2018-2019学年数学高考一轮复习训练:考点规范练56 坐标系与参数方程

合集下载

2018年高考数学专项训练-极坐标和参数方程

2018年高考数学专项训练-极坐标和参数方程

2018年高考数学专项训练-极坐标和参数方程1.【2017·黑龙江伊春二中期末】在直角坐标系xoy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为,求|PA|+|PB|.2.极坐标系中,已知圆ρ=10cos(1)求圆的直角坐标方程.(2)设P是圆上任一点,求点P到直线距离的最大值.3.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C的普通方程和l的倾斜角;(Ⅱ)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 1的极坐标方程为ρ2=,直线l 的极坐标方程为ρ=.(Ⅰ)写出曲线C 1与直线l 的直角坐标方程;(Ⅱ)设Q 为曲线C 1上一动点,求Q 点到直线l 距离的最小值.5.【2017·普宁一中】已知曲线C 的极坐标方程为2ρsin θ+ρcos θ=10,以极点为直角坐标系原点,极轴所在直线为x 轴建立直角坐标系,曲线C 1的参数方程为(α为参数).(Ⅰ)求曲线C 的直角坐标方程和曲线C 1的普通方程;(Ⅱ)若点M 在曲线C 1上运动,试求出M 到曲线C 的距离的最小值及该点坐标.6.【2018·成都龙泉中学】在直角坐标系xoy 中,设倾斜角为α的直线l 的参数方程为3cos sin x t y t αα=+⎧⎨=⎩(t 为参数)与曲线1:cos tan x C y θθ⎧=⎪⎨⎪=⎩(θ为参数)相交于不同的两点A 、B .(I )若3πα=,求线段AB 的中点的直角坐标;(II )若直线l 的斜率为2,且过已知点(3,0)P ,求||||PA PB ⋅的值.7.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2﹣2ρcos (θ﹣)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程;(2)设两圆交点分别为A 、B ,求直线AB 的参数方程,并利用直线AB 的参数方程求两圆的公共弦长|AB|.8.在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (II )直线l的参数方程为(t 为参数),α为直线l 的倾斜角,l 与C 交于A ,B 两点,且|AB|=,求l 的斜率.9.【2017·江苏高考】在平面坐标系中xOy 中,已知直线l 的参考方程为⎪⎩⎪⎨⎧=+-=,2,8ty t x (t 为参数),曲线C 的参数方程为⎪⎩⎪⎨⎧==,22,22s y s x (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.10.【2017·全国Ⅱ卷】在直角坐标系xoy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为4cos =θρ。

福建专用2018年高考数学总复习课时规范练54坐标系与参数方程文新人教A版

福建专用2018年高考数学总复习课时规范练54坐标系与参数方程文新人教A版

课时规范练54 坐标系与参数方程基础巩固组1.已知曲线C:=1,直线l:(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 2.(2017辽宁大连一模,文22)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cos θ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.3.(2017安徽马鞍山一模,文22)在直角坐标系xOy中,曲线C1的参数方程为(α为参数,α∈R),在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2:ρsin.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若曲线C1和曲线C2相交于A,B两点,求|AB|的值.4.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.5.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.〚导学号24190956〛综合提升组6.(2017山西临汾三模,文22)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.曲线C2的极坐标方程为ρsin m.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C1与曲线C2有公共点,求实数m的取值范围.7.(2017山西太原二模,22)在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tan αcosθ-sin θ)=1,点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C1普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.8.在直角坐标系xOy中,曲线C1的参数方程为(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.〚导学号24190957〛创新应用组9.(2017辽宁沈阳三模,22)已知曲线C的参数方程为(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.(1)求曲线C'的极坐标方程;(2)若过点A(极坐标)且倾斜角为的直线l与曲线C'交于M,N两点,弦MN的中点为P,求的值.10.(2017河北邯郸二模,文22)在极坐标系中,已知三点O(0,0),A,B.(1)求经过O,A,B的圆C1的极坐标方程;(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为(θ是参数),若圆C1与圆C2外切,求实数a的值.答案:1.解(1)曲线C的参数方程为(θ为参数).直线l的普通方程为2x+y-6=0.(2)曲线C上任意一点P(2cos θ,3sin θ)到l的距离为d=|4cos θ+3sin θ-6|,则|PA|=|5sin(θ+α)-6|,其中α为锐角,且tan α=.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.解 (1)曲线C1的极坐标方程为ρ=4cos θ,即ρ2=4ρcos θ,可得直角坐标方程:C1:x2+y2-4x=0.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y-3=0.(2)P,直角坐标为(2,2),Q(2cos α,sin α),M,∴M到l的距离d==,从而最大值为.3.解 (1)由⇒x2+(y-1)2=1,由ρsinρsin θ-ρcos θ=⇒y-x=2,即C2:x-y+2=0.(2)∵直线x-y+2=0与圆x2+(y-1)2=1相交于A,B两点,又x2+(y-1)2=1的圆心(0,1),半径为1,故圆心到直线的距离d=,∴|AB|=2.4.解 (1)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|=.由|AB|=得cos2α=,tan α=±.所以l的斜率为或-.5.解 (1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立解得所以C2与C3交点的直角坐标为(0,0)和.(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(2cos α,α).所以|AB|=|2sin α-2cos α|=4.当α=时,|AB|取得最大值,最大值为4.6.解 (1)曲线C1的参数方程为消去参数,可得y=x2(-2≤x≤2),由ρsin m,得ρsin θ-ρcos θ=m,所以曲线C2的直角坐标方程为x-y+m=0.(2)由可得x2-x-m=0,∵曲线C1与曲线C2有公共点,∴m=x2-x=.∵-2≤x≤2,∴-≤m≤6.7.解(1)曲线C1的参数方程为(其中φ为参数),普通方程为+y2=1;曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1,直角坐标方程为x tan α-y-1=0.(2)C2的参数方程为(t为参数),代入+y2=1,得t2-2t sin α=0,∴t1+t2=,∴|AB|=,∵0<α<π,且α≠,∴sin α∈(0,1),∴|AB|max=,此时B的坐标为.8.解 (1)C1的普通方程为+y2=1,C2的直角坐标方程为x+y-4=0.(2)由题意,可设点P的直角坐标为(cos α,sin α).因为C2是直线,所以|PQ|的最小值即为P到C2的距离d(α)的最小值,d(α)=.当且仅当α=2kπ+(k∈Z)时,d(α)取得最小值,最小值为,此时P的直角坐标为.9.解 (1)C:=1,代入C的普通方程可得x'2+y'2=1,因为ρ2=x2+y2,所以曲线C'的极坐标方程为C':ρ=1.(2)点A的直角坐标是A,将l的参数方程代入x2+y2=1,可得4t2-6t+5=0,∴t1+t2=,t1·t2=,.10.解 (1)将O,A,B三点化成直角坐标为O(0,0),A(0,2),B(2,2).∴圆C1的圆心为(1,1),半径为,∴圆C1的普通方程为(x-1)2+(y-1)2=2,将代入普通方程得ρ2-2ρcos θ-2ρsin θ=0,∴ρ=2sin.(2)∵圆C2的参数方程为(θ是参数),∴圆C2的普通方程为(x+1)2+(y+1)2=a2.∴圆C2的圆心为(-1,-1),半径为|a|.∵圆C1与圆C2外切,∴2+|a|,解得a=±.。

(福建专用)2018年高考数学总复习 课时规范练54 坐标系与参数方程 文 新人教A版

(福建专用)2018年高考数学总复习 课时规范练54 坐标系与参数方程 文 新人教A版

课时规范练54 坐标系与参数方程基础巩固组1.已知曲线C:=1,直线l:(t为参数).(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.2.(2017辽宁大连一模,文22)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cos θ,直线l的参数方程为(t 为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.3.(2017安徽马鞍山一模,文22)在直角坐标系xOy中,曲线C1的参数方程为(α为参数,α∈R),在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2:ρsin.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若曲线C1和曲线C2相交于A,B两点,求|AB|的值.4.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.5.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.〚导学号24190956〛综合提升组6.(2017山西临汾三模,文22)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.曲线C2的极坐标方程为ρsin m.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C1与曲线C2有公共点,求实数m的取值范围.7.(2017山西太原二模,22)在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tan αcosθ-sin θ)=1,点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C1普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.8.在直角坐标系xOy中,曲线C1的参数方程为(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.〚导学号24190957〛创新应用组9.(2017辽宁沈阳三模,22)已知曲线C的参数方程为(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.(1)求曲线C'的极坐标方程;(2)若过点A(极坐标)且倾斜角为的直线l与曲线C'交于M,N两点,弦MN的中点为P,求的值.10.(2017河北邯郸二模,文22)在极坐标系中,已知三点O(0,0),A,B.(1)求经过O,A,B的圆C1的极坐标方程;(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为(θ是参数),若圆C1与圆C2外切,求实数a的值.答案:1.解(1)曲线C的参数方程为(θ为参数).直线l的普通方程为2x+y-6=0.(2)曲线C上任意一点P(2cos θ,3sin θ)到l的距离为d=|4cos θ+3sin θ-6|,则|PA|=|5sin(θ+α)-6|,其中α为锐角,且tan α=.当sin(θ+α)=-1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.解 (1)曲线C1的极坐标方程为ρ=4cos θ,即ρ2=4ρcos θ,可得直角坐标方程:C1:x2+y2-4x=0.直线l的参数方程为(t为参数),消去参数t可得普通方程:x+2y-3=0.(2)P,直角坐标为(2,2),Q(2cos α,sin α),M,∴M到l的距离d==,从而最大值为.3.解 (1)由⇒x2+(y-1)2=1,由ρsinρsin θ-ρcos θ=⇒y-x=2,即C2:x-y+2=0.(2)∵直线x-y+2=0与圆x2+(y-1)2=1相交于A,B两点,又x2+(y-1)2=1的圆心(0,1),半径为1,故圆心到直线的距离d=,∴|AB|=2.4.解 (1)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|=.由|AB|=得cos2α=,tan α=±.所以l的斜率为或-.5.解 (1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立解得所以C2与C3交点的直角坐标为(0,0)和.(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(2cos α,α).所以|AB|=|2sin α-2cos α|=4.当α=时,|AB|取得最大值,最大值为4.6.解 (1)曲线C1的参数方程为消去参数,可得y=x2(-2≤x≤2),由ρsin m,得ρsin θ-ρcos θ=m,所以曲线C2的直角坐标方程为x-y+m=0.(2)由可得x2-x-m=0,∵曲线C1与曲线C2有公共点,∴m=x2-x=.∵-2≤x≤2,∴-≤m≤6.7.解(1)曲线C1的参数方程为(其中φ为参数),普通方程为+y2=1;曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1,直角坐标方程为x tan α-y-1=0.(2)C2的参数方程为(t为参数),代入+y2=1,得t2-2t sin α=0,∴t1+t2=,∴|AB|=,∵0<α<π,且α≠,∴sin α∈(0,1),∴|AB|max=,此时B的坐标为.8.解 (1)C1的普通方程为+y2=1,C2的直角坐标方程为x+y-4=0.(2)由题意,可设点P的直角坐标为(cos α,sin α).因为C2是直线,所以|PQ|的最小值即为P到C2的距离d(α)的最小值,d(α)=.当且仅当α=2kπ+(k∈Z)时,d(α)取得最小值,最小值为,此时P的直角坐标为.9.解 (1)C:=1,代入C的普通方程可得x'2+y'2=1,因为ρ2=x2+y2,所以曲线C'的极坐标方程为C':ρ=1.(2)点A的直角坐标是A,将l的参数方程代入x2+y2=1,可得4t2-6t+5=0,∴t1+t2=,t1·t2=,.10.解 (1)将O,A,B三点化成直角坐标为O(0,0),A(0,2),B(2,2).∴圆C1的圆心为(1,1),半径为,∴圆C1的普通方程为(x-1)2+(y-1)2=2,将代入普通方程得ρ2-2ρcos θ-2ρsin θ=0,∴ρ=2sin.(2)∵圆C2的参数方程为(θ是参数),∴圆C2的普通方程为(x+1)2+(y+1)2=a2.∴圆C2的圆心为(-1,-1),半径为|a|.∵圆C1与圆C2外切,∴2+|a|,解得a=±.百度文库是百度发布的供网友在线分享文档的平台。

安徽省2019届高三数学理一轮复习典型题专项训练:坐标系与参数方程(附答案)

安徽省2019届高三数学理一轮复习典型题专项训练:坐标系与参数方程(附答案)

安徽省2019届高三数学一轮复习典型题专项训练坐标系与参数方程1、(2018全国I 卷高考题)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.⑴求2C 的直角坐标方程;⑵若1C 与2C 有且仅有三个公共点,求1C 的方程.2、(2017全国I 卷高考题)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,,(θ为参数),直线l 的参数方程为41x a t y t =+⎧⎨=-⎩,,(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a .3、(A10联盟(合肥八中、屯溪一中等)2018届高三最后一卷 )在平面直角坐标系xOy 中,曲线12cos :22sin x C y αα=⎧⎨=+⎩(α为参数).以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,且两个坐标系取相同的长度单位,若M 为曲线1C 上异于极点的动点,点N 在射线OM 上,且满足||||20ON OM ⋅=,记点N 的轨迹为2C .(Ⅰ)求曲线1C ,2C 的极坐标方程;(Ⅱ)已知A 、B 两点的直角坐标分别为(0,3)和(2,5),直线AB 与曲线1C 交于R 、S 两点,求||||||AR AS -的值.4、(安庆市2018届高三模拟考试(二模))已知在极坐标系中,点)6,2(πA ,)32,32(πB ,C 是线段AB 的中点,以极点为原点,极轴为x 轴的正半轴,并在两坐标系中取相同的长度单位,建立平面直角坐标系,曲线Ω的参数方程是⎩⎨⎧+-==θθsin 22cos 2y x (θ为参数).(1)求点C 的直角坐标,并求曲线Ω的普通方程;(2)设直线l 过点C 交曲线Ω于Q P ,两点,求CQ CP ⋅的值.5、(蚌埠市2018届高三第二次教学质量检查)已知曲线1C 的参数方程是=2cos ,3sin x y j j ìïïíï=ïî(j 参数),以坐标原点为极点,x 轴的正半轴为轴建立极坐标系,曲线2C 的极坐标方程是=2ρ,正方形ABCD 的顶点都在2C 上,且A,B, C,D 依逆时针次序排列,点A 的极坐标为(2,3π)(I )求点A,B,C,D 的直角坐标;(II )设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围.6、(滁州市2018届高三上学期期末)在平面直角坐标系xOy 中,曲线1C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线2C 的极坐标方程为2cos 42πρθ⎛⎫+= ⎪⎝⎭.(1)求曲线1C 的普通方程和曲线2C 的普通方程; (2)若曲线1C ,2C 相交于A ,B 两点,求线段AB 的长度.7、(合肥市2018届高三第三次(5月)教学质量检测)在平面直角坐标系xOy 中,直线l 的参数方程为212212x ty t ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),圆C 的方程为()()22215x y -+-=.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求直线l 及圆C 的极坐标方程;(Ⅱ)若直线l 与圆C 交于A B ,两点,求cos AOB ∠的值.8、(合肥市2018届高三第一次教学质量检测)在直角坐标系xOy 中,曲线13cos :2sin x C y θθ=⎧⎨=⎩(θ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2:2cos 0C ρθ-=. (1)求曲线2C 的普通方程;(2)若曲线1C 上有一动点M ,曲线2C 上有一动点N ,求MN 的最小值.9、(合肥一中等六校教育研究会2018届高三第二次联考)在平面直角坐标系xoy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 的极坐标方程.经过定点P(0,1)的直线l 与曲线C 交于M,N 两点。

高考数学总复习优编增分练:高考附加题加分练三)坐标系与参数方程

高考数学总复习优编增分练:高考附加题加分练三)坐标系与参数方程

(三)坐标系与参数方程1.(2018·南京六校联考)在平面直角坐标系xOy 中,以O 为极点,Ox 为极轴建立极坐标系,曲线C 的极坐标方程是ρ=2sin θ,直线l 的参数方程是⎩⎪⎨⎪⎧ x =1+2t ,y =1-t (t 为参数).求直线l 被曲线C 截得的弦长.解 曲线C 的直角坐标方程是x 2+(y -1)2=1,直线l 的普通方程是x +2y -3=0,圆心C (0,1)到直线l 的距离d =|2-3|12+22=55, 所以直线l 被曲线C 截得的弦长为 212-⎝ ⎛⎭⎪⎫552=455. 2.(2018·江苏南京外国语学校月考)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧ x =m +2cos α,y =2sin α(α为参数,m 为常数).以原点O 为极点,以x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4= 2.若直线l 与圆C 有两个不同的公共点,求实数m 的取值范围.解 圆C 的普通方程为(x -m )2+y 2=4. 直线l 的极坐标方程化为ρ⎝⎛⎭⎪⎫22cos θ+22sin θ=2, 即22x +22y =2,化简得x +y -2=0. 因为圆C 的圆心为C (m,0),半径为2,圆心C 到直线l 的距离d =|m -2|2,直线l 与圆C 有两个不同的公共点,所以d =|m -2|2<2, 解得2-22<m <2+22, 即实数m 的取值范围是(2-22,2+22).3.(2018·江苏南京师大附中模拟)在极坐标系中,已知圆C :ρ=22cos θ和直线l :θ=π4(ρ∈R )相交于A ,B 两点,求线段AB 的长. 解 圆C :ρ=22cos θ的直角坐标方程为x 2+y 2-22x =0,即(x -2)2+y 2=2.直线l :θ=π4(ρ∈R )的直角坐标方程为y =x . 圆心C 到直线l 的距离d =|2-0|2=1. 所以AB =2.4.(2018·江苏泰州中学月考)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知点P 的极坐标为⎝⎛⎭⎪⎫2,π2,曲线C 的极坐标方程为ρcos θ-ρsin θ=1,曲线D 的参数方程为⎩⎪⎨⎪⎧ x =1+cos α,y =sin α(α为参数).曲线C 和曲线D 相交于A ,B 两点.(1)求点P 的直角坐标;(2)求曲线C 的直角坐标方程和曲线D 的普通方程;(3)求△PAB 的面枳S ,解 (1)设点P 的直角坐标为(x ,y ),则x =2cos π2=0,y =2sin π2=2, ∴点P 的直角坐标为()0,2.(2)将ρcos θ=x ,ρsin θ=y 代入ρcos θ-ρsin θ=1,得x -y =1,∴曲线C 的直角坐标方程为x -y -1=0.消去方程⎩⎪⎨⎪⎧ x =1+cos α,y =sin α 中的参数α,得(x -1)2+y 2=1,∴曲线D 的普通方程为(x -1)2+y 2=1.(3)因为直线C :x -y -1=0过圆D :(x -1)2+y 2=1的圆心,∴AB 为圆D 的直径,∴AB =2.又点P (0,2)到直线C :x -y -1=0的距离为d =32=322, ∴S △PAB =12AB ·d =12×2×322=322.。

2019年高考数学(文)一轮复习精品资料:专题56参数方程(教学案)含解析

2019年高考数学(文)一轮复习精品资料:专题56参数方程(教学案)含解析

2019年高考数学(文)一轮复习精品资料1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和圆锥曲线的参数方程.3.了解圆的平摆线、渐开线的形成过程,并能推导出它们的参数方程.一、参数方程和普通方程的互化 1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.将参数方程化为普通方程需消去参数.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么y =g(t x =f(t ,就是曲线的参数方程.【特别提醒】在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 2.几种常见的参数方程 (1)圆的参数方程若圆心在点M 0(x 0,y 0),半径为r ,则圆的参数方程为y =y0+rsin θx =x0+rcos θ,(θ为参数). (2)椭圆a2x2+b2y2=1(a >b >0)的参数方程为y =bsin θx =acos θ,(θ为参数). (3)双曲线a2x2-b2y2=1(a >0,b >0)的参数方程为y =btan θ,(θ为参数). (4)抛物线y 2=2px (p >0)的参数方程为y =2pt x =2pt2,(t 为参数). 二、直线的参数方程利用直线参数方程中参数的几何意义求解问题的方法经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为y =y0+tsin αx =x0+tcos α,(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=2t1+t2;(2)|PM |=|t 0|=2t1+t2; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|.【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.三、极坐标与参数方程的综合应用规律1.化归思想的应用,即对于含有极坐标方程和参数的题目,全部转化为直角坐标方程后再求解.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.高频考点一 参数方程与普通方程的互化【例1】 已知直线l 的参数方程为y =-4t x =a -2t ,(t 为参数),圆C 的参数方程为y =4sin θx =4cos θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.【方法规律】 (1)将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.(2)把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,一定要保持同解变形.【变式探究】 在平面直角坐标系xOy 中,若直线l :y =t -a x =t ,(t 为参数)过椭圆C :y =2sin φx =3cos φ,(φ为参数)的右顶点,求常数a 的值.解 直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为9x2+4y2=1,∴椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0),则3-a =0,∴a =3.高频考点二 参数方程及应用【例2】已知曲线C :4x2+9y2=1,直线l :y =2-2t x =2+t ,(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【方法规律】(1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如y =y0+bt x =x0+at ,(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【变式探究】 平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m ,0),且倾斜角为6π.(1)求圆C 和直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.解 (1)由曲线C :(x -1)2+y 2=1. 得参数方程为y =sin θx =1+cos θ,(θ为参数). 直线l 的参数方程为t 1(t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中,得t 2+(m -)t +m 2-2m =0,所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,得m =1,m =1+或m =1-.高频考点三 参数方程与极坐标方程的综合应用【例3】 (2016·全国Ⅲ卷)在直角坐标系xOy 中,曲线C 1的参数方程为y =sin α3cos α,(α为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin 4π=2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.的距离d (α)的最小值.d (α)=23cos α+sin α-4|=-2π,当且仅当α=2k π+6π(k ∈Z)时,d (α)取得最小值,最小值为,此时P 的直角坐标为21.【方法规律】(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.【变式探究】 在直角坐标系xOy 中,圆C 的参数方程y =sin φx =1+cos φ,(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+cos θ)=3,射线OM :θ=3π与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.1. (2018年全国I 卷)[选修4—4:坐标系与参数方程]在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】(1).(2).【解析】(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.2. (2018年全国卷Ⅱ)[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】见解析【解析】(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.3. (2018年全国III卷)[选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,4. (2018年江苏卷)[选修4—4:坐标系与参数方程]在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为【解析】因为曲线C的极坐标方程为,所以曲线C的圆心为(2,0),直径为4的圆.1.【2017课标1,文22】在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为,求.【答案】(1),;(2)或.【解析】(1)曲线的普通方程为.当时,直线的普通方程为.由解得或.从而与的交点坐标为,.(2)直线的普通方程为,故上的点到的距离为.当时,的最大值为.由题设得,所以;当时,的最大值为.由题设得,所以.综上,或.2.【2017课标II,文22】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为。

高考文科数学【极坐标与参数方程】规范练

高考文科数学【极坐标与参数方程】规范练

5 【极坐标与参数方程】规范练对应学生用书P1451.(满分10分)已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎨⎧x =1+t cos α,y =t sin α(t 是参数). (1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|AB |=13,求直线的倾斜角α的值.解析 (1)由ρ=4cos θ,得ρ2=4ρcos θ. 因为x 2+y 2=ρ2,x =ρcos θ,所以x 2+y 2=4x , 即曲线C 的直角坐标方程为(x -2)2+y 2=4.(4分) (2)将⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α代入圆的方程(x -2)2+y 2=4,得(t cos α-1)2+(t sin α)2=4, 化简得t 2-2t cos α-3=0.(6分)设A ,B 两点对应的参数分别为t 1,t 2, 由根与系数的关系,得⎩⎪⎨⎪⎧t 1+t 2=2cos α,t 1t 2=-3,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4cos 2α+12=13,(8分)故4cos 2α=1,解得cos α=±12.(9分)因为直线的倾斜角α∈[0,π),所以α=π3或2π3.(10分)2.(满分10分)已知平面直角坐标系中,曲线C 的参数方程为⎩⎨⎧x =1+5cos α,y =2+5sin α(α为参数),直线l 1:x =0,直线l 2:x -y =0,以原点为极点,x 轴正半轴为极轴,建立极坐标系.(1)写出曲线C 和直线l 1,l 2的极坐标方程;(2)若直线l 1与曲线C 交于O ,A 两点,直线l 2与曲线C 交于O ,B 两点,求|AB |.解析 (1)依题意知,曲线C :(x -1)2+(y -2)2=5,即x 2-2x +y 2-4y =0, 将x =ρcos θ,y =ρsin θ代入上式,得ρ=2cos θ+4sin θ. 因为直线l 1:x =0,直线l 2:x -y =0, 故直线l 1,l 2的极坐标方程为l 1:θ=π2(ρ∈R ), l 2:θ=π4(ρ∈R ).(5分)(2)设A ,B 两点对应的极径分别为ρ1,ρ2, 在ρ=2cos θ+4sin θ中,令θ=π2,得ρ1=2cos π2+4sin π2=4, 令θ=π4,得ρ2=2cos π4+4sin π4=32, 因为π2-π4=π4, 所以|AB |=ρ21+ρ22-2ρ1ρ2cos π4=10.(10分) 3.(满分10分)在平面直角坐标系中,以原点为极点,以x 轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 1的极坐标方程为ρ=2cos θ.(1)若曲线C 2的参数方程为⎩⎨⎧ x =t cos α,y =1+t sin α(α为参数),求曲线C 1的直角坐标方程和曲线C 2的普通方程;(2)若曲线C 2的参数方程为⎩⎨⎧x =t cos α,y =1+t sin α(t 为参数),A (0,1),且曲线C 1与曲线C 2的交点分别为P ,Q ,求1|AP |+1|AQ |的取值范围.解析 (1)∵ρ=2cos θ,∴ρ2=2ρcos θ, 又∵ρ2=x 2+y 2,ρcos θ=x ,∴曲线C 1的直角坐标方程为x 2+y 2-2x =0, 曲线C 2的普通方程为x 2+(y -1)2=t 2.(4分)(2)将C 2的参数方程⎩⎪⎨⎪⎧x =t cos α,y =1+t sin α(t 为参数)代入C 1的方程x 2+y 2-2x =0,得t 2+(2sin α-2cos α)t +1=0.∵Δ=(2sin α-2cos α)2-4=8sin 2⎝ ⎛⎭⎪⎫α-π4-4>0,∴⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π4∈⎝ ⎛⎦⎥⎤22,1, ∴sin ⎝ ⎛⎭⎪⎫α-π4∈⎣⎢⎡⎭⎪⎫-1,-22∪⎝ ⎛⎦⎥⎤22,1.(6分) t 1+t 2=-(2sin α-2cos α)=-22sin ⎝ ⎛⎭⎪⎫α-π4, t 1t 2=1>0,(7分)∵t 1t 2=1>0,∴t 1,t 2同号,∴|t 1|+|t 2|=|t 1+t 2|.(8分) 由点A 在曲线C 2上,根据t 的几何意义,可得 1|P A |+1|AQ |=1|t 1|+1|t 2|=|t 1|+|t 2||t 1||t 2| =|t 1|+|t 2||t 1t 2|=|t 1+t 2|1=22⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π4∈(2,2 2 ].∴1|P A |+1|AQ |∈(2,2 2 ].(10分)4.(满分10分)在直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为ρ(sin θ+3cos θ)= 3.(1)求C 的极坐标方程;(2)射线OM :θ=θ1⎝ ⎛⎭⎪⎫π6≤θ1≤π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求|OP |·|OQ |的取值范围.解析 (1)圆C 的普通方程是(x -2)2+y 2=4, 又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程为ρ=4cos θ.(4分) (2)设P (ρ1,θ1),则有ρ1=4cos θ1,(5分) 设Q (ρ2,θ1),且直线l 的极坐标方程是 ρ(sin θ+3cos θ)=3, 则有ρ2=3sin θ1+3cos θ1,(7分)所以|OP |·|OQ |=ρ1ρ2=43cos θ1sin θ1+3cos θ1=433+tan θ1⎝ ⎛⎭⎪⎫π6≤θ1≤π3,(9分) 所以2≤|OP |·|OQ |≤3.即|OP |·|OQ |的取值范围是[2,3].(10分)5.(满分10分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos θ,y =2sin θ(θ为参数),点M 为曲线C 1上的动点,动点P 满足OP →=aOM →(a >0且a ≠1),点P 的轨迹为曲线C 2.(1)求曲线C 2的方程,并说明C 2是什么曲线;(2)在以坐标原点为极点,以x 轴的正半轴为极轴的极坐标系中,A 点的极坐标为⎝ ⎛⎭⎪⎫2,π3,射线θ=α与C 2的异于极点的交点为B ,已知△AOB 面积的最大值为4+23,求a 的值.解析 (1)设P (x ,y ),M (x 0,y 0), 由OP →=aOM →,得⎩⎪⎨⎪⎧x =ax 0,y =ay 0.∴⎩⎪⎨⎪⎧x 0=xa ,y 0=y a .∵点M 在C 1上, ∴⎩⎪⎨⎪⎧xa =2+2cos θ,y a =2sin θ,即⎩⎪⎨⎪⎧x =2a +2a cos θ,y =2a sin θ(θ为参数), 消去参数θ,得(x -2a )2+y 2=4a 2(a >0且a ≠1). ∴曲线C 2是以(2a,0)为圆心,以2a 为半径的圆.(5分) (2)解法一:A 点的直角坐标为(1,3), ∴直线OA 的普通方程为y =3x ,即3x -y =0. 设B 点坐标为(2a +2a cos α,2a sin α), 则B 点到直线3x -y =0的距离 d =a |23cos α-2sin α+23|2=a ⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π6+3.∴当α=-π6时,d max =(3+2)a .∴S △AOB 的最大值为12×2×(3+2)a =4+23, ∴a =2.(10分)解法二:将x =ρcos θ,y =ρsin θ代入(x -2a )2+y 2=4a 2,并整理得ρ=4a cos θ,令θ=α,得ρ=4a cos α.∴B (4a cos α,α).∴S △AOB =12|OA |·|OB |·sin ∠AOB=4a cos α⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3=a |2sin αcos α-23cos 2α|=a |sin2α-3cos2α-3|=a ⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫2α-π3-3,∴当α=-π12时,S △AOB 取得最大值(2+3)a , 依题意知(2+3)a =4+23,∴a =2.(10分)6.(满分10分)在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎪⎨⎪⎧x =a +2t2,y =1+2t 2(t 为参数,a ∈R ).以O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数a 的值.解析(1)∵曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a +2t2,y =1+2t 2(t 为参数,a ∈R ),∴曲线C 1的普通方程为x -y -a +1=0.(2分) ∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0, 又ρcos θ=x ,ρ2=x 2+y 2, ∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(4分) (2)设A ,B 两点所对应的参数分别为t 1,t 2,由⎩⎪⎨⎪⎧y 2=4x ,x =a +2t 2,y =1+2t 2,得t 2-22t +2-8a =0.Δ=(-22)2-4(2-8a )>0,即a >0, ∴⎩⎪⎨⎪⎧t 1+t 2=22,t 1·t 2=2-8a ,(6分) 根据参数方程中参数的几何意义可知|P A |=|t 1|,|PB |=|t 2|, ∴由|P A |=2|PB |得t 1=2t 2或t 1=-2t 2, ∴当t 1=2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=3t 2=22,t 1·t 2=2t 22=2-8a ,解得a =136>0,符合题意,(8分)当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=22,t 1·t 2=-2t 22=2-8a ,解得a =94>0,符合题意. 综上所述,a =136或a =94.(10分)。

坐标系与参数方程高考综合试题(含答案)

坐标系与参数方程高考综合试题(含答案)

坐标系与参数方程1.【全国I 卷2019届高三五省优创名校联考数学】在直角坐标系xOy 中,直线l的参数方程为22x m t y t ⎧⎪=+⎨=⎪⎪⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,椭圆C 的极坐标方程为2222cos 3sin 48ρθρθ+=,其左焦点F 在直线l 上.(1)若直线l 与椭圆C 交于A B ,两点,求FA FB +的值; (2)求椭圆C 的内接矩形面积的最大值. 【答案】(1)2)【解析】(1)将cos sin x y ρθρθ=⎧⎨=⎩代入ρ2cos 2θ+3ρ2sin 2θ=48,得x 2+3y 2=48,即2214816x y +=, 因为c 2=48-16=32,所以F的坐标为(-0), 又因为F 在直线l上,所以m =-把直线l的参数方程22x y =-=⎧⎪⎪⎨⎪⎪⎩代入x 2+3y 2=48,化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8,所以12FA FB t t +=-===(2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(θ,4sin θ)(π02θ<<),所以内接矩形的面积8sin 2S θθθ=⋅=, 当π4θ=时,面积S取得最大值【名师点睛】直角坐标方程转为极坐标方程的关键是利用公式cos sin x y ρθρθ=⎧⎨=⎩,而极坐标方程转化为直角坐标方程的关键是利用公式222tan x y yx ρθ⎧=+⎪⎨=⎪⎩,后者也可以把极坐标方程变形,尽量产生2cos ρρθ,,sin ρθ以便转化.另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数θ来表示动点坐标,从而利用一元函数求与动点有关的最值问题.2.【河北衡水金卷2019届高三12月第三次联合质量测评数学】在直角坐标系中,直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),以坐标原点为极点,x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2241sin ρθ=+.(1)当π6a =时,写出直线l 的普通方程及曲线C 的直角坐标方程; (2)已知点()11P -,,设直线l 与曲线C 交于A ,B 两点,试确定PA PB ⋅的取值范围.【答案】(1)2210142x y x ++=+=,;(2)112⎡⎫⎪⎢⎣⎭,【解析】(1)当π6a =时,直线l的参数方程为π1cos ,162π11sin 162x t x y t y t ⎧⎧=-+=-+⎪⎪⎪⎪⇒⎨⎨⎪⎪=+=+⎪⎪⎩⎩,. 消去参数t得10x ++=. 由曲线C 的极坐标方程为2241sin ρθ=+,得()22sin 4ρρθ+=, 将222x y ρ+=,及sin y ρθ=代入得2224x y +=,即22142x y +=; (2)由直线l 的参数方程为1cos ,1sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0πα<<),可知直线l 是过点P (–1,1)且倾斜角为α的直线,又由(1)知曲线C 为椭圆22142x y +=,所以易知点P (–1,1)在椭圆C 内,将1cos , 1sin x t y t αα=-+⎧⎨=+⎩代入22142x y +=中,整理得 ()()221sin 22sin c s 10to t ααα++--=,设A ,B 两点对应的参数分别为12t t ,, 则12211sin t t α⋅=-+,所以12211sin PA PB t t α⋅==+, 因为0πα<<,所以(]2sin 01α∈,,所以1221111sin 2PA PB t t α⎡⎫⋅==∈⎪⎢+⎣⎭,,所以PA PB ⋅的取值范围为112⎡⎫⎪⎢⎣⎭,.【名师点睛】利用直线参数方程中参数的几何意义求解问题.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为12t t ,,线段AB 的中点为M ,点M 所对应的参数为0t ,则以下结论在解题中经常用到:(1)1202t t t +=;(2)1202t t PM t +==;(3)21AB t t =-;(4)12··PA PB t t =. 3.【河南省信阳高级中学2018–2019学年高二上学期期中考试数学】在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 2cos 0a a ρθθ=+>();直线l的参数方程为222x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).直线l 与曲线C 分别交于M N ,两点. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为()2πPM PN +=,,a 的值.【答案】(1)曲线C 的直角坐标方程为:()()22211x a y a -+-=+,直线l 的普通方程为2y x =+.(2)2a =.【解析】(1)由()2sin 2cos 0a a ρθθ=+>,得()22sin 2cos 0a a ρρθρθ=+>,所以曲线C 的直角坐标方程为2222x y y ax +=+,即()()22211x a y a -+-=+,直线l 的普通方程为2y x =+.(2)将直线l的参数方程2,2x y ⎧=-+⎪⎪⎨⎪=⎪⎩代入2222x y y ax +=+并化简、整理,得()2440t t a -++=.因为直线l 与曲线C 交于M N ,两点.所以()()2Δ4440a =-+>,解得1a ≠.由根与系数的关系,得121244t t t t a +==+,.因为点P 的直角坐标为()20-,,在直线l上.所以12PM PN t t +=+==, 解得2a =,此时满足0a >.且1a ≠,故2a =.【名师点睛】参数方程主要通过代入法或者已知恒等式(如22cos sin 1αα+=等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式222tan cos ,sin x y x y xy ρρθρθθ=⎧+==⎧⎪⎨⎨=⎩⎪⎩等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.4.【河南省豫南九校(中原名校)2017届高三下学期质量考评八数学】己知直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点13P (,). (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求11PA PB+的值. 【答案】(1)21y x =+,216y x =;(2【解析】(1)直线l 的参数方程为132x ty t=+⎧⎨=+⎩(t 为参数),消去参数,可得直线l 的普通方程21y x =+,曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,即22sin 16cos 0ρθρθ-=,曲线C 的直角坐标方程为216y x =,(2)直线的参数方程改写为1535x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入2212124351670554y x t t t t t =--=+==-,,,121211t t PA PB t t -+==. 【名师点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ⎧=⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.5.【河南省开封市2019届高三上学期第一次模拟考试数学】在直角坐标系xOy 中,直线l 的参数方程是1x t y t ==+⎧⎨⎩(t 为参数),曲线C 的参数方程是22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程; (2)已知射线1OP θα=:(其中π02α<<)与曲线C 交于O P ,两点,射线2π2OQ θα=+:与直线l 交于Q 点,若OPQ ∆的面积为1,求α的值和弦长OP . 【答案】(1)cos sin 10ρθρθ-+=,4cos ρθ=;(2)π4OP α==, 【解析】(1)直线l 的普通方程为10x y -+=,极坐标方程为cos sin 10ρθρθ-+=,曲线C 的普通方程为2224x y -+=(),极坐标方程为4cos ρθ=.(2)依题意,∵π02α∈(,),∴4cos OP α=, 1ππsin cos 22OQ αα=+-+()()1sin cos αα=+,12cos 12cos sin OPQ S OP OQ ααα===+△, ∴πtan 102αα=∈,(,),∴π4OP α==,【名师点睛】本题考查的知识要点:三角函数关系式的恒等变变换,参数方程直角坐标方程和极坐标方程之间的转换,三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型. 6.【四川省成都市第七中学2019届高三一诊模拟考试数学】在平面直角坐标系xOy 中,曲线C 的参数标方程为e e e et tt tx y --⎧=+⎪⎨=-⎪⎩(其中t 为参数),在以O 为极点、x 轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为πsin 3ρθ⎛⎫-= ⎪⎝⎭(1)求曲线C 的极坐标方程;(2)求直线l 与曲线C 的公共点P 的极坐标. 【答案】(1)2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭(2)π6⎛⎫ ⎪⎝⎭,【解析】(1)消去参数t ,得曲线C 的直角坐标方程()2242x y x -=≥.将cos sin x y ρθρθ==,代入224x y -=,得()222cos sin 4ρθθ-=.所以曲线C 的极坐标方程为2ππcos2444ρθθ⎛⎫=-<< ⎪⎝⎭.(2)将l 与C 的极坐标方程联立,消去ρ得2π4sin 2cos23θθ⎛⎫-=⎪⎝⎭.展开得()22223cos cos sin 2cos sin θθθθθθ-+=-.因为cos 0θ≠,所以23tan 10θθ-+=.于是方程的解为tan θ=,即π6θ=.代入πsin 3ρθ⎛⎫-=⎪⎝⎭ρ=P 的极坐标为π6⎛⎫ ⎪⎝⎭,.【名师点睛】本题考查曲线的极坐标方程与普通方程的互化,直线的极坐标方程与曲线极坐标方程联立求交点的问题,考查计算能力.7.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)数学】在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为22x ty t =⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2cos 8sin ρθθ=.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线; (2)若直线l 与曲线C 的交点分别为M ,N ,求MN .【答案】(1)曲线C 方程为28x y =,表示焦点坐标为()0,2,对称轴为y 轴的抛物线;(2)10. 【解析】(1)因为2cos 8sin ρθθ=,所以22cos 8sin ρθρθ=,即28x y =,所以曲线C 表示焦点坐标为()0,2,对称轴为y 轴的抛物线. (2)设点()11,M x y ,点()22,N x y直线l 过抛物线的焦点()0,2,则直线参数方程为22x t y t =⎧⎨=+⎩化为一般方程为122y x =+,代入曲线C 的直角坐标方程,得24160x x --=, 所以12124,16x x x x +==-所以MN ===10==.【名师点睛】本题考查极坐标方程化直角坐标方程,直线的参数方程化一般方程,弦长公式等,属于简单题.8.【河北省石家庄市2018届高中毕业班模拟考试(二)数学】在平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l的参数方程2x ty =--⎧⎪⎨=⎪⎩(t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C . (1)写出曲线2C 的参数方程;(2)设点2P -(,直线l 与曲线2C 的两个交点分别为A B ,,求11PA PB+的值. 【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩(θ为参数);(2)12【解析】(1)若将曲线1C 上的点的纵坐标变为原来的32, 则曲线2C 的直角坐标方程为22243x y +=(),整理得22149x y +=, ∴曲线2C 的参数方程2cos 3sin x y θθ=⎧⎨=⎩(θ为参数).(2)将直线的参数方程化为标准形式为122333x t y t ''⎧=--⎪⎪⎨⎪=+⎪⎩(t '为参数),将参数方程带入22149x y +=得221(2))22149t --'+=' 整理得27183604t t ''++=().12127214477PA PB t t PA PB t t ''''+=+===,, 72111714427PA PB PA PB PA PB++===.【名师点睛】本题考查了参数方程与普通方程的互化,及直线的参数方程的应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用直线参数的几何意义求解.要结合题目本身特点,确定选择何种方程.。

【配套K12】2018-2019学年人教版数学高考(文)一轮复习训练:选考部分规范练56坐标系与参数

【配套K12】2018-2019学年人教版数学高考(文)一轮复习训练:选考部分规范练56坐标系与参数

考点规范练56 坐标系与参数方程基础巩固1.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.2.在平面直角坐标系xOy中,将曲线C1:x2+y2=1上的所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后,得到曲线C2;以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρ(2cos θ-sin θ)=6.(1)写出曲线C2的参数方程和直线l的直角坐标方程;(2)在曲线C2上求一点P,使点P到直线l的距离d最大,并求出此最大值.3.(2017安徽马鞍山一模)在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数,α∈R),在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2:ρsin.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若曲线C1和曲线C2相交于A,B两点,求|AB|的值.4.在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.5.在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数).在以坐标原点O为极点,x轴正半轴为极轴建立的极坐标系中,曲线C2的极坐标方程为ρcos.(1)把曲线C1的参数方程化为普通方程,C2的极坐标方程化为直角坐标方程;(2)若曲线C1,C2相交于A,B两点,AB的中点为P,过点P作曲线C2的垂线交曲线C1于E,F两点,求|PE|·|PF|的值.能力提升6.(2017山西临汾三模)在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.曲线C2的极坐标方程为ρsin m.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C1与曲线C2有公共点,求实数m的取值范围.7.已知直线C1:(t为参数),圆C2:(θ为参数).(1)当α=时,求C1被C2截得的线段的长;(2)过坐标原点O作C1的垂线,垂足为A,当α变化时,求点A轨迹的参数方程,并指出它是什么曲线.高考预测8.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=a cos θ(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|PA|·|PB|=|AB|2,求a的值.答案:1.解:椭圆C的普通方程为x2+=1.将直线l的参数方程(t为参数)代入x2+=1,得=1,即7t2+16t=0,解得t1=0,t2=-.所以AB=|t1-t2|=.2.解:(1)由题意知,曲线C2方程为=1,故曲线C2的参数方程为(φ为参数).直线l的直角坐标方程为2x-y-6=0.(2)设P(cos φ,2sin φ),则点P到直线l的距离为d=,故当sin(60°-φ)=-1时,d取到最大值2,此时取φ=150°,点P坐标是.3.解:(1)由⇒x2+(y-1)2=1,由ρsinρsin θ-ρcos θ=⇒y-x=2,即C2:x-y+2=0.(2)∵直线x-y+2=0与圆x2+(y-1)2=1相交于A,B两点,又x2+(y-1)2=1的圆心(0,1),半径为1,故圆心到直线的距离d=,∴|AB|=2.4.解:(1)消去参数t得到C1的普通方程x2+(y-1)2=a2,C1是以(0,1)为圆心,a为半径的圆.将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.(2)曲线C1,C2的公共点的极坐标满足方程组若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去),a=1.a=1时,极点也为C1,C2的公共点,在C3上,所以a=1.5.解:(1)消去参数可得C1:y2=4x,C2:x-y-1=0.(2)设A(x1,y1),B(x2,y2),且AB中点为P(x0,y0),联立可得x2-6x+1=0.∴x1+x2=6,x1x2=1,∴∴AB中垂线的参数方程为(t为参数).①y2=4x.②将①代入②中,得t2+8t-16=0,∴t1·t2=-16.∴|PE|·|PF|=|t1·t2|=16.6.解:(1)曲线C1的参数方程为消去参数,可得y=x2(-2≤x≤2),由ρsin m,得ρsin θ-ρcos θ=m,所以曲线C2的直角坐标方程为x-y+m=0.(2)由可得x2-x-m=0,∵曲线C1与曲线C2有公共点,∴m=x2-x=.∵-2≤x≤2,∴-≤m≤6.7.解:(1)当α=时,C1的普通方程为y=(x-1),C2的普通方程为x2+y2=1.联立方程组解得C1与C2的交点坐标为(1,0)与.故C1被C2截得的线段的长为=1.(2)将C1的参数方程代入C2的普通方程得t2+2t cos α=0,设直线C1与圆C2交于M,N两点,M,N两点对应的参数分别为t1,t2, 则A点对应的参数t==-cos α,故A点坐标为(sin2α,-cos αsin α).故当α变化时,点A轨迹的参数方程为(α为参数).因此,点A轨迹的普通方程为+y2=.故点A的轨迹是以为圆心,半径为的圆.8.解:(1)∵ρsin2θ=a cos θ(a>0),∴ρ2sin2θ=aρcos θ(a>0),即y2=ax(a>0).直线l的参数方程消去参数t,得普通方程为y=x-2.(2)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a>0)中,得t2-(a+8)t+4(a+8)=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=(a+8),t1·t2=4(a+8).∵|PA|·|PB|=|AB|2,∴t1·t2=(t1-t2)2.∴(t1+t2)2=(t1-t2)2+4t1·t2=5t1·t2,即[(8+a)]2=20(8+a),解得a=2或a=-8(不合题意,应舍去),∴a的值为2.。

2019年高考数学真题专题18 坐标系与参数方程

2019年高考数学真题专题18    坐标系与参数方程

专题18 坐标系与参数方程1.【2019年高考全国Ⅰ卷文数】在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l 的直角坐标方程为23110x y ++=;(2)7.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l 的直角坐标方程为23110x y ++=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到l 的距离为π4cos 11|2cos 23sin 11|377ααα⎛⎫-+ ⎪++⎝⎭=.当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距离的最小值为7.【名师点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.2.【2019年高考全国Ⅱ卷文数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 【答案】(1)023ρ=,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭; (2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 233ρπ==. 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【名师点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型. 3.【2019年高考全国Ⅲ卷文数】如图,在极坐标系Ox 中,(2,0)A ,(2,)4B π,(2,)4C 3π,(2,)D π,弧»AB ,»BC ,»CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧»AB ,曲线2M 是弧»BC ,曲线3M 是弧»CD. (1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =,求P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭.(2)π3,6⎛⎫ ⎪⎝⎭或π3,3⎛⎫ ⎪⎝⎭或2π3,3⎛⎫ ⎪⎝⎭或5π3,6⎛⎫ ⎪⎝⎭. 【解析】(1)由题设可得,弧»»»,,AB BCCD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos 3θ=,解得π6θ=; 若π3π44θ≤≤,则2sin 3θ=,解得π3θ=或2π3θ=; 若3ππ4θ≤≤,则2cos 3θ-=,解得5π6θ=. 综上,P 的极坐标为π3,6⎛⎫ ⎪⎝⎭或π3,3⎛⎫ ⎪⎝⎭或2π3,3⎛⎫ ⎪⎝⎭或5π3,6⎛⎫⎪⎝⎭.【名师点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题. 4.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,2,42A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(1)5;(2)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B (2,2π), 由余弦定理,得AB =223(2)232cos()524ππ+-⨯⨯⨯-=. (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点(32,)2π,倾斜角为34π. 又(2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ-⨯-=. 【名师点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.5.【2018年高考全国Ⅰ卷文数】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.【答案】(1)2C 的直角坐标方程为22(1)4x y ++=.;(2)1C 的方程为4||23y x =-+. 【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点. 当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,所以2|2|21k k -+=+,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,所以2|2|21k k +=+,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 6.【2018年高考全国Ⅱ卷文数】在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩,(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.【答案】(1)曲线C 的直角坐标方程为221416x y +=,l 的直角坐标方程为1x =;(2)l 的斜率为2-.【解析】(1)曲线C 的直角坐标方程为221416x y +=.当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=. 又由①得1224(2cos sin )13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 的斜率tan 2k α==-.7.【2018年高考全国Ⅲ卷文数】在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点()02-,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.【答案】(1)α的取值范围是(,)44π3π.;(2)点P 的轨迹的参数方程是2sin 2,222cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α为参数,44απ3π<<). 【解析】(1)O e 的直角坐标方程为221x y +=.当2απ=时,l 与O e 交于两点. 当2απ≠时,记tan k α=,则l 的方程为2y kx =-.l 与O e 交于两点当且仅当22||11k<+,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈. 综上,α的取值范围是(,)44π3π.(2)l 的参数方程为cos ,(2sin x t t y t αα=⎧⎪⎨=-+⎪⎩为参数,44απ3π<<). 设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t 满足222sin 10t t α-+=.于是22sin A B t t α+=,2sin P t α=.又点P 的坐标(,)x y 满足cos ,2sin .P Px t y t αα=⎧⎪⎨=-+⎪⎩ 所以点P 的轨迹的参数方程是2sin 2,222cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α为参数,44απ3π<<). 8.【2018年高考江苏卷数学】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.【答案】直线l 被曲线C 截得的弦长为23. 【解析】因为曲线C 的极坐标方程为=4cos ρθ, 所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos236AB==.因此,直线l被曲线C截得的弦长为23.9.【2017年高考全国Ⅰ卷文数】在直角坐标系xOy中,曲线C的参数方程为3cos,sin,xyθθ=⎧⎨=⎩(θ为参数),直线l的参数方程为4,1,x a tty t=+⎧⎨=-⎩(为参数).(1)若1-=a,求C与l的交点坐标;(2)若C上的点到l距离的最大值为17,求a.【答案】(1)(3,0),2124(,)2525-;(2)8a=或16a=-.【解析】(1)曲线C的普通方程为2219xy+=.当1a=-时,直线l的普通方程为430x y+-=.由22430,19x yxy+-=⎧⎪⎨+=⎪⎩解得3,xy=⎧⎨=⎩或21,2524.25xy⎧=-⎪⎪⎨⎪=⎪⎩从而C与l的交点坐标为(3,0),2124(,)2525-.(2)直线l的普通方程为440x y a+--=,故C上的点(3cos,sin)θθ到l的距离为|3cos4sin4|17adθθ+--=.当4a ≥-时,d 的最大值为917a +. 由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+. 由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-.【名师点睛】本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表示出椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数a 的值.10.【2017年高考全国Ⅱ卷文数】在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值. 【答案】(1)()()22240x y x -+=≠;(2)23+.【解析】(1)设P 的极坐标为(,)ρθ(0)ρ>,M 的极坐标为1(,)ρθ1(0)ρ>, 由题设知cos OP OM =ρρθ14=,=. 由16OM OP ⋅=得2C 的极坐标方程cos ρθ=4(0)ρ>. 因此2C 的直角坐标方程为()()22240x y x -+=≠. (2)设点B 的极坐标为()(),0B B ραρ>,由题设知2,4cos B OA ρα==,于是OAB △的面积S =13sin 4cos |sin()|2|sin(2)|2 3.2332B OA AOB ραααππ⋅⋅∠=⋅-=--≤+当12απ=-时,S 取得最大值23+,所以OAB △面积的最大值为23+. 【名师点睛】本题考查了极坐标方程的求法及应用。

高考数学 《坐标系与参数方程》

高考数学 《坐标系与参数方程》

坐标系与参数方程主标题:坐标系与参数方程副标题:为学生详细的分析坐标系与参数方程的高考考点、命题方向以及规律总结。

关键词:极坐标,参数方程难度:3重要程度:5考点剖析:1.理解坐标系的作用.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.2.会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.3.能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.4.了解参数方程,了解参数的意义.5.能选择适当的参数写出直线、圆和椭圆的参数方程.6.掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.命题方向:高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识.规律总结:1.主要题型有极坐标方程、参数方程和普通方程的互化,在极坐标方程或参数方程背景下的直线与圆的相关问题.2.规律方法方程解决直线、圆和圆锥曲线的有关问题,将极坐标方程化为直角坐标方程或将参数方程化为普通方程,有助于对方程所表示的曲线的认识,从而达到化陌生为熟悉的目的,这是化归与转化思想的应用.在涉及圆、椭圆的有关最值问题时,若能将动点的坐标用参数表示出来,借助相应的参数方程,可以有效地简化运算,从而提高解题的速度.3.极坐标方程与普通方程互化核心公式⎩⎪⎨⎪⎧ x =ρcos θy =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=y x (x ≠0).4.过点A (ρ0,θ0) 倾斜角为α的直线方程为ρ=ρ0sin (θ0-α)sin (θ-α).特别地,①过点A (a,0),垂直于极轴的直线l 的极坐标方程为ρcos θ=a .②平行于极轴且过点A (b ,π2)的直线l 的极坐标方程为ρsin θ=b .5.圆心在点A (ρ0,θ0),半径为r 的圆的方程为r 2=ρ2+ρ20-2ρρ0cos(θ-θ0).6.重点掌握直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos θy =y 0+t sin θ(t 为参数),理解参数t 的几何意义.知 识 梳 理1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧ x =ρcos θy =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=y x (x ≠0). 2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为ρsin(θ-α)=ρ0sin(θ0-α). 几个特殊位置的直线的极坐标方程(1)直线过极点:θ=α;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过点M (b ,π2)且平行于极轴:ρsin θ=b . 3.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆的方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (r,0),半径为r :ρ=2r cos θ;(3)当圆心位于M (r ,π2),半径为r :ρ=2r sin θ. 4.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).5.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π). 6.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧ x =a cos θ,y =b sin θ(θ为参数). (2)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点规范练56 坐标系与参数方程
基础巩固
1.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.
2.(2017辽宁大连一模)已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,
建立极坐标系,曲线C1的极坐标方程为ρ=4cos θ,直线l的参数方程为(t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.
3.(2017安徽马鞍山一模)在直角坐标系xOy中,曲线C1的参数方程为(α为参数,α
∈R),在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2:ρsin.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)若曲线C1和曲线C2相交于A,B两点,求|AB|的值.
4.在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.
(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
(2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.
5.在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数).在以坐标原点O为极点,x
轴正半轴为极轴建立的极坐标系中,曲线C2的极坐标方程为ρcos.
(1)把曲线C1的参数方程化为普通方程,C2的极坐标方程化为直角坐标方程;
(2)若曲线C1,C2相交于A,B两点,AB的中点为P,过点P作曲线C2的垂线交曲线C1于E,F两点,求|PE|·|PF|的值.
能力提升
6.已知直线l的参数方程为(t为参数),在以坐标原点为极点,x轴的正半轴为极轴建立的极坐标系中,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,且曲线C的左焦点F在直线l 上.若直线l与曲线C交于A,B两点,求|FA|·|FB|的值.
7.已知直线C1:(t为参数),圆C2:(θ为参数).
(1)当α=时,求C1被C2截得的线段的长;
(2)过坐标原点O作C1的垂线,垂足为A,当α变化时,求点A轨迹的参数方程,并指出它是什么曲线.
高考预测
8.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极
坐标方程为ρsin2θ=a cos θ(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若|PA|·|PB|=|AB|2,求a的值.
参考答案
考点规范练56 坐标系与参数方程
1.解椭圆C的普通方程为x2+=1.
将直线l的参数方程(t为参数)代入x2+=1,
得=1,
即7t2+16t=0,解得t1=0,t2=-.
所以AB=|t1-t2|=.
2.解(1)曲线C1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,
可得直角坐标方程:C1:x2+y2-4x=0.
直线l的参数方程为(t为参数),
消去参数t可得普通方程:x+2y-3=0.
(2)P,直角坐标为(2,2),Q(2cosα,sinα),M,
∴M到l的距离d=
=,
从而最大值为.
3.解(1)由⇒x2+(y-1)2=1,
由ρsinρsinθ-ρcosθ=⇒y-x=2,即C2:x-y+2=0.
(2)∵直线x-y+2=0与圆x2+(y-1)2=1相交于A,B两点,又x2+(y-1)2=1的圆心(0,1),半径为1,
故圆心到直线的距离d=,
∴|AB|=2.
4.解(1)消去参数t得到C1的普通方程x2+(y-1)2=a2,C1是以(0,1)为圆心,a为半径的圆.
将x=ρcosθ,y=ρsinθ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsinθ+1-a2=0.
(2)曲线C1,C2的公共点的极坐标满足方程组
若ρ≠0,由方程组得16cos2θ-8sinθcosθ+1-a2=0,
由已知tanθ=2,可得16cos2θ-8sinθcosθ=0,
从而1-a2=0,解得a=-1(舍去),a=1.
a=1时,极点也为C1,C2的公共点,在C3上,所以a=1.
5.解(1)消去参数可得C1:y2=4x,
C2:x-y-1=0.
(2)设A(x1,y1),B(x2,y2),且AB中点为P(x0,y0),
联立可得x2-6x+1=0.
∴x1+x2=6,x1x2=1,∴
∴AB垂直平分线的参数方程为(t为参数).①
y2=4x.②
将①代入②中,得t2+8t-16=0,
∴t1·t2=-16.
∴|PE|·|PF|=|t1·t2|=16.
6.解由题意,知曲线C的直角坐标方程为x2+3y2=12,即=1.
因为曲线C的左焦点F(-2,0)在直线l上,
所以m=-2.
将直线l的参数方程代入x2+3y2=12得t2-2t-2=0,
故|FA|·|FB|=|t1·t2|=2.
7.解(1)当α=时,C1的普通方程为y=(x-1),C2的普通方程为x2+y2=1.
联立方程组解得C1与C2的交点坐标为(1,0)与.
故C1被C2截得的线段的长为=1.
(2)将C1的参数方程代入C2的普通方程得t2+2t cosα=0,
设直线C1与圆C2交于M,N两点,M,N两点对应的参数分别为t1,t2,则A点对应的参数
t==-cosα,
故A点坐标为(sin2α,-cosαsinα).
故当α变化时,点A轨迹的参数方程为(α为参数).
因此,点A轨迹的普通方程为+y2=.
故点A的轨迹是以为圆心,半径为的圆.
8.解(1)∵ρsin2θ=a cosθ(a>0),
∴ρ2sin2θ=aρcosθ(a>0),即y2=ax(a>0).
直线l的参数方程消去参数t,得普通方程为y=x-2.
(2)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a>0)中,得t2-
(a+8)t+4(a+8)=0,
设A,B两点对应的参数分别为t1,t2,
则t1+t2=(a+8),t1·t2=4(a+8).
∵|PA|·|PB|=|AB|2,∴t1·t2=(t1-t2)2.
∴(t1+t2)2=(t1-t2)2+4t1·t2=5t1·t2,
即[(8+a)]2=20(8+a),解得a=2或a=-8(不合题意,应舍去),∴a的值为2.。

相关文档
最新文档