聚酯纤维.doc解析PPT精品课件
合集下载
5.聚酯纤维
BHET的合成
BHET的合成主要采用以下三种方法: (1)DMT和EG的酯交换法; (2)PTA和EG的直接酯化法; (3)PTA和EO (环氧乙烷)加成法。 在工业上PET的制造采用二种方法:
酯交换法:以DMT为中间体通过酯交换法来制造 直接酯化法:以PTA(高纯度对苯二甲酸)或MTA (中纯度对苯二甲酸)为中间体通过直接酯化法来 制造。
可以达到强化熔体均匀性的目的,同时可以减少 熔体通过弯管时,管壁与管中心温度及停留时间 的差别。
➢ 在较新型的螺杆挤出机中,往往采用特殊设计的 混炼头来代替静态混合器。混炼头的主要作用是 改变螺杆沟槽中挤出的熔体的流线,使熔体进一 步均匀化
聚酯纤维
聚酯短纤
聚酯纤维的分类
• 从应用领域来划分
–服用 –装饰用 –产业用 –2000年的比例68:19:13 –2005年的比例54:33:13
聚酯纤维的生产工艺及技术
❖聚酯纤维原料的生产技术及工艺 ❖聚酯纤维的生产技术及工艺
聚酯纤维原料的生产技术
• PET原料: – 对苯二甲酸 – 乙二醇(或环氧乙烷)
We=KP,式中,K为平衡常数,P为平衡蒸汽压。 升高温度和增加干燥介质的流动有利于干燥过程。
干燥过程
➢干燥分为两个阶段,即预结晶阶段和高温 干燥阶段
➢预结晶温度和时间
– 沸腾床:温度可高至160~180oC,时间8~15min。 – 搅拌式充填:温度120~140oC,时间1~l.5小时。 – 转鼓干燥时,在120℃以下缓慢升温,预结晶时
• PET的制造大致可分为两个阶段 – 第一阶段是由基本原料对二甲苯、甲苯、邻 苯二甲酸酐合成中间体对苯二甲酸二甲酯 (DMT)或对苯二甲酸(PTA)。 – 第二阶段是由DMT或PTA与乙二醇(EG) 进行酯化或酯交换反应,生成聚酯单体对苯 二甲酸双β-羟乙酯(简称BHET或DGT) – 各种工艺路线的区别主要在前一阶段,即单 体的合成阶段。
聚酯纤维(涤纶)简介..PPT共28页
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
聚酯纤维(涤纶)简介..
51、没有哪律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
聚酯纤维的结构和性能_图文
7.9
7.9
96.8
44.0
5
8
PEN纤维的性能 PEN纤维的耐化学腐蚀性、抗紫外线辐射、热稳定性和水解稳定性均优
于PET。 PEN的玻璃化温度高达110oC左右,其纤维可以耐200oC左右的温度。
目前纤维级的PEN树脂已由美国Shell公司研制成功并投放市场,其商品名 称为Vituf。美国Amoco公司的PEN纤维也已投放市场。
• 第四节 聚酯纤维的结构性能及改性
重点内容:聚酯纤维的各种改性方法和目的。
1.4.1 聚酯纤维的结构和性能
聚酯纤维的结构 – 分子链结构 – 聚集态结构 结晶结构 取向结构
聚酯纤维的性质 – 聚酯纤维的化学性质 – 聚酯纤维的物理性质
聚酯的分子结构PET
聚酯是指分子链中含有酯基的聚合物的总称 聚酯分子的重复单元结构中由三部分组成,即酯基、
62.0 252.0
1
0.682
61.5 248.5
5
0.677
58.8 237.3
8
0.750
57.0 232.0
10
0.656
55.4 226.5
15
0.712
54.7 217.5
随着间位苯环含量的增加,共聚酯的Tg和Tm下降,而冷结晶温度则上升。当 IPA的含量大于 9 mol % 时,共聚酯已无冷结晶峰存在。美国于1959年实现了 PET—IPA共聚酯工业化生产,该共聚酯的商品名为Vycron,主要用于制备易 染纤维。由于PET—IPA结晶速率慢,我国则更多用其制备高收缩纤维。应该 指出的是这种共聚酯广泛用于瓶用聚酯,IPA的添加量为2%~4%
改变聚酯的刚性结构单元
一、间苯二甲酸代替对苯二甲酸 在PET的直接酯化聚合过程中,用对称性较差的间苯二甲 酸(IPA)取代部分的对苯二甲酸(TPA)
【精品课件】聚酯纤维的结构和性能
化学改性
二、同时用间位和邻位对苯二甲酸代替对苯二甲酸
•这种改性方法的效果与用DMI替代DMT的效果类似,即随 着间位和邻位苯环含量的增加,共聚酯的Tg和Tm下降,而 冷结晶温度则上升。原苏联学者是将DMT残渣混合物进行 分离回收提纯,并通过催化氧化的方法将其中的对醛基苯 甲酸甲酯氧化,最终得到含DMT 68%,DMI 23%,DMO 9%(邻苯二甲酸二甲酯)的苯二甲酸混合物。该技术已于 1980左右工业化。
卷 绕 速 晶胞底面高×104(μm)
度
(m/min)
ቤተ መጻሕፍቲ ባይዱ
a
b
C
4750 5000 5500 6000
4.504 4.495 4.485 4.480
5.90 10.7 2
5.88 10.7 2
5.88 10.7 1
5.88 10.7 1
表观晶核侧面高×103(μm)
Λ010
Λ100
ΛT05
2.4
2.9
5.4
苯环和亚甲基链,大分子的两端各有一个羟基。 ❖ 例如:
聚酯的构象
❖ PET的旁式构象(能量高)
❖ PET的反式构象 (能量低)
构象的转变 ❖ 聚酯的分子链可转动发生重排,大约在100 oC时开始
结晶。在结晶过程中旁式构象逐步转化为反式构象。
PBT的分子结构
❖ PBT中亚甲基链节不是完全伸直的。 ❖ PBT重复单元结构中含有四个柔性的亚甲基链节,其
• 第四节 聚酯纤维的结构性能及改性
重点内容:聚酯纤维的各种改性方法和目的。
1.4.1 聚酯纤维的结构和性能
❖ 聚酯纤维的结构 – 分子链结构 – 聚集态结构 ▪ 结晶结构 ▪ 取向结构
❖ 聚酯纤维的性质 – 聚酯纤维的化学性质 – 聚酯纤维的物理性质
聚酯纤维教育课件
第二章 聚酯纤维
②缩聚反应 缩聚反应设备与酯交换基本相同,连续酯化后的
酯交换法连续生产聚酯工艺包括酯交换、预缩聚、 缩聚等过程,其原则工艺流程如图3-2所示。
①酯交换 将原料对苯二甲酸二甲酯连续加入熔化 器中,加热(150±5)℃熔化后,用齿轮泵送入高位槽 中。另将乙二醇连续加入到乙二醇预热器中预热至150160℃后,用离心泵送入高位槽中。将上述两种原料按 摩尔比1∶2分别用计量泵连续定量加入酯交换塔上部。
第二章 聚酯纤维
二、 聚对苯二甲酸乙二酯的生产
1 . 生产原理 用精制后的对苯二甲酸双羟乙酯在缩聚反应催化剂
和稳定剂缩聚反应,分离出乙二醇后即得聚对苯二甲酸 乙二醇酯,其反应如下:
第二章 聚酯纤维
由于缩聚反应属于可逆反应,为了使缩聚 反应进行完全,必须排出反应生成的低分子物质 (乙二醇),为此必须采用真空及强力搅拌,缩 聚反应最终压力不大于266.6Pa,才能获得高相 对分子质量的聚酯,一般产品的平均相对分子质 量不低于20000,用于制造纤维、薄膜的相对分 子质量约为25000。
聚酯纤维 PPT讲座
第二章 聚酯纤维
学习目的要求
初步掌握聚酯纤维的合成、纺丝等生产技术, 把握 结构、性能及应用, 了解其改性和新型聚酯纤维.
第二章 聚酯纤维
第一节 概述
聚酯是制造聚酯纤维、涂料、薄膜及工程塑料的 原料,是由饱和的二元酸与二元醇通过缩聚反应制得的 一类线性高分子缩聚物。这类缩聚物的品种随使用原 料或中间体而异,故品种繁多数不胜数。但所有品种均 有一个共同特点,就是其大分子的各个链节间都是以酯 基“-COO-”相联,所以把这类缩聚物通称为聚酯。 以聚酯为基础制得的纤维称为涤纶,是三大合成纤维 (涤纶、锦纶、腈纶)之一,是最主要的合成纤维。
3.聚酯纤维.doc解析
二、涤纶纤维的形态结构
用熔纺法制得的涤纶纤维,在光学显微镜中观 察发现它具有圆形的截面和光滑、均匀而无条痕 的纵向,见图。
涤纶的超分子结构
涤纶的超分子结构与纤维生产过程 中的拉伸和热处理有关。涤纶喷丝 成型后的初生纤维是无定形的,取 向度很差,需要进一步牵伸取向后 方能纺织加工。经过拉伸和热定型 处理后的纤维,结晶度约为60%,并 有较高的取向度。 涤纶的超分子结构称为“折叠链 — 缨状微原纤”
对苯二甲酸乙二酯(BHET)
直接酯化法:生产流程短,投资少,原料消耗低, 反应时间短,生产效率高,自20世纪80年代起已 成为聚酯的主要工艺和首选技术路线。
(3)直接加成法 (EO法)--直接法
HOOC-
-COOH+
2 CH2-CH2 O
对苯二甲酸(TPA)
环氧乙烷(EO)
HOCH2CH2COOC-
易回复。
另一方面,从涤纶的微结构来看,存在无定形区、结晶区和 取向度高的部位,分子间有比较牢固的联结点,分子间作用 力较大,受外力时不易产生形变。涤纶在一定外力作用下产 生的形变是可复形变,但在高度拉伸时,回复性能显著变差。
具有“洗可穿”性能
(3)耐磨性
涤纶的耐磨性仅次于锦纶而超过其他纤维。
结晶时,即转变为反式构象
相对分子质量及其分布
高聚物相对分子质量的大小直接影响其加工性能和纤维质量。 PET 的耐热、 光、 化学稳定等性质及纤维的强度均与相对 分子质量有关,如 PET 相对分子质量小于 1×104 时,就 不 能正常加工为高强力纤维。 工业控制通常采用相对粘度和特性粘数作为衡量相对分子质 量大小的尺度。 民用成纤 PET 切片的相对粘度ηr 至少为 1.30~1.36,相 当于 [η]=0.55~ 0.65dL/g(分升每克), 或相当于
第2章聚酯纤维1
2013-7-29 23
高分子材料加工工艺学
干燥过程伴随的水解反应
O C O C O OCH2CH2O C O C O O + H2O
280-300℃
O
C O
ห้องสมุดไป่ตู้
C O
OH + HOCH2CH2 O
C O
C O
O
2013-7-29
24
高分子材料加工工艺学
切片干燥的工艺控制
温度:
预结晶温度(170℃以下);干燥温度(180℃以下)
2.长(L)径(D)比 长径比是指螺杆工作长度(不包括鱼雷头及附件)与外
径之比。物料在这个长度上被输送、压缩和加热熔化。螺杆的加热面 积和物料停留时间都与炽杆长度成正比。长径比大,有利于物料的混 合塑化、提高熔体压力和减少逆流以及漏流损失。目前一般采用L/ D=20-27的螺杆,也有L/D=28-33的.但是螺秆太长,物料在高温下 的停留时间增加,对一些热稳定性较差的高聚物就会引起热分解。
1、螺杆各区温度的选择与控制
预热段:基本低于熔点,基本保持固体状态 (50~265 ℃)
压缩段:切片熔融,固态→粘流态;T=Tm+(27~33); 计量段:切片完全熔化;Tm为255℃切片,该区温度 约285℃;
2、熔体输送过程(螺杆→法兰→箱体) 法兰区:较短;温度等于或略低于计量段; 纺丝箱体:熔体停留约1.5min;箱体温度为285~288 ℃。
2013-7-29
PET切片的结晶速率
22
高分子材料加工工艺学
结晶对切片干燥速率的影响
结晶时体积收缩挤压空穴,一部分水挤压 到表面,加快干燥。 另一部分水挤压到切片内部,170℃外加热 干燥时,切片表面温度高于内部温度,表 面结晶后形成致密化层而不利干燥。 圆柱体切片干燥优于平板切片,因为外表 面积大于内表面积,补偿了外表面结晶度 较大而形成的扩散阻力。
高分子材料加工工艺学
干燥过程伴随的水解反应
O C O C O OCH2CH2O C O C O O + H2O
280-300℃
O
C O
ห้องสมุดไป่ตู้
C O
OH + HOCH2CH2 O
C O
C O
O
2013-7-29
24
高分子材料加工工艺学
切片干燥的工艺控制
温度:
预结晶温度(170℃以下);干燥温度(180℃以下)
2.长(L)径(D)比 长径比是指螺杆工作长度(不包括鱼雷头及附件)与外
径之比。物料在这个长度上被输送、压缩和加热熔化。螺杆的加热面 积和物料停留时间都与炽杆长度成正比。长径比大,有利于物料的混 合塑化、提高熔体压力和减少逆流以及漏流损失。目前一般采用L/ D=20-27的螺杆,也有L/D=28-33的.但是螺秆太长,物料在高温下 的停留时间增加,对一些热稳定性较差的高聚物就会引起热分解。
1、螺杆各区温度的选择与控制
预热段:基本低于熔点,基本保持固体状态 (50~265 ℃)
压缩段:切片熔融,固态→粘流态;T=Tm+(27~33); 计量段:切片完全熔化;Tm为255℃切片,该区温度 约285℃;
2、熔体输送过程(螺杆→法兰→箱体) 法兰区:较短;温度等于或略低于计量段; 纺丝箱体:熔体停留约1.5min;箱体温度为285~288 ℃。
2013-7-29
PET切片的结晶速率
22
高分子材料加工工艺学
结晶对切片干燥速率的影响
结晶时体积收缩挤压空穴,一部分水挤压 到表面,加快干燥。 另一部分水挤压到切片内部,170℃外加热 干燥时,切片表面温度高于内部温度,表 面结晶后形成致密化层而不利干燥。 圆柱体切片干燥优于平板切片,因为外表 面积大于内表面积,补偿了外表面结晶度 较大而形成的扩散阻力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/1
15
图5-7 部分纤维的强度-伸长率曲线
1-羊毛 2-腈纶 3-黏胶纤维 4-锦纶 5-涤
纶 6-棉 2021/3/1
16
(2)弹性
涤纶具有优良的弹性,在较小的外力作用下不易变 形,当受到较大外力作用而产生形变时,取消外力 后,其回复原状的能力也较强,其形变回复能力与 羊毛相近。
涤纶
锦纶6
255~260 238~240 67 ~ 81
0.32 2×10-4
215~220 180
0.46(25~200℃) 4.2×10-4
涤纶的熔点比较高,涤纶纤维的耐热性和绝热性较好。
2021/3/1
12
热收缩
在生产过程中没有经过热定型的涤纶纤维,在 沸水中或在其它加热的条件下,将会发生剧烈的 收缩,经过热定型后将比较稳定。
具有“洗可穿”性能
2021/3/1
18
(3)耐磨性
涤纶的耐磨性仅次于锦纶而超过其他纤维。
黏
涤纶的超分子结构称为“折叠链—
缨状微原纤”
2021/3/1
9
三、涤纶的吸湿性性能
涤纶纤维在标准状态下的吸湿率只有 0.4%,即使在100%相对湿度下的吸湿 率也仅为0.6-0.8%。
吸湿性低,涤纶纤维在水中的溶胀度 小,干、湿强度和断裂延伸度基本相 同,导电性差,容易产生静电和沾污 现象以及染色困难等。
2012 年 3820.14 3486.76 3132.64 939.80 2192.86
2013 年 4121.94 3731.53 3340.64 948.74 2391.90
从分省市产量统计看:浙江产量居全国之首。第二到第五位依次是江苏、福建 、四川、广东,而上海、山东、河南传统聚酯涤纶大省分居六、七、八位。
2021/3/1
17
涤纶弹性好的原因有两方面:
一方面涤纶具有较大的弹性模量,这表明纤维的刚性强,受 外力时不易产生形变;一旦产生形变,由于回弹率较高,又 易回复。
另一方面,从涤纶的微结构来看,存在无定形区、结晶区和 取向度高的部位,分子间有比较牢固的联结点,分子间作用 力较大,受外力时不易产生形变。涤纶在一定外力作用下产 生的形变是可复形变,但在高度拉伸时,回复性能显著变差。
2021/3/1
5
聚酯纤维(涤纶)的结构和性能
一、基本组成
涤纶的基本组成物质是聚对苯二甲酸乙二酯, 分子结构如下:
2021/3/1
6
结构特点:
1)是含有苯环的线形大分子,没有大的支 链,所有苯环几乎处于一个平面上,因此大 分子易于平行排列,有较好的结晶倾向。
2)分子中
刚性较大,PET熔点
较高;—CH2—CH2—具有柔性,分子链易 折叠。
穿着时感觉气闷,但易洗快干。
2021/3/1
10
四、涤纶的热性能
涤纶是热塑性纤维。 1.涤纶的热性能常数 2. 热收缩 3.玻璃化温度(Tg)
2021/3/1
11
涤纶纤维和锦纶6的某些热性能物理常数
纤维 项目 熔点(℃) 软化点(℃) 玻璃化温度(Tg) 比热(卡/克/℃) 导热系数(卡/厘米/秒 /℃)
第三章 聚酯纤维
2021/3/1
1
第一节 概述
聚酯(PET)纤维是由大分子链中的各链 节通过酯基连成成纤聚合物纺制的合成纤维, 英文缩写PET。我国将聚对苯二甲酸乙二酯 含量大于85%以上的纤维简称为涤纶。
2021/3/1
2
聚酯是制造聚
酯纤维、涂料、薄膜及工程
ቤተ መጻሕፍቲ ባይዱ塑料的原料,是由饱和的二
元酸与二元醇通过缩聚反应
PET的结晶度与Tg的关系:当结晶度由零升高到 30%时,Tg向较高温度移动, 当结晶度进一步升高 时,Tg反而向较低温度移动。
在低结晶度的情况下, 可能产生了众多的小晶体, 类似于交链,有阻碍无定形区链段运动的作用; 在高结晶度的条件下,可能形成了少而大的结晶, 能允许无定形区的链段比较自由一些。
涤纶丝在热空气中,开始时长度发生迅速收 缩,30分钟后收缩率不再继续增加,平衡收缩率 约为8%。若在热水中进行热处理,只需5分钟便 达到了稳定的长度,同时由于水的溶胀作用,使 平衡收缩率增大到14%。
2021/3/1
13
玻璃化温度(Tg)
无定形PET:Tg为67℃ ; 部分结晶PET:Tg为81℃ 取向又结晶的:Tg为125℃
2021/3/1
4
早年合成的聚酯大多为脂肪族化合物,不具有纺织纤维的 使用价值。
1941年,英国人用对苯二甲酸(DMT)和乙二醇(EG)合 成了聚对苯二甲酸乙二酯(PET)。
1953年,美国首先建厂生产PET纤维,其是大品种合成纤 维中发展较晚的一种。
近年研发的新聚酯纤维,如聚对苯二甲酸丁二酯(PBT) 纤维,聚对苯二甲酸丙二酯(PTT)纤维,具有超高强度、 高模量的全芳香族聚酯纤维。
3)分子中不含亲水基团, 属疏水性纤维,吸湿性差。
极性小,
二、涤纶纤维的形态结构
用熔纺法制得的涤纶纤维,在光学显微镜中观 察发现它具有圆形的截面和光滑、均匀而无条痕 的纵向,见图。
2021/3/1
8
涤纶的超分子结构
涤纶的超分子结构与纤维生产过程 中的拉伸和热处理有关。涤纶喷丝 成型后的初生纤维是无定形的,取 向度很差,需要进一步牵伸取向后 方能纺织加工。经过拉伸和热定型 处理后的纤维,结晶度约为60%,并 有较高的取向度。
制得的 一类线性高分子缩聚
物。这类缩聚物的品种因随
使用原 料或中间体而异,故
品种繁多数不胜数。但所有
品种均 有一个共同特点,就
是其大分子的各个链节间都
是以酯 基“-COO-”相联,
2021/3/1
所以把这类缩聚物通称为聚 3
近年全国化纤产量情况
品种 化纤总量 合成纤维
涤纶 短纤维 长丝
2009年 2726.06 2494.05 2204.39 789.17 1415.22
2021/3/1
14
五.机械性能
(1)强度和断裂伸长率
涤纶的强度和断裂伸长率不仅与其分子结构有关,还与 纤维纺丝过程中的拉伸和热处理工艺密切相关。经拉伸 后,大分子链按一定方向排列,取向度提高,使其能均 匀承受外力,故强度提高。
在适当的热处理条件下,涤纶在纺丝过程中拉伸程度愈 高,则纤维的取向度愈高,纤维的断裂强度也愈高,而 断裂伸长率却较低;反之,则可能获得低强高伸的纤维。 即改变拉伸和热处理条件,可制成高强低伸或低强高伸 等不同品种的纤维。