连接,进行时间序列预测和自然语言处理。
18.支持张量分解的非负矩阵分解:通过分解张量,进行数据降维和特征提取。
19.马尔科夫链:通过状态转移概率,对随机过程进行建模和分析。
20.K最近邻算法:通过找到与未知样本最接近的训练样本,进行分类和回归分析。
21.高斯过程回归:利用高斯过程进行回归分析和置信区间估计。
22.隐马尔科夫模型:通过观测序列推断隐藏状态序列。
23.时序聚类:通过对时间序列数据进行聚类分析,找到相似的模式。
24.大规模机器学习:通过将数据划分为小批量,进行机器学习模型的训练。
25.非线性最小二乘:通过最小化非线性函数的残差平方和,拟合数据。
26.分类集成学习:通过结合多个分类器的预测结果,提高分类准确率。
matlab30个案例分析-连续Hopfield神经网络的优化
%% 连续Hopfield神经网络的优化—旅行商问题优化计算% function main%% 清空环境变量、定义全局变量clear allclcglobal A D%% 导入城市位置load city_location%% 计算相互城市间距离distance=dist(citys,citys');%% 初始化网络N=size(citys,1);A=200;D=100;U0=0.1;step=0.0001;delta=2*rand(N,N)-1;U=U0*log(N-1)+delta;V=(1+tansig(U/U0))/2;iter_num=10000;E=zeros(1,iter_num);%% 寻优迭代for k=1:iter_num% 动态方程计算dU=diff_u(V,distance);% 输入神经元状态更新U=U+dU*step;% 输出神经元状态更新V=(1+tansig(U/U0))/2;% 能量函数计算e=energy(V,distance);E(k)=e;end%% 判断路径有效性[rows,cols]=size(V);V1=zeros(rows,cols);[V_max,V_ind]=max(V);for j=1:colsV1(V_ind(j),j)=1;endC=sum(V1,1);R=sum(V1,2);flag=isequal(C,ones(1,N)) & isequal(R',ones(1,N));%% 结果显示% 计算初始路径长度sort_rand=randperm(N);citys_rand=citys(sort_rand,:);Length_init=dist(citys_rand(1,:),citys_rand(end,:)');for i=2:size(citys_rand,1)Length_init=Length_init+dist(citys_rand(i-1,:),citys_rand(i,:)');end% 绘制初始路径figure(1)plot([citys_rand(:,1);citys_rand(1,1)],[citys_rand(:,2);citys_rand(1,2)],'o-') for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_rand(1,1),citys_rand(1,2),[' 起点' ])text(citys_rand(end,1),citys_rand(end,2),[' 终点' ])title(['优化前路径(长度:' num2str(Length_init) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 计算最优路径长度[V1_max,V1_ind]=max(V1);citys_end=citys(V1_ind,:);Length_end=dist(citys_end(1,:),citys_end(end,:)');for i=2:size(citys_end,1)Length_end=Length_end+dist(citys_end(i-1,:),citys_end(i,:)');enddisp('最优路径矩阵');V1% 绘制最优路径figure(2)plot([citys_end(:,1);citys_end(1,1)],...[citys_end(:,2);citys_end(1,2)],'o-')for i=1:length(citys)text(citys(i,1),citys(i,2),[' ' num2str(i)])endtext(citys_end(1,1),citys_end(1,2),[' 起点' ])text(citys_end(end,1),citys_end(end,2),[' 终点' ])title(['优化后路径(长度:' num2str(Length_end) ')'])axis([0 1 0 1])grid onxlabel('城市位置横坐标')ylabel('城市位置纵坐标')% 绘制能量函数变化曲线plot(1:iter_num,E);ylim([0 2000])title(['能量函数变化曲线(最优能量:' num2str(E(end)) ')']);xlabel('迭代次数');ylabel('能量函数');elsedisp('寻优路径无效');end% %===========================================% function du=diff_u(V,d)% global A D% n=size(V,1);% sum_x=repmat(sum(V,2)-1,1,n);% sum_i=repmat(sum(V,1)-1,n,1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% du=-A*sum_x-A*sum_i-D*sum_d;% %==========================================% function E=energy(V,d)% global A D% n=size(V,1);% sum_x=sumsqr(sum(V,2)-1);% sum_i=sumsqr(sum(V,1)-1);% V_temp=V(:,2:n);% V_temp=[V_temp V(:,1)];% sum_d=d*V_temp;% sum_d=sum(sum(V.*sum_d));% E=0.5*(A*sum_x+A*sum_i+D*sum_d);% % % % 计算dufunction du=diff_u(V,d)global A Dn=size(V,1);sum_x=repmat(sum(V,2)-1,1,n);sum_i=repmat(sum(V,1)-1,n,1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;du=-A*sum_x-A*sum_i-D*sum_d;% % % % % 计算能量函数function E=energy(V,d)global A Dn=size(V,1);sum_x=sumsqr(sum(V,2)-1);sum_i=sumsqr(sum(V,1)-1);V_temp=V(:,2:n);V_temp=[V_temp V(:,1)];sum_d=d*V_temp;sum_d=sum(sum(V.*sum_d));E=0.5*(A*sum_x+A*sum_i+D*sum_d);。
matlab 通用神经网络代码
matlab 通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下,希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。
P=[ -40; 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T);%描绘输入点图像net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc{1},{1});a=1:25%训练次数[net,Y,E]=adapt(net,P,T);linehandle=plotpc{1},{1},linehandle);drawnow;end%通用newlin程序%通用线性网络进行预测time=0::5;T=sin(time*4*pi);Q=length(T);P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。
P(1,2:Q)=T(1,1:(Q-1));P(2,3:Q)=T(1,1:(Q-2));P(3,4:Q)=T(1,1:(Q-3));P(4,5:Q)=T(1,1:(Q-4));P(5,6:Q)=T(1,1:(Q-5));plot(time,T)%绘制信号T曲线xlabel('时间');ylabel('目标信号');title('待预测信号');net=newlind(P,T);%根据输入和期望输出直接生成线性网络a=sim(net,P);%网络测试figure(2)plot(time,a,time,T,'+')xlabel('时间');ylabel('输出-目标+');title('输出信号和目标信号');e=T-a;figure(3)plot(time,e)hold onplot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold offxlabel('时间');ylabel('误差');title('误差信号');%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为;% lr_dec(学习率下降比,缺省为;max_perf_inc(表现函数增加最大比,缺省为%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda 的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为;delt_dec(权值变化减小量,缺省为;% delta0(初始权值变化,缺省为;deltamax(权值变化最大值,缺省为% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法; %训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr%训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为; % lambda(Hessian阵不确定性调节参数,缺省为% 缺少1个训练参数:lr%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);%最大训练次数(前缺省为10,自trainrp后,缺省为100)%学习率(缺省为%限时训练迭代过程(NaN表示不显示,缺省为25)%训练要求精度(缺省为0)% 最大失败次数(缺省为5)% 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6)% 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,P) %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[ ];net=newgrnn(P,T);%仿真验证p=;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1::1;T=[ ......];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas;a3=radbas(p+2);a4=a+a2*+a3*;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sceg=;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);%网络测试plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=;net=newgrnn(P,T,spread);%网络测试A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+,P(2,i),sprintf('class %g',Tc(i))) endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+,P(2,i),sprintf('class %g',Ac(i))) endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')。
matlab数学建模30个案例分析
案例4:基于微分方程的最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度,一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。考虑对某种鱼的最优捕鱼策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄组,各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克)各年龄组鱼的自然死亡率均为0.8(1/年)这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109× 个,3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22 × /1.22× +n)
案例12:基于主成分分析的长江水质的评价和预测模型
运用主成分分析法对长江流域主要城市水质检测报告进行分析,选取主成分,并把主成分得分按方差贡献率加权求和,得出每个地区的污染综合评价指数,进而可以计算每个月长江流域的污染综合评价指数。
第三部分 优化问题
案例13:基于线性规划求解飞行管理模型
第二部分 评价问题
案例7:基于层次分析法的高考志愿选择策略
一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。这个决策关系重大,请你建立一个数学模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。成都丙、重庆丁四所大学。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员。该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布。每一位参加面试人员都可以申报两个自己的工作类别志愿。
MATLAB程序代码BP神经网络的设计实例
MATLAB程序代码--BP神经网络的设计实例例1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MA TLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。
在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。
MATLAB智能算法30个案例分析
MATLAB智能算法30个案例分析以下是MATLAB智能算法30个案例的分析:1.遗传算法优化问题:利用遗传算法求解最佳解的问题。
可以用于求解复杂的优化问题,如旅行商问题等。
2.神经网络拟合问题:利用神经网络模型拟合给定的数据。
可以用于预测未知的数据或者进行模式分类等。
3.支持向量机分类问题:利用支持向量机模型进行分类任务。
可以用于医学图像处理、信号处理等领域。
4.贝叶斯网络学习问题:利用贝叶斯网络对大量数据进行学习和分析。
可以用于推断潜在关系、预测未来事件等。
5.粒子群算法逆向问题:利用粒子群算法解决逆向问题,如数据恢复、逆向工程等。
可以用于重建丢失的数据或者还原未知的模型参数。
6.模拟退火算法优化问题:利用模拟退火算法寻找最优解。
可以用于参数优化、组合优化等问题。
7.K均值聚类问题:利用K均值算法对数据进行聚类。
可以用于数据分析、图像处理等。
8.线性回归问题:利用线性回归模型预测目标变量。
可以用于价格预测、趋势分析等。
9.主成分分析问题:利用主成分分析模型对高维数据进行降维。
可以用于数据可视化和预处理。
10.深度学习图像分类问题:利用深度学习算法对图像进行分类。
可以用于图像识别和物体检测等。
11.强化学习问题:利用强化学习算法让智能体自主学习和改进策略。
可以用于自动驾驶、博弈等。
12.偏微分方程求解问题:利用数值方法求解偏微分方程。
可以用于模拟物理过程和工程问题。
13.隐马尔可夫模型序列分类问题:利用隐马尔可夫模型对序列进行分类。
可以用于语音识别、自然语言处理等。
14.遗传编程问题:利用遗传编程算法自动发现和改进算法。
可以用于算法设计和优化等。
15.高斯混合模型聚类问题:利用高斯混合模型对数据进行聚类。
可以用于人群分析和异常检测等。
16.马尔可夫链蒙特卡洛采样问题:利用马尔可夫链蒙特卡洛方法采样复杂分布。
可以用于概率推断和统计模拟等。
17.基因表达式数据分析问题:利用统计方法分析基因表达数据。
MATLAB神经网络算法实例讲解【附源代码】
MA TLAB神经网络算法实例讲解【附源代码】例1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MA TLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputW eights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerW eights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。
matlab16--神经网络
Matlab神经网络工具箱应用简介第一章 介绍1.神经网络神经网络是单个并行处理元素的集合,我们从生物学神经系统得到启发。
在自然界,网络功能主要由神经节决定,我们可以通过改变连接点的权重来训练神经网络完成特定的功能。
一般的神经网络都是可调节的,或者说可训练的,这样一个特定的输入便可得到要求的输出。
如下图所示。
这里,网络根据输出和目标的比较而调整,直到网络输出和目标匹配。
作为典型,许多输入/目标对应的方法已被用在有监督模式中来训练神经网络。
神经网络已经在各个领域中应用,以实现各种复杂的功能。
这些领域包括:模式识别、鉴定、分类、语音、翻译和控制系统。
如今神经网络能够用来解决常规计算机和人难以解决的问题。
我们主要通过这个工具箱来建立示范的神经网络系统,并应用到工程、金融和其他实际项目中去。
一般普遍使用有监督训练方法,但是也能够通过无监督的训练方法或者直接设计得到其他的神经网络。
无监督网络可以被应用在数据组的辨别上。
一些线形网络和Hopfield网络是直接设计的。
总的来说,有各种各样的设计和学习方法来增强用户的选择。
神经网络领域已经有50年的历史了,但是实际的应用却是在最近15年里,如今神经网络仍快速发展着。
因此,它显然不同与控制系统和最优化系统领域,它们的术语、数学理论和设计过程都已牢固的建立和应用了好多年。
我们没有把神经网络工具箱仅看作一个能正常运行的建好的处理轮廓。
我们宁愿希望它能成为一个有用的工业、教育和研究工具,一个能够帮助用户找到什么能够做什么不能做的工具,一个能够帮助发展和拓宽神经网络领域的工具。
因为这个领域和它的材料是如此新,这个工具箱将给我们解释处理过程,讲述怎样运用它们,并且举例说明它们的成功和失败。
我们相信要成功和满意的使用这个工具箱,对范例和它们的应用的理解是很重要的,并且如果没有这些说明那么用户的埋怨和质询就会把我们淹没。
所以如果我们包括了大量的说明性材料,请保持耐心。
我们希望这些材料能对你有帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%ART神经网络的数据分类—患者癌症发病预测
%%清空环境变量
clc
clear
%%录入输入数据
%载入数据并将数据分成训练和预测两类
load gene.mat;
data=gene;
P=data(1:40,:);
T=data(41:60,:);
%转置后符合神经网络的输入格式
P=P';
T=T';
%取输入元素的最大值和最小值Q:
Q=minmax(P);
%%网络建立和训练
%利用newc()命令建立竞争网络:2代表竞争层的神经元个数,也就是要分类的个数。
0.1代表学习速率。
net=newc(Q,2,0.1)
%初始化网络及设定网络参数:
net=init(net);
net.trainparam.epochs=20;
%训练网络:
net=train(net,P);
%%网络的效果验证
%将原数据回带,测试网络效果:
a=sim(net,P);
ac=vec2ind(a)
%这里使用了变换函数vec2ind(),用于将单值向量组变换成下标向量。
其调用的格式为:%ind=vec2ind(vec)
%其中,
%vec:为m行n列的向量矩阵x,x中的每个列向量i,除包含一个1外,其余元素均为0。
%ind:为n个元素值为1所在的行下标值构成的一个行向量。