六年级倒推法解题

合集下载

第12讲 倒推法解题

第12讲 倒推法解题

第12 讲倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

二、精讲精练1 3【例题1】一本文艺书,小明第一天看了全书的,第二天看了余下的,还剩下48页,3 5这本书共有多少页?练习1:3 51、某班少先队员参加劳动,其中的人打扫礼堂,剩下队员中的打扫操场,还剩127 8人打扫教室,这个班共有多少名少先队员?3 22、一辆汽车从甲地出发,第一天走了全程的,第二天走了余下的,第三天走了2508 3千米到达乙地。

甲、乙两地间的路程是多少千米?11 2 33、把一堆苹果分给四个人,甲拿走了其中的,乙拿走了余下的,丙拿走这时所剩的,6 5 4丁拿走最后剩下的15个,这堆苹果共有多少个?1 2【例题2】筑路队修一段路,第一天修了全长的又100米,第二天修了余下的,还5 7剩500米,这段公路全长多少米?练习2:2 11、一堆煤,上午运走,下午运的比余下的还多6吨,最后剩下14吨还没有运走,7 3这堆煤原有多少吨?1 12、用拖拉机耕一块地,第一天耕了这块地的又2公顷,第二天耕的比余下的多33 2公顷,还剩下35公顷,这块地共有多少公顷?21 13、一批水泥,第一天用去了多1吨,第二天用去了余下少2吨,还剩下16吨,原2 3来这批水泥有多少吨?1 1【例题3】有甲、乙两桶油,从甲桶中倒出给乙桶后,又从乙桶中倒出给甲桶,这时3 5两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1 11、小华拿出自己的画片的给小强,小强再从自己现有的画片中拿出给小华,这时5 4两人各有画片12张,原来两人各有画片多少张?1 12、甲、乙两人各有人民币若干元,甲拿出给乙后,乙又拿出给甲,这时他们各有905 4元,他们原来各有多少元?3【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。

六年级上册奥数第12讲 倒推法解题

六年级上册奥数第12讲  倒推法解题

第12讲倒推法解题讲义专题简析倒推法解题是从最后的结果出发,运用加和减、乘和除之间的互逆关系,从后往前一步一步地推算,直到找到最初的数据,这种方法又常被称为“还原法”。

适合用倒推法解题的数学问题常满足以下条件:已知最后的结果和到达最后结果时的每一步具体的过程。

例1、筑路队修一段路,第一天修了全长的又100米,第二天修了余下的,还剩500米。

这段公路全长多少米?练习:1、一堆煤,上午运走,下午运的比余下的还多6吨,最后剩下14吨还没有运走。

这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的又2公顷,第二天耕的比余下的多3公顷,还剩下35公顷没有耕。

这块地共有多少公顷?3、一批水泥,第一天用去多1吨,第二天用去余下的少2吨,还剩下16吨。

原来这批水泥有多少吨?例2、王大伯屋后有一棵桃树。

他孙子每天从树上摘下一些桃子和邻居的小伙伴分着吃,第一天摘下桃子总个数的合,以后8天分别摘下当天树上现有桃子的、、、…、,摘了9天,树上还留下10个桃子。

树上原来有多少个桃子?练习:1、把一根绳子对半剪开,再取其中一段对半剪开,这样剪了四次,剩下的正好是1米。

这根绳子原来长多少米?2、《九章算术》中有一道题:“今有人持米出三关,外关三而取一,中关五而取一,内关七而取一,余米五斗。

问持米几何?”题意是:有人背米过关卡,经过外关时,用全部米的纳税,过中关时用所余米的纳税,经过内关时用再余米的纳税,最后还剩下5斗米。

这个人原来背多少斗米出关?3、仓库里存粮若干吨,第一次运出总数的又4吨,第二次运出余下的又3吨,第三次运出余下的又5吨,最后还剩下12吨。

这个仓库原有粮食多少吨?例3、有甲、乙两桶油,从甲桶中倒出的油给乙桶后,又从乙桶中倒出的油给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有油多少千克?练习:1、小华拿出自己画片张数的给小强,小强再从自己现有的画片张数中拿出给小华,这时两人各有画片12张。

原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出自己所有钱的给乙后,乙又拿出现在自己所有钱的给甲,这时他们各有90元。

小学六年级奥数第12讲 倒推法解题(含答案分析)

小学六年级奥数第12讲 倒推法解题(含答案分析)

第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。

六年级奥数专项用倒推法解题

六年级奥数专项用倒推法解题

六年级奥数专项用倒推法解题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】用倒推法解题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。

这种方法对于解答一些分数应用题同样适用。

【例题精讲】例题1:有一条铁丝,第一次剪下它的12又1米;第二次剪下剩下的13又1米;此时还剩下15米。

这条铁丝原来长多少米模仿练习1:一堆水泥,第一次用去它的12又3吨,第二次用剩下水泥的13又3吨,第三次又用去第二次余下的14又3吨,这时这堆水泥正好剩下3吨。

这堆水泥原来有多少吨例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15运到甲仓库,再将甲仓库此时存粮的14运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。

那么,原来甲仓库和乙仓库中各存粮多少吨模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27多12个,第二只分到余下的23少4个,第三只分到20个。

这筐桃子共有多少个(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。

后来擦掉其中一个,剩下的数的平均数是。

那么,被擦掉的那个自然数是多少模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。

其余各数的平均数是35517。

擦去的数是多少(奥赛初赛A卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。

如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒 模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。

那么增加到25万个需要多少小时【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。

小明今年多少岁2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。

小学六年级上奥数教程:第十二讲 倒推法解题--教师版

小学六年级上奥数教程:第十二讲  倒推法解题--教师版

第12讲倒推法解题【解题秘钥】有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

【经典例题】例题1:一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?思路导航:从“剩下48页”入手倒着往前推,它占余下的1-3/5=2/5。

第一天看后还剩下48÷2/5=120页,这120页占全书的1-1/3=2/3,这本书共有120÷2/3=180页。

即48÷(1-3/5)÷(1-1/3)=180(页)答:这本书共有180页。

练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?例题2:筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?思路导航:从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米。

列式为:【500÷(1-2/7)+100】÷(1-1/5)=1000米答:这段公路全长1000米。

练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?例题3:有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?思路导航:从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24÷(1-1/5)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18÷(1-1/3)=27千克,乙桶原有的油为48-27=21千克。

小学六年级奥数-倒推法解题

小学六年级奥数-倒推法解题

二、精讲精练
甲仓库原来占两仓库和的几分之几?
1/3÷(1-1/4)=4/9 原来甲仓库时乙仓库的几分之几?
4÷(9-4)=4/5 答:原来甲仓库的粮食是乙仓库的4/5。
甲、乙两个仓库各有粮食若干吨,从甲仓库运出1/3到乙仓库后,又从乙仓库运出1/3到甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之几?
C
练习2:
二、精讲精练
二、精讲精练
【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油? 【思路导航】从最后的结果出发倒推,甲、乙两桶共有(24×2)=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24÷(1-1/5)=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18÷(1-1/3)=27千克,乙桶原有的油为48-27=21千克。 甲:【24×2-24÷(1-1/5)】÷(1-1/3)=27(千克) 乙:24×2-27=21(千克) 答:甲桶原有油27千克,乙桶原有油21千克。
路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米? 【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,第一天修后还剩500÷5/7=700米,如果第一天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米。列式为: 【500÷(1-2/7)+100】÷(1-1/5)=1000米 答:这段公路全长1000米。
某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?

六年级奥数倒推法解题讲座(含答案解析)

六年级奥数倒推法解题讲座(含答案解析)

六年级奥数倒推法解题讲座(含答案解析)倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

二、精讲精练【例题1】一本文艺书,小明天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?【思路导航】从“剩下48页”入手倒着往前推,它占余下的1-3/5=2/5。

天看后还剩下48÷2/5=120页,这120页占全书的1-1/3=2/3,这本书共有120÷2/3=180页。

即÷÷=180答:这本书共有180页。

练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?3.把一堆苹果分给四个人,甲拿走了其中的1/6,乙拿走了余下的2/5,丙拿走这时所剩的3/4,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,天修了全长的1/5又100米,第二天修了余下的2/7,还剩500米,这段公路全长多少米?【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-2/7=5/7,天修后还剩500÷5/7=700米,如果天正好修全长的1/5,还余下700+100=800米,这800米占全长的1-1/5=4/5,这段路全长800÷4/5=1000米。

列式为:【500÷+100】÷=1000米答:这段公路全长1000米。

练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?3.一批水泥,天用去了1/2多1吨,第二天用去了余下1/3少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?【思路导航】从最后的结果出发倒推,甲、乙两桶共有=48千克,当乙桶没有倒出1/5给甲桶时,乙桶内有油24÷=30千克,这时甲桶内只有48-30=18千克,而甲桶已倒出1/3给了乙桶,可见甲桶原有的油为18÷=27千克,乙桶原有的油为48-27=21千克。

六年级奥数:第12讲 倒推法解题

六年级奥数:第12讲 倒推法解题

第12講 倒推法解題一、知識要點有些應用題如果按照一般方法,順著題目的條件一步一步地列出算式求解,過程比較繁瑣。

所以,解題時,我們可以從最後的結果出發,運用加與減、乘與除之間的互逆關係,從後到前一步一步地推算,這種思考問題的方法叫倒推法。

二、精講精練【例題1】一本文藝書,小明第一天看了全書的31,第二天看了餘下的53,還剩下48頁,這本書共有多少頁?練習1:1、某班少先隊員參加勞動,其中73的人打掃禮堂,剩下隊員中的85打掃操場,還剩12人打掃教室,這個班共有多少名少先隊員?2、一輛汽車從甲地出發,第一天走了全程的83,第二天走了餘下的32,第三天走了250千米到達乙地。

甲、乙兩地間的路程是多少千米?3、把一堆蘋果分給四個人,甲拿走了其中的61,乙拿走了餘下的52,丙拿走這時所剩的43,丁拿走最後剩下的15個,這堆蘋果共有多少個?【例題2】築路隊修一段路,第一天修了全長的51又100米,第二天修了餘下的72 ,還剩500米,這段公路全長多少米?練習2:1、一堆煤,上午運走72,下午運的比餘下的31還多6噸,最後剩下14噸還沒有運走,這堆煤原有多少噸?2、用拖拉機耕一塊地,第一天耕了這塊地的31又2公頃,第二天耕的比餘下的21多3公頃,還剩下35公頃,這塊地共有多少公頃?3、一批水泥,第一天用去了21多1噸,第二天用去了餘下31少2噸,還剩下16噸,原來這批水泥有多少噸?【例題3】有甲、乙兩桶油,從甲桶中倒出31給乙桶後,又從乙桶中倒出51給甲桶,這時兩桶油各有24千克,原來甲、乙兩個桶中各有多少千克油?練習3:1、小華拿出自己的畫片的51給小強,小強再從自己現有的畫片中拿出41給小華,這時兩人各有畫片12張,原來兩人各有畫片多少張?2、甲、乙兩人各有人民幣若干元,甲拿出51給乙後,乙又拿出41給甲,這時他們各有90元,他們原來各有多少元?【例題4】甲、乙、丙三人共有人民幣168元,第一次甲拿出與乙相同的錢數給乙;第二次乙拿出與丙相同的錢數給丙;第三次丙拿出與這時甲相同的錢數給甲。

(完整word版)六年级倒推法解题

(完整word版)六年级倒推法解题

倒推法解题【知识点】有些应用题如果按照一般方法, 顺着题目的要求一步一步地列出算式求解, 过程比较繁琐, 量与量之间的关系也不好找。

对于这种类型的应用题, 解题时, 我们可以从最后的结果出发, 运用加与减、乘与除之间的互逆关系, 从后往前一步一步推算, 这种思考问题的方法就叫倒推法。

运用这种方法, 反向倒推过去, 反而易于解决问题。

【练习题】1. 张大爷提篮去卖蛋, 第一次卖了全部的一半又半个, 第二次卖了余下的一半又半个, 第三次卖了第二次余下的一半又半个, 第四次卖了第三次余下的一半又半个。

这时, 鸡蛋都卖完了。

问张大爷篮中原来有鸡蛋多少个?(15)2.三只猴子去吃篮里的桃子, 第一只猴子吃了, 第二只猴子吃了剩下的, 第三只猴子吃了第二只剩下的, 最后篮子里还剩下6只桃子。

原有桃子多少只?(18)3.一捆电线, 第一次用去全长的一半多3米, 第二次用去余下的一半少10米, 第三次用去15米, 最后还剩7米。

这捆电线原有多少米?(54)4.修一段路, 第一天修全路的还多2千米, 第二天修余下的少1千米, 第三天修余下的还多1千米, 这样还剩下20千米没有修完, 求公路的全长?(85)5.一只猴子偷吃桃子, 它第一天偷吃了树上桃子的, 以后的8天每天偷吃树上桃子的、、……, 这时树上还剩下10个桃子。

问树上原来有多少个桃子?(100)6. 甲、乙二人分16个苹果, 分完后, 甲将自己所得苹果数的分给了乙, 乙又将自己现有苹果数的还给甲;最后甲又将自己现有苹果数的给了乙, 这时两人苹果数恰好相等。

问: 最初甲分得几个苹果?(15)一瓶酒精, 第一次倒出, 然后倒回瓶中40克, 第二次倒出瓶中剩下酒精的, 第三次倒出180克, 瓶中还剩下60克。

问原来瓶中有酒精多少克?(750)8、甲、乙、丙三人共有人民币168元, 第一次甲拿出与乙相等的钱给乙;第二次乙拿出与丙相等的钱给丙;第三次丙拿出与甲相等的钱给甲, 这时, 三人的钱刚好相等。

六年级奥数-第3讲-倒推法

六年级奥数-第3讲-倒推法

倒推法在以前的学习中,我们已经认识了倒推法,即从后面的已知条件(结果)入 手,逐步向前一步一步地推算, 最后得出所需要的结论。

这种方法对于解答一些 分数应用题同样适用。

11例 1 : 有一条铁丝,第一次剪下它的 2 又 1 米;第二次剪下剩下的 3 又 1 米;此时还 剩下 15 米。

这条铁丝原来长 米。

1分析与解: 铁丝最后还剩 15 米,这是第二次剪去第一次剩下的 13 又 1米的结果, 那么第二31 次剪之前(即第一次剪后)应该是( 15+1)÷( 1-31) =24 米;而 24 米又是第一次剪去1这条铁丝的 2 又 1 米的结果, 那么第一次剪之前 (即原来),铁丝的长度应该是 (24+ 1)÷(11-2 )=50 米。

例 2: 李老师在黑板上写了若干个从 1 开始的连续自然数 1、2、 3、⋯⋯。

后来擦掉其 中一个,剩下的数的平均数是 10.8。

那么,被擦掉的那个自然数是多少? 分析与解: 题中最后的结果是: 擦去后剩下数的平均数为 10.8。

我们就以此入手来思考:平10、 15、20、⋯⋯;剩下的数的和是: 54、 108、 162、 216、⋯⋯。

根据题意可知:擦去前 数的个数可能是: 6、 11、16、21、⋯⋯,而擦去前的数是从 1 开始的连续自然数,那么擦去前各数之和与擦去后各数之和的差应该是 1至 6(或 1至 11、1至 16、1至 21、⋯⋯)中的一个。

我们以此来试算:六年级奥数方法均数=总数÷个数 =10.8=554 =11008 162 216 15 =20 =⋯⋯,不难想到: 剩下的数的个数可能是: 5、 原来若是 6 个,则: 1+ 6)× 6÷2=21, 21-54=?; 原来若是 11 个,则: 1+11) × 11÷2=66,66- 108=?; 原来若是 16 个,则: 1+16) × 16÷2=136 , 136- 162=?;原来若是 21 个,则: 1+21) ×21÷2=231,231-216=15;而 15正是 1至21 中的一个,符合题意。

小学六年级奥数第12讲 倒推法解题(含答案分析)

小学六年级奥数第12讲 倒推法解题(含答案分析)

第12讲 倒推法解题一、知识要点有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。

二、精讲精练【例题1】一本文艺书,小明第一天看了全书的31,第二天看了余下的53,还剩下48页,这本书共有多少页?练习1:1、某班少先队员参加劳动,其中73的人打扫礼堂,剩下队员中的85打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2、一辆汽车从甲地出发,第一天走了全程的83,第二天走了余下的32,第三天走了250千米到达乙地。

甲、乙两地间的路程是多少千米?3、把一堆苹果分给四个人,甲拿走了其中的61,乙拿走了余下的52,丙拿走这时所剩的43,丁拿走最后剩下的15个,这堆苹果共有多少个?【例题2】筑路队修一段路,第一天修了全长的51又100米,第二天修了余下的72,还剩500米,这段公路全长多少米?练习2:1、一堆煤,上午运走72,下午运的比余下的31还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2、用拖拉机耕一块地,第一天耕了这块地的31又2公顷,第二天耕的比余下的21多3公顷,还剩下35公顷,这块地共有多少公顷?3、一批水泥,第一天用去了21多1吨,第二天用去了余下31少2吨,还剩下16吨,原来这批水泥有多少吨?【例题3】有甲、乙两桶油,从甲桶中倒出31给乙桶后,又从乙桶中倒出51给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1、小华拿出自己的画片的51给小强,小强再从自己现有的画片中拿出41给小华,这时两人各有画片12张,原来两人各有画片多少张?2、甲、乙两人各有人民币若干元,甲拿出51给乙后,乙又拿出41给甲,这时他们各有90元,他们原来各有多少元?【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。

小学六年级奥数 第12讲 倒推法解题~例1

小学六年级奥数  第12讲 倒推法解题~例1

3 5
,还剩下48页,这本书共有多少页?
经典例题
【例题1】
一本文艺书,小明第一天看了全书的
1 3
,第二天
看了余下的
3 5
,还剩下48页,这本书共有多少页?
思路导航
从“剩下48页”入手倒着往前推,它占余下的1-3/5 =2/5。第一天看后还剩下48÷2/5=120页,这120页占 全书的1-1/3=2/3,这本书共有120÷2/3=180页。
经典例题
【例题1】
一本文艺书,小明第一天看了全书的
1 3
,第二天
看了余下的
3 5
,还剩下48页,这本书共有多少页?
第二天没看之前(第一天看后剩下):
48÷(1-
3 5
)=
120(页)
第一天没看之前(原来):
120÷(1- 13)= 180(页)
经典例题
【例题1】
一本文艺书,小明第一天看了全书的
1 3
,第二天
看了余下的
3 5
,还剩下48页,这本书共有多少页?
48÷(1-
3 5
)÷(1-
1 3
)=
1一反三练习
1、某班少先队员参加劳动,其中
3 7
的人打扫礼堂,
剩下队员中的
5 8
打扫操场,还剩12人打扫教室,这个
班共有多少名少先队员?
12÷(1-
5 8
)÷(1-
3 7
1 6
,乙
拿走了余下的
2 5
,丙拿走这时所剩的
3 4
,丁拿走最后
剩下的15个,这堆苹果共有多少个?
15÷(1-
3 4
)÷(1-
2 5
)÷(1-

六年级《倒推法解题》

六年级《倒推法解题》
【思路导航】财迷一共走了五个来回,每一次都要给老人32个铜板。
往返次数
离开老人 身边的铜 板数
回到老人 身边的铜 板数
第五次 16
32
第四次 24
48
第三次 28
56
第二次 30
60
第一次 31
62
3 课后小结
课后小结
(1)本节课我们学习了哪些知识?
2 例题讲解
例题讲解
例1、某工程队修一条铁路,第一天修了全长的1/3多20千米,第二天修了余下的1/4,还剩45千米 。这条铁路长多少千米?
【思路导航】从“还剩45千米”入手倒着往前推,45千米占了余下的(1-1/4),第一天 修后还剩下45÷(1-1/4)=60(千米),如果第一天就修了全长的1/3,那么60+20=80( 千米)就占了全长的(1-1/3), 由此可求出这条铁路的全长。
解答示范 [45÷(1-1/4)+20]÷(1-1/3)=120km 答:这条铁路长120千米。
例题讲解
例2。例修一条公路,第一天修这条路的1/2还多2千米,第二天修余下的1/3少1千 米,第三天修了余下的1/4还多1千米,还剩20千米没有修。求这条公路的全长。
从最后的“还剩20千米”倒推出(20+1)千米是第二天修后余下的(1-1/4),由此求出第二天修后 余下的公路长为(20+1)÷(1-1/4)=28(千米),(28-1)千米是第一天修后余下的(1-1/3), 由此可以求出第一天修后余下的公路长为(28-1)÷(1-1/3)=40.5(千米)。(40.5+2)千米是全 长的1/2,由此可求出这条公路的全长。
例3、有26块砖,兄弟二人争着挑,弟弟抢在前面,刚摆好砖,哥哥赶到了,哥哥看弟弟挑得 太多,就抢去一半,弟弟不服,又从哥哥那儿抢去一半,哥哥不肯,弟弟只好给哥哥5块,这 时哥哥比弟弟多挑2块。问:最先弟弟准备挑几块?

六年级奥数专项(用倒推法解题)演示教学

六年级奥数专项(用倒推法解题)演示教学

用 倒 推 法 解 题【知识与方法】:倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。

这种方法对于解答一些分数应用题同样适用。

【例题精讲】例题1:有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13又1米;此时还剩下15米。

这条铁丝原来长多少米?模仿练习1:一堆水泥,第一次用去它的12 又3吨,第二次用剩下水泥的13 又3吨,第三次又用去第二次余下的14 又3吨,这时这堆水泥正好剩下3吨。

这堆水泥原来有多少吨?例2:甲、乙两仓库各存粮若干,先将乙仓库中存粮的15 运到甲仓库,再将甲仓库此时存粮的14 运到乙仓库,这时甲仓库有粮食600吨,乙仓库有粮食720吨。

那么,原来甲仓库和乙仓库中各存粮多少吨?模仿练习2:三只猴子分一筐桃,第一只猴子分得全部桃子的27 多12个,第二只分到余下的23 少4个,第三只分到20个。

这筐桃子共有多少个?(竞赛决赛试题)例3:李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。

后来擦掉其中一个,剩下的数的平均数是10.8。

那么,被擦掉的那个自然数是多少?模仿练习3:☆黑板上写着从1开始的若干个连续自然数,擦去其中的一个后。

其余各数的平均数是35517 。

擦去的数是多少?(奥赛初赛A 卷试题)例4:有一种细胞,每秒钟分裂成2个,两秒钟可分裂成4个,3秒钟可分裂成8个…在瓶中开始放进1个这样的细胞,刚好1分钟后就充满整个瓶。

如果一开始就放进8个这样的细胞,要充满整个瓶的41,需要多少秒?模仿练习4:一种微生物,每小时可增加一倍,现在有一批这样的微生物,10小时可增加到100万个。

那么增加到25万个需要多少小时?【巩固与提高】1、小明今年的岁数加上10后,再扩大5倍,然后减去5,再缩小5倍,刚好是20岁。

小明今年多少岁?2、甲、乙、丙三个数,从甲数中取出17加到乙数,从乙数中取出19加到丙数,从丙数中取出15加到甲数,这时三个数都是153,甲数原来是多少?3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的17 ,第二天它吃了余下桃子的16 ,第三天它吃了余下桃子的15 ,第四天它吃了余下桃子的14 ,第五天它吃了余下桃子的13 ,第六天它吃了余下桃子的12 ,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少?(奥赛初赛试题)4、学校将一批糖果发给甲、乙、丙、丁四个班。

六年级奥数-第3讲-倒推法

六年级奥数-第3讲-倒推法

六年级奥数方法倒 推 法在以前的学习中,我们已经认识了倒推法,即从后面的已知条件(结果)入手,逐步向前一步一步地推算,最后得出所需要的结论。

这种方法对于解答一些分数应用题同样适用。

例1: 有一条铁丝,第一次剪下它的12 又1米;第二次剪下剩下的13 又1米;此时还剩下15米。

这条铁丝原来长 米。

分析与解:铁丝最后还剩15米,这是第二次剪去第一次剩下的 13 又1米的结果,那么第二次剪之前(即第一次剪后)应该是(15+1)÷(1-13 )=24米;而24米又是第一次剪去这条铁丝的12 又1米的结果,那么第一次剪之前(即原来),铁丝的长度应该是(24+1)÷(1-12)=50米。

例2: 李老师在黑板上写了若干个从1开始的连续自然数1、2、3、……。

后来擦掉其中一个,剩下的数的平均数是10.8。

那么,被擦掉的那个自然数是多少?分析与解:题中最后的结果是:擦去后剩下数的平均数为10.8。

我们就以此入手来思考:平均数=总数÷个数=10.8=545 =10810 =16215 =21620 =……,不难想到:剩下的数的个数可能是:5、10、15、20、……;剩下的数的和是:54、108、162、216、……。

根据题意可知:擦去前数的个数可能是:6、11、16、21、……,而擦去前的数是从1开始的连续自然数,那么擦去前各数之和与擦去后各数之和的差应该是1至6(或1至11、1至16、1至21、……)中的一个。

我们以此来试算:① 原来若是6个,则:(1+6)×6÷2=21,21-54=?; ② 原来若是11个,则:(1+11)×11÷2=66,66-108=?; ③ 原来若是16个,则:(1+16)×16÷2=136,136-162=?;④ 原来若是21个,则:(1+21)×21÷2=231,231-216=15;而15正是1至21中的一个,符合题意。

倒推法解题(六年级)

倒推法解题(六年级)

六 倒推法解题例1甲、乙、丙三人共有邮票120张,他们互相赠送。

先由甲送给乙、丙,所送张数等于原来乙、丙的张数。

再由乙送给甲、丙现在的张数,最后由丙送给甲、乙现有的张数,互送后每人张数相等。

甲、乙、丙三人原来各有邮票多少张?例2我有一大瓶果汁,第一次喝了全部的一半还多50ML ,第二次又喝了剩下的一半还多50ML ,这时,还剩下50ML 果汁。

原来这瓶果汁有多少毫升?例3学校里有排球若干个。

课外活动时,六年级借走了总数的21多1个,五年级借走余下的21多1个,四年级借去还剩下的21多1个,三年级借去这时剩下的21多1个,正好排球还剩1个。

问学校原有多少个排球?例4一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。

这捆电线原来有多少米?1. 将一个数除以32后再加上30,乘151再减去6后得到最小的合数,这个数是多少?2. 午餐时食堂分鸡蛋,六年级取走了总数的一半多3个,五年级又取走了剩下的 一半多4个,这时还剩200个,食堂准备了几个鸡蛋?3. 工地上购买了一批水泥,第一次送来这批水泥的一半多3吨,第二次送来剩下的31少4吨,第三次送完剩下的20吨,工地上购买的水泥共有多少吨?4. 园林工人要维修西溪湿地,第一周修了总任务的41多60平方米,第二周修剩下的21少18平方米,第三周修余下的31多32平方米,第四周修完剩下的300平方米,这四周一共修了多少平方米?5. 小军每分钟吹一次肥皂泡,每次恰好吹出100个。

肥皂泡吹出之后,经过一分钟有一半破了,经过两分钟还有201 没有破,经过两分半钟肥皂泡全部破了。

小军在20次吹出100个新的肥皂泡的时候,没有破的肥皂泡共有多少个?6. 东东储蓄罐里有很多一元硬币。

他每天取出一些去买早点,第一天取了总数的81,第二天取了剩下的71,以后几天分别取了当天罐内硬币的六分之一、五分之一、四分之一。

取了5天,罐头里还剩下27个硬币。

六年级举一反三倒推法解题

六年级举一反三倒推法解题
2.甲、乙两人各有人民币若干元,甲拿出 给乙后,乙又拿出 给甲,这时他们各有90元,他们原来各有多少元?
3.一瓶酒精,第一次倒出 ,然后,瓶中还剩下60克,原来瓶中有多少克酒精?
【例题4】甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?
1.甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。再从丙班调出与这时甲班相同的人数给甲班,这样,甲、乙、丙三个班人数相等。原来甲班比乙班多多少人?
2.甲、乙、丙三个盒子各有若干个小球,从甲盒拿出4个放入乙盒,再从乙盒拿出8个放入丙盒后,三个盒子内的小球个数相等。原来乙盒比丙盒多几个球?
3、仓库里存粮若干,第一次运出总数的 又4吨,第二次运出余下的 又3吨,第三次运出余下的 又5吨,最后还剩下12吨。这个仓库原有粮食多少吨?
【例题3】有甲、乙两桶油,从甲桶中倒出 给乙桶后,又从乙桶中倒出 给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?
1.小华拿出自己的画片的 给小强,小强再从自己现有的画片中拿出 给小华,这时两人各有画片12张,原来两人各有画片多少张?
3.甲、乙两个仓库各有粮食若干吨,从甲仓库运出 到乙仓库后,又从乙仓库运出 到甲仓库,这时乙仓库的粮食是甲仓库的 。原来甲仓库的粮食是乙仓库的几分之几?
1.甲、乙两个仓库各有粮食若干吨,从甲仓库运出 到乙仓库后,又从乙仓库运出 到甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之几?
2.甲、乙两个仓库各有粮食若干吨,从甲仓库运出 到乙仓库后,又从乙仓库运出 到甲仓库,这时甲、乙两仓库的粮食储量相等。原来甲仓库的粮食是乙仓库的几分之几?

六年级下册小升初倒推法解题人教版人教版

六年级下册小升初倒推法解题人教版人教版
1、路线倒推 答:蔬菜市场运来50吨白菜。
现在孙亮给李凡15元,李凡给刘杰13元,刘杰给吴莹21元,吴莹给孙亮28元。
学校→黄鹤楼→长江大桥→归元寺→动物园 这筐苹果总数:3×7+2=23(个)
出示三张牌:先第一张和第二张交换位置,再将第二张和第三张交换位置 过程有点复杂列个表看看吧! 此时四人拥有的钱数相等。
问甲:原他 有会进:入12第+1一8=家30商(将店千之克它前)身们上有多三少钱等? 分后还剩2个;然后再取出其中两份,又将这两份三
贯 等分后还剩2个,则这筐苹果至少有多少个? 例3:某男孩付一角钱进入第一家商店,他在店里花了剩余的钱的一半,走出商店时,又付了一角钱,之后,他又付了一角钱进入第二家商店,在这里他花了剩余的钱的一半,走出
第二次三等分每份:8÷2=4(个)
则第二次三等分中两份的个数是3×2+2=8(个) 知道原来这三张牌是怎样摆放的吗?
因为每份的个数都要是整数,所以不合理;
第二次三等分每份:8÷2=4(个) 原有巧克力:(18-1)×2=34(个)
答:这筐苹果至少有23个。 36+48=84(本)
此时四人拥有的钱数相等。 答:这筐苹果至少有23个。

这时还剩下6吨白菜。蔬菜市场运来多少吨白菜?

原来?吨
总数的一半
多3吨
剩下
剩下的一半 多5吨 剩6吨
第一天剩下:(6+5)×2=22(吨) 原有白菜:(22+3)×2=50(吨)
答:蔬菜市场运来50吨白菜。
即 学
小明的书包里有若干个巧克力,他每次拿出其中一半再放 回去一个,一共这样5次,书包里还有3个,小明书包里原
答:大猴子一共拿了24根香蕉。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二周倒推法解题
专题简析:
有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。

所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系, 从后到前一步一步地推算,这种思考问题的方法叫倒推法。

例题1。

1 3
一本文艺书,小明第一天看了全书的3,第二天看了余下的5,还剩下48页,这本书
共有多少页?
3 2
【思路导航】从“剩下48页”入手倒着往前推,它占余下的 1 -3 = 2。

第一天看后还剩
5 5
2 1 2 2 下48-5 = 120页,这120页占
全书的1-3 = 3,这本书共有120^3 = 180 页。


3 1 =
48+( 1 —5 )*( 1-3)= 180 (页)
答:这本书共有180页。

练习1
3 5
1. 某班少先队员参加劳动,其中7的人打扫礼堂,剩下队员中的8打扫操场,还剩12
人打扫教室,这个班共有多少名少先队员?
3 2
2. 一辆汽车从甲地出发,第一天走了全程的8,第二天走了余下的3,第三天走了250
千米到达乙地。

甲、乙两地间的路程是多少千米?
1 2
3. 把一堆苹果分给四个人,甲拿走了其中的6,乙拿走了余下的5,丙拿走这时所剩的
3
4,丁拿走最后剩下的15个,这堆苹果共有多少个?
例题2。

1 2
筑路队修一段路,第一天修了全长的又100米,第二天修了余下的,还剩500米,
5 7
这段公路全长多少米?
2 5
【思路导航】从“还剩500米”入手倒着往前推,它占余下的1-7 = 7,第一天修后还剩
5 1
500十7 = 700米,如果第一天正好修全长的5,还余下700+100 = 800米,这
1 4 4
800米占全长的1 - =-,这段路全长800 + = 1000米。

列式为:
5 5 5
2 1
【500+( 1- ) +1001 + ( 1 - )= 1000 米
7 5
答:这段公路全长1000米。

练习2
一 2 一 1 一
1. 一堆煤,上午运走7,下午运的比余下的3还多6吨,最后剩下14吨还没有运走,这堆煤原有
多少吨?
1 1
2. 用拖拉机耕一块地,第一天耕了这块地的㊁又2公顷,第二天耕的比余下的2多3公
顷,还剩下35公顷,这块地共有多少公顷?
1 1
3. 一批水泥,第一天用去了扌多1吨,第二天用去了余下1少2吨,还剩下16吨,原来这批水泥
有多少吨?
例题3。

1 1
有甲、乙两桶油,从甲桶中倒出-给乙桶后,又从乙桶中倒出■-给甲桶,这时两桶油各
3 5
有24千克,原来甲、乙两个桶中各有多少千克油?
【思路导航】从最后的结果出发倒推,甲、乙两桶共有( 24 X 2)= 48千克,当乙桶没
1 1
有倒出5给甲桶时,乙桶内有油24+( 1-5 ) = 30千克,这时甲桶内只有
1
48- 30= 18千克,而甲桶已倒出3给了乙桶,可见甲桶原有的油为18+( 1
1 —3 )= 27千克,乙桶原有的油为48- 27= 21千克。

1 1
甲:【24X 2-24+( 1 -)】 + ( 1- )= 27 (千克)
5 3
乙:24 X 2 - 27 = 21 (千克)
答:甲桶原有油27千克,乙桶原有油21千克。

练习3
1 1
1. 小华拿出自己的画片的1给小强,小强再从自己现有的画片中拿出1给小华,这时两
5 4
人各有画片12张,原来两人各有画片多少张?
1 1
2. 甲、乙两人各有人民币若干元,甲拿出5给乙后,乙又拿出;给甲,这时他们各有90
元,他们原来各有多少元?
1 5
3. 一瓶酒精,第一次倒出3,然后倒回瓶中40克,第二次再倒出瓶中酒精的 -,第三次倒出180
克,瓶中好剩下60克,原来瓶中有多少克酒精?
例题4。

甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿
出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。

这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?
【思路导航】根据题意,由最后甲钱数是168+ 3 = 56元可推出:第一次甲拿出与乙同样的钱数给乙后,甲剩下的钱是56+ 2 = 28元,这28元就是原来甲比乙多的钱数。

168 + 3+ 2= 28 元答:原来甲比乙多28元。

练习4
1. 甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙
班调出与丙班相同的人数到丙班。

再从丙班调出与这时甲班相同的人数给甲班,这样,甲、乙、丙三个班人数相等。

原来甲班比乙班多多少人?
2. 甲、乙、丙三个盒子各有若干个小球,从甲盒拿出4个放入乙盒,再从乙盒拿出8个
放入丙盒后,三个盒子内的小球个数相等。

原来乙盒比丙盒多几个球?
3. 甲、乙、丙三个仓库面粉袋数的比是6: 9: 5,如果从乙仓库拿出400袋平均分给甲、
丙两仓库,则甲、乙两个仓库的数量相等。

这三个仓库共存面粉多少袋?例题5。

1 1
甲、乙两个仓库各有粮食若干吨,从甲仓库运出匚到乙仓库后,又从乙仓库运出到甲
4 4
仓库,这时甲、乙两仓库的粮食储量相等。

原来甲仓库的粮食是乙仓库的几分之几?
【思路导航】解题关键是把两个仓库粮食的和看作“1 ”,由题意可知,从乙仓库运出1到甲
4
1
仓库,乙仓库最后占两仓库和的-。

①当乙仓库没有往甲仓库运时,乙仓库占两仓库和的几分之几?
1 1 2
2 十(1- 4)= 3
②甲仓库占两仓库和的几分之几?
③甲仓库原来占两仓库和的几分之几?
1 1 4
1 宁(1-1)=4
④原来甲仓库时乙仓库的几分之几?
4
4+(9-4)= 7
5
答:原来甲仓库的粮食是乙仓库的 -。

练习5
1 1
1. 甲、乙两个仓库各有粮食若干吨,从甲仓库运出-到乙仓库后,又从乙仓库运出3到
甲仓库,这时甲、乙两仓库的粮食储量相等。

原来甲仓库的粮食是乙仓库的几分之几?
1 1
2. 甲、乙两个仓库各有粮食若干吨,从甲仓库运出-到乙仓库后,又从乙仓库运出4到
甲仓库,这时甲、乙两仓库的粮食储量相等。

原来甲仓库的粮食是乙仓库的几分之几?
1 2
3. 甲、乙两个仓库各有粮食若干吨,从甲仓库运出-到乙仓库后,又从乙仓库运出5到
9
甲仓库,这时乙仓库的粮食是甲仓库的 —。

原来甲仓库的粮食是乙仓库的几分之 几?
答案: 5 3 ,
12+( 1 — 8 ) + ( 1 — 7 )= 56 人 2
3 十「
250 +( 1 —
) + ( 1— )= 1200 千米
3
8
3 2 1

15+( 1 — 4 ) + (1 — 5)+ ( 1 — 6)= 120 个
1 2 宀 (14+6) + ( 1 — 3 ) + ( 1 — 7 )=
42 吨
1 1
【(35+3) + ( 1 — ) +2 ] + ( 1 — 3 )= 117 公顷 1 1
【(16— 2) + ( 1 — - ) +1 ] + ( 1 — - )= 44 吨
3 2
1 1 小华:【12X 2— 12+( 1 — 4 )】+ ( 1— 5 )= 10 张
小强:12X 2 — 10= 14 张
1 1 甲:【90 X 2— 90+( 1— 4 )】+ ( 1 — 5 )= 75 元
乙:90 X 2— 75= 105 元
. 5.1 一 【(60+180) + ( 1 — 9 )— 40] + ( 1 — 3 )= 750 兀
144 + 3+ 2= 24 人
8 X 2 — 4= 12 个
(400+400 + 2) + ( 9— 6)X( 9+6+5 )= 4000 袋
a :把甲、乙两仓库粮食总吨数看作“ 1 ”,先求甲原来占两仓库和的几分之几?
b :原来甲仓库是乙仓库的几分之几? 3 +( 8 — 3)= b : 5 +(12— 5)=

练1 1. 2. 3. 练2 1. 2. 3. 练3 1、
2、
3、 练4 1、 2、 3、 练5 1、
2、
a :【1 — - +
(
1—;
3、
._9_
a:【—10+9 十
6
19
b “ 6+( 19-6) 6
13。

相关文档
最新文档