七年级数学平面直角坐标系复习知识点总结讲解学习

合集下载

人教版初中七年级数学平面直角坐标系基础知识点归纳总结

人教版初中七年级数学平面直角坐标系基础知识点归纳总结

(每日一练)人教版初中七年级数学平面直角坐标系基础知识点归纳总结单选题1、点M(m+1,m+3)在y轴上,则点M的坐标为()A.(0,−4)B.(4,0)C.(−2,0)D.(0,2)答案:D解析:根据y轴上点的横坐标为0列方程求出m的值,然后求解即可.解:∵点M(m+1,m+3)在y轴上,∴m+1=0,解得m=−1,∴m+3=−1+3=2,∴点M的坐标为(0,2).故选:D.小提示:本题考查点的坐标,熟记y轴上点的横坐标为0,x轴上点的纵坐标为0是解题的关键.2、点M(m+1,m+3)在y轴上,则点M的坐标为()A.(0,−4)B.(4,0)C.(−2,0)D.(0,2)答案:D解析:根据y轴上点的横坐标为0列方程求出m的值,然后求解即可.解:∵点M(m+1,m+3)在y轴上,∴m+1=0,解得m=−1,∴m+3=−1+3=2,∴点M的坐标为(0,2).故选:D.小提示:本题考查点的坐标,熟记y轴上点的横坐标为0,x轴上点的纵坐标为0是解题的关键.3、点A(−3,−5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,−8)B.(1,−2)C.(−6,−1)D.(0,−1)答案:C解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.解:点A的坐标为(−3,−5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:−3−3=−6,纵坐标为:−5+4=−1,即(−6,−1).故选:C.小提示:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.填空题4、(1)把点(−2,3)向上平移2个单位长度所到达的位置坐标为_________,再向左平移2个单位长度所到达的位置坐标为___________;(2)把点P(−1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达的位置坐标为________;(3)点M(−2,5)向右平移________个单位长度,向下平移_________个单位长度,变为M′(0,1);(4)把点P(2,−3)平移后得点P2(−2,3),则平移过程是____________.1答案:(−2,5)(−4,5)(1,2) 2 4 向左平移4个单位,再向上平移6个单位解析:(1)根据点平移的规律,得到平移后点的坐标,即可;(2)根据点平移的规律,得到平移后点的坐标,即可;(3)根据点坐标的变化规律,确定平移方向,即可;(4)根据点坐标的变化规律,确定平移方向,即可.解:(1)把点(−2,3)向上平移2个单位长度所到达的位置坐标为(−2,3+2)即(−2,5),再向左平移2个单位长度所到达的位置坐标为(−2−2,5)即(−4,5);故填:(−2,5),(−4,5).(2)把点P(−1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达的位置坐标为(−1+2,3−1)即(1,2);故填:(1,2).(3)将M(−2,5)和M′(0,1)的坐标进行比较,横坐标-2和0比较增加了2,所以P向右平移了2个单位长度,纵坐标5和1比较减少了4,故P向下平移了4个单位长度.故答案为2,4;(4)将P(2,−3)和P2(−2,3)的坐标进行比较,横坐标2和-2比较减少了4,所以P向1左平移了4个单位长度,纵坐标-3和3比较增加了6,故P向上平移了6个单位长度.故填:向左平移4个单位,再向上平移6个单位.小提示:本题主要考查了点的平移规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.5、在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为____.答案:(1,﹣1)解析:试题解析:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)考点:坐标与图形变化﹣平移.解答题6、在正方形网格中建立如图的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),将△ABC向下平移5单位长度,画出平移后的△A′B′C′并写出点A对应点A′的坐标.答案:画图见解析;A′坐标为(4,-1).解析:根据“左减右加,上加下减”的平移规律,分别找出点A、B、C的对应点,顺次连接即可得答案.平移后的△A′B′C′如图所示:∵点A的坐标是(4,4),将△ABC向下平移5单位长度,∴A′坐标为(4,-1).小提示:本题考查坐标与图形变化——平移,熟练掌握“左减右加,上加下减”的平移规律是解题关键.。

初中数学中考复习考点知识与题型专题讲解05 平面直角坐标系

初中数学中考复习考点知识与题型专题讲解05 平面直角坐标系

初中数学中考复习考点知识与题型专题讲解专题05 平面直角坐标系【知识要点】考点知识一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。

【注意】a、b的先后顺序对位置的影响。

平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。

两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。

平面直角坐标系原点:两坐标轴交点为其原点。

坐标平面:坐标系所在的平面叫坐标平面。

象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。

按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。

【注意】坐标轴上的点不属于任何象限。

点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。

考点知识二 点的坐标的有关性质(考点) 性质一 各象限内点的坐标的符号特征性质二 坐标轴上的点的坐标特征 1.x 轴上的点,纵坐标等于0; 2.y 轴上的点,横坐标等于0; 3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;X点A 、B 的纵坐标都等于m ;2.在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a性质六 平面直角坐标系内平移变化P (b a ,)abxy OXYABmXYCDn性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结: XP X-X【考点题型】考点题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键.典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列限(x,0)(0,y )(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同 x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0 (m,m) (m,-m )变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话:小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了”小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…”根据两人的对话记录,从邮局出发走到小军家应( )A.先向北直走700米,再向西走100米B.先向北直走100米,再向西走700米C.先向北直走300米,再向西走400米D.先向北直走400米,再向西走300米考点题型二求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD是正方形,O,D两点的坐标分别是()0,6,点C在第一象限,则点C的坐标是()0,0,()A .()6,3B .()3,6C .()0,6D .()6,6变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为() A .()4,5-B .(5,4)-C .(4,5)-D .(5,4)-变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD 为菱形,点A 的坐标为()4,0,点C 的坐标为()4,4,点D 在y 轴上,则点B 的坐标为()A .(4,2)B .(2,8)C .(8,4)D .(8,2)变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是() A .()4,0B .()0,8C .()4,0-D .()0,8-变式2-4.(2021·广西一模)点M (3,1)关于y 轴的对称点的坐标为( ) A .(﹣3,1)B .(3,﹣1)C .(﹣3.﹣1)D .(1,3) 考点题型三 点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律. 典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2021的坐标为()A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭B .()600,0C .12600,5⎛⎫ ⎪⎝⎭D .()1200,0考点题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可以..是( ) A .1B .32-C .43D .4或-4变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A .(),a bB .(),a b -C .(),a b --D .(),a b - 考点题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为( ) A .(0,﹣4)B .(4,0)C .(0,﹣2)D .(2,0)3.(2021·甘肃中考真题)已知点(224)P m m ,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(04),C .40)(-,D .(0,4)- 4.(2021·甘肃中考模拟)已知点P (m+2,2m ﹣4)在x 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(﹣4,0)D .(0,﹣4)5.(2021·广东华南师大附中中考模拟)如果点P (m +3,m +1)在平面直角坐标系的x 轴上,则m =( )A .﹣1B .﹣3C .﹣2D .0 2.象限角的平分线上的点的坐标1. 已知点A (-3+a ,2a+9)在第二象限角平分线上,则a=_________2.(2018·广西中考模拟)若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( )A .(2,2)B .(-2,-2)C .(2,2)或(-2,-2)D .(-2,2)或(2,-2) 3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A (a ﹣2,2a +7),点B 的坐标为(1,5),直线AB ∥y 轴,则a 的值是( ) A .1B .3C .﹣1D .52.(2018·天津中考模拟)如果直线AB 平行于y 轴,则点A ,B 的坐标之间的关系是( )A .横坐标相等B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等3.(2021·广东华南师大附中中考模拟)已知点A (5,﹣2)与点B (x ,y )在同一条平行于x 轴的直线上,且B 到y 轴的距离等于4,那么点B 是坐标是( )A .(4,﹣2)或(﹣4,﹣2)B .(4,2)或(﹣4,2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)4.(2021·江苏中考模拟)若线段AB ∥x 轴且AB =3,点A 的坐标为(2,1),则点B 的坐标为( )A .(5,1)B .(﹣1,1)C .(5,1)或(﹣1,1)D .(2,4)或(2,﹣2)5.(2018·江苏中考模拟)已知点M (﹣1,3),N (﹣3,3),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交,相交B .平行,平行C .垂直,平行D .平行,垂直4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣52.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)4.(2012·江苏中考模拟)在平面直角坐标系中,点P(-3,4)到x轴的距离为( ) A.3B.-3C.4D.-45.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为() A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(﹣2,1)2.(2021·山东中考模拟)已知点P (a +1,2a ﹣3)关于x 轴的对称点在第二象限,则a 的取值范围是( )A .﹣1<a <B .﹣<a <1C .a <﹣1D .a >3.(2014·广西中考真题)已知点A (a ,2013)与点B (2014,b )关于x 轴对称,则a+b 的值为( )A .﹣1B .1C .2D .34.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A .a 1<-B .31a 2-<<C .3a 12-<<D .3a 2> 5.(2021·辽宁中考模拟)已知点P (m ﹣1,4)与点Q (2,n ﹣2)关于x 轴对称,则m n 的值为( )A .9B .﹣9C .﹣19D .196.(2018·四川中考模拟)平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是( )A .(﹣3,2)B .(3,﹣2)C .(﹣2,3)D .(2,3)。

七年级数学第七章__平面直角坐标系__知识点归纳

七年级数学第七章__平面直角坐标系__知识点归纳

平面直角坐标系是平面上用来描述点位置的一种特定的坐标系。

它由两个互相垂直的坐标轴x轴和y轴所构成,x轴和y轴的交点称为原点O。

在平面直角坐标系中,每一个点都可以唯一确定两个坐标值(x,y),其中x称为横坐标,y称为纵坐标。

我们可以通过绘制点在坐标系上的位置来表示点的坐标。

当x轴取正方向为右侧,y轴取正方向为上方时,点在坐标系中的位置可以称为一个有序数对(x,y)。

在平面直角坐标系中,我们可以根据两点之间的距离、两点之间的斜率等概念来进行计算。

1.距离公式:设平面上两点A(x₁,y₁)和B(x₂,y₂),可以通过以下公式计算出两点之间的距离d:d=√[(x₂-x₁)²+(y₂-y₁)²]2.斜率的概念:斜率是用来描述两点之间直线的倾斜程度的概念。

设平面上两点A(x₁,y₁)和B(x₂,y₂),可以通过以下公式计算出两点确定的直线的斜率k:k=(y₂-y₁)/(x₂-x₁)斜率k可以用来判断直线的方向:当k>0时,直线是向上倾斜的;当k<0时,直线是向下倾斜的;当k=0时,直线是水平的;当x₂-x₁=0时,直线是竖直的。

3.点和直线的位置关系:在平面直角坐标系中,我们可以通过比较点到直线的距离来判断点和直线的位置关系。

当点在直线上时,点与直线的距离为0;当点在直线上方时,点与直线的距离为正数;当点在直线下方时,点与直线的距离为负数。

4.点的对称性:在平面直角坐标系中,我们可以通过对称中心来判断点的对称位置。

设平面上有点A(x,y),如果将点A关于原点O对称,则新的点A'的坐标为(-x,-y)。

同样地,我们还可以将点A关于x轴、y轴以及其他直线进行对称。

5.坐标系的变换:可以通过平移、旋转、镜像、缩放等变换对平面直角坐标系进行改变。

平移是指将坐标系沿着平行于x轴或y轴的方向移动一定距离。

旋转是指将坐标系绕原点O或其他点旋转一定角度。

镜像是指将所有点关于条直线、一些点或一些平面进行对称。

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时平面直角坐标系七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第1课时—平面直角坐标系(答案卷)知识点一:有序数对:1.有序数对的概念:由两个数a与b组成的数对。

记做。

2.有序数对的应用:利用有序数对可以表示物体的位置。

表示方法有:定位法;定位法;定位法;定位法。

【类型一:有序数对的理解】1.张明同学的座位位于第2列第5排,李丽同学的座位位于第4排第3列,若张明的座位用有序数对表示为(2,5),则李丽的座位用的有序数对表示为()A.(4、3)B.3,4C.(3,4)D.(4,3)2.如图是小唯关于诗歌《望洞庭》的书法展示,若“湖”的位置用有序数对(2,3)表示,那么“螺”的位置可以表示为()A.(5,8)B.(5,9)C.(8,5)D.(9,5)3.如图,在围棋棋盘上有3枚棋子,如果黑棋❶的位置用有序数对(0,﹣1)表示,黑棋❷的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对表示为()A.(2,1)B.(﹣1,2)C.(﹣2,1)D.(1,﹣2)【类型二:用有序数对表示位置】4.以下能够准确表示渠县地理位置的是()A.离达州市主城区73千米B.在四川省C.在重庆市北方D.东经106.9°,北纬30.8°5.下列不能确定点的位置的是()A.东经122°,北纬43.6°B.礼堂6排22号C.地下车库负二层D.港口南偏东60°方向上距港口10海里6.下列数据不能确定物体位置的是()A.某小区3单元406室B.南偏东30°C.淮海路125号D.东经121°、北纬35°7.嘉嘉乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的小艇A,B,C的位置如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇B相对于游船的位置可表示为(﹣60°,2),小艇C相对于游船的位置可表示为(0°,﹣1)(向东偏为正,向西偏为负),下列关于小艇A相对于游船的位置表示正确的是()A.小艇A(30°,3)B.小艇A(﹣30°,3)C.小艇A(30°,﹣3)D.小艇A(60°,3)8.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),用方位角和距离可描述为:在点O正北方向,距离O点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B,则判断正确的是()嘉嘉:目标B的位置为(3,210°);琪琪:目标B在点O的南偏西30°方向,距离O点3个单位长度.A.只有嘉嘉正确B.只有淇淇正确C.两人均正确D.两人均不正确知识点二:平面直角坐标系:1.平面直角坐标系的概念:如图:平面内,两条相互,且的数轴组成平面直角坐标系。

七年级下册数学《平面直角坐标系》坐标点 知识点整理

七年级下册数学《平面直角坐标系》坐标点 知识点整理

七年级下册数学《平面直角坐标系》坐标
点知识点整理
七年级下册数学《平面直角坐标系》坐标点知识点整理
一、坐标点的定义和表示方法
- 坐标点是指平面上的一个点,由x和y两个数值表示。

- 常用的表示方法是将x值和y值以括号的形式写在一起,如(3, 5)。

二、确定坐标点的方法
1. 线段法
- 通过线段在坐标轴上的位置确定坐标点。

- 在x轴上移动x个单位,在y轴上移动y个单位。

2. 有向线段法
- 在坐标轴上画出有向线段,确定起点和终点的坐标。

- 起点坐标和终点坐标分别表示为(x1, y1)和(x2, y2)。

3. 分量法
- 将向量的水平和垂直分量分别表示为x和y的值,得到坐标点的坐标。

三、坐标点的位置关系
1. 同一象限
- 如果两个坐标点的x和y的值都具有相同的符号,则这两个点在同一象限。

2. 不同象限
- 如果两个坐标点的x和y的值具有不同的符号,则这两个点在不同象限。

3. 坐标点的位置关系
- 坐标点A(x1, y1)与坐标点B(x2, y2)的x和y的值的比较结果决定了点A和点B的位置关系,
如A在B的左边、右边、上面或下面。

四、坐标点的运算
1. 坐标点之间的加法运算
- 将两个坐标点的x和y值分别相加,得到新的坐标点。

2. 坐标点的相反数
- 一个坐标点的x和y值分别取相反数得到的坐标点与原坐标点关于原点对称。

以上是关于七年级下册数学《平面直角坐标系》坐标点的知识点整理,希望对学生们的研究有所帮助。

七年级下册数学平面直角坐标系的知识点归纳

七年级下册数学平面直角坐标系的知识点归纳

七年级下册数学平面直角坐标系的知识点归纳在学习平面直角坐标系的过程中,我们将一步步掌握如何识别坐标点、平移图形、计算长度、以及求解线性系统方程等基础知识,为深入学习统计分析和解析几何奠定坚实的理论基础。

七年级下册数学中的平面直角坐标系是一个非常重要的知识点,其重要性可见一斑,以下是对这部分知识的归纳:
一、认识坐标系
1. 坐标系是数学中用来表示一个点在一个平面上的方式,是一个由两个数学量(x, y)表示的点的坐标。

2. 坐标系中的x轴和y轴是相互垂直,而原点(0, 0)则是两者交汇的点。

二、用坐标系表示点
1. 一条线可能由无数个点组成,而每个点都可以用坐标系来表示。

2. 点的坐标是确定一个点的方式,可以让学生学习把一个点的位置表现出来。

三、画出坐标平面上的线
1. 通过给定的几点用坐标来表示,就可以画出平面上一条完整的线。

2. 学生要学会分析这几个点之间的位置关系,然后根据直角坐标系的概念画出一条符合要求的完整的线。

四、使用直角坐标系求解几何问题
1. 利用坐标系可以让学生对于几何图形识别和分析更加直观,从而更快更有效地解决问题。

2. 用坐标系去求解几何问题,需要学生做的是理解 num之间的概念,用坐标系来分析,然后解答问题。

总之,七年级下册数学中的平面直角坐标系是一部分十分重要的知识点,要掌握其相关的知识并熟练应用,可以帮助学生理解几何图形,也可以帮助学生解决相关的几何问题。

七年级下册数学《平面直角坐标系》坐标系 知识点整理

七年级下册数学《平面直角坐标系》坐标系 知识点整理

平面直角坐标系一、本节学习指导本节把重点放在几个象限内点的表示方法上,把四个象限里点的的符号牢牢的记在脑子里。

然后做一些相关练习题就可以掌握,这一节属于比较简单的章节。

二、知识要点1、坐标数轴:规定了原点、正方向、单位长度的直线叫数轴。

注意:1、数轴上的点可以用一个数来表示,这个数叫这个点在数轴上的坐标。

2、数轴上的点与实数(包括有理数与无理数)一一对应,数轴上的每一个点都有唯一的一个实数与之对应。

平面直角坐标系:由互相垂直、且原点重合的两条数轴组成。

横向的是x轴,纵向的是y轴。

说明:平面直角坐标系上的任一点,都可用一对有序实数对来表示,这对有序实数对就叫这点的坐标,如上图点A的坐标用(2,2)这有序实数来表示,(即是用有顺序的两个数来表示,注:x在前,y在后,不能更改),坐标平面内的点与有序实数对是一一对应的,每一个点,都有唯一的一对有序实数对与之对应。

【重点】2、象限及坐标平面内点的特点四个象限:如图,平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限、第二象限、第三象限和第四象限。

【重点】注:1、坐标轴(x轴、y轴)上的点不属于任何一个象限。

如上图,点B(4,0)和点C(0,-2)不在任何象限。

坐标平面内点的位置特点:①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0 (表示一条直线)【重点】⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0 (表示一条直线)【重点】例:若P(x,y),已知xy>0,则P点在第______象限;已知xy<0,则P点在第_____象限。

分析:xy>0说明x,y同号,所以是在第一或第三象限,xy<0说明x,y异号,所以是在第二或第四象限点到坐标轴的距离:坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。

七年级下册数学平面直角坐标系笔记

七年级下册数学平面直角坐标系笔记

七年级下册数学平面直角坐标系笔记平面直角坐标系是数学中的一个基础概念,用于描述二维空间中的点的位置。

在平面直角坐标系中,每个点都有一个唯一的坐标,这个坐标由两个数表示,分别是该点到x轴和y轴的距离。

这两个数分别被称为点的横坐标和纵坐标。

一、平面直角坐标系的基本概念坐标系:在平面上,选两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

点的坐标:在平面直角坐标系中,一个点的位置可以用一个有序数对来表示,这个有序数对就叫做这个点的坐标。

例如,点A的坐标为(a, b),其中a是点A到x轴的距离,b 是点A到y轴的距离。

象限:平面直角坐标系被x轴和y轴分为四个部分,这四个部分被称为四个象限。

第一象限是x轴和y轴上方的部分,第二象限是x轴下方、y轴上方的部分,第三象限是x 轴和y轴下方的部分,第四象限是x轴上方、y轴下方的部分。

二、平面直角坐标系中的点点的位置关系:在平面直角坐标系中,可以通过比较点的坐标来确定它们之间的位置关系。

如果两个点的横坐标相同,那么它们就在同一条垂直线上;如果两个点的纵坐标相同,那么它们就在同一条水平线上。

点的平移:在平面直角坐标系中,平移一个点意味着在不旋转的情况下移动这个点。

如果我们将点A(a, b)向右平移c个单位,那么新的点的坐标为(a+c, b);如果我们将点A向上平移d个单位,那么新的点的坐标为(a, b+d)。

关于坐标轴的对称点:如果一个点A(a, b)关于x轴对称,那么它的对称点的坐标为(a, -b);如果一个点A(a, b)关于y轴对称,那么它的对称点的坐标为(-a, b)。

三、平面直角坐标系中的线段线段的长度:在平面直角坐标系中,线段的长度可以通过计算其两端点的坐标差来得到。

例如,线段AB的长度可以通过公式√[(x2-x1)²+(y2-y1)²]来计算,其中(x1, y1)是点A 的坐标,(x2, y2)是点B的坐标。

人教版七年级下册数学知识点归纳:第七章平面直角坐标系

人教版七年级下册数学知识点归纳:第七章平面直角坐标系

精品基础教育教学资料,仅供参考,需要可下载使用!人教版七年级下册数学知识点归纳第七章平面直角坐标系7.1 平面直角坐标系(一) 有序数对1.有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。

(二)平面直角坐标系1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。

这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。

2.X轴:水平的数轴叫X轴或横轴。

向右方向为正方向。

3.Y轴:竖直的数轴叫Y轴或纵轴。

向上方向为正方向。

4.原点:两个数轴的交点叫做平面直角坐标系的原点。

对应关系:平面直角坐标系内的点与有序实数对一一对应。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

(三)象限1.象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。

右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。

象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。

一般,在x轴和y轴取相同的单位长度。

2.象限的特点:1、特殊位置的点的坐标的特点:(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

2、点到轴及原点的距离:点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。

专题11平面直角坐标系(知识点总结+例题讲解)-2021届中考数学一轮复习

专题11平面直角坐标系(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学专题11 平面直角坐标系(知识点总结+例题讲解)一、平面直角坐标系:1.平面直角坐标系:(1)定义:在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系;(2)x轴:水平的数轴叫做x轴或横轴,取向右为正方向;(3)y轴:铅直的数轴叫做y轴或纵轴,取向上为正方向;(4)原点:两轴的交点O(即公共的原点)叫做直角坐标系的原点;(5)坐标平面:建立了直角坐标系的平面,叫做坐标平面。

(6)四象限:坐标平面被x轴和y轴分割而成的四个部分;①第一象限、第二象限、第三象限、第四象限;②注意:x轴和y轴上的点,不属于任何象限。

2.关键点:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应的。

【例题1】如图的坐标平面上有原点O与A、B、C、D四点,若有一直线l通过点(–3,4)且与y轴垂直,则l也会通过下列哪一点?( )A.A B.B C.C D.D【答案】D【解析】如图所示:有一直线L通过点(–3,4)且与y轴垂直,则L也会通过D点.【变式练习1】(2019•白银)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,–2),“马”位于点(4,–2),则“兵”位于点___________.【答案】(–1,1)【解析】如图所示,根据“帅”和“马”的位置,可得原点位置,则“兵”位于(–1,1).故答案为(–1,1)。

二、点的坐标及不同位置的特征:1.点的坐标的概念:(1)点的坐标用(a,b)表示;其顺序是横坐标在前,纵坐标在后,中间用“,”分开;(2)横、纵坐标的位置不能颠倒,平面内点的坐标是有序实数对;即:当a≠b时,(a,b)和(b,a)是两个不同点的坐标;2.各象限内点的坐标的特征:(1)点P(x,y)在第一象限⇔ x>0,y>0;(2)点P(x,y)在第二象限⇔ x<0,y>0;(3)点P(x,y)在第三象限⇔ x<0,y<0;(4)点P(x,y)在第四象限⇔ x>0,y<0;3.坐标轴上的点的特征:(1)点 P(x,y)在x轴上⇔ y=0,x为任意实数;(2)点P(x,y)在y轴上⇔ x=0,y为任意实数;(3)点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0);4.两条坐标轴夹角平分线上点的坐标的特征:(1)点P(x,y)在第一、三象限夹角平分线上⇔ x与y相等;(2)点P(x,y)在第二、四象限夹角平分线上⇔ x与y互为相反数;5.与坐标轴平行的直线上点的坐标的特征:(1)平行于x轴的直线上的各点:纵坐标相同;(2)平行于y轴的直线上的各点:横坐标相同;6.关于x轴、y轴或原点对称的点的坐标的特征:(1)点P与点P′关于x轴对称⇔横坐标相等,纵坐标互为相反数;(2)点P与点P′关于y轴对称⇔纵坐标相等,横坐标互为相反数;(3)点P与点P′关于原点对称⇔横、纵坐标均互为相反数;7.点到坐标轴及原点的距离:(1)点P(x ,y)到x 轴的距离等于|y|;(2)点P(x ,y)到y 轴的距离等于|x|;(3)点P(x ,y)8.点与点之间的距离:点M (x 1,y 1)与点N (x 2,y 2)之间的直线距离(线段长度): 212212)()y y x x MN -+-=(9.点平移后的坐标特征:(1)点P(x ,y)向右平移a 个单位长度 ⇔ P ′(x+a ,y);(2)点P(x ,y)向左平移a 个单位长度 ⇔ P ′(x –a ,y);(3)点P(x ,y)向上平移b 个单位长度 ⇔ P ′(x ,y+b);(4)点P(x ,y)向下平移b 个单位长度 ⇔ P ′(x ,y –b);【例题2】已知点P (3﹣m ,m )在第二象限,则m 的取值范围是 .【答案】m >3【解析】解:∵点P (3﹣m ,m )在第二象限,∴{3−m <0m >0;解得:m >3;故答案为:m >3。

七年级下数学第七章-平面直角坐标系知识点总结

七年级下数学第七章-平面直角坐标系知识点总结

七年级下数学第七章 平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。

1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。

3、坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;4、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系 平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

3、各种特殊点的坐标特点。

象限:坐标轴上的点不属于任何象限 第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0 第四象限:x>0,y<0横坐标轴上的点:(x ,0) 纵坐标轴上的点:(0,y )(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。

a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;XY点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。

c) 若点P (n m ,)在第一、三象限的角平分线上,则nm =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e)点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八 、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。

七年级数学平面直角坐标系知识点

七年级数学平面直角坐标系知识点

七年级数学平面直角坐标系知识点七年级数学平面直角坐标系知识点在现实学习生活中,是不是听到知识点,就立刻清醒了?知识点就是学习的重点。

你知道哪些知识点是真正对我们有帮助的吗?以下是店铺精心整理的七年级数学平面直角坐标系知识点,仅供参考,希望能够帮助到大家。

七年级数学平面直角坐标系知识点1平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

七年级数学平面直角坐标系知识点2一、平面解析几何的基本思想和主要问题平面解析几何是用代数的方法研究几何问题的一门数学学科,其基本思想就是用代数的方法研究几何问题。

例如,用直线的方程可以研究直线的性质,用两条直线的方程可以研究这两条直线的位置关系等。

平面解析几何研究的问题主要有两类:一是根据已知条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质。

二、直线坐标系和直角坐标系直线坐标系,也就是数轴,它有三个要素:原点、度量单位和方向。

如果让一个实数与数轴上坐标为的点对应,那么就可以在实数集与数轴上的点集之间建立一一对应关系。

点与实数对应,则称点的坐标为,记作,如点坐标为,则记作;点坐标为,则记为。

直角坐标系是由两条互相垂直且有公共原点的数轴组成,两条数轴的度量单位一般相同,但有时也可以不同,两个数轴的交点是直角坐标系的原点。

在平面直角坐标系中,有序实数对构成的集合与坐标平面内的点集具有一一对应关系。

一个点的坐标是这样求得的.,由点向轴及轴作垂线,在两坐标轴上形成正投影,在轴上的正投影所对应的值为点的横坐标,在轴上的正投影所对应的值为点的纵坐标。

专题04 平面直角坐标系重难点一遍过-七年级数学下册期末重难点知识一遍过(人教版)(解析版)

专题04 平面直角坐标系重难点一遍过-七年级数学下册期末重难点知识一遍过(人教版)(解析版)

专题04 平面直角坐标系重难点一遍过一、基础知识点综述1.定义(1)有序数对(a,b)——字母顺序不能颠倒(2)坐标系两条互相垂直,原点重合的数轴组成.(3)坐标平面内的点与有序实数对是一一对应的关系.(4)象限与坐标轴①象限②坐标轴★坐标轴上的点不属于任何象限,象限内的点也不属于任何坐标轴.2. 常用结论(1)平行于坐标轴的点的特征①平行与横轴的直线上点的特征:纵坐标相同;②平行与纵轴的直线上点的特征:横坐标相同.点A和点B纵坐标相同,均为m点A和点B横坐标相同,均为n(2)两坐标轴夹角平分线上的点的特征①一三象限角平分线上的点的横纵坐标相同:x=y;②二四象限角平分线上的点的横纵坐标互为相反数:x+y=0.一三象限角平分线上,m=n二四象限角平分线上,m+n=0 3. 重难点梳理(1)在平面直角坐标系中的点到坐标轴的距离P(a,b)到x轴的距离为|b|,到y轴的距离为|a|;(2)关于坐标轴对称的点的特征①关于x轴对称,横坐标相等,纵坐标互为相反数;②关于y轴对称,纵坐标相等,横坐标互为相反数;③关于坐标原点对称,横、纵坐标互为相反数.(3)割补法求图形的面积.二、典型例题精讲题1. 基础题型(1)如果(336)P m m -+-,在y 轴上,那么点P 的坐标是(2)若P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标为 (3)若x 轴上的点P 到y 轴的距离为5,则点P 的坐标为 (4)若0ab >,则(,)P a b 在第象限(5)如果点(,)M a b ab +在第二象限,那么点(,)N a b 在第象限(6)在平面直角坐标系中,点(1,4)P 向左移动1个单位长度后的坐标是(7)在平面直角坐标系中,点A 的坐标为(-1,3),线段AB ∥x 轴,且AB =2,则点B 的坐标为 . (8)已知点M 的坐标为(1,﹣2),线段MN =3,MN ∥y 轴,点N 在第一象限,则点N 的坐标为 (9)线段CD 是由线段AB 平移得到的.点(1,4)A -的对应点为(4,7)C ,则点(4,1)B --的对应点D 的坐标为(10)在平面直角坐标系中,若A 点坐标为(2,2)-,B 点坐标为(6,0),则ABO ∆的面积为 【答案】(1)()0,3;(2)()()()()4,34,34,34,3----、、、;(3)()()5,05,0-、;(4)一或三; (5)三;(6)()0,4;(7)()()1,33,3-、;(8)()1,1;(9)()1,2;(10)6. 【解析】解:(1)∵(336)P m m -+-,在y 轴上, ∴3m -+=0,解得m =3, ∴P 点坐标为()0,3;(2)∵P 到x 轴的距离为3,到y 轴的距离为4, ∴P 点横坐标为4或-4,纵坐标为3或-3, 即P 点坐标为()()()()4,34,34,34,3----、、、;(3)因为x 轴上的点P 到y 轴的距离为5,所以P 点坐标为()()5,05,0-、; (4)∵0ab >,∴a >0,b >0或a <0,b <0, 即P 点在第一象限或第三象限; (5)∵点(,)M a b ab +在第二象限,∴0a b ab +<⎧⎨>⎩即a <0,b <0, ∴(,)N a b 在第三象限;(6)点(1,4)P 向左移动1个单位长度后的坐标是()0,4; (7)∵AB ∥x 轴, ∴B 点纵坐标为3, ∵AB =2,∴B 点横坐标为-3或1, 即B 点坐标为()()1,33,3-、; (8)∵MN ∥y 轴, ∴N 点横坐标为-1, ∵MN =3,∴N 点纵坐标为1或-5, ∵N 在第一象限, 所以N 点坐标为()1,1;(9)因为线段CD 是由线段AB 平移得到,点(1,4)A -的对应点为(4,7)C , 所以平移规律是向左平移5个单位,向上平移3个单位, 则点(4,1)B --的对应点D 的坐标为()1,2;(10)A 点坐标为(2,2)-,B 点坐标为(6,0),所以OB =6,△ABO 边OB 上的高为2,则ABO ∆的面积=12662⨯⨯=. 题2. 规律性题目(1)在平面直角坐标系中,一只蚂蚁从原点O 出发,按向上,向右,向下,向右⋯的方向依次不断移动,每次移动1个单位,其行走路线如图所求.①填写下列各点的坐标4(A , 8)(A , 12)(A , )②直接写出4n A 的坐标(n 是正整数)( , )③说明从点2016A 到点2018A 的移动方向.图2-1【答案】①2,0;4,0,6,0;②2n ,0;③见解析. 【解析】解:①由图2-1可知,4A ,8A ,12A 都在x 轴上, Q 蚂蚁每次移动1个单位, 42OA ∴=,84OA =,126OA =, 4(2,0)A ∴,8(4,0)A ,12(6,0)A ;故答案为:2,0;4,0,6,0; ②根据①知:4422n OA n n =÷=, ∴点4n A 的坐标(2,0)n ; 故答案为:2n ,0; (3)20164504÷=Q ,∴从点2016A 到点2018A 的移动方向:点2016A 在x 轴上,向上移动一个到2017A ,再向右移动一个到2018A . (2)如图2-2,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 019次运动后,动点P 的坐标是图2-2【答案】(2019,2)【解析】解:由图可知,动点P 的纵坐标变化为1,0,2,0……,周期为4 横坐标变化为:1,2,3,4,5,6,……2019÷4=504 (3)所以P点的纵坐标为2,横坐标为2019,即P点坐标为(2019,2).(3)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点.观察图2-3中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有个.图2-3【答案】40【解析】解:由图2-3可知:第一个正方形四条边上整点个数为4个;第二个正方形四条边上整点个数为8个;第三个正方形四条边上整点个数为12个……第n个正方形四条边上整点个数为4n个,故第10个正方形(实线)四条边上的整点个数共有40个.(4)如图2-4所示,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),…,根据这个规律,点P2 019的坐标为图2-4【答案】(505,505).【解析】解:从图可知,点P自P3开始依次在第一、第二、第三、第四象限运动……(2019-2)÷4=2017÷4=504……1, 即P 2019在第一象限,研究第一象限点的坐标,P 3(1,1)、P 7(2,2)、P 11(3,3)…… ∴P 2019的坐标为(505,505).(5)在平面直角坐标系中,对于点P (x ,y ),我们把点P (-y +1,x +1)叫做点P 伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(1,0),点A 2019的坐标为【答案】(-1,2).【解析】解:因为A 1的坐标为(1,0),由题意知 A 2(1,2)A 3(-1,2)A 4(-1,0)A 5(1,0)…… 2019÷4=504……3, 即A 2019的坐标为(-1,2).题3. 综合性题目(1)已知点(2,28)P a a -+,分别根据下列条件求出点P 的坐标. ①点P 在x 轴上; ②点P 在y 轴上;③点Q 的坐标为(1,5),直线//PQ y 轴; ④点P 到x 轴、y 轴的距离相等. 【答案】见解析.【解析】解:①Q 点(2,28)P a a -+在x 轴上,280a ∴+=,解得:4a =-,故2426a -=--=-,则(6,0)P -; ②Q 点(2,28)P a a -+在y 轴上,20a ∴-=,解得:2a =,故2822812a +=⨯+=,则(0,12)P ; ③Q 点Q 的坐标为(1,5),直线//PQ y 轴,21a ∴-=,解得:3a =,故2814a +=,则(1,14)P ; ④Q 点P 到x 轴、y 轴的距离相等,228a a ∴-=+或2280a a -++=,解得:110a =-,22a =-,当10a =-则:212a -=-,2812a +=-,则(12,12)P --; 当2a =-则:24a -=-,284a +=,则(4,4)P -. 综上所述:(12,12)P --,(4,4)-. (2)已知:A (0,1),B (2,0),C (4,3).①在坐标系中描出各点,画出△ABC ;求△ABC 的面积;②若点P 在坐标轴上,且△ABP 与△ABC 的面积相等,求点P 的坐标. 【答案】见解析.【解析】解:①如图3-1所示.图3-1S △ABC =3×4-×2×3-×2×4-×2×1=12-3-4-1=4. ②当点P 在x 轴上时,S △ABP =×AO ×BP =4,即×1×BP =4,解得BP =8,∴点P 的坐标为(10,0)或(-6,0); 当点P 在y 轴上时,S △ABP =×BO ×AP =4,即×2×AP =4,解得AP =4,∴点P 的坐标为(0,5)或(0,-3),综上所述,点P 的坐标为(0,5)或(0,-3)或(10,0)或(-6,0).(3)如图3-2所示,在平面直角坐标系中,已知点a(0,2),B(4,0),C(4,3)三点.①求△ABC的面积;②如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P 点坐标.图3-2【答案】见解析.【解析】解:①∵B(4,0),C(4,3),∴BC=3,∴S△ABC=×3×4=6;②∵A(0,2)(4,0),∴OA=2,OB=4,∴S四边形ABOP=S△AOB+S△AOP=12×4×2+12×2(﹣m)=4﹣m,又∵S四边形ABOP=2S△ABC=12,∴4﹣m=12,解得:m=﹣8,即P(﹣8,1).(4)在平面直角坐标系中,有点A(m,0),B(0,n),且m,n满足m=41n+.图3-3 (1)求A、B两点坐标;(2)如图3-3,直线lx轴,垂足为点Q(1,0).点P为l上一点,且点P在第四象限,若△PAB的面积为3.5,求点P的坐标.【答案】见解析.【解析】解:(1)∵41mn-=+又∵n-1≥0,n-1≤0,∴n=1,∴n=1,m=﹣2,∴A(﹣2,0),B(0,1).(2)如图3-4中,设P(1,m),作BM⊥l于M,连接AM.图3-4∵S△PAB=S△ABM+S△AMP﹣S△PMB,∴12×1×1+12×(1﹣m)×3﹣12×(1﹣m)×1=3.5,解得m=﹣14,∴P(1,﹣14).。

第七章 平面直角坐标系 七年级数学下册单元复习(人教版)

第七章 平面直角坐标系 七年级数学下册单元复习(人教版)
的方向上,距离是50 n mile)
7-20-7
【典例讲解】
例10. 将顶点坐标为(-4,-1),(1, 1),(-1,4)的三角形向右平移2个单 位长度,再向上平移3个单位长度,则平移 后的三角形三个顶点的坐标分别是( C ) A.(2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7) C.(-2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
①由两个数组成;
②两数有顺序性;(a,b)与(b,a)表示的是两个不同的位置(a≠b).
③成对出现.
(二)平面直角坐标系
1、平面直角坐标系的定义
平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直
角坐标系。水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向;
知识点一 平面直角坐标系
竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向; 两坐标轴的交点是平面直角坐标系的原点 .
辨识平面直角坐标系的“三要素”: 1. 两条数轴;2. 共原点;3. 互相垂直. 注意:一般取向上、向右为正方向.
知识点一 平面直角坐标系
2、点的坐标表示方法
平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b 分别叫做点p的横坐标、纵坐标, 则有序数对(a,b)叫做点P的坐标,记为P(a,b) 注意:在写点的坐标时,必须先写横坐标,再写纵坐标, 中间用逗号隔开,最后用小括号把它们括起来; 点的坐标是有序实数对,(a,b) 和(b,a)(a ≠ b) 虽然数字相同,但由于顺 序不同,表示的位置就不同. 3. 平面直角坐标系内的点与有序实数对的一一对应关系: (1)坐标平面内的任意一点,都有唯一的一个有序实数对(点的坐标)与它对应. (2)任意一个有序实数对(点的坐标)在坐标平面内都有唯一的一个点和它对应.

初中数学平面直角坐标系知识点总结

初中数学平面直角坐标系知识点总结

初中数学平面直角坐标系知识点总结
嘿,小伙伴们!今天咱来唠唠初中数学平面直角坐标系那些事儿!
你看啊,平面直角坐标系就像是一个超级大的棋盘。

咱把它想象成一个神秘的世界,而坐标轴就是这个世界的规则。

比如说,x 轴就像一条笔直的大路,y 轴像另一条与之垂直的小路。

这两条路交织在一起,就构成了这个神秘世界的框架。

咱先来说说坐标吧!坐标就像是每个点在这个神秘世界里的独特标签。

比如(3,4),这就像是告诉我们在这条大路上走 3 步,小路上走 4 步,
就能找到这个点啦。

像不像在玩寻宝游戏?“哇,我找到啦!”
那原点呢,原点可是这个世界的中心呀!它就像你玩游戏时的出生地,一切都从它开始。

“嘿,原点原点,你可太重要啦!”
还有象限呢!这四个象限就像是四个不同的区域,每个区域都有自己的特点。

第一象限里的点都可积极啦,正数满满;第三象限呢,就有点小消极,全是负数。

“哎呀呀,第一象限和第三象限差别咋这么大呢!”
在平面直角坐标系里,我们还能画各种图形呢!像直线呀,曲线呀,都可以通过坐标找到它们的位置。

就好像你拿着画笔,在这个大棋盘上尽情挥洒。

“哈哈,我要画出最酷的图形!”
你想想,如果没有平面直角坐标系,那好多数学问题该多乱呀!它可真是帮了我们大忙呢!所以呀,一定要好好掌握它哦!
我的观点就是,平面直角坐标系是初中数学里超级重要的一部分,它让我们能更清楚地看到数学世界的各种奇妙之处,一定要把它学好、学透呀!。

人教版七年级数学下 第六章平面直角坐标系归类总结

人教版七年级数学下 第六章平面直角坐标系归类总结

第六章平面直角坐标系【基础知识梳理】1.平面直角坐标系:平面内有公共原点的两条的数轴构成平面直角坐标系,其中水平的数轴为x轴或横轴,垂直的数轴为y轴或纵轴,两轴的交点O为原点.2.点的坐标:在平面直角坐标系中,平面内的点用一对有序数对表示,通常先写点的名称,再写点的坐标,并将横坐标写在纵坐标前面,坐标平面的点与有序数对是.3.象限的概念:建立平面直角坐标系后,x轴、y轴将坐标平面分成四个部分,称为四个象限,按逆时针方向,将这四个象限依次称为第一、二、三、四象限.坐标轴(x轴、y轴)上的点.4.由坐标确定定:假设P点的坐标是(a,b),在直角坐标系中描出这个点的方法是:先在x轴上找到坐标为a的点A,在y轴上找到坐标为b的点B;再分别由点A、B作x轴,y轴的垂线,两垂线的交点就是所要描出的点P.5.特殊位置的点的坐标:(1)x轴上方的点的纵坐标为,x轴下方的点的纵坐标为;y轴右侧的点的横坐标为,y轴左侧的点的横坐标为;(2)坐标原点的坐标为;(3)x轴上的点可记为,y轴上的点可记为;(4)坐标平面内点的坐标特征:第一象限,第二象限,第三象限,第四象限.6. 利用坐标表示地理位置的一般步骤:(1)选择一个适当的参照点为原点建立直角坐标系,并确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺在坐标轴上标出长度单位;(3)在坐标平面内画出这些点,并写出各点的坐标和各个地点的名称.7.点的平移:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点;将点(x,y)向上(或下)平移b个单位长度,可以得到对应点.8.图形的平移:一个图形沿x轴向右(或左)平移a个单位长度,图形的各个顶点的纵坐标都没有改变,而横坐标增加(或减小)a;一个图形沿y轴向上(或下)平移b个单位长度,图形的各个顶点的横坐标都没有改变,而纵坐标增加(或减小)b.9.用坐标表示平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.【考点例析】一、位置的确定例1.如图1,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为 _____.分析:本题是一道与确定位置有关的试题,要表示白棋⑨位置,则需要仔细理解题意,根据黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3)可以发现:用表示列的字母和表示行的数字来确定棋子的位置,其中表示列的字母在前,表示行的数字在后.解:观察白棋⑨在D列,6行,所以其位置可记作(D,6).点评:在平面内,确定一个点的位置通常用一对有序实数对来表示.二、点的坐标特点例2.(’09贺州市)在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(1-a,-b)在第()象限.A.第一象限 B.第二象限 C.第三象限 D.第四象限分析与解:本题考查点在平面直角坐标系中的特征.根据第二象限点的坐标特征,a<0,b>0,所以1-a>0,-b<0,所以Q在第四象限.例3.已知点A与点B(1,—6)关于y轴对称,求点A关于原点的对称点C的坐标.分析:关于y轴对称的点纵坐标相同,横坐标互为相反数;关于原点对称的点横、纵坐标均互为相反数.解:∵点A与点B(1,—6)关于y轴对称,∴点A坐标为(—1,—6),∴点A关于原点的对称点C的坐标为(1,6).点评:通过画图,观察、归纳关地对称点的坐标特征,将这些规律理解地记忆下来,应用于解题中.三、确定点的坐标例4.如图2为九嶷山风景区的几个景点的平面图,以舜帝陵为坐标原点,建立平面直角坐标系,则玉王宫岩所在位置的坐标为.分析:要确定玉王宫岩所在位置的坐标,即E点的坐标,应根据点坐标的求法,从点E分别向x轴、y轴作垂线,垂足在x轴上对应的数为点的横坐标,垂足在y轴上对应的数为点的纵坐标.解:观察坐标系可知点E的坐标为(2,4),所以图2玉王宫岩所在位置的坐标为(2,4).四、用坐标表示平移例5. 如图甲所示,各点坐标分别为(0,0),(5,4),(3,0),(5,1),(5,—1),(3,0),(4,—2),(0,0).(1)依次连接各点,观察得到的图形像什么?(2)将图甲中各点作如下变化:纵坐标保持不变,横坐标分别乘以2,所得的图形与原图案相比有什么变化?(3)将各点横、纵坐标分别变成原来的2倍,这时所得的图案与原来的图案相比又有什么变化?分析:根据点的变化要求,求出变化后各点的坐标,然后在坐标系中描出这些点,依次连接得到变化后的图形,将变化后的图形与原图形比较,归纳出结论.解:(1)如图甲所示,连接各点,得到的图形像一条鱼:(2)纵坐标保持不变,横坐标都乘以2,所和各点的坐标分别是(0,0),(10,4),(6,0),(10,1),(10,—1),(6,0),(8,—2),(0,0).将各点用线段依次连接起来,所得图形如图乙所示,与原图形相比,整条鱼被横向拉长为原来的2倍;(3)横、纵坐标分别变成原来的2倍,所得各个点的坐标依次是(0,0),(10,8),(6,0),(10,2),(10,—2),(6,0),(8,—4),(0,0).如图丙所示,所得图形与原图相比,形状不变,大小变成原来的4倍.点评:(1)把一个图形上的各点的纵坐标保持不变,横坐标分别变成原来的a(1a)倍,其中a>1,所得图形与原力形相比,整个图形被横向拉长为原来的a倍(横向压缩为原来的1a));如果是横坐标保持警惕为,纵坐标变为原来的a(倍,所得图形与原图形相比,整个图形被纵向拉长为原来的a倍(纵向压缩为原来的1a)).(2)将一个图形上的各点的横、纵坐标都变为原来的a倍,则所得图形与原图形相比,形状没有改变,大小为原来的a2倍.例6.如图3,在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是 .分析:本题主要考查平移与点的坐标,要确定右图案中右眼的坐标,则需要找出平移与点的坐标之间的变化关系.解:因为根据左图与右图左眼坐标之间的关系,可以看作左图形先向平移3-(-4)=7个单位,再向上平移4-2=2个单位,根据平移的特征可知右眼也平移同样的单位,所以右图中右眼的坐标是(-2+7,2+2),即(5,4).五、画平移后的图形确定点的坐标例7. 如图4,已知△ABC,△ABC向右平移6个单位,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标;图3图4 图5分析:要作△ABC向右平移6个单位的后的△A1B1C1,首先要作出A、B、C三点向右平移6个单位的对应点,然后顺次连接即可;解:所画的图形如图5所示,此时点A1(6,4),B1(4,2),C1(5,1).【点对点练习】1.如图,如果“士”所在位置的坐标为(-1,-2),“相”所在位置为(2,-2),那么“炮”所在位置的坐标为.2.观察图中的图象,与图①中的鱼相比,图②中的鱼发生了一些变化,如果图①中鱼上的点A 坐标为(5,4),则这条鱼在图②中对应点的坐标应为。

七年级下数学第六章平面直角坐标系知识点总结

七年级下数学第六章平面直角坐标系知识点总结

平面直角坐标系是数学中常用的一种坐标系,用来描述平面上的点的位置。

它由两条互相垂直的直线(通常称为x轴和y轴)组成。

1.坐标系的建立平面直角坐标系是由一组互相垂直的数轴组成的。

我们可以将其中一条数轴作为x轴,另一条数轴作为y轴。

两条轴的交点称为原点O,它的坐标为(0,0)。

2.坐标表示在平面直角坐标系中,每个点的位置都可以用一个有序数对表示,称为坐标。

其中第一个数表示x轴上的位置,第二个数表示y轴上的位置。

例如,点A的坐标是(2,3),表示它在x轴上距离原点2个单位,在y轴上距离原点3个单位。

3.坐标的正负在平面直角坐标系中,x轴向右延伸为正方向,向左延伸为负方向;y轴向上延伸为正方向,向下延伸为负方向。

4.坐标轴和象限平面直角坐标系由x轴和y轴组成。

x轴将平面分为上半平面和下半平面,y轴将平面分为右半平面和左半平面。

根据点的位置,可以将平面分为四个象限。

第一象限:x>0,y>0。

第二象限:x<0,y>0。

第三象限:x<0,y<0。

第四象限:x>0,y<0。

5.关于坐标原点的对称性对于任意一个点P(x,y),与原点O之间有以下关系:关于x轴对称点的坐标为P'(x,-y)。

关于y轴对称点的坐标为P'(-x,y)。

关于原点对称点的坐标为P'(-x,-y)。

6.坐标系上的线段和中点在平面直角坐标系中,可以用两点的坐标表示一条线段。

例如,线段AB的两个端点的坐标分别是A(x1,y1)和B(x2,y2)。

线段的中点的坐标可以用以下公式计算:中点的横坐标为(x1+x2)/2中点的纵坐标为(y1+y2)/27.坐标系上的距离在平面直角坐标系中,可以用两点之间的距离来度量两点的位置关系。

两点P1(x1,y1)和P2(x2,y2)之间的距离可以用以下公式计算:距离d=√((x2-x1)²+(y2-y1)²)。

8.斜率和直线的方程直线可以通过两点确定,例如,通过点A(x1,y1)和点B(x2,y2)可以确定一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七课时平面直角坐标系
1、有序数对
①定义:有顺序的两个数a与 b 组成的数对叫做有序数对,记做(a,b)。

②有序数对的作用:可以准确地表示出平面内一个点的位置。

注意:有序数对的书写格式(a,b)间的分隔号是逗号而不是顿号
例1、判定下列有序数对书写格式的正误:
⑴(5、9)⑵(4,2)⑶4,6⑷(3 4)
例2、用1,2,3可以组成有序数对______对,分别是:
例3、类有序数对(x,y)满足方程x+y=5,则下列数对不属于这类的是______.
(A)(3,2)(B)(2,3)
(C)(5,1)(D)(-1,6)
2、平面直角坐标系
①确定直线上点的位置:在直线上规定了原点、正方向、单位长度就构成了数轴。

数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2。

反过来,知道数轴上一个点的坐标,这个的点在数轴上的位置就确定了。

②确定平面上点的位置:坐标平面内的点与有序数对是一一对应的
平面直角坐标系的引入:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系,水平方向的数轴称为x轴或横轴,习惯取向右的方向为正方向,竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点。

可以看出,原点O的坐标为(0,0);x轴
上的点的纵坐标为0,例如(1,0),(-1,0)…;
y轴上的点的横坐标为0,例如(0,1),(0,-1)….
建立了平面直角坐标系后,坐标平面就被
两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,每
个部分称为象限,分别叫做第一象限、第二象
限、第三象限和第四象限。

坐标轴上的点不属
于任何象限。

注意:⑴坐标轴上的点不属于任何象限
⑵平面直角坐标系:两条数轴互相垂直公共原点
③平面直角坐标系中两条数轴特征:
⑴互相垂直;⑵原点重合;⑶通常取向上、向右为正方向;⑷单位长度一般取相同的
④平面上点的表示:
平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标。

记为P(a,b)。

注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.
⑤几个象限内点的特点:
解:过点A作AO⊥MN于O,然后延长AO至OA′,使AO=OA′.
∴ A ′就是点A关于直线MN的对称点。

图示:对称点的坐标
★⑥特殊位置的点的符号特征:
⑴平行于x的直线上的点的纵坐标相同;纵坐标相同的点的连线平行于x轴;
⑵平行于y的直线上的点的横坐标相同;横坐标相同的点的连线平行于y轴;
⑶横轴上的点纵坐标为0,表示为(x,0);纵轴上的点横坐标为0,表示为(0,y);坐标轴的点至少有一个是0;
⑷x轴对称的点的横坐标相同,纵坐标互为相反数,(a, b )关于X轴的对称点是;
⑸关于y轴对称的点的纵坐标相同,横坐标互为相反数,(a, b )关于Y 轴的对称点是;
⑹关于原点对称的点的横坐标、纵坐标都互为相反数,点(a, b )关于原点的对称点是;
⑦点到坐标轴的距离
⑴点到X轴的距离为该点纵坐标的绝对值;
⑵到Y轴的距离为该点横坐标的绝对值。

例1、填空:
⑴点(3,-2)在第_____象限;(-1.5,-1)在第_______象限;点(0,3)在____轴上;
⑵若点(a+1,-5)在y轴上,则a=______.
⑶点M(- 8,12)到x轴的距离是_______,到y轴的距离是________.
⑷点A(-2,4)关于x轴的对称点是_________ .
⑸点A在x轴上,距离原点4个单位长度,则A点的坐标是_____________.
⑹坐标平面内点P(m , 2)与点Q(3 , -2)关于原点对称,则m =_____.
⑺若点P在第三象限且到x轴的距离为2 ,到y轴的距离为1.5,则点P的坐标是__________.
⑻点A(1-a,5),B(3 ,b)关于y轴对称,则a=___,b=____。

⑼在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置在_____________。

例2、实数x,y满足(x-1)2 +|y| = 0,则点P(x,y)在
(A)原点(B)x轴正半轴
(C)第一象限(D)任意位置
例3、如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线()(A)平行于x轴(B)平行于y轴
(C)经过原点(D)以上都不对
例4、已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在()
A.第一象限
B.第二象限.
C.第三象限
D.第四象限
例5、已知点P(3,a),并且P点到x轴的距离是2个单位长度,求P点的坐标。

例6、下列关于A、B两点的说法中,
(1)如果点A与点B关于y轴对称,则它们的纵坐标相同;
(2)如果点A与点B的纵坐标相同,则它们关于y轴对称;
(3)如果点A与点B的横坐标相同,则它们关于x轴对称;
(4)如果点A与点B关于x轴对称,则它们的横坐标相同、
正确的个数是()
A、1个
B、2个
C、3个
D、4个
3、用坐标表示地理位置
利用平面直接坐标系绘制区域内一些地点分布情况平面图的过程如下:
①建立坐标系,选择一个适当的参照点为原点,确定X轴、Y轴的正方向;
②根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
③在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

4、用坐标表示平移
①平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。

②平移后得到的新图形与原图形有什么关系?平移后图形的位置改变,形状、大小不变。

③规律:一般地,在平面直角坐标系中,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度。

④图形平移与点的坐标变化的关系:
例1、将点A(-2,-3)进行如下平移:
⑴将点A向右平移5个单位长度得到点A1,则点A1的坐标是;
⑵将点A向左平移3个单位长度得到点A2,则点A2的坐标是;
⑶将点A向右平移a(a>o)个单位长度得到点An,则点An的坐标是;
⑷将点A向左平移a(a>o)个单位长度得到点An´,则点An ´的坐是。

⑸将点A向上平移5个单位长度得到点A1,则点A1的坐标是;
⑹将点A向下平移3个单位长度得到点A2,则点A2的坐标是;
⑺将点A向上平移a(a>o)个单位长度得到点An,则点An的坐标是;
⑻将点A向下平移a(a>o)个单位长度得到点An ´ ,则点A n ´的坐标是.
例2、点A`(6,3)是由点A(-2,3)经过__________________得到的;点B(4,3)向______________移动得到B`(6,3) 【注意题目中问的顺序】
例3、如图△ABC中任意一点P(x,y)经平移后对应点为P1(x+5,y+3),将△ABC作同样的平移到△A1B1C1。

求A1、B1、C1的坐标。

相关文档
最新文档