高等数学上复旦第三版 课后习题答案
关于 版高等数学课后习题答案复旦大学出版社李开复编
高等数学(上)第一章 函数与极限1. 设⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ 2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ;⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ 3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。
4. 设数列{}nx 有界, 又,0lim =∞→nn y证明: .0lim =∞→nnn yx5. 根据函数的定义证明: ⑴ ()813lim 3=-→x x(2) 0sin lim =+∞→x x x6. 根据定义证明: 当0→x 时,函数x x y 21+=是无穷大.问x 应满足什么条件时,才能使?104>y 7. 求极限:⑴13lim223+-→x x x =0⑵ ()hx h x h 22lim-+→=x h h x h h 2)2(lim 0=+→⑶13lim 242+-+∞→x x x x x =0(4) ()2121lim nn n -+++∞→ =212)1(lim 2=-∞→n n n n (5)⎪⎭⎫ ⎝⎛---→311311lim x x x =1)1)(1(31lim 221-=++--++→x x x x x x(6) ()223222lim -+→x x x x =∞8. 计算下列极限: ⑴ xxx 1sinlim 20→=0⑵ x x x arctan lim ∞→=0arctan .1lim =∞→x xx 9. 计算下列极限:⑴ x x x ωsin lim 0→=ϖϖϖϖ=→.sin lim 0xx x ⑵ x x x 3tan lim 0→=33cos 1.3sin lim 0=→xx x x ⑶ xx xx sin 2cos 1lim 0-→=2sin .sin 2lim 20=→xx xx(4)xx x 321⎪⎭⎫ ⎝⎛-∞→lim =6620)21(lim ---→=⎥⎦⎤⎢⎣⎡-e x xx(5)()xx x 121+→lim =22.210)21(lim e x xx =+→(6)xx x x ⎪⎭⎫ ⎝⎛--∞→13lim =21)2.(21)121(lim -+--∞→=-+e xxx10. 利用极限存在准则证明:⑴ 11211lim 222=⎪⎭⎫⎝⎛++++++∞→πππn n nn n n故原式=1⑵ 数列 ,222,22,2+++的极限存在,并求其极限. 11. 当0→x 时, 22x x -与32x x -相比, 哪一个是较高阶的无穷小12. 当1→x 时, 无穷小x -1和()2121x -是否同阶是否等价 13. 证明: 当0→x 时, 有2~1sec 2x x -.14. 利用等价无穷小的代换定理, 求极限: xxx x 3sin sin tan lim -→. 15. 讨论()201212x x f x x x ⎧≤<=⎨-≤≤⎩ 的连续性, 并画出其图形.16. 指出下列函数的间断点属于哪一类.若是可去间断点,则补充或改变函数的定义使其连续. ⑴2,123122==+--=x x x x x y⑵ 11311=⎩⎨⎧>-≤-=x x xx x y1x y ==017. 讨论函数()xx x x f nnn 2211lim +-=∞→的连续性, 若有间断点, 判别其类型。
高等数学上_复旦大学出版_习题五答案
(16) 对于任意的 y∈[0,h],过点(0,y)且垂直于 y 轴的平面截该立体为一椭圆,且该椭圆的半轴为: A a B b x1=A y , 同理可得该椭圆的另一半轴为: x 2 = B y. h h 故该椭圆面积为 A a B b A ( y )= x 1 x 2 = A y B y h h 从而立体的体积为
2 0 2 2
1 y
1+ y ′ 2 d x =2
0
1+
1 dx y2
=2
2 1 y2 1+ y 2 d =2 1+ y 2 d y y 2 0 0 2
= y 1+ y 2 +ln (y + 1+ y 2 ) =2 5 +ln(2+ 5)
0
(2) y =ln x , 3 ≤x≤ 8 ; 解:l = = (3) y =
∴D =
1 a 0
(x x 2 ax )d x
1 1 1 a = (1 a )· x2 x3 3 0 2 = 1 1 a )3 6( 1 9 1 a )3 = 6( 2 得 a=2. (13) 4. 求下列旋转体的体积: (1) 由 y = x 2 与 y 2 = x 3 围成的平面图形绕 x 轴旋转;
习题五
1. 求下列各曲线所围图形的面积: 1 (1) y = x2 与 x 2 + y 2 =8(两部分都要计算); 2 解:如图 D 1 = D 2
Байду номын сангаас
y = 1 x 2 解方程组 2 得交点 A(2,2) x 2 + y 2 =8
(1) 1 2 D 1 = 8 x 2 x 2 d x =π+ 2 3 0 4 ∴ D 1 + D 2 =2 π + , 3 4 4 D 3 + D 4 =8 π 2 π + =6 π . 3 3 1 (2) y = 与直线 y=x 及 x=2; x
复旦高数答案习题3
1. 验证:函数 f ( x) ln sinx 在 [ ,
π 5π ] 上满足罗尔定理的条件,并求出相应的 ,使 6 6
f ( ) 0 .
π 5π π 5π π 5π 在 ( , ) 上可导, 且 f ( ) f ( ) ln 2 , ] 上连续, 6 6 6 6 6 6 π 5π π 5π 即在 [ , ] 上满足罗尔定理的条件, 由罗尔定理, 至少存在一点 ( , ), 使 f ( ) 0 . 6 6 6 6 cos x π π 5π π 事实上,由 f ( x) cot x 0 得 x ( , ), 故取 ,可使 f ( ) 0 . sin x 2 6 6 2
证: f ( x) ln sin x 在区间 [ , 2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的 ?
x2 , ⑴ f ( x) 0,
⑵ f ( x) x 1 , ⑶ f ( x) 解:⑴
0 x 1, x 1,
[0,1] ;
2 2
⑶ 原式= lim
ex 1 ex 1 1 lim lim . x x x x x 0 e 1 xe x 0 2e xe x 0 2 x 2
⑷ 原式= lim
x a
cos x cos a . 1
⑸ 原式= lim
mx m1 m m n a . x a nx n 1 n
f ( x) f (a) 0, xa
f (a) f (c) f (b) ,故由罗尔定理知,1 (a, c) ,使得 f (1 ) 0 , 2 (c, b) ,
使得 f ( 2 ) 0 ,又 f ( x) 在 [1 , 2 ] 上连续,在 (1 , 2 ) 内可导,由罗尔定理知,
关于版高等数学课后习题答案复旦大学出版社李开复编
高等数学(上)第一章 函数与极限1. 设⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ 2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ;⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ 3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。
4. 设数列{}nx 有界, 又,0lim =∞→nn y证明: .0lim =∞→nnn yx5. 根据函数的定义证明: ⑴ ()813lim 3=-→x x(2) 0sin lim =+∞→x x x6. 根据定义证明: 当0→x 时,函数x x y 21+=是无穷大.问x 应满足什么条件时,才能使?104>y 7. 求极限:⑴13lim223+-→x x x =0⑵ ()hx h x h 22lim-+→=x h h x h h 2)2(lim 0=+→⑶13lim 242+-+∞→x x x x x =0(4) ()2121lim nn n -+++∞→ =212)1(lim 2=-∞→n n n n (5)⎪⎭⎫ ⎝⎛---→311311lim x x x =1)1)(1(31lim 221-=++--++→x x x x x x(6) ()223222lim -+→x x x x =∞8. 计算下列极限: ⑴ xxx 1sinlim 20→=0⑵ x x x arctan lim ∞→=0arctan .1lim =∞→x xx 9. 计算下列极限:⑴ x x x ωsin lim 0→=ϖϖϖϖ=→.sin lim 0xx x ⑵ x x x 3tan lim 0→=33cos 1.3sin lim 0=→xx x x ⑶ xx xx sin 2cos 1lim 0-→=2sin .sin 2lim 20=→xx xx(4)xx x 321⎪⎭⎫ ⎝⎛-∞→lim =6620)21(lim ---→=⎥⎦⎤⎢⎣⎡-e x xx(5)()xx x 121+→lim =22.210)21(lim e x xx =+→(6)xx x x ⎪⎭⎫ ⎝⎛--∞→13lim =21)2.(21)121(lim -+--∞→=-+e xxx10. 利用极限存在准则证明:⑴ 11211lim 222=⎪⎭⎫⎝⎛++++++∞→πππn n nn n n故原式=1⑵ 数列 ,222,22,2+++的极限存在,并求其极限. 11. 当0→x 时, 22x x -与32x x -相比, 哪一个是较高阶的无穷小12. 当1→x 时, 无穷小x -1和()2121x -是否同阶是否等价 13. 证明: 当0→x 时, 有2~1sec 2x x -.14. 利用等价无穷小的代换定理, 求极限: xxx x 3sin sin tan lim -→. 15. 讨论()201212x x f x x x ⎧≤<=⎨-≤≤⎩ 的连续性, 并画出其图形.16. 指出下列函数的间断点属于哪一类.若是可去间断点,则补充或改变函数的定义使其连续. ⑴2,123122==+--=x x x x x y⑵ 11311=⎩⎨⎧>-≤-=x x xx x y1x y ==017. 讨论函数()xx x x f nnn 2211lim +-=∞→的连续性, 若有间断点, 判别其类型。
高等数学复旦大学出版第三版上册课后答案习题全
x x x x , 1 分别表示不超过 , 1 的最大整数. 20 20 20 20
14. 已知水渠的横断面为等腰梯形,斜角 =40°,如图所示.当过水断面 ABCD 的面积为定值 S0 时,求湿周 L(L=AB+BC+CD)与水深 h 之间的函数关系式,并指明其定义域.
106 106 106 件,库存数为 件,库存费为 0.05 元. x 2x 2x
3
106 0.05 设总费用为,则 y 10 x . 2x
13. 邮局规定国内的平信,每 20g 付邮资 0.80 元,不足 20 g 按 20 g 计算,信件重量不得超过 2kg, 试确定邮资 y 与重量 x 的关系. 解: 当 x 能被 20 整除,即 [
x
7. 证明: f ( x) 2 x 1 和 g ( x)
3
3
x 1 互为反函数. 2
证:由 y 2 x 1 解得 x
3
3
y 1 , 2
2
故函数 f ( x) 2 x 1 的反函数是 y
3
3
x 1 ( x R ) , 这与 g ( x) 2
3
x 1 是同一个函 2
3
又由 1 cos x 1 得 0 1 cos x 2 , 即 0 y 2 , 故可得反函数的定义域为 [0,2], 所以 , 函数 y 1 cos x, x [0, π] 的反函
3
数为 y arccos 3 x 1
(0 x 2) .
9. 判断下列函数在定义域内的有界性及单调性:
(2) f ( x) e
2 x
e 2 x sin( x) e 2 x e 2 x sin x (e 2 x e 2 x sin x) f ( x)
高等数学 复旦三版 习题六 答案
2x − y x − 2y
代入微分方程,等式恒成立.故是微分方程的解.
(2)( xy − x) y′′ + xy′2 + yy′ − 2 y′ = 0, y = ln( xy ).
证:方程 y = ln( xy ) 两端对 x 求导:
y′ = y . x( y − 1)
1 1 + y′ x y
(*)
⇒ 6 ln X + 3ln(4u 2 + 7u − 2) + ln ⇒ X 6 (4u 2 + 7u − 2)3 ⋅ 4u − 1 = c2 u+2 ⇒ X 6 (4u − 1)4 (u + 2) 2 = c2 ⇒ X 3 (4u − 1) 2 (u + 2) = c3 ,
, dx u
1 2 u = ln x + ln c1 2 y2 = 2 ln x + 2 ln c1 x2
故方程通解为
y 2 = x 2 ln(cx 2 )
(c = c12 )
(4)( x 3 + y 3 )dx − 3 xy 2 dy = 0 ; y 1+ dy x 3 + y 3 = = x 2 2 dx 3 xy y 3 x y dy du , 则 =u+x x dx dx u+ du 1 + u3 x= dx 3u 2
(4) y ′′ − (λ1 + λ2 ) y ′ + λ1λ2 y = 0,
解: y ′ = C1λ1e 代入方程得
λ1 x
+ C2 λ2eλ2 x ,
y ′′ = C1λ12eλ1 x + C2 λ2 2e λ2 x
关于 高等数学课后习题答案 复旦大学出版社 李开复编
高等数学(上)第一章 函数与极限1. 设⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ 2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ;⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ 3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。
4. 设数列{}nx 有界, 又,0lim =∞→nn y证明: .0lim =∞→nnn yx5. 根据函数的定义证明: ⑴ ()813lim 3=-→x x(2) 0sin lim =+∞→x x x6. 根据定义证明: 当0→x 时,函数x x y 21+=是无穷大.问x 应满足什么条件时,才能使?104>y 7. 求极限:⑴13lim223+-→x x x =0⑵ ()hx h x h 22lim-+→=x h h x h h 2)2(lim 0=+→⑶13lim 242+-+∞→x x x x x =0(4) ()2121lim nn n -+++∞→Λ=212)1(lim 2=-∞→n n n n (5)⎪⎭⎫ ⎝⎛---→311311lim x x x =1)1)(1(31lim 221-=++--++→x x x x x x(6) ()223222lim -+→x x x x =∞8. 计算下列极限: ⑴ xxx 1sinlim 20→=0⑵ x x x arctan lim ∞→=0arctan .1lim =∞→x xx 9. 计算下列极限:⑴ x x x ωsin lim 0→=ϖϖϖϖ=→.sin lim 0xx x ⑵ x x x 3tan lim 0→=33cos 1.3sin lim 0=→xx x x ⑶ xx xx sin 2cos 1lim 0-→=2sin .sin 2lim 20=→xx xx(4)xx x 321⎪⎭⎫ ⎝⎛-∞→lim =6620)21(lim ---→=⎥⎦⎤⎢⎣⎡-e x xx(5)()xx x 121+→lim =22.210)21(lim e x xx =+→(6)xx x x ⎪⎭⎫ ⎝⎛--∞→13lim =21)2.(21)121(lim -+--∞→=-+e xxx10. 利用极限存在准则证明:⑴ 11211lim 222=⎪⎭⎫⎝⎛++++++∞→πππn n nn n n Λ故原式=1⑵ 数列ΛΛ,222,22,2+++的极限存在,并求其极限.11. 当0→x 时, 22x x -与32x x -相比, 哪一个是较高阶的无穷小12. 当1→x 时, 无穷小x -1和()2121x -是否同阶是否等价13. 证明: 当0→x 时, 有2~1sec 2x x -.14. 利用等价无穷小的代换定理, 求极限:xx x x 30sin sin tan lim-→.15. 讨论()201212x x f x x x ⎧≤<=⎨-≤≤⎩ 的连续性, 并画出其图形.16. 指出下列函数的间断点属于哪一类.若是可去间断点,则补充或改变函数的定义使其连续.⑴2,123122==+--=x x x x x y⑵ 11311=⎩⎨⎧>-≤-=x x xx x y1x y ==017. 讨论函数()xx x x f nnn 2211lim +-=∞→的连续性, 若有间断点,判别其类型。
高等数学复旦大学出版第三版课后答案
206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。
复旦大学第三版数学分析答案
一﹑细心填一填,你一定能行(每空2分,共20分)1.当 = 时,分式的值为零.2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为.3.请你写出一个图象在第一、三象限的反比例函数.4.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:,,,,则小麦长势比较整齐的试验田是(填“甲”或“乙”).5.如图,□ABCD中,AE,CF分别是∠BAD,∠BCD的角平分线,请添加一个条件使四边形AECF为菱形.6.计算.7.若点()、、都在反比例函数的图象上,则的大小关系是.8.已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2 ,AE为梯形的高,且BE=1,•则AD=______.9.如图,中,,,,分别以为直径作三个半圆,那么阴影部分的面积为(平方单位).10.如图,矩形ABCD的对角线BD过O点,BC∥x轴,且A(2,-1),则经过C点的反比例函数的解析式为.二﹑精心选一选,你一定很棒(每题3分,共30分)11.下列运算中,正确的是A. B. C. D.12.下列说法中,不正确的是A.为了解一种灯泡的使用寿命,宜采用普查的方法B.众数在一组数据中若存在,可以不唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差13.能判定四边形是平行四边形的条件是A.一组对边平行,另一组对边相等 B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等 D.一组对边平行,一组对角相等14.反比例函数在第一象限的图象如图所示,则k的值可能是A.1 B.2 C.3 D.415.在平面直角坐标系中,已知点A(0,2),B(,0),C(0,),D(,0),则以这四个点为顶点的四边形是A.矩形B.菱形 C.正方形 D.梯形16.某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10 8 12 15 10 12 11 9 10 13.则这组数据的A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.917.一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为A.15cmB.20cmC.25cmD.12cm18.已知,反比例函数的图像经过点M(k+2,1)和N(-2, ),则这个反比例函数是A. B. C. D.19.如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是A.邻边不等的矩形B.等腰梯形C.有一角是锐角的菱形D.正方形20.甲、乙两班举行跳绳比赛,参赛选手每分钟跳绳的次数经统计计算后填入下表:班级参加人数中位数方差平均次数甲 35 169 6.32 155乙 35 171 4.54 155某同学根据上表分析得出如下结论:①甲、乙两班学生跳绳成绩的平均水平相同,②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳次数≥170为优秀),③甲班的成绩的波动情况比乙班的成绩的波动大。
高等数学上(修订版)黄立宏(复旦出版社) 习题三答案详解
高等数学上(修订版)黄立宏(复旦出版社)习题三答案详解1. 确定下列函数的单调区间: (1) 3226187y x x x =---;解:所给函数在定义域(,)-∞+∞内连续、可导,且2612186(1)(3)y x x x x '=--=+-可得函数的两个驻点:121,3x x =-=,在(,1),(1,3),(3,)-∞--+∞内,y '分别取+,–,+号,故知函数在(,1],[3,)-∞-+∞内单调增加,在[1,3]-内单调减少. (2) 82 (0)y x x x=+>;解: 函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x'=-,则函数有驻点2x =,在部分区间(0,2]内,0y '<;在[2,)+∞内y '>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3) ln(y x =+; 解: 函数定义域为(,)-∞+∞,0y '=>,故函数在(,)-∞+∞上单调增加.(4) 3(1)(1)y x x =-+;解: 函数定义域为(,)-∞+∞,22(1)(21)y x x '=+-,则函数有驻点: 11,2x x =-=,在1(,]2-∞内, 0y '<,函数单调减少;在1[,)2+∞内, 0y '>,函数单调增加.(5) e(0,0)n xy x n n -=>≥;解: 函数定义域为[0,)+∞,11eee()n xn xxn y nx x xn x -----'=-=-函数的驻点为0,x x n ==,在[0,]n 上0y '>,函数单调增加;在[,]n +∞上0y '<,函数单调减少.(6) sin 2y x x =+; 解: 函数定义域为(,)-∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪-∈-∈⎪⎩Z Z 1) 当π[π,π]2x n n ∈+时, 12cos 2y x '=+,则 1π0cos 2[π,π]23y x x n n '≥⇔≥-⇔∈+; πππ0cos 2[π,π]232y x x n n '≤⇔≤-⇔∈++.2) 当π[π,π]2x n n ∈-时, 12cos 2y x '=-,则 1ππ0cos 2[π,π]226y x x n n '≥⇔≤⇔∈--1π0cos 2[π,π]26y x x n n '≤⇔≥⇔∈-. 综上所述,函数单调增加区间为πππ[,] ()223k k k z +∈,函数单调减少区间为ππππ[,] ()2322k k k z ++∈.(7) 54(2)(21)y x x =-+. 解: 函数定义域为(,)-∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x '=-++-+⋅=+--函数驻点为123111,,2218x x x =-==,在1(,]2+∞-内, 0y '>,函数单调增加,在111[,]218-上, 0y '<,函数单调减少,在11[,2]18上, 0y '>,函数单调增加, 在[2,)+∞内, 0y '>,函数单调增加.故函数的单调区间为: 1(,]2-∞-,111[,]218-,11[,)18+∞.2. 证明下列不等式:(1) 当π02x <<时, sin tan 2;x x x +>证明: 令()sin tan 2,f x x x x =--则22(1cos )(cos cos 1)()cos x x x f x x-++'=,当π02x <<时, ()0,()f x f x '>为严格单调增加的函数,故()(0)0f x f >=,即sin 2tan 2.x x x ->(2) 当01x <<时, 2esin 1.2xxx -+<+证明: 令2()=esin 12xxf x x -+--,则()=e cos x f x x x -'-+-,()=e sin 1e (sin 1)0x xf x x x --''--=-+<,则()f x '为严格单调减少的函数,故()(0)0f x f ''<=,即()f x 为严格单调减少的函数,从而()(0)f x f <=,即2esin 1.2xxx -+<+3. 试证:方程sin x x =只有一个实根. 证明:设()sin f x x x =-,则()c o s 10,f x x =-≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.4. 求下列函数的极值: (1) 223y x x =-+;解: 22y x '=-,令0y '=,得驻点1x =.又因20y ''=>,故1x =为极小值点,且极小值为(1)2y =. (2) 3223y x x =-;解: 266y x x '=-,令0y '=,得驻点120,1x x ==, 126y x ''=-,010,0x x y y ==''''<>,故极大值为(0)0y =,极小值为(1)1y =-.(3) 3226187y x x x =--+;解: 2612186(3)(1)y x x x x '=--=-+, 令0y '=,得驻点121,3x x =-=. 1212y x ''=-,130,0x x y y =-=''''<>,故极大值为(1)17y -=,极小值为(3)47y =-. (4) ln(1)y x x =-+; 解: 1101y x'=-=+,令0y '=,得驻点0x =.201,0(1)x y y x =''''=>+,故(0)0y =为极大值.(5) 422y x x =-+;解: 32444(1)y x x x x '=-+=-, 令0y '=,得驻点1231,0,1x x x =-==. 210124, 0,0,x x y x y y =±=''''''=-+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6) y x =+ 解: 1y '=-令0y '=,得驻点13,4x =且在定义域(,1]-∞内有一不可导点21x =,当34x >时, 0y '<;当34x <时, 0y '>,故134x =为极大值点,且极大值为35()44y =. 因为函数定义域为1x ≤,故1x =不是极值点.(7)y =解:y '=,令0y '=,得驻点125x =.当125x >时, 0y '<;当125x <,0y '>,故极大值为12()5y =.(8) 223441x x y x x ++=++;解: 2131x y x x +=+++,22(2)(1)x x y x x -+'=++,令0y '=,得驻点122,0x x =-=. 2223(22)(1)2(21)(2)(1)x x x x x x y x x --+++++''=++200,0x x y y =-=''''><,故极大值为(0)4y =,极小值为8(2)3y -=.(9) e cos x y x =; 解: e (cos sin )x y x x '=-, 令0y '=,得驻点ππ (0,1,2,)4k x k k =+=±± .2e sin xy x ''=-,ππ2π(21)π440,0x k x k y y =+=++''''<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()e2k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()e2k k y x +++=-.(10) 1x y x =;解: 11211ln (ln )x xx y x x x xx-''==,令0y '=,得驻点e x =.当e x >时, 0y '<,当e x <时, 0y '>,故极大值为1e (e)e y =. (11) 2e e xxy -=+;解: 2e ex xy -'=-,令0y '=,得驻点ln 22x =-.ln 222e e,0x xx y y -=-''''=+>,故极小值为ln 2()2y -=.(12) 232(1)y x =--; 解: y '=-,无驻点. y 的定义域为(,)-∞+∞,且y 在x =1处不可导,当x >1时0y '<,当x <1时, 0y '>,故有极大值为(1)2y =.(13) 1332(1)y x =-+; 解: y '=-.无驻点.y 在1x =-处不可导,但y '恒小于0,故y 无极值.(14) tan y x x =+.解: 21sec 0y x '=+>, y 为严格单调增加函数,无极值点.5. 试证明:如果函数32y ax bx cx d =+++满足条件230b ac -<,那么这函数没有极值. 证明:232y ax bx c '=++,令0y '=,得方程2320ax bx c ++=,由于 22(2)4(3)4(3)0b a c b ac ∆=-=-<,那么0y '=无实数根,不满足必要条件,从而y 无极值.6. 试问a 为何值时,函数1()sin sin 33f x a x x =+在π3x =处取得极值?它是极大值还是极小值?并求此极值. 解:f (x )为可导函数,故在π3x =处取得极值,必有π3π0()(cos cos 3)3x f a x x ='==+,得a =2.又π3π0()(2sin 3sin 3)3x f x x =''=<=--,所以π3x =是极大值点,极大值为π()3f =7. 求下列函数的最大值、最小值:254(1) (), (,0)f x x x x=-∈-∞;解:y 的定义域为(,0)-∞,322(27)0x y x+'==,得唯一驻点x =-3且当(,3]x ∈-∞-时,0y '<,y 单调递减;当[3,0)x ∈-时,0y '>,y 单调递增, 因此x =-3为y 的最小值点,最小值为f (-3)=27. 又lim ()x f x →-∞=+∞,故f (x )无最大值.(2) () [5,1]f x x x =+∈-;解:10y '=-=,在(5,1)-上得唯一驻点34x =,又53,(1)1,(5)544y y y ⎛⎫==-=⎪⎝⎭ ,故函数()f x 在[-5,1]上的最大值为545-.42(3) 82, 13y x x x =-+-≤≤.解:函数在(-1,3)中仅有两个驻点x =0及x =2,而 y (-1)=-5, y (0)=2, y (2)=-14, y (3)=11, 故在[-1,3]上,函数的最大值是11,最小值为-14.8. 设a 为非零常数,b 为正常数,求y =ax 2+bx 在以0和ba为端点的闭区间上的最大值和最小值.解:20y ax b '=+=得2b x a =-不可能属于以0和ba 为端点的闭区间上,而 22(0)0,bb y y a a ⎛⎫== ⎪⎝⎭,故当a >0时,函数的最大值为22bb y a a ⎛⎫= ⎪⎝⎭,最小值为(0)0y =;当a <0时,函数的最大值为(0)0y =,最小值为22bb y a a ⎛⎫= ⎪⎝⎭.9.求数列1000n +⎩⎭的最大的项.解:令1000y x =+,(1000)y x '===+令0y '=得x =1000.因为在(0,1000)上0y '>,在(1000,)+∞上0y '<,所以x =1000为函数y的极大值点,也是最大值点,m ax (1000)2000y y ==.故数列1000n ⎧⎫⎨⎬+⎩⎭的最大项为10002000a =10. 已知a >0,试证:11()11f x xx a=+++-的最大值为21a a++.证明: 11,01111(),01111,11x x x a f x x a x x a x ax x a⎧+<⎪--+⎪⎪=+≤≤⎨+-+⎪⎪+>⎪++-⎩ 当x <0时,()()2211()011f x x x a '=+>--+;当0<x <a 时,()()2211()11f x x x a '=-++-+;此时令()0f x '=,得驻点2a x =,且422a f a ⎛⎫=⎪+⎝⎭, 当x >a 时,()()2211()011f x x x a '=--<++-,又lim ()0x f x →∞=,且2(0)()1a f f a a+==+.而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得故 {}m ax 242(),,0121a af x aa a++==+++.11. 在半径为r 的球中内接一正圆柱体,使其体积为最大,求此圆柱体的高. 解:设圆柱体的高为h ,223πππ4V h r h h ⎛=⋅=-⎝令0V '=,得.3h =即圆柱体的高为3r 时,其体积为最大.12. 某铁路隧道的截面拟建成矩形加半圆形的形状(如12题图所示),设截面积为am 2,问底宽x 为多少时,才能使所用建造材料最省? 解:由题设知21π22x xy a ⎛⎫+⋅= ⎪⎝⎭得 21π18π8a x a y x x x-==-截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x xxal x x=++⋅=+-+=++'=+-令()0l x '=得唯一驻点x =.即当x =.13. 甲、乙两用户共用一台变压器(如13题图所示),问变压器设在输电干线AB 的何处时,所需电线最短? 解:所需电线为()(03)()L x x L x =+<<'=在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短. 14. 在边长为a 的一块正方形铁皮的四个角上各截出一个小正方形,将四边上折焊成一个无盖方盒,问截去的小正方形边长为多大时,方盒的容积最大? 解:设小正方形边长为x 时方盒的容积最大.232222(2)44128V a x x x ax a x V x ax a=-⋅=-+'=-+令0V '=得驻点2a x =(不合题意,舍去),6a x =.即小正方形边长为6a 时方盒容积最大.15. 判定下列曲线的凹凸性:(1) y =4x -x 2;解:42,20y x y '''=-=-<,故知曲线在(,)-∞+∞内的图形是凸的.(2) y =sinh x ;解:cosh ,sinh .y x y x '''==由sinh x 的图形知,当(0,)x ∈+∞时,0y ''>,当(,0)x ∈-∞时,0y ''<, 故y =sinh x 的曲线图形在(,0]-∞内是凸的,在[0,)+∞内是凹的.1(3) (0)y x x x=+> ;解:23121,0y y xx'''=-=>,故曲线图形在(0,)+∞是凹的.(4) y =x arctan x . 解:2arctan 1x y x x'=++,2220(1)y x ''=>+故曲线图形在(,)-∞+∞内是凹的.16. 求下列函数图形的拐点及凹或凸的区间:32(1) 535y x x x =-++;解:23103y x x '=-+610y x ''=-,令0y ''=可得53x =.当53x <时,0y ''<,故曲线在5(,)3-∞内是凸弧; 当53x >时,0y ''>,故曲线在5[,)3+∞内是凹弧.因此520,327⎛⎫⎪⎝⎭是曲线的唯一拐点.(2) y =x e -x ;解:(1)e , e (2)x x y x y x --'''=-=-令0y ''=,得x =2当x >2时,0y ''>,即曲线在[2,)+∞内是凹的; 当x <2时,0y ''<,即曲线在(,2]-∞内是凸的. 因此(2,2e -2)为唯一的拐点.4(3) (1)e xy x =++;解:324(1)e , e 12(1)0x x y x y x '''=++=++> 故函数的图形在(,)-∞+∞内是凹的,没有拐点.(4) y =ln (x 2+1); 解:222222(1), 1(1)x x y y xx -'''==++令0y ''=得x =-1或x =1.当-1<x <1时,0y ''>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ''<,即在(,1],[1,)-∞-+∞内曲线是凸的. 因此拐点为(-1,ln2),(1,ln2).arctan (5) exy =;解:arctan arctan 222112e,e 1(1)xxx y y xx -'''==++令0y ''=得12x =.当12x >时,0y ''<,即曲线在1[,)2+∞内是凸的; 当12x <时,0y ''>,即曲线在1(,]2-∞内是凹的,故有唯一拐点1arctan21(,e)2.(6) y =x 4(12ln x -7).解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x '''=-=令0y ''=,在(0,+∞),得x =1.当x >1时,0y ''>,即曲线在[1,)+∞内是凹的; 当0<x <1时,0y ''<,即曲线在(0,1]内是凸的, 故有唯一拐点(1,-7).17. 利用函数的图形的凹凸性,证明下列不等式:()1(1)(0,0,,1)22nn nx y x y x y n x y+⎛⎫>>>≠>+⎪⎝⎭; 证明:令 ()n f x x =12(),()(1)0n n f x nx f x n n x --'''==-> ,则曲线y =f (x )是凹的,因此,x y R +∀∈,()()22f x f y x y f ++⎛⎫< ⎪⎝⎭, 即 1()22nn nx y x y +⎛⎫<+ ⎪⎝⎭. 2e e (2)e()2x yx y x y ++>≠ ;证明:令f (x )=e x()e ,()e 0x xf x f x '''==> .则曲线y =f (x )是凹的,,,x y R x y ∀∈≠则 ()()22f x f y x y f ++⎛⎫<⎪⎝⎭即 2e e e2x yx y++<.(3) ln ln ()ln(0,0,)2x y x x y y x y x y x y ++>+>>≠证明:令 f (x )=x ln x (x >0)1()ln 1,()0(0)f x x f x x x'''=+=>>则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有()()22f x f y x y f ++⎛⎫<⎪⎝⎭即1ln(ln ln )222x y x y x x y y ++<+,即 ln ln ()ln 2x y x x y y x y ++>+.18. 求下列曲线的拐点:23(1) ,3;x t y t t ==+ 解:22223d 33d 3(1),d 2d 4y t y t xtxt+-==令22d 0d y x=,得t =1或t =-1则x =1,y =4或x =1,y =-4 当t >1或t <-1时,22d 0d y x>,曲线是凹的,当0<t <1或-1<t <0时,22d 0d y x<,曲线是凸的,故曲线有两个拐点(1,4),(1,-4).(2) x =2a cot θ, y =2a sin 2θ. 解:32d 22sin cos 2sin cos d 2(csc )y a xa θθθθθ⋅⋅==-⋅-222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y xa aθθθθθθ=-+⋅=⋅--令22d 0d y x=,得π3θ=或π3θ=-,不妨设a >0tan θ>>时,即ππ33θ-<<时,22d 0d y x>,当tan θ>tan θ<π3θ<-或π3θ>时,22d 0d y x<,故当参数π3θ=或π3θ=-时,都是y 的拐点,且拐点为3,32a a ⎛⎫ ⎪⎝⎭及3,32a a ⎛⎫- ⎪⎝⎭.19. 试证明:曲线211x y x -=+有三个拐点位于同一直线上.证明:22221(1)x x y x -++'=+,(1)y x ''=+令0y ''=,得1,22x x x =-=+=-当(,1)x ∈-∞-时,0y ''<;当(1,2x ∈--时0y ''>;当(22x ∈-+时0y ''<;当(2)x ∈++∞时0y ''>,因此,曲线有三个拐点(-1,-1),11(2(244---+-+.因为111212--+因此三个拐点在一条直线上.20. 问a ,b 为何值时,点(1,3)为曲线y =ax 3+bx 2的拐点? 解:y ′=3ax 2+2bx , y ″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得 39,22a b =-=.21. 试决定曲线y =ax 3+bx 2+cx +d 中的a ,b ,c ,d ,使得x =-2处曲线有水平切线,(1,-10)为拐点,且点(-2,44)在曲线上. 解:令f (x )= ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0 可解得a =1,b =-3,c =-24,d =16.22. 试决定22(3)y k x =-中的k 的值,使曲线的拐点处的法线通过原点. 解:224(3),12(1)y kx x y k x '''=-=-令0y ''=,解得x =±1,代入原曲线方程得y =4k ,只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±'=±,那么拐点处的法线斜率等于18k ,法线方程为18y x k= . 由于(1,4k ),(-1,4k )在此法线上,因此148k k =±, 得22321, 321k k ==-(舍去) 故18k =±=±.23. 设y =f (x )在x =x 0的某邻域内具有三阶连续导数,如果00()0,()0f x f x '''==,而0()0f x '''≠,试问x =x 0是否为极值点?为什么?又00(,())x f x 是否为拐点?为什么?答:因00()()0f x f x '''==,且0()0f x '''≠,则x =x 0不是极值点.又在0(,)U x δ中,00()()()()()()f x f x x x f xx f ηη''''''''''=+-=-,故()f x ''在0x 左侧与0()f x '''异号,在0x 右侧与0()f x '''同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.24. 作出下列函数的图形:2(1)()1xf x x=+; 解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)x x xy x x x x y x +--'==++-''=+令0y '=,可得1x =±, 令0y ''=,得x =0,当x →∞时,y →0,故y =0是一条水平渐近线. 函数有极大值1(1)2f =,极小值1(1)2f -=-,有3个拐点,分别为,4⎛- ⎝⎭(0,0),4⎭,作图如上所示.(2) f(x)=x-2arctan x解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)yxxyx'=-+''=+令y′=0,可得x=±1,令y″=0,可得x=0.又()2lim lim(1arctan)1x xf xxx x→∞→∞=-=且lim[()]lim(2arctan)πx xf x x x→+∞→+∞-=-=-故πy x=-是斜渐近线,由对称性知πy x=+亦是渐近线.函数有极小值π(1)12y=-,极大值π(1)12y-=-.(0,0)为拐点.作图如上所示.2(3) ()1xf xx=+;解:函数的定义域为,1x R x∈≠-.22232(1)(2)(1)(1)(1)2(1)x x x x xy xx xyx+-+'==≠-++''=+令0y'=得x=0,x=-2当(,2]x∈-∞-时,0,()y f x'>单调增加;当[2,1)x∈--时,0,()y f x'<单调减少;当(1,0]x∈-时,0,()y f x'<单调减少;当[0,)x ∈+∞时,0,()y f x '>单调增加, 故函数有极大值f (-2)=-4,有极小值f (0)=0 又211lim ()lim1x x xf x x→-→-==∞+,故x =-1为无穷型间断点且为铅直渐近线.又因()lim1x f x x→∞=, 且2lim (())lim 11x x x f x x x x →∞→∞⎡⎤-==--⎢⎥+⎣⎦,故曲线另有一斜渐近线y =x -1.综上所述,曲线图形为:(4)2(1)ex y --=.解:函数定义域为(-∞,+∞) .22(1)(1)22(1)e e2(241)x x y x y x x ----'=--''=⋅-+令0y '=,得x =1.令0y ''=,得12x =±.当(,1]x ∈-∞时,0,y '>函数单调增加; 当[1,)x ∈+∞时,0,y '<函数单调减少;当(,1[1,)22x ∈-∞-++∞ 时,0y ''>,曲线是凹的;当[122x ∈-+时,0y ''<,曲线是凸的,故函数有极大值f (1)=1,两个拐点:1122(1e),(1e)22A B ---+,又lim ()0x f x →∞=,故曲线有水平渐近线y =0.图形如下:25. 逻辑斯谛(Logistic)曲线族,,,,01ecxA y x ABC B -=-∞<<+∞>+建立了动物的生长模型. (1) 画出B =1时的曲线()1ecx A g x -=+的图像,参数A 的意义是什么(设x 表示时间,y 表示某种动物数量)? 解:2e ()0(1e)cxcxAc g x --'=>+,g (x )在(-∞,+∞)内单调增加,222244ee2(1e )ee(1e)()(1e)(1e )cxcxcxcxcxcxcxcxAc Ac Ac g x ---------+⋅+⋅--''==++当x >0时,()0,()g x g x ''<在(0,+∞)内是凸的. 当x <0时,()0,()g x g x ''>在(-∞,0)内是凹的. 当x =0时,()2A g x =.且lim ()0,lim ()x x g x g x A →-∞→+∞==.故曲线有两条渐近线y =0,y =A .且A 为该种动物数量(在特定环境中)最大值,即承载容量.如图:(2) 计算g (-x )+g (x ),并说明该和的意义;解:()()1e 1ecx cxA Ag x g x A --+=+=++.(3) 证明:曲线1e cxA yB -=+是对g (x )的图像所作的平移. 证明:∵()1e1eec x T cxcTA Ay B B -+--==++取e 1cT B -=,得ln B T c=即曲线1ecxA yB -=+是对g (x )的图像沿水平方向作了ln B T c=个单位的平移.26. 球的半径以速率v 改变,球的体积与表面积以怎样的速率改变?解: 324d π,π,.3d rV r A r v t===2d d d 4πd d d d d d 8πd d d V V r r vt rtAA r r v t r t=⋅=⋅=⋅=⋅27. 一点沿对数螺线e a r ϕ=运动,它的极径以角速度ω旋转,试求极径变化率. 解:d d d ee .d d d a a r r a a t tϕϕϕωωϕ=⋅=⋅⋅=28. 一点沿曲线2cos r a ϕ=运动,它的极径以角速度ω旋转,求这动点的横坐标与纵坐标的变化率.解: 22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t t y y a a ttϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅-⋅=-=⋅=⋅=29. 椭圆22169400x y +=上哪些点的纵坐标减少的速率与它的横坐标增加的速率相同? 解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x y x y t t ⋅+⋅=由d d d d x y tt-=. 得 161832,9y x y x ==代入椭圆方程得:29x =,163,.3x y =±=±即所求点为1616,3,3,33⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.30. 一个水槽长12m ,横截面是等边三角形,其边长为2m ,水以3m 3·min -1的速度注入水槽内,当水深0.5m 时,水面高度上升多快? 解:当水深为h 时,横截面为212s h =⋅=体积为22212V sh '====d d 2d d V h h tt=⋅当h =0.5m 时,31d 3m m in d V t-=⋅.故有d 320.5d h t=⋅,得d d 4h t=(m 3·min -1).31. 某人走过一桥的速度为4km ·h -1,同时一船在此人底下以8 km ·h-1的速度划过,此桥比船高200m ,求3min 后,人与船相离的速度. 解:设t 小时后,人与船相距s 公里,则d d s s t ===且120d 8.16d t s t==≈ (km ·h-1)32. 一动点沿抛物线y =x 2运动,它沿x 轴方向的分速度为3 cm ·s -1,求动点在点(2,4)时,沿y 轴的分速度.解: d d d 236.d d d y y xx x t x t =⋅=⋅=当x =2时,d 6212d y t=⨯= (cm ·s -1).33. 设一路灯高4 m ,一人高53m ,若人以56 m ·min -1的等速沿直线离开灯柱,证明:人影的长度以常速增长.证明:如图,设在t 时刻,人影的长度为y m.则 53456yy t=+化简得 d 7280,40,40d y y t y t t===(m ·min -1).即人影的长度的增长率为常值.34. 计算抛物线y =4x -x 2在它的顶点处的曲率. 解:y =-(x -2)2+4,故抛物线顶点为(2,4) 当x =2时, 0,2y y '''==- ,故 23/22.(1)y k y ''=='+35. 计算曲线y =cosh x 上点(0,1)处的曲率. 解:sinh ,cosh .y x y x '''==当x =0时,0,1y y '''== ,故 23/21.(1)y k y ''=='+36. 计算正弦曲线y =sin x 上点π,12⎛⎫⎪⎝⎭处的曲率. 解:cos ,sin y x y x '''==- . 当π2x =时,0,1y y '''==- ,故 23/21.(1)y k y ''=='+37. 求曲线y =ln(sec x )在点(x ,y )处的曲率及曲率半径. 解:2tan ,sec y x y x '''==故 223/223/2sec cos (1)(1tan )y x k x y x ''==='++ 1sec R x k==.38. 求曲线x =a cos 3t ,y = a sin 3t 在t =t 0处的曲率.解: 22d d 3sin cos d tan d d 3cos sin d yya t tt t x x a t t t===--, 22224d d d (tan )1sec 1(tan )d d d d 3cos sin 3sin cos d y t t t x xxta t ta t tt--=-=⋅==-,故 423/2123sin cos [1(tan )]3sin 2a t tk t a t==+- 且当t =t 0时, 023sin 2k a t =.39. 曲线弧y =sin x (0<x <π)上哪一点处的曲率半径最小?求出该点的曲率半径. 解:cos ,sin y x y x '''==- .23/223/2(1cos )1sin ,sin (1cos )x x R k xRx +===+显然R 最小就是k 最大, 225/22cos (1sin )(1cos )x x k x +'=+令0k '=,得π2x =为唯一驻点.在π0,2⎛⎫ ⎪⎝⎭内,0k '>,在π,π2⎛⎫ ⎪⎝⎭内,0k '<.所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为23/2π2(1cos )1sin x x R x=+==.40. 求曲线y =ln x 在与x 轴交点处的曲率圆方程. 解:由ln 0y x y =⎧⎨=⎩解得交点为(1,0).1112111,1 1.x x x x y xy x===='==''=-=-故曲率中心 212(1,0)(1)312x y y x y y y y αβ=⎧''⎡⎤+==-⎪⎢⎥''⎣⎦⎪⎨'⎡⎤+⎪==-+⎢⎥⎪''⎣⎦⎩曲率半径为R =故曲率圆方程为:22(3)(2)8x y -++=. 41. 一飞机沿抛物线路径210000xy =( y 轴铅直向上,单位为m )做俯冲飞行,在坐标原点O处飞机速度v =200 m ·s -1,飞行员体重G =70kg ,求飞机俯冲至最低点即原点O 处时,座椅对飞行员的反力.解:0010,5000x x y y =='''== ,23/2(1)5000y R y '+==''飞行员在飞机俯冲时受到的向心力22702005605000m v F R⋅=== (牛顿)故座椅对飞行员的反力560709.81246F =+⨯= (牛顿).42. 设总收入和总成本分别由以下两式给出:2()50.003,()300 1.1R q q q C q q =-=+其中q 为产量,0≤q ≤1000,求:(1)边际成本;(2)获得最大利润时的产量;(3)怎样的生产量能使盈亏平衡?解:(1) 边际成本为:()(300 1.1) 1.1.C q q ''=+=(2) 利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=-=--'=-令()0L q '=,得650q =即为获得最大利润时的产量. (3) 盈亏平衡时: R (q )=C (q ) 即 3.9q -0.003q 2-300=0q 2-1300q +100000=0 解得q =1218(舍去),q =82.43. 设生产q 件产品的总成本C (q )由下式给出:C (q )=0.01q 3-0.6q 2+13q .(1)设每件产品的价格为7元,企业的最大利润是多少?(2)当固定生产水平为34件时,若每件价格每提高1元时少卖出2件,问是否应该提高价格?如果是,价格应该提高多少? 解:(1) 利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q q L q q q =-+-=-+-'=-+-令()0L q '=,得 231206000q q -+= 即 2402000q q -+=得20q =-(舍去) 2034.q =+≈ 此时, 32(34)0.01340.63463496.56L =-⨯+⨯-⨯=(元)(2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+--=-++令()0L x '=, 得5x =(5)121.5696.56L =>故应该提高价格,且应提高5元.44. 求下列初等函数的边际函数、弹性和增长率:(1) y =ax +b ;(其中a ,b ∈R ,a ≠0) 解:y ′=a 即为边际函数.弹性为: 1Ey axa x Ex axb ax b=⋅⋅=++, 增长率为: y aax bγ=+.(2) y =a e bx;解:边际函数为:y ′=ab e bx弹性为: 1e e bxbx Ey ab x bx Ex a =⋅⋅=,增长率为: e ebxy bxab b a γ==.(3) y =x a解:边际函数为:y ′=ax a -1.弹性为: 11a a Ey ax x a Ex x -=⋅⋅=,增长率为: 1.a y aax a xxγ-==45. 设某种商品的需求弹性为0.8,则当价格分别提高10%,20%时,需求量将如何变化? 解:因弹性的经济意义为:当自变量x 变动1%,则其函数值将变动%E y E x ⎛⎫⎪⎝⎭.故当价格分别提高10%,20%时,需求量将分别提高0.8×10%=8%,0.8×20%=16%. 46. 国民收入的年增长率为7.1%,若人口的增长率为1.2%,则人均收入年增长率为多少?解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.。
最新版高等数学课后习题标准答案(复旦大学出版社)(李开复编)
高等数学(上)第一章 函数与极限1. 设⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x ,求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21= 224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ;⑵()x f s i n ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a a x a a x a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。
⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4.设数列{}nx 有界,又,0lim =∞→nn y证明:.0lim =∞→n n n y x{}结论成立。
从而时,有,当自然数即又有对有界,∴=<=-<>∃>∀=≤∀>∃∴∞→ ..0)(,0,0lim ,,0εεεεMM y x y x My N n N y Mx n M x n n n n n n n n n5. 根据函数的定义证明: ⑴()813lim 3=-→x x8)13(lim 813303,033,33813,03=-<--<-<>∀<-<-=-->∀→x x x x x x x 所以成立时,恒有,当=取故即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
283高等数学上(修订版)(复旦出版社)习题六 无穷数级 答案详解1.写出下列级数的一般项: (1)1111357++++ ;(2)22242462468x x x x x ++++⋅⋅⋅⋅⋅⋅ ;(3)35793579a a a a -+-+ ;解:(1)121n U n =-; (2)()2!!2n n xU n =;(3)()211121n n n a U n ++=-+; 2.求下列级数的和: (1)()()()1111n x n x n x n ∞=+-+++∑;(2)()1221n n n n ∞=+-++∑;(3)23111555+++ ; 解:(1)()()()()()()()111111211n u x n x n x n x n x n x n x n =+-+++⎛⎫-=⎪+-++++⎝⎭284从而()()()()()()()()()()()()()()11111211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ⎛-+-= +++++++⎝⎫++-⎪+-++++⎭⎛⎫-=⎪++++⎝⎭因此()1lim 21n n S x x →∞=+,故级数的和为()121x x +(2)因为()()211n U n n n n =-+-++- 从而()()()()()()()()324332215443211211211221n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++所以lim 12n n S →∞=-,即级数的和为12-. (3)因为21115551115511511145n nn n S =+++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎣⎦=-⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎣⎦ 从而1lim 4n n S →∞=,即级数的和为14. 3.判定下列级数的敛散性: (1) ()11n n n ∞=+-∑;(2)()()11111661111165451n n +++++⋅⋅⋅-+ ; (3) ()23133222213333n n n --+-++- ;285(4)311115555n +++++ ; 解:(1) ()()()3212111n S n n n =+++-+--=+-从而lim n n S →∞=+∞,故级数发散. (2) 1111111115661111165451111551n S n n n ⎛⎫=-+-+-++-⎪-+⎝⎭⎛⎫=- ⎪+⎝⎭从而1lim 5n n S →∞=,故原级数收敛,其和为15. (3)此级数为23q =-的等比级数,且|q |<1,故级数收敛. (4)∵15n n U =,而lim 10n n U →∞=≠,故级数发散. 4.利用柯西审敛原理判别下列级数的敛散性:(1) ()111n n n +∞=-∑;(2)1cos 2nn nx∞=∑; (3)1111313233n n n n ∞=⎛⎫+- ⎪+++⎝⎭∑. 解:(1)当P 为偶数时,()()()()122341111112311111231111112112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n p n n n +++++++++++----=++++++++-+--=++++⎛⎫⎛⎫-=----- ⎪ ⎪+-+-++++⎝⎭⎝⎭<+当P 为奇数时,286()()()()1223411111123111112311111112311n n n pn n n n p U U U n n n n pn n n n pn p n p n n n n +++++++++++----=++++++++-+-+=++++⎛⎫⎛⎫-=---- ⎪ ⎪+-++++⎝⎭⎝⎭<+因而,对于任何自然数P ,都有12111n n n p U U U n n++++++<<+ , ∀ε>0,取11N ε⎡⎤=+⎢⎥⎣⎦,则当n >N 时,对任何自然数P 恒有12n n n pU U U ε++++++< 成立,由柯西审敛原理知,级数()111n n n +∞=-∑收敛. (2)对于任意自然数P ,都有()()()1212121cos cos cos 12222111222111221121112212n n n p n n n p n n n p n p n p nU U U x n p x xn n ++++++++++++++++=+++≤+++⎛⎫- ⎪⎝⎭=-⎛⎫=- ⎪⎝⎭<于是, ∀ε>0(0<ε<1),∃N =21log ε⎡⎤⎢⎥⎣⎦,当n >N 时,对任意的自然数P都有12n n n p U U U ε++++++< 成立,由柯西审敛原理知,该级数收敛. (3)取P =n ,则287()()()()()121111113113123133213223231131132161112n n n pU U U n n n n n n n n n n ++++++⎛⎫=+-+++- ⎪++++++⋅+⋅+⋅+⎝⎭≥++++⋅+≥+> 从而取0112ε=,则对任意的n ∈N ,都存在P =n 所得120n n n p U U U ε++++++> ,由柯西审敛原理知,原级数发散.5.用比较审敛法判别下列级数的敛散性. (1)()()111465735n n ++++⋅⋅++ ;(2)22212131112131nn +++++++++++ (3)1πsin 3n n ∞=∑;(4) 3112n n∞=+∑;(5)()1101nn a a∞=>+∑;(6)()1121nn ∞=-∑.解:(1)∵ ()()21135n U nn n =<++而211n n ∞=∑收敛,由比较审敛法知1n n U ∞=∑收敛. (2)∵221111n n n U n n n n++=≥=++ 而11n n∞=∑发散,由比较审敛法知,原级数发散.(3)∵ππsinsin 33lim lim ππ1π33n nn n n n→∞→∞=⋅=288而1π3n n ∞=∑收敛,故1πsin 3n n ∞=∑也收敛.(4)∵33321112n U nnn=<=+ 而3121n n∞=∑收敛,故3112n n∞=+∑收敛.(5)当a >1时,111n n n U a a =<+,而11n n a ∞=∑收敛,故111nn a∞=+∑也收敛. 当a =1时,11lim lim 022n n n U →∞→∞==≠,级数发散. 当0<a <1时,1lim lim 101n n n n U a →∞→∞==≠+,级数发散. 综上所述,当a >1时,原级数收敛,当0<a ≤1时,原级数发散.(6)由021limln 2xx x →-=知121lim ln 211nx n→∞-=<而11n n∞=∑发散,由比较审敛法知()1121nn ∞=-∑发散.6.用比值判别法判别下列级数的敛散性:(1) 213n n n ∞=∑;(2)1!31nn n ∞=+∑; (3)232333*********nn n +++++⋅⋅⋅⋅ ; (1) 12!n n n n n ∞=⋅∑解:(1) 23n n n U =,()2112311lim lim 133n n n n n n U n U n ++→∞→∞+=⋅=<, 由比值审敛法知,级数收敛.289(2) ()()111!311lim lim 31!31lim 131n n n n n nn n n U n U n n ++→∞→∞+→∞++=⋅++=⋅++=+∞所以原级数发散.(3) ()()11132lim lim 2313lim 21312n nn n n n n nn U n U n n n +++→∞→∞→∞⋅=⋅⋅+=+=> 所以原级数发散.(4) ()()1112!1lim lim 2!1lim 21122lim 1e 11n nn n n n n nnn n n U n n U n n n n n +++→∞→∞→∞→∞⋅+=⋅⋅+⎛⎫= ⎪+⎝⎭==<⎛⎫+ ⎪⎝⎭故原级数收敛.7.用根值判别法判别下列级数的敛散性:(1) 1531nn n n ∞=⎛⎫⎪+⎝⎭∑;(2)()[]11ln 1nn n ∞=+∑;(3) 21131n n n n -∞=⎛⎫⎪-⎝⎭∑;(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中a n →a (n →∞),a n ,b ,a 均为正数.解:(1)55lim lim 1313n n n n n U n →∞→∞==>+, 故原级数发散.(2) ()1lim lim 01ln 1n n n n U n →∞→∞==<+,290故原级数收敛.(3)121lim lim 1931nn nn n n U n -→∞→∞⎛⎫==< ⎪-⎝⎭, 故原级数收敛.(4) limlim nn n n n nb b b a a a →∞→∞⎛⎫== ⎪⎝⎭, 当b <a 时,ba <1,原级数收敛;当b >a 时,b a>1,原级数发散;当b =a 时,b a=1,无法判定其敛散性.8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)1111234-+-+ ;(2)()()1111ln 1n n n ∞-=-+∑;(3) 2341111111153535353⋅-⋅+⋅-⋅+ ;(4)()21121!n n n n ∞-=-∑; (5)()()1111n n R n αα∞-=∈-∑;(6) ()11111123nn n n ∞=⎛⎫-++++ ⎪⎝⎭∑ . 解:(1)()111n n U n -=-,级数1n n U ∞=∑是交错级数,且满足111n n >+,1lim 0n n →∞=,由莱布尼茨判别法级数收敛,又11121n n n U n∞∞===∑∑是P <1的P级数,所以1n n U ∞=∑发散,故原级数条件收敛.(2)()()111ln 1n n U n -=-+,()()1111ln 1n n n ∞---+∑为交错级数,且()()11ln ln 12n n >++,()1lim 0ln 1n n →∞=+,由莱布尼茨判别法知原级数收敛,但由于()11ln 11n U n n =≥++291所以,1n n U ∞=∑发散,所以原级数条件收敛.(3)()11153n n n U -=-⋅民,显然1111115353n n n n n n U ∞∞∞=====⋅∑∑∑,而113nn ∞=∑是收敛的等比级数,故1n n U ∞=∑收敛,所以原级数绝对收敛.(4)因为2112lim lim 1n n n n nU U n ++→∞→∞==+∞+. 故可得1n n U U +>,得lim0n n U →∞≠, ∴lim 0n n U →∞≠,原级数发散. (5)当α>1时,由级数11n nα∞=∑收敛得原级数绝对收敛. 当0<α≤1时,交错级数()1111n n n α∞-=-∑满足条件:()111n n αα>+;1lim 0n n α→∞=,由莱布尼茨判别法知级数收敛,但这时()111111n n n nn αα∞∞-===-∑∑发散,所以原级数条件收敛.当α≤0时,lim0n n U →∞≠,所以原级数发散. (6)由于11111123n nn ⎛⎫⋅>++++ ⎪⎝⎭而11n n∞=∑发散,由此较审敛法知级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑ 发散. 记1111123n U nn ⎛⎫=⋅++++ ⎪⎝⎭ ,则292()()()()()()1222111111123111111112311111111231110n n U U n n n n n n n n n n n n n n +⎛⎫⎛⎫-=-++++- ⎪⎪+⎝⎭⎝⎭+⎛⎫=-++++ ⎪⎝⎭++⎛⎫⎛⎫-=++++ ⎪ ⎪⎝⎭+++⎝⎭>即1n n U U +>又01111lim lim 12311d n n n n U n n x n x→∞→∞⎛⎫=++++ ⎪⎝⎭=⎰ 由0111lim d lim 01t t t t x t x→+∞→+∞==⎰ 知lim 0n n U →∞=,由莱布尼茨判别法,原级数()11111123nn n n ∞=⎛⎫-⋅++++ ⎪⎝⎭∑ 收敛,而且是条件收敛.9.判别下列函数项级数在所示区间上的一致收敛性.(1) ()1!1nn x n ∞=-∑,x ∈[-3,3]; (2) 21nn x n ∞=∑,x ∈[0,1];(3) 1sin 3n n nx∞=∑,x ∈(-∞,+∞); (4)1!nxn e n -∞=∑,|x |<5; (5)3521cos n nxn x∞=+∑,x ∈(-∞,+∞)解:(1)∵()()3!!11nnx n n ≤--,x ∈[-3,3],而由比值审敛法可知()13!1nn n ∞=-∑收敛,所以原级数在 [-3,3]上一致收敛.(2)∵221nx n n≤,x ∈[0,1],293而211n n∞=∑收敛,所以原级数在[0,1]上一致收敛. (3)∵1sin 33n n nx ≤,x ∈(-∞,+∞),而113nn ∞=∑是收敛的等比级数,所以原级数在(-∞,+∞)上一致收敛. (4)因为5!!nnx ee n n -≤,x ∈(-5,5), 由比值审敛法可知51!nn e n ∞=∑收敛,故原级数在(-5,5)上一致收敛.(5)∵53523cos 1nxn xn≤+,x ∈(-∞,+∞),而5131n n∞=∑是收敛的P -级数,所以原级数在(-∞,+∞)上一致收敛.10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ),则当()1n n V x ∞=∑在Ⅰ上一致收敛时,级数()1n n U x ∞=∑在这区间Ⅰ上也一致收敛.证:由()1n n V x ∞=∑在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|<ε,因此,级数()1n n U x ∞=∑在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关294性,可知()1n n U x ∞=∑在Ⅰ上一致收敛.11.求下列幂级数的收敛半径及收敛域:(1)x +2x 2+3x 3+…+nx n +…; (2)1!nn x n n ∞=⎛⎫⎪⎝⎭∑;(3)21121n n x n -∞=-∑; (4)()2112nn x n n∞=-⋅∑; 解:(1)因为11limlim 1n n n n a n a n ρ+→∞→∞+===,所以收敛半径11R ρ==收敛区间为(-1,1),而当x =±1时,级数变为()11n n n ∞=-∑,由lim(1)0n x nn →-≠知级数1(1)nn n ∞=-∑发散,所以级数的收敛域为(-1,1).(2)因为()()1111!11lim lim lim lim e 1!11nn n n n n n n n na n n n a n n n n ρ-+-+→∞→∞→∞→∞⎡⎤+⎛⎫⎛⎫==⋅===+ ⎪⎢⎥ ⎪+⎝⎭+⎝⎭⎣⎦ 所以收敛半径1e R ρ==,收敛区间为(-e,e).当x =e 时,级数变为1e nn n n n∞=∑;应用洛必达法则求得()10e e1lim 2xx x x →-+=-,故有111lim 12n n n a n a +→∞⎛⎫-=-<⎪⎝⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e).(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.211212221lim lim 2121lim21n n n n n nn U x n U n x n x n x ++-→∞→∞→∞-=⋅+-=⋅+= 所以当x 2<1即|x |<1时,级数收敛,x 2>1即|x |>1时,级数发散,故295收敛半径R =1.当x =1时,级数变为1121n n ∞=-∑,当x =-1时,级数变为1121n n ∞=--∑,由1121lim 012n n n→∞-=>知,1121n n ∞=-∑发散,从而1121n n ∞=--∑也发散,故原级数的收敛域为(-1,1). (4)令t =x -1,则级数变为212nn t n n∞=⋅∑,因为()()2122lim lim 1211n n n na n na n n ρ+→∞→∞⋅===⋅++ 所以收敛半径为R =1.收敛区间为 -1<x -1<1 即0<x <2.当t =1时,级数3112n n ∞=∑收敛,当t =-1时,级数()31112n n n ∞=-⋅∑为交错级数,由莱布尼茨判别法知其收敛.所以,原级数收敛域为 0≤x ≤2,即[0,2] 12.利用幂级数的性质,求下列级数的和函数: (1)21n n nx∞+=∑;(2) 22021n n x n +∞=+∑;解:(1)由()321lim n n n x n x nx++→∞+=知,当|x |=<1时,原级数收敛,而当|x |=1时,21n n nx ∞+=∑的通项不趋于0,从而发散,故级数的收敛域为(-1,1).记 ()23111n n n n S nxxnxx ∞∞+-====∑∑易知11n n nx∞-=∑的收敛域为(-1,1),记()111n n S n xx ∞-==∑296则()1011xn n x S x x x∞===-∑⎰ 于是()()12111x S x x x '⎛⎫== ⎪-⎝⎭-,所以()()()3211x S x x x =<-(2)由2422221lim 23n n n x n x n x++→∞+=⋅+知,原级数当|x |<1时收敛,而当|x |=1时,原级数发散,故原级数的收敛域为(-1,1),记()2221002121n n n n x x S x x n n ++∞∞====++∑∑,易知级数21021n n x n +∞=+∑收敛域为(-1,1),记()211021n n x S x n +∞==+∑,则()21211n n S x x x∞='==-∑, 故()1011d ln 21xx S x x x +'=-⎰ 即()()1111ln 021x S S x x +-=-,()100S =,所以()()()11ln 121x xS xS x x x x+==<-13.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x )=ln(2+x ); (2)f (x )=cos 2x ; (3)f (x )=(1+x )ln(1+x ); (4)()221x f x x=+;(5)()23xf x x=+; (6)()()1e e 2x x f x -=-; (7)f (x )=e x cos x ;(8)()()212f x x =-.解:(1)()()ln ln 2ln 2ln 11222x x f x x ⎛⎫⎛⎫===++++ ⎪ ⎪⎝⎭⎝⎭由于()()0ln 111n nn x x n ∞==+-+∑,(-1<x ≤1)故()()110ln 11221n nn n x x n +∞+=⎛⎫=+- ⎪⎝⎭+∑,(-2≤x ≤2)297因此()()()11ln ln 22121n nn n x x n +∞+==++-+∑,(-2≤x ≤2) (2)()21cos 2cos 2x f x x +==由()()20cos 1!2nnn x x n ∞==-∑,(-∞<x <+∞)得()()()()()220042cos 211!!22n n n nn n n x x x n n ∞∞==⋅==--∑∑ 所以()()22011()cos cos 222114122!2n nn n f x x x x n ∞===+⋅=+-∑,(-∞<x <+∞) (3)f (x )=(1+x )ln(1+x ) 由()()()10ln 111n nn x x n +∞==+-+∑,(-1≤x ≤1)所以()()()()()()()()()()()()()1120111111111111111111111111111n nn n n nn n n n n nn n n n n n n n n n x f x x n x x n n x x x n n n n x xn n x xn n +∞=++∞∞==++∞∞+==+∞+=-∞+==+-+=+--++=++--+++--=+⋅+-=++∑∑∑∑∑∑∑ (-1≤x ≤1)(4)()2222111x f x x xx==⋅++由于()()()2211!!2111!!21n n n n x n x∞=-=+-+∑ (-1≤x ≤1)298故()()()()221!!2111!!2n n n n x f x x n ∞=⎛⎫-+=- ⎪⎝⎭∑()()()()2211!!211!!2n n n n x xn ∞+=-=+-∑ (-1≤x ≤1) (5)()()()()2202111313133133nn n n nn n xf x x x x x x ∞=+∞+==⋅+⎛⎫=⋅- ⎪⎝⎭=-<∑∑(6)由0e !nxn x n ∞==∑,x ∈(-∞,+∞)得()01e !n nxn x n ∞-=⋅-=∑,x ∈(-∞,+∞)所以()()()()()()0002101e e 2112!!1112!,!21x x n n n n n n n n n n f x x x n n x n x x n -∞∞==∞=+∞==-⎛⎫-=- ⎪⎝⎭=⋅⎡⎤--⎣⎦=∈-∞+∞+∑∑∑∑(7)因为e cos x x 为()()1e cos sin x x i e x i x +=+的实部, 而()()[]()10002011!1!ππ2cos sin !44ππ2cos sin !44nxi n nn n nn n n n n ex i n x i n x i n x n n i n ∞+=∞=∞=∞==+=+⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦⎛⎫=⋅+ ⎪⎝⎭∑∑∑∑299取上式的实部.得2π2cos4cos !n xn n n e x x n ∞==⋅∑(-∞<x <+∞)(8)由于()1211n n nx x ∞-==-∑ |x |<1而()211412f x x =⋅⎛⎫- ⎪⎝⎭,所以()111001422n n n n n n x x f n x --∞∞+==⋅⎛⎫=⋅= ⎪⎝⎭∑∑ (|x |<2) 14.将()2132f x x x =++展开成(x +4)的幂级数.解:21113212x x x x =-++++而()()()0101113411431314413334713nn nn n x x x x x x x ∞=∞+==+-++=-⋅+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<∑∑又()()()0101122411421214412224622nn nn n x x x x x x x ∞=∞+==+-++=-+-+⎛+⎫⎛⎫=-< ⎪⎪⎝⎭⎝⎭+=--<<-∑∑300所以()()()()()2110011013244321146223n nn n n n nn n n f x x x x x x x ∞∞++==∞++==++++=-+⎛⎫=-+-<<- ⎪⎝⎭∑∑∑15.将函数()3f x x =展开成(x -1)的幂级数. 解:因为()()()()()2111111!2!m nmm mm m m x xx x n---+=++++++-<<所以()()[]()()()33221133333331121222222211111!2!!n f x x x n x x x n ==+-⎛⎫⎛⎫⎛⎫⎛⎫----+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+++++---(-1<x -1<1) 即()()()()()()()()()()()()()2323133131313251111111222!23!2!3152111022!n nnnn n f x x x x x n n x x n ∞=⋅⋅⋅⋅⋅⋅--+--=+++++----⋅⋅⋅⋅⋅⋅--=+-<<⋅∑ 16.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过0.0001); (2)cos20(误差不超过0.0001)解:(1)35211ln 213521n x x x x x x n -+⎛⎫=+++++ ⎪--⎝⎭,x ∈(-1,1)令131x x +=-,可得()11,12x =∈-,301故()35211111112ln3ln 212325222112n n -+⎡⎤+++++==⎢⎥⋅⋅⋅-⎣⎦-又()()()()()()()()()()2123212121232521242122112222123222212112222123252111222212112211413221n n n n n n n n n n n r n n n n n n n n n n +++++++++-⎡⎤++=⎢⎥⋅⋅++⎣⎦⎡⎤⋅⋅++=+++⎢⎥⋅⋅+++⎣⎦⎛⎫<+++ ⎪⎝⎭+=⋅+-=+ 故5810.000123112r <≈⨯⨯61010.000033132r <≈⨯⨯. 因而取n =6则35111111ln32 1.098623252112⎛⎫=≈++++ ⎪⋅⋅⋅⎝⎭(2)()()2420ππππ909090cos 2cos 11902!4!!2nn n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==-+-++-∵24π906102!-⎛⎫ ⎪⎝⎭≈⨯;48π90104!-⎛⎫⎪⎝⎭≈ 故2π90cos2110.00060.99942!⎛⎫⎪⎝⎭≈-≈-≈17.利用被积函数的幂级数展开式,求定积分0.5arctan d xx x⎰(误差不超过0.001)的近似值.302解:由于()3521arctan 13521n n x x x x x n +=-+-++-+ ,(-1≤x ≤1) 故()2420.50.5000.5357357arctan d d 113521925491111111292252492nx x x x x x x n x x x x ⎡⎤=-+-++-⎢⎥+⎣⎦⎛⎫=-+-+ ⎪⎝⎭=-⋅+⋅-⋅+⎰⎰ 而3110.013992⋅≈,5110.0013252⋅≈,7110.0002492⋅≈. 因此0.535arctan 11111d 0.487292252x x x ≈-⋅+⋅≈⎰ 18.判别下列级数的敛散性:(1)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑;(2)21cos 32n n nx n ∞=⎛⎫ ⎪⎝⎭∑; (3)()1ln 213nn n n ∞=+⎛⎫+ ⎪⎝⎭∑.解:(1)∵122111n nnnnn nn n n n n n n +⎛⎫>= ⎪+⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 而()22211221lim lim 10111nnn n n n nn n --++→∞→∞⎡⎤⎛⎫-⎛⎫==≠+⎢⎥⎪ ⎪+⎝⎭+⎝⎭⎣⎦故级数2211nn n n ∞=⎛⎫⎪+⎝⎭∑发散,由比较审敛法知原级数发散. (2)∵2cos 3022n nnx n n ⎛⎫⎪⎝⎭<≤ 由比值审敛法知级数12n n n ∞=∑收敛,由比较审敛法知,原级数21cos 32nn nx n ∞=⎛⎫ ⎪⎝⎭∑303收敛. (3)∵()()ln ln 220313nnn n n ++<<⎛⎫+ ⎪⎝⎭ 由()()()()11ln 33lim lim 3ln 21ln 3lim3ln 2113nn n n n nn U n U n n n ++→∞→∞→∞+=⋅++=+=< 知级数()1ln 23nn n ∞=+∑收敛,由比较审敛法知,原级数()1ln 213n n n n ∞=+⎛⎫+ ⎪⎝⎭∑收敛. 19.若2lim n nn U →∞存在,证明:级数1n n U ∞=∑收敛. 证:∵2lim n n n U →∞存在,∴∃M >0,使|n 2U n |≤M , 即n 2|U n |≤M ,|U n |≤2M n而21n Mn ∞=∑收敛,故1n n U ∞=∑绝对收敛. 20.证明,若21n n U ∞=∑收敛,则1nn U n∞=∑绝对收敛. 证:∵222211111222n n n nU U n U U n n n+=⋅≤=+⋅而由21n n U ∞=∑收敛,211n n∞=∑收敛,知 22111122n n U n ∞=⎛⎫+⋅ ⎪⎝⎭∑收敛,故1n n U n∞=∑收敛, 因而1nn U n∞=∑绝对收敛.30421.若级数1n n a ∞=∑与1n n b ∞=∑都绝对收敛,则函数项级数()1cos sin n n n a nx b nx ∞=+∑在R 上一致收敛.证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有()cos sin cos sin n n n n n n n U a nx b nx a nx b nx a b x =+≤+≤+由于1n n a ∞=∑与1n n b ∞=∑都绝对收敛,故级数()1n n n a b ∞=+∑收敛.由魏尔斯特拉斯判别法知,函数项级数()1cos sin n n n a nx b nx ∞=+∑在R 上一致收敛.22.计算下列级数的收敛半径及收敛域:(1) 1311nn n n x n ∞=⎛⎫+ ⎪+⎝⎭∑;(2)()1πsin12nnn x ∞=+∑; (3) ()2112nn n x n ∞=-⋅∑解:(1)()111lim 1331lim 3123311311lim lim lim 22313e e 3n n nn nn nnn n n a a n n n n n n n n n n ρ+→∞+→∞→∞→∞→∞-=+⎛⎫⎛⎫++=⋅ ⎪ ⎪+⎝⎭+⎝⎭⎛⎫++++⎛⎫+=⋅⋅ ⎪ ⎪++⎝⎭+⎝⎭=⋅⋅=∴133R ρ==, 又当33x =±时,级数变为()113133311333nnnn n n n n n n ∞∞==⎛⎫⎛⎫⎛⎫++=±± ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭∑∑, 因为33333lim 033nn n en -→∞⎛⎫+=≠ ⎪+⎝⎭305所以当33x =±,级数发散,故原级数的收敛半径33R =,收敛域(-33,33). (2) 111ππsin122lim lim lim ππ2sin 22n n n n n n nnna a ρ+++→∞→∞→∞==== 故12R ρ==,又∵πsinπ2limsin 2lim ππ0π22n n n n n n→∞→∞⋅==≠.所以当(x +1)=±2时,级数()1πsin12n n n x ∞=+∑发散, 从而原级数的收敛域为-2<x +1<2,即-3<x <1,即(-3,1)(3) ()212121lim lim 221n n n n n na n a n ρ++→∞→∞⋅===⋅+ ∴2R =,收敛区间-2<x -1<2,即-1<x <3. 当x =-1时,级数变为()2111nn n∞=-∑,其绝对收敛,当x =3时,级数变为211n n ∞=∑,收敛. 因此原级数的收敛域为[-1,3]. 23.将函数()0arctan d xtF t x t=⎰展开成x 的幂级数. 解:由于()21arctan 121n nn t t n +∞==-+∑306所以()()()()()20002212000arctan d d 121d 112121nxx n n n n xnnn n t t F t t x t n t x t n n ∞=+∞∞====-+==--++∑⎰⎰∑∑⎰(|x |≤1)24.判别下列级数在指定区间上的一致收敛性:(1)()113n nn x ∞=-+∑,x ∈[-3,+∞); (2)1n n n x ∞=∑,x ∈(2,+∞); (3)()()222211n nx x n n ∞=⎡⎤+++⎣⎦∑,x ∈(-∞,+∞);解:(1)考虑n ≥2时,当x ≥-3时,有()1111133333nn n n nx x --=<<+-+ 而1113n n ∞-=∑收敛,由魏尔斯特拉斯判别法知,级数()113nnn x ∞=-+∑在[-3,+∞)上一致收敛. (2)当x >2时,有2n nn nx=< 由1112lim 122n n nn n +→∞+=<知级数12n n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数1n n nx ∞=∑在(2,+∞)上一致收敛. (3)∀x ∈R 有()()()22224322111nn n x n n nx n n n ≤<=⎡⎤+⋅+++⎣⎦而311n n ∞=∑收敛,由魏尔斯特拉斯判别法知,级数()()222211n n x x n n ∞=⎡⎤+++⎣⎦∑在(-∞,+∞)上一致收敛. 25.求下列级数的和函数:307(1)()211121n n n x n ∞-=--∑; (2)2121n n x n +∞=+∑; (3)()11!1n n nxn ∞-=-∑; (4)()11n n x n n ∞=+∑.解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数()111121n n n ∞-=--∑是收敛的交错级数,故收敛域为[-1,1] 记()()()()22111111112121n n n n n n x x S x xS x x n n -∞∞--=====----∑∑ 则S 1(0)=0,()()122121111n n n S x x x∞--='==-+∑ 所以()()1121d arctan 01xS S x x x x-==+⎰ 即S 1(x )=arctan x ,所以S (x )=x arctan x ,x ∈[-1,1].(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记()21021n n x S x n +∞==+∑则()22011n n S x x x ∞='==-∑ ()200111d d ln 121xxx S x x x x x +'==--⎰⎰,即()()11ln 021xS S x x+-=-,S (0)=0 所以()11ln 21xS x x+=-,(|x |<1)(3)由()11!lim lim 0!1n n n n n a n n a n +→∞→∞+==-知收敛域为(-∞,+∞).记()()11!1n n n S x x n ∞-==-∑则()()()1011d e !!11nn xx n n x x S x x x x n n -∞∞=====--∑∑⎰,所以()()()e 1e x x S x x x '==+,(-∞<x <+∞)(4)由()()()112lim111n n n n n →∞++=+知收敛半径R =1,当x =1时,级数变为308()111n n n ∞=+∑,由()2111n n n <+知级数收敛,当x =-1时,级数变为()()111n n n n ∞=-+∑是收敛的交错级数,故收敛域为[-1,1].记()()11nn x S x n n ∞==+∑则S (0)=0,()()111n n x xS x n n +∞==+∑,()[]1111n n x xS x x∞-=''==-∑ (x ≠1) 所以()[]()0d ln 1xxS x x x ''=--⎰ 即()[]()ln 1xS x x '=--()[]()()()00d ln 1d 1ln 1xxxS x x x x x x x '=--=--+⎰⎰ 即()()()1ln 1xS x x x x =--+当x ≠0时,()()111ln 1S x x x⎛⎫=+-- ⎪⎝⎭,又当x =1时,可求得S (1)=1(∵()1lim lim 111n n S x n →∞→∞⎛⎫=-= ⎪+⎝⎭) 综上所述()()[)()0,01,1111ln 1,1,00,1x S x x x x x =⎧⎪==⎪⎨⎛⎫⎪+--∈- ⎪⎪⎝⎭⎩ 26.设f (x )是周期为2π的周期函数,它在(-π,π]上的表达式为()32π0,0π.x f x x x -<≤⎧=⎨<≤⎩ 试问f (x )的傅里叶级数在x =-π处收敛于何值?解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x )的傅里叶级数收敛于()()[]()33ππ11π22π222f f -+-+-=+=+30927.写出函数()21π00πx f x x x --≤≤⎧=⎨<≤⎩的傅里叶级数的和函数. 解:f (x )满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ),在间断点x =0,x =±π处,分别收敛于()()00122f f -++=-,()()2πππ122f f -++-=,()()2πππ122f f -+-+--=,综上所述和函数.()221π00π102π1π2x x x S x x x --<<⎧⎪<<⎪⎪=-=⎨⎪⎪-=±⎪⎩28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x )在[-π,π)上的表达式为:(1)()π0π,4ππ0;4x f x x ⎧≤<⎪⎪=⎨⎪--≤<⎪⎩(2)()()2πx π=-≤≤f x x ;(3)()ππ,π,22ππ,,22ππ,π;22⎧--≤<-⎪⎪⎪=-≤<⎨⎪⎪≤<⎪⎩x f x x x x (4)()()cosππ2=-≤≤x f x x .310解:(1)函数f (x )满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x )的傅里叶级数收敛于()()ππ0044022f f +-⎛⎫+- ⎪+⎝⎭==,在x ≠n π,有()π0π-ππ011π1πcos d cos d cos d 0ππ4π4n a f x nx x nx x nx x -⎛⎫==-+= ⎪⎝⎭⎰⎰⎰ ()π0π-ππ011π1πsin d sin d sin d ππ4π40,2,4,6,,1,1,3,5,.n b f x nx x nx x nx xn n n-⎛⎫==-+ ⎪⎝⎭=⎧⎪=⎨=⎪⎩⎰⎰⎰于是f (x )的傅里叶级数展开式为()()11sin 2121n f x n x n ∞==--∑(x ≠n π) (2)函数f (x )在(-∞,+∞)上连续,故其傅里叶级数在(-∞,+∞)上收敛于f (x ),注意到f (x )为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是()π-π1sin d 0πn b f x nx x ==⎰,2π20-π12πd π3a x x ==⎰,()()ππ22-π0124cos d cos d 1ππnn a f x nx x x nx x n ===-⋅⎰⎰ (n =1,2,…) 所以,f (x )的傅里叶级数展开式为:()()221π41cos 3nn f x nx n∞==+-⋅∑ (-∞<x <∞)(3)函数在x =(2n +1)π (n ∈z )处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x )为奇函数,有a n =0,(n =0,1,2,…)311()()()πππ2π002222πsin d sin d sin d ππ212π1sin 1,2,π2n nb f x nx x x nx x nx x n n n n ⎡⎤==+⎢⎥⎣⎦=--+=⎰⎰⎰ 所以()()12112π1sin sin π2n n n f x nx n n ∞+=⎡⎤=-⋅+⎢⎥⎣⎦∑ (x ≠(2n +1)π,n ∈z )(4)因为()cos 2xf x =作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ),注意到f (x )为偶函数,有b n =0(n =1,2,…),()()ππ-π0π0π1212cos cos d cos cos d π2π2111cos cos d π2211sin sin 12211π224110,1,2,π41n n x xa nx x nx xn x n x x n x n x n n n n +==⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=+⎢⎥+-⎢⎥⎣⎦⎛⎫=-= ⎪-⎝⎭⎰⎰⎰所以f (x )的傅里叶级数展开式为:()()12124cos 1ππ41n n nxf x n ∞+==+--∑ x ∈[-π,π]29.将下列函数f (x )展开为傅里叶级数: (1)()()πππ42x f x x =--<<(2)()()sin 02πf x x x =≤≤解:(1) ()ππ0-ππ11ππcos d d ππ422x a f x nx x x -⎛⎫==-= ⎪⎝⎭⎰⎰[]()ππππ-π-πππ1π11cos d cos d x cos d π4242π1sin 001,2,4n x a nx x nx x nx x nx n n--⎛⎫=-=- ⎪⎝⎭=-==⎰⎰⎰312()ππππ-π-π1π11sin d sin d xsin d π4242π11n n x b nx x nx x nx x n-⎛⎫=-=- ⎪⎝⎭=-⋅⎰⎰⎰故()()1πsin 14n n nxf x n∞==+-∑ (-π<x <π)(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ),注意到f (x )为偶函数,有b n =0,()ππ0πππ011cos0d sin d ππ24sin d ππa f x x x x x x x --====⎰⎰⎰ ()()()()()()ππ0ππ02222cos d sin cos d ππ1sin 1sin 1d π211π10,1,3,5,4,2,4,6,π1n na f x nx x x nx x n x n x x n n n n -===+--⎡⎤⎣⎦-⎡⎤=+-⎣⎦-=⎧⎪-=⎨=⎪-⎩⎰⎰⎰所以()()2124cos2ππ41n nxf x n ∞=-=+-∑ (0≤x ≤2π) 30.设f (x )=x +1(0≤x ≤π),试分别将f (x )展开为正弦级数和余弦级数. 解:将f (x )作奇延拓,则有a n =0 (n =0,1,2,…)()()()()ππ0022sin d 1sin d ππ111π2πn nb f x nx x x nx x n==+--+=⋅⎰⎰从而()()()1111π2sin πnn f x nx n∞=--+=∑ (0<x <π)313若将f (x )作偶延拓,则有b n =0 (n =1,2,…)()()ππ00222cos d 1cos d ππ0,2,4,64,1,3,5,πn a f x nx x x nx x n n n ==+=⎧⎪=-⎨=⎪⎩⎰⎰ ()()ππ0π012d 1d π2ππa f x x x x -==+=+⎰⎰ 从而()()()21cos 21π242π21n n xf x n ∞=-+=--∑ (0≤x ≤π) 31.将f (x )=2+|x | (-1≤x ≤1)展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和. 解:f (x )在(-∞,+∞)内连续,其傅里叶级数处处收敛,由f (x )是偶函数,故b n =0,(n =1,2,…)()()11010d 22d 5a f x x x x -==+=⎰⎰()()()1112cos d 22cos d 0,2,4,64,1,3,5,πn a f x nx x x nx xn n n -==+=⎧⎪-=⎨=⎪⎩⎰⎰所以()()()221cos 21π542π21n n xf x n ∞=-=--∑,x ∈[-1,1]取x =0得,()2211π821n n ∞==-∑,故 ()()22222111111111π48212n n n n n n n n ∞∞∞∞=====+=+-∑∑∑∑ 所以211π6n n∞==∑31432.将函数f (x )=x -1(0≤x ≤2)展开成周期为4的余弦级数.解:将f (x )作偶延拓,作周期延拓后函数在(-∞,+∞)上连续,则有b n =0 (n =1,2,3,…)()()220201d 1d 02a f x x x x -==-=⎰⎰ ()()()222022221ππcos d 1cos d 2224[11]π0,2,4,6,8,1,3,5,πn nn x n xa f x x x x n n n n -==-=--=⎧⎪=⎨-=⎪⎩⎰⎰ 故()()()22121π81cos π221n n xf x n ∞=-=-⋅-∑(0≤x ≤2)33.设()()011,0,2cos π1222,1,2n n x x a f x s x a n x x x ∞=⎧≤≤⎪⎪==+⎨⎪-<<⎪⎩∑,-∞<x <+∞,其中()12cos πd n a f x n x x =⎰,求52s ⎛⎫- ⎪⎝⎭. 解:先对f (x )作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞)将f (x )展开成余弦级数而得到 s (x ),延拓后f (x )在52x =-处间断,所以515511122222221131224s f f f f +-+-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+-=-+-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎛⎫=+= ⎪⎝⎭34.设函数f (x )=x 2(0≤x <1),而()1s i n πn n s x b nx ∞==∑,-∞<x <+∞,其中()12sin πd n b f x n x x =⎰ (n =1,2,3,…),求12s ⎛⎫- ⎪⎝⎭. 解:先对f (x )作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞),并将315f (x )展开成正弦级数得到s (x ),延拓后f (x )在12x =-处连续,故.211112224s f ⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 35.将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:(1)f (x )=1-x 2 1122x ⎛⎫-≤< ⎪⎝⎭;(2)()21,30,1,0 3.x x f x x +-≤<⎧=⎨≤<⎩解:(1) f (x )在(-∞,+∞)上连续,故其傅里叶级数在每一点都收敛于f (x ),由于f (x )为偶函数,有b n =0 (n =1,2,3,…)()()112221002112d 41d 6a f x x x x -==-=⎰⎰, ()()()()112221021222cos2n πd 41cos2n πd 11,2,πn n a f x x x x x x n n -+==--==⎰⎰所以()()12211111cos 2π12πn n f x n x n +∞=-=+∑ (-∞<x <+∞)(2) ()()303033011d 21d d 133a f x x x x x --⎡⎤==++=-⎢⎥⎣⎦⎰⎰⎰, ()()()()330330221πcos d 331π1π21cos d cos d 3333611,1,2,3,πn nn xa f x x n x n x x x x n n --==++⎡⎤=--=⎣⎦⎰⎰⎰316()()()()33033011πsin d 331π1π21sin d sin d 333361,1,2,πn n n xb f x x n x n x x x x n n --+==++=-=⎰⎰⎰ 而函数f (x )在x =3(2k +1),k =0,±1,±2,…处间断,故()()()122116π6π11cos 1sin 2π3π3n n n n x n x f x n n ∞+=⎧⎫⎡⎤=-+--+-⎨⎬⎣⎦⎩⎭∑ (x ≠3(2k +1),k =0,±1,±2,…)36.把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式.解:根据图形写出函数关系式()0,22,220,22T t u t h t T t ττττ⎧-≤<-⎪⎪⎪=-≤<⎨⎪⎪≤≤⎪⎩()()22022111d d d 2T l T l h c u t t u t t h t l T T Tτττ---====⎰⎰⎰ ()()π2π222π2π22222π2211e d e d 212πe d e d 2ππsin e 2ππn T n i t l i t l T T n l n n i t i t T T n i t T c u t t u t tl T h T n h t i t T T n i T h h n n i n T τττττττ----------==-⎛⎫⎛⎫==⋅- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤=-= ⎪⎣⎦⎝⎭⎰⎰⎰⎰。