电磁兼容标准与测试
电子产品电磁兼容性测试流程与标准要求
电子产品电磁兼容性测试流程与标准要求电磁兼容性测试是指在电子产品研发及生产过程中,对其电磁辐射与电磁抗干扰特性进行评估和验证的过程。
该测试旨在确保电子产品在电磁环境下能够正常工作,不对周围设备和人员产生干扰或危害。
下面将为您介绍电磁兼容性测试流程与标准要求。
电磁兼容性测试流程主要包括预测试准备、试验方案设计、试验执行与数据分析、结果评估以及报告撰写等环节。
首先,预测试准备阶段主要包括定位被测试产品的电磁兼容性问题,准备测试设备与设施,搜集相关标准和法规要求等。
在此阶段,需要了解产品的电磁特性和设计,以及其在实际使用环境中可能遇到的电磁干扰源和辐射环境,为后续的测试方案制定提供依据。
接下来是试验方案设计环节,根据预测试准备得到的信息,制定出合适的测试方案,包括测试方法、测试设备和仪器的选择,测试参数的设定等。
测试方案应符合相关的国际、国内标准和法规要求,例如IEC 61000系列标准、MIL-STD-461等。
同时,对试验过程中可能出现的问题进行预先评估和控制,确保测试的可行性和有效性。
然后是试验执行与数据分析环节,按照测试方案执行相应的测试,包括辐射发射测试、电磁抗干扰测试等。
在测试过程中,需要严格控制测试条件,确保测试结果的准确性和可靠性。
测试数据需要进行详细的记录和分析,包括电磁辐射水平、频率范围、辐射模式、电磁抗干扰能力等。
接着是结果评估环节,根据测试数据和相关标准要求,对产品的电磁兼容性进行评估。
结果评估包括判断是否符合相关标准和法规的要求,以及评估产品的电磁辐射和抗干扰能力是否满足设计要求。
如果不符合要求,需要进行进一步的改进和调试,直到达到要求为止。
最后是报告撰写阶段,将测试过程、测试结果和评估结论等整理成报告,供相关部门和客户参考。
报告应包括测试方案、测试数据、评估结论和建议等内容,以便后续的产品设计和生产改进。
以上是电磁兼容性测试的流程与标准要求。
通过合理的测试流程和遵守相关的标准要求,可以确保电子产品的电磁辐射和干扰问题得到有效控制,提高产品的可靠性和安全性。
电磁兼容性测试标准
电磁兼容性测试标准电磁兼容性测试是指在电磁环境条件下,电子设备能够正常工作而不会产生不可接受的电磁干扰,同时也不会对外部环境造成不可接受的电磁干扰。
为了确保电子设备的正常运行和保障人身安全,各国都制定了相应的电磁兼容性测试标准,以规范电子设备的电磁兼容性测试。
首先,电磁兼容性测试标准主要包括国际标准、欧洲标准、美国标准和中国标准。
国际标准由国际电工委员会(IEC)制定,欧洲标准由欧洲电工委员会(CENELEC)制定,美国标准由美国国家标准协会(ANSI)和美国电气电子工程师协会(IEEE)制定,中国标准由中国国家标准化管理委员会(SAC)制定。
这些标准涵盖了电磁兼容性测试的各个方面,包括电磁兼容性测试方法、测试设备、测试环境等内容,能够有效地指导电子设备的电磁兼容性测试工作。
其次,电磁兼容性测试标准的制定是为了保证电子设备在电磁环境下的正常运行。
在现代社会中,电子设备无处不在,它们的正常运行直接关系到人们的生产生活。
如果电子设备在电磁环境下不能正常工作,就会给人们的生产生活带来不便甚至危害人身安全。
因此,制定电磁兼容性测试标准,对于保障人们的生产生活安全具有非常重要的意义。
再次,电磁兼容性测试标准的执行是电子设备生产企业的法定义务。
根据各国的相关法律法规,电子设备生产企业必须对其产品进行电磁兼容性测试,并符合相应的测试标准。
只有通过了电磁兼容性测试并符合相关标准的电子设备才能够进入市场销售。
这样可以有效地避免电子设备对外部环境造成不可接受的电磁干扰,保障人们的生产生活安全。
最后,电磁兼容性测试标准的不断完善和更新是与时俱进的需要。
随着科学技术的不断发展和电子设备的不断更新换代,电磁环境条件也在不断变化。
因此,电磁兼容性测试标准也需要不断完善和更新,以适应新的电磁环境条件和新型电子设备的测试需求。
只有不断完善和更新电磁兼容性测试标准,才能够更好地保障人们的生产生活安全。
综上所述,电磁兼容性测试标准对于保障电子设备的正常运行和人们的生产生活安全具有非常重要的意义。
emc电磁兼容2级测试标准
EMC电磁兼容2级测试标准是一个重要的规范,它规定了电磁兼容性测试的严格要求和标准。
以下是一个关于EMC电磁兼容2级测试标准的800字说明:一、测试范围EMC电磁兼容2级测试标准适用于所有在电子设备中使用的材料和组件,包括微处理器、半导体器件、电源模块、电路板等。
这些设备必须符合EMC标准,以确保它们在各种环境下都能正常工作,并且不会对周围环境造成干扰。
二、测试项目1. 辐射骚扰测试:测试设备在向外发射电磁辐射时,其产生的骚扰是否符合标准。
2. 传导骚扰测试:测试设备在向外部电源线传输电磁骚扰时,其产生的骚扰是否符合标准。
3. 谐波电流辐射测试:测试设备在谐波电流辐射方面是否符合标准。
4. 静电抗扰电压测试:测试设备在受到静电电压干扰时,其设备能否正常工作。
三、测试方法和要求在测试过程中,需要严格按照测试方法和要求进行操作。
对于不同的测试项目,需要使用不同的测试仪器和方法。
例如,对于辐射骚扰测试,需要使用辐射骚扰测试仪进行测量,并且需要保证被测设备的周围环境符合标准要求。
对于静电抗扰电压测试,需要将被测设备放在一个静电屏蔽室中,并且需要保证室内的湿度和电压符合标准要求。
四、测试结果判定根据测试结果,如果被测设备符合EMC电磁兼容2级测试标准,则可以认为该设备是合格的。
如果被测设备不符合标准,则需要进行相应的整改和调试,直到符合标准为止。
五、实际应用EMC电磁兼容2级测试标准在实际应用中非常重要。
许多电子设备制造商都需要通过EMC 认证才能进入市场销售。
因此,EMC电磁兼容2级测试标准是电子设备制造商必须遵守的重要规范之一。
此外,EMC电磁兼容2级测试标准也是保证电子设备正常运行的重要保障之一。
只有通过严格的EMC测试,才能确保电子设备的性能和可靠性,并降低因电磁干扰而导致的问题和风险。
总之,EMC电磁兼容2级测试标准是保证电子设备正常运行的重要保障之一,需要严格遵守测试方法和要求,确保设备符合标准要求。
安全通用要求并列标准电磁兼容要求和试验
安全通用要求并列标准电磁兼容要求和试验
1. 设备和系统应符合相关的安全标准和法规,包括但不限于机械安全、电气安全、防火安全等方面的要求。
2. 设备和系统应具有完善的防护功能,以确保操作人员和周围环境的安全。
3. 设备和系统应配备必要的安全设施和警示标识,以提醒操作人员注意安全事项。
4. 操作人员应经过必要的培训,并了解设备和系统操作的安全规程。
电磁兼容要求:
1. 设备和系统应符合相关的电磁兼容标准,以确保在电磁环境下的正常运行。
2. 设备和系统应具有抗干扰功能,以降低外界电磁干扰对其正常运行的影响。
3. 设备和系统应具有电磁辐射和电磁敏感性符合相关标准的活动限值,以降低对周围环境和其他设备的电磁干扰。
4. 设备和系统应具有电磁辐射和敏感性测试报告,以证明其满足电磁兼容要求。
试验要求:
1. 设备和系统应进行必要的安全试验,以验证其符合安全要求。
2. 设备和系统应进行电磁兼容试验,以验证其符合电磁兼容要求。
3. 试验过程应记录详细的试验数据,并留存备查。
4. 设备和系统应具有相关试验报告,以证明其符合安全和电磁兼容要求。
抱歉,我无法完成您的要求。
emc电磁兼容测试标准
emc电磁兼容测试标准
电磁兼容性(EMC)测试标准是一组用于评估电子设备在电磁环境中的性能和可靠性的标准。
这些标准涉及到设备的电磁干扰(EMI)发射和电磁敏感度(EMS)的测量,以及电磁辐射和传导的测试。
不同的国家和地区有不同的EMC测试标准,其中一些最广泛使用的标准包括:
1. CISPR 22:这是一个国际标准,适用于计算机设备和类似设备的辐射和传导骚扰测量。
2. CISPR 25:这是一个汽车电子设备的EMC测试标准,包括电磁兼容性和电子设备的可靠性测试。
3. EN 55022:这是一个欧洲标准,适用于计算机设备和类似设备的辐射和传导骚扰测量。
4. EN 55024:这是一个欧洲标准,适用于所有电子设备的免疫性测试。
5. FCC Part 15:这是美国联邦通信委员会的规定,适用于计算机设备和类似设备的辐射和传导骚扰测量。
6. IEC 61000-4-2:这是一个国际标准,适用于电子设备的ESD(静电放电)测量。
7. IEC 61000-4-3:这是一个国际标准,适用于电子设备的辐射测量。
8. IEC 61000-4-4:这是一个国际标准,适用于电子设备的瞬态传导骚扰测量。
9. IEC 61000-4-5:这是一个国际标准,适用于电子设备的瞬态电压骚扰测量。
10. IEC 61000-4-6:这是一个国际标准,适用于电子设备的有源和无源传导骚扰测量。
以上是一些常见的EMC测试标准,但并不是全部。
在进行电磁兼容性测试时,应选择适合特定设备和应用的适当标准。
电力设备的电磁兼容性测试
电力设备的电磁兼容性测试电力设备的电磁兼容性测试是为了评估设备对于电磁干扰的抵抗能力以及其自身产生的电磁干扰水平。
这项测试能够保证电力设备在各种工作环境中能够正常运行,并且不对周围的其他设备产生干扰。
本文将详细介绍电力设备电磁兼容性测试的内容和常见的测试方法。
一、电磁兼容性测试的定义和意义电磁兼容性(Electromagnetic Compatibility,简称EMC)是指设备在电磁环境中,能够以设计时的指标和要求的功能正常运行,同时不对其他设备造成不可接受的干扰的能力。
电磁兼容性测试旨在评估设备是否符合EMC的要求。
电力设备的电磁兼容性测试具有重要的意义。
首先,合格的电力设备能够在电网的各个环节中发挥作用并保持可靠运行。
其次,电力设备产生的电磁干扰会对周围的其他设备、通信系统和无线电频谱造成干扰,可能导致通信故障和安全隐患。
通过进行电磁兼容性测试,可以确保电力设备在工作环境中的稳定性和可靠性。
二、电磁兼容性测试的内容及标准电磁兼容性测试的内容包括电磁干扰抵抗性测试、电磁辐射测试和静电放电测试等。
其中,电磁干扰抵抗性测试主要评估设备对于来自外部电磁干扰的抵抗能力;电磁辐射测试主要评估设备产生的电磁辐射水平;静电放电测试用于评估设备在静电放电环境中的抵抗能力。
根据不同国家和地区的要求,电磁兼容性测试需要符合相关的标准和规范。
国际电工委员会(IEC)的IEC 61000系列标准是电磁兼容性测试中最为广泛使用的标准。
IEEE(电气和电子工程师协会)和CISPR(国际无线电干扰特别委员会)也发布了一系列与电磁兼容性测试相关的标准。
三、电磁兼容性测试的方法和流程电磁兼容性测试的方法可以分为实验室测试和实地测试两种。
实验室测试通常在受控的环境中进行,确保测试的可重复性和可比较性;而实地测试则是在实际工作现场进行,模拟真实的工作环境。
电磁兼容性测试的流程包括以下几个步骤:1.准备测试环境:确定测试设备的布置和测试场地的电磁环境。
电磁兼容标准、测试(四)
电磁兼容标准、测试(四)1-4 通用的抗扰度标准①试验端口的概念所谓端口是指产品可能感受干扰的部位,与通用的电磁骚扰发射标准中的端口概念相类似,也是指机壳、交流电源线、直流电源线、接地线、信号线和测量与控制线。
对一个电气和电子产品来说,有可能只包含其中的一部分,故试验应按实际情况来进行。
②各试验端口的抗扰度要求各抗扰度标准的要求是根据不同的试验端口来分别制定的。
具体内容参见相关标准,此处不另介绍。
③试验中的注意事项·试品应按实际使用情况中,以对干扰最敏感的工作模式下进行试验。
试验中还要适当改变布局以求达到最大敏感度。
·试验中应将试验配置、试品的工作方式及试验的布局等情况明确记录在案,以便必要时可以重现及对比试验结果。
·如果在被试产品的用户手册中规定了试品所需的外部保护装置(或保护措施),那么试品就应当在有保护的情况下进行试验。
·如果试品有许多类似的端口,或接法类似的端口,则试验应当选择足够数量的端口来模拟实际工作情况,并保证能覆盖各种不同类型的端口。
但对端口的选择情况要记录在案。
·除非另有说明,试验应在额定电压和规定的工作条件下进行。
④试品性能的评定准则尽管通用抗扰度标准几乎涉及了所有的民用电气和电子产品,但是试验结果总不外乎是以下几种:情况A:试品在试验中和试验后都能正常工作,无性能下降和低于制造商规定的性能等级现象发生。
情况B:试品在试验后可以正常工作,且无性能下降和低于制造商所规定的性能等级现象发生。
情况C:允许试品有暂时性的性能降低,只要这种功能是可以通过控制操作、人工复位,甚至是关机后恢复的。
显然上述情况对产品要求是不同的,情况A为最高;情况C为最低。
对于具体的产品究竟应该认为上述哪一种情况是合格的(所谓判定的准则),应由相应的产品标准或产品制造商给出,在通用标准则无法直接给出。
1-5 小结针对不同的工作环境,不同的标准给出了多个试验端口,以及在每个试验端口上应该进行的试验项目要求,但在细看之下还是有几点值得小结的:·对住宅、商业、轻工业环境和工业环境的产品,尽管环境不同,但试验端口的设置和试验项目的选择大体上是一致的,只是限值不同。
电磁兼容测试标准和要求
GJB3405-98
20-1000MHZ屏蔽室场分布测试方法
GJB2926-97
电磁兼容性测试实验室认可要求
GJB2080-94
接收点场强的一般测量方法
GJB5313-2004
电磁辐射暴露限值和测量方法
GJB870-90
军用电子设备方舱通用规范
GJB786-89
预防电磁场对军械危害的一般方法
RTCA/DO-160
Environmental Testing环境实验
RTCA/DO-160-Section16
Power Input电源输入
RTCA/DO-160-Section17
Voltage Spike电压尖峰
RTCA/DO-160-Section18
AF Conducted Susceptibility AF传导敏感度
频率变化测试
IEC 61000-4-29
直流电压跌落和暂降测试
GB/T17799.1-99
IEC61000-6-1:1997
电磁兼容通用标准居住、商业和轻工业环境中的抗扰度试验
GB/T17799.2-2003
IEC61000-6-2:1999
电磁兼容通用标准工业环境中的抗扰度试验
GB/T17799.3-2001
GB/T 17626.7-98
IEC61000-4-7:1991
电磁兼容试验和测量技术射供电系统及所连设备谐波、谐间波的测量和测量仪器导则
GB/T 17626.8-98
IEC61000-4-8:1993
电磁兼容试验和测量技术工频磁场抗扰度试验
GB/T 17626.9-98
IEC61000-4-9:1993
IEC 61000-4-5 电磁兼容测试标准
前言本标准等同采用第部分试验和测量技术第分部分浪涌本标准是系列国家标准的之一电磁兼容试验和测量技术抗扰度试验总论电磁兼容试验和测量技术静电放电抗扰度试验电磁兼容试验和测量技术射频电磁场辐射抗扰度试验电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验电磁兼容试验和测量技术电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度电磁兼容试验和测量技术测量仪器导则电磁兼容试验和测量技术工频磁场抗扰度试验电磁兼容试验和测量技术脉冲磁场抗扰度试验电磁兼容试验和测量技术阻尼振荡磁场抗扰度试验电磁兼容试验和测量技术验电磁兼容试验和测量技术振荡波抗扰度试验本标准的附录本标准的附录本标准由中华人民共和国电子工业部提本标准由全国电磁兼容标准化联合工本标准起草单位电子工业部标准化研究工业部广州电器科学研究力工业部武汉高压研究本标准主要起草前言国际电工各个国家电工技术国家委员会的世界性的标准化其宗旨是在电气和电子技术领域内促进所有与标准化问题有关的国活动之还出版国际其制定工作由各技术所讨论内容感兴趣的国家委员会都可以参加这项工有联络的国府和非政府机构也参与制定工与国际标准个组织间的协议密切有关技术问题上的正式决定或协议是由技术委员会作出委员会代表了对这一问题有特别兴趣的所有国家可能地表达出对所涉及的问题在国际上的一这些决定或协议报告或指南的形式推荐形式供国际使在此意义上为各个国家委员会所为促进国际上国家委员会同意尽国际标准为它们的国家标准或地区在国家标准或地区标准中应明确指出与相应标准之间的任何不国际第技术业过程测量和控分统本标准第部分的第具有基础电磁兼容出版物的地本标准的文本基于下列文表决报告关于投票批准这个标准的全部资料可以在上表列出的表决报告中是本标准的一个组成仅作为参引言本标准是构成如下第一部分综述综合本定语第二部分环境环境的描述环境的分类兼容性电平第三部分限值发射限值抗扰度委员会的责任第四部分试验和测量技术测量技术试验技术第五部分安装和减缓导则安装导则减缓方法和装置第九部分其他每一部分被进一步分成标准或技术报告本分部分是一个国际出了与冲击流有关的抗扰度要求和试验程中华人民共和国国家标准电磁兼容试验和测量技术浪涌抗扰度试验范围本标准规定了设备对由开关和雷电瞬变过电压引起的单极性要方法和推荐的试验等级定了几个与不同环境和安装状态有关的试验等出的要求适用于电气本标准的目的是建立一个共同的基准以评定设备在遭受来自电力线和互连线上高能量骚扰时的性本标准规定了试验等级试验设备试验配置试验程在试验室试验的任务就是要找出在规定的工作状态下工作由开关或雷电作用所产生的有一定危害电平反本标准不对绝缘物耐高压的能力进行本标准不考虑直击本标准不对特殊设备或系统的试验作出规目的是为有关专业标准化技术委员会提供一个一般性的基本依专业标准化技术用户和设备制造商设备选择合适的试验项目和试验等引用标准下列标准所包含的条过在本标准中引用而构成为本标准的条本标准出版版本均为有所有标准都会用本标准的各方应探讨使用下列标准最新版本的可能电磁兼容术高电压试验技术第一部分一般试验要脉冲技术和设备第一部分脉冲术语和定义概述开关瞬态系统开关瞬态与以下内容有关主电源系统切换如电容器组的切国家质量技术监督局批准实施配电系统内在仪器附近的轻微开关动作或者负荷变与开关装置有关的谐振电各种系统如对设备组接地系统的短路和电雷电瞬态雷电产生主要原理如下直接雷击于外部电注入的大电流流过接地电阻或外部电路阻抗而产生在建筑物导体上产生感应电压和电流的间接雷之间或云层中的雷击或击于附近物体的雷种雷击产生电磁场附近直接对地放电的雷电入地电流耦合到设备组接地系统的公共接地当保护装置动作流可能发生迅速变可能耦合到内部电瞬态的模拟信号发生器的特性应尽可能地模拟上述如果干扰源与受试设备的端口在同一线路如在电源网络接耦发生器在受试设备的端口能够模拟一个低阻抗如果干扰源与受试设备的端口不在同一线路接耦发生器能够模拟一个高阻抗定义除非另有说述定义以及中的定义适用于平衡线一对被对称激励的导差模到共模的转换损失小于耦合网络将能量从一个电路传送到另一个电路的电去耦网络用于防止施加到上冲击其他不作试验的或系统的电持续时间规定波形或特征存在或持续受波前时间冲击前时间是一个虚拟参数定义为值和值两点之间所对应时间间的图冲击流的波前时间是一个虚拟参数定义为值和值两点之间所对应时间间的图抗扰度或系统面临电磁骚扰不降低运行性能的能见电气设备组用来实现某种特殊目的或多种目的并有协调特性的一组有关电气互连线包括入输出线路通信线平衡第一级保护防止大部分能量超越指定界面传播的上升时间脉冲瞬时值首次从给定下限值上升到给定上限值所经历见注除特别指明外下限值和上限值分别定为脉冲幅值的第二级保护抑制从第一级保护让通的能量的它可以是一个特可以是固有的特注是指有或几乎没有发生变化地通过冲击沿线路传送的电或功率的瞬态其特性是先快速上升后缓慢注以下简称系统通过执行规定的功能来达到特定目相互依赖部分组成的集注系统被认为用一假想的界面将其与环境和其他外部系统分离该界面切断了它们之间的联通过这些联系统受到环境和外部系统的影响或者系统本身对环境和外部系统产生半峰值时间浪涌的半峰值是一个虚拟参定义为虚拟起点到半峰值时的时间间瞬态在两相邻稳态之间变化的物理量或物理变化时间小于所关注的时间尺见试验等级优先选择的试验等级范围如表表试验等级等级开路试验电压特定注为开放等级可在产品要求中规定试验等级应根据安装情况装类别在附录的中给较低的试验等级也应得到对不同界面的试验等级的选择见附录试验设备组合发生图为组合波信号发生器的电路原理选择不同元的值以使信号发生器产生路状态的电流路时信号发生器的等效输出阻抗为为方便起义浪涌信号发生器的等效输出阻抗为开路输出电压峰值与短路输出电流峰值之能产生开路电压波短路电流波形的信号发生器被称为组合波浪涌信号发生混合信号发生注电压和电流波形是输入阻抗的函数当浪涌加至设备时由于安装的保护装置的适当没有保护装置或保护装置不动作而导致飞弧或击穿的输入阻抗可能发生变因此当负载瞬间变化时从同一试验信号发生器必须能输出负载瞬间变化所需的电压波和电流本标准中描述的组合波信号发生器与其他标准中规定的混合信号发生器相组合波信号发生器的特征与性能开路输出电压至少在范围内能输出浪涌电压波形见图和表开路输出电压容短路输出电流至少在范围内能输浪涌电流波形见图和表短路输出电流容极性相位偏移随交流电源相角在重复率每分钟至少一应该使用输出端浮地的信号发生对于专门的试验条第章和附录加或增加要求的等效源这时和耦合去耦网络相连的开路电压波和短路电流波不再分别是和合波形信号发生器特性的校验为了比较不同信号发生器的试验结校验信号发生器的特按下述程序测量信号发生器的最基本特信号发生器的输出应与有足够带宽和电压量程的测量系统连便监视波形的特信号发生器的特性应在充电电压相同时于开载大于或等于载小于或等于校注与开路电压对应的短路电流最小为路电压对应的短路电流最小为符合的试验信号发生器图为脉冲信号发生器的电路原理选择不同元使信号发生器产生注组织的简称其中文名称国际电报和电话咨询信号发生器的特征与性能开路输出电压至少在范围内能输出浪涌电压波形见图和表开路输出电压容短路输出电流至少在范围内能输浪涌电流波形见表短路输出电流容极性重复率每分钟至少一应该使用输出端浮地的信号发生信号发生器特性的校验信号发生器的校验状态同除外注与开路电压对应的短路电流最小为路电压对应的短路电流最小为耦耦网络耦合耦网络不应明显影响信号发生器的参数例如开路路电应在规定的容差范围例外用气体放电管耦注电感损耗材料会减轻耦合耦网络应满足以下要用于交直流电源线的耦去耦网适用于组合波信号发生电压和电流的波前时间和半峰值时间应分别在开路情况下和短路情况下校信号发生器的输出或其耦合网络应与有足够带宽和电压量程的测量系统连接以便监视开路电压波用电流互感器测量短路电流波将耦合网络输出端子之间的短路连线穿过电流互感器的穿孔即在耦耦网络的输出端有波形参数和信号发生器的其他性能参数应与中规定的相同就如同在信号发生器本身输出的一注当信号发生器阻抗根据试验配置要求从增加到或时耦合网络输出的试验脉冲持续时间可能会明显变用于电源线的电容耦合在接入电源去耦网络以通过电容耦合将试验电压按线线或线地方式加单相电源系统试验配置如图和图电源系统试验配置如图和图耦合耦网络的额定参耦合电容或试验电源去耦当没有与去耦网络连接时在未加浪涌线路上的残余浪涌电压不应超过最大可施加电压的网络没有与去耦网络连接去耦网络电源输入端上的残余浪涌电压不应超过所施加试验电压的电源电压峰值的两者中取较上述单接地特性对三相线和保护样有用于电源线的电感耦合用于电源线的电感耦合正在考虑用于互连线的耦耦网络应根据线路功能和运行状态来选择耦合的方产品技术要求中应对此作出规耦合方法的示例如下电容耦合用气体放电管耦对端口试验时以下各条中规定的不同配置可能给不出可比较的结在产品技术要求和必须选择最合适的注图中的为电感的电阻部分电阻值的大小取决于传输信号所允许的衰减程用于互连线的电容耦合对非屏蔽不平衡线路当电容耦合对该线上的通信功能没有影响用此方其应用如图线线耦合和线耦电容耦去耦网络的额定参数耦合电容去耦电感有补偿电流注应考虑信号电流容量它取决于受试用气体放电管耦合对非屏蔽平衡用气体放电管耦合如图本方法也可用在因功能问题而不能使用电容耦合的场该功能问题是由将电容接至而引图就多芯电缆中的感应电压而合网络还具有调节浪涌电流分布的任因合网络中的电阻芯电示上信号发生值约为应超过用气体放电管进行的耦合可以通过并联电容来示例当线路传输信号频率在频率较高时不使耦合耦网络的额定参数为耦合电阻气体放电去耦电感型磁芯电流注在某些情况下由于功能原因需使用启动电压较高的气体放电管当运行状态不受太大影响时可使用气体放电管以外的其他元件其他耦合方法其他耦合方法正在考虑试验配置试验设备下述设备是试验配置的一部分受辅助电定的类型和长耦合或气体放电信号发生波信号发生信号发生器去耦网和附加的电源试验的配置浪涌经电容耦合网络加电源端图和图为了避免对由同一电源供电的非受试设备产生不利要使用去耦网便为浪涌波提供足够的去耦得能在受试线路上形成规定的波如果没有其他规和耦合耦网络之间的电源线长度为更为模拟典型耦合某些情况必须使用附加的规定说明见注某些美对交流电源要求按图和图配置但使用阻抗进行试验尽管这是一个更严格的试验一般要求是用非屏蔽不对称工作互连线试验的配置一般而图用电容向线路施加耦网络对受试线路的规定功能状态不应产生影图给出了另一个试验气体放电管耦具有较高信号传输频率的线路使根据传输频率下的容性负载来选择耦合方如果没有其他规和耦合耦网络之间的互连线长度为更非屏蔽对称工作互连线信线试验的对于平衡互信常不能使用电容耦合方此时耦合是由气体放电管来完成推荐标准不能对气体放电管触发气体放电管约为级作规定二级保护没有气体放电管的情况注应考虑两种试验布置对仅在有第二级保护的设备级抗扰度试验配置用较低的试验等级如或对有第一级保护的系统级抗扰度试验配置用较高的试验等级如或如没有其他规和耦耦网络之间的互连线长度为更屏蔽线试验的配置对于屏蔽合去耦网络不再适应根据图将浪涌施加属外线的屏蔽层对于屏蔽线一端接地的图进为了对安全地线去使用安全隔离正常情况使用规定的最长屏蔽电根据浪涌的频谱特使用长的规定屏蔽电考虑到电缆长度的原该电缆按非电感性的结构给屏蔽线施加浪涌的规则两端接地的屏蔽应按图给屏蔽层施加一端接地的屏蔽按图进行试验为电缆对地电容电容量的大小可按计如没有其他规为其典型在屏蔽层上施加的试验电平线地值施加电位差的试验配置如必须施加电位差来模拟在系统中可能出现对使用屏蔽线的系统可按图进行对非屏蔽线或屏蔽线仅在一端接地的系统按图进行其他试验配置如果试验配置中规定的某一种耦合方法由于功能原因不能使在专门的产品标准中应规定可替代的方合于特殊试验条件试验时的工作状态和安装情况应与产品技术要求一两个方面试验布试验程试验程序实验室条件为了使环境参数对试验结果的影响减至最在和规定的气候和电磁环境基准条件下进气候条件气候条件应满足以下要求环境温度相对湿度大气压注在产品技术条件中可以规定其他数应在预期的气候条件下工在试验报告中应记录温度和相对湿电磁环境实验室的电磁环境不应影响试验结在实验室内施加浪涌信号发生器的特性和性能应满足和的规定信号发生器的校验应按和进试验应根据试验方案进方案中应规定以下内容并参见附录信号发生器和其他使试验等电压电信号发生器的源浪涌的极性信号发生器的触发试验次数在选定点上至少加五次正极性和五次负极重复率最快为每分钟一注大多数常用的保护装置的平均功率容量较低尽管它们的峰值功率或峰值能量容量能承受较大的电因此最大重复次浪涌之间的时间和恢复决于内部的受试的输入端和输出注在有几个相同线路的情况下只需选择一定数量的线路进行典型的典型工作向线路施加浪涌的顺交流电源时的相角实际安装如交流中线直流模拟实际接地中给出了关于试验方式的如果没有其他规在交流和零值和峰值的电压相位处同步加应按线线和线地方式施加进行线地没有其他规必须依次地加到每根线和地注当使用组合波信号发生器对两根或多根信地进行试验时试验脉冲的持续时间可能会减少试验程序还应考虑受试设备的非线性电流电压特因只能由低等级逐步增加到产品标准或试验方案中规定的试验等所有较低等选择的试验等应满足要第二级保护发生器的输出电压应增加到第一级保护的最低电压击穿通如果没有实际工作信号源提供可以对其进级决不可超出产品技术要试验应按试验方案进为找到设备工作周期内的所有关键施加足够次数的极性于验收使用以前未曾加过则应替试验结果和试验报告本章给出了与本标准有关的试验结果的评定和试验报告的指导性原由于受试设备和系统种类繁异很得确定浪涌对设备和系统的影响的任务变得比较困除非有关专业标准化技术委员会或产品技术规范给出了不同的技术要求否则试验结果应按受试设备的工作情况和技术规范进行如下分在技术规范内性能正常功能或性能暂时降低或丧失但能自行恢复功能或性能暂时降低或丧操作者干预或系统复因软件损坏或数据丢失而造成不能自行恢复的功能降低或丧设备不应由于应用本标准规定的试验而出现危险或不安全的对于验收在专门的产品标准中规定试验程序和对试验结果的说一般地如果设备在整个试验期间表现出其抗扰度并且在试验结束以后满足技术规范中的功能要表明试验合技术规范可以确定一些产生了影响但被认为是不重要的因而是可以接受的效确认设备在试验结束后能自动恢复其工作能力应记录设备性能完全丧失这些对试验结果的最后评定是有约束力试验报告应包括试验状态和试验结高压充储能持续时间形成电阻阻抗匹配升时间形成电感图组合波信号发生器的电路原理图表波形参数的规定规定根据根据波前时间半峰值时间上升时间持续时间开路电压短路电流注在现行出版物中和波形通常按规定如图和图所示其他的推荐标准按规定波形如表所示本标准两种规定都是有效的但所指的是同一信号发生器波前半峰值时间图开路电压波的波形规波前半峰值时间图短路电流波的波形规高压充储能脉冲持续时间形成匹配上升时间形成用外部匹配电阻时开关合上图脉冲信号发生器的电路原理图第九表波形参数的规定规定根据蓝皮书第九卷根据波前时间半峰值时间上升时间持续时间开路电压短路电流注在现行和出版物中波形通常按规定如图所示其他的推荐标准按规定波形如表所示本标准两种规定都是有效的但所指的是同一信号发生器波前半峰值时间图开路电压波的波形规图交上电容耦合的试验配置示例线线耦图交上电容耦合的试验配置示例线地耦图交电容耦合的试验配置示例线耦开关地置开关置图交电容耦合的试验配置示例耦发生器输出接地开关线地置线置开关置与不在相同的位为图非屏蔽互连线试验配置示线线地耦耦合开关线地置线置开关置与不在相同的位为图非屏蔽不对称工作线路试验配置示例线线地耦气体放电管耦合开关地置线线置根线依次使用信号发生计算例如使用发生计算内部匹配阻抗外部匹配阻抗代于个导等于或大于例如应超过传输信号频率在较高频率时不取决于传输信号所允许的衰图非屏蔽对称工作线路试验配置示线线地耦气体放电管耦合图屏蔽线施加电位配置示耦合图非屏蔽线和仅在一端接地的屏蔽和施加电位配置示耦合标准的附录信号发生器和试验等级的选择试验等级应根据安装情况使用表以及在附录给出的信息和示中类保护良好的电气在一间专用房间类有部分保护的电气类电缆隔离至短走线也隔离良好的电气类电缆平行敷设的电气类互连线按户外电缆沿电源电缆敷设并且这些电缆被作为电子和电气线路的电气类在非人口稠密区电子设备与通信电缆以及架空电力线路连接的电气产品技术要求中规定的特殊其他资料在附录的图中给为了证明系统级取与实际安装情况有关的其他如第一表试验等级的决于安装情况安装类别试验等级电源耦合方式不平衡工作电路线路耦合方式平衡工作电路线路耦合方式耦合方式线线线地线线线地线线线地线线线地距离从到最长有特别的结构并经过专门的布置对以下的互连电缆不做试验仅第二类适用取决于当地电力系统的等级通常带第一级保护进行试验注数据总线数据线短距离总线长距离总线不适用信号发生安装类别的关系如下类第类对电源线端口和短距离信号电路端口对长距离信号电端源阻抗应与各有关试验配置图中标明的一。
常用的电磁兼容测试标准和测试方法介绍.
②各试验端口的电磁骚扰发射限值详见附表4所示。
·试验在屏蔽室内进行。
接地平板用厚度0.5mm以上、面积为2m×2m以上的金属板。
接地平板与大地要电气连接(或用长宽比小于5:1、厚度为的薄铜条,通过屏蔽室与大地连接)。
人工电源网络又称电源线阻抗稳定网络(LISN),它能在射频范围内为受试设备端子与参考地之间提供一个稳定的阻抗。
与此同时,又将来自电网的无用信号与测量电路隔离开来,仅将受试设备的干扰试验在屏蔽室内进行。
②测量原理简述(未完)(未完)吸收钳由宽带射频电流变换器;宽带射频功率吸收体和试品引线阻抗稳定器;及吸收套筒(铁氧体,吸收同轴电缆表面的射频电流)等三部分组成。
吸收钳对试品导线呈现的阻抗为100~200Ω;吸收钳的输出阻抗为50Ω;在测定频率范围上相对输入信号源无明显谐振;试验在开阔场或半电波暗室中进行。
场地应平坦,无架空线,附近无反射物。
场地要足够大,以便在规定距离内安放天线和试品,并使天线、试品与反射物之间有足够间隔。
测量线路(续)其中试验电源的试验电压为试品的额定电压。
试验电压的变化范围应保持在额定电压的±2%以内;频率变化要保持在额定频率的±以内。
对三相试验电源,还有一个相位精度问题,要求相间的°±1.5°以内。
试验电源的电压谐波含量不应超过以下各值:3次谐波为0.4%;7次谐波为0.3%;9次谐波为0.2%图中高压真空继电器是目前唯一能产生重复和高速放电波形的器件。
线路中的电容代表人体的储能电容,电阻代表人体在手握钥匙和其他金属工具时的人体电阻。
标准认为用这种人体放电模型(包括木制试验台1700×900×800mm ①绝缘支座1100×800×100mm参考接地板2700×1800×1.5mm ②参考接地板2700×1800×1.5mm垂直耦合板500×500×1.5mm ③垂直耦合板500×500×1.5mm水平耦合板1600×800×1.5mm ④垂直耦合板支架500×500×1200mm(未完)下图是台式和地面设备的配置与放电位置例。
电磁兼容测试标准与测试方法
2 产品自身所产生的电磁骚扰的测量方法在GB4343、GB4824、GB9254和GB17743(分别对应于家用电器和电动工具、工科医射频设备、信息技术设备、电气照明设备)等产品族标准中都提到了做电磁骚扰发射的测量。
尽管产品相差很远,但试验的项目和试验的方法还是有共通的地方,下面分别介绍之(对于GB13837标准所讲述的声音和广播电视接收设备,以及GB14023标准所讲述的车辆、机动船和由火花点火发动机驱动的装置,由于情况的特殊性,在测试内容和测试方法上较大差异,不予叙述)。
2.1 交流电源线的传导骚扰测量(测试频率范围0.15至30MHz)① 试验布置·试验在屏蔽室内进行。
·接地平板用厚度0.5mm以上、面积为2m×2m以上的金属板。
接地平板与大地要电气连接(或用长宽比小于5:1、厚度为0.5mm的薄铜条,通过屏蔽室与大地连接)。
·试品与屏蔽室墙壁至少相距800mm。
·试品与人工电源网络之间的距离为800mm;与测量仪器的距离应不小于800mm。
人工电源网络与接地平板在射频范围内应具有良好的连接。
② 干扰测量仪干扰测量仪是一台测量动态范围大、灵敏度高的专用测量接收机。
由于测量的对象是微弱的连续波信号,或者是幅值很强的脉冲信号,因此要求测量接收机本身的噪声极小,灵敏度很高,检波器的动态范围大,前级过载能力强,而且在整个测量频段内的测量精度能满足±2dB的要求。
干扰测量仪的输入阻抗为50Ω。
与普通的场强仪不同,场强仪主要用于测量广播、电视的信号场强及工科医射频设备的辐射场强。
这些信号都是正弦波的电磁场。
与频谱仪也不同,频谱仪常采用峰值检波,比干扰测量仪有快得多的测量速度。
由于电磁骚扰测量的产品族标准都是从CISPR(国际无线电干扰特别委员会)标准转化过来的。
其本意都是为了保护通信和广播的畅通,这一切都与人的主观听觉效果有关,所以平均值检波、峰值检波都不足以说明脉冲性质干扰对听觉造成的效果,而必须用到准峰值检波的概念,后者与干扰对听觉造成的效果相一致。
手机电磁兼容检测标准及测试内容
21 MIf lc o Man t nefrn e . E et — g e cIt ee c )—— 电 磁 E r i r
骚 扰 测 试
此 测试 的 目的为 检测 电器产 品所 产生 的 电磁辐
及其辅助设备》
2 0 《 信 08 通 技 术 设 备 的
射 对人 体 、公共 电 网 以及 其它 正常 工作 之 电器 产 品
E MC的检 测 规 范 设 定 了设 备 能 正 常工 作 的 电
磁 环 境 的电磁 骚扰 限值 及必 要 的抗 干扰 能力 E MC 包 含 了电 磁 骚 扰 ( MI E )和 抗 扰 度 f MS E 1两个 部
分。 虽 然手机 的制式不 同 .但 是其 电磁兼 容 的测试 项 目是 相 同 的 .电磁 兼 容 测 试 项 目 E 骚 扰测 量 MI 项 目和 E MS抗扰 度试 验项 目见 表 2、3 。
在 E 测 试 中 .连 续骚 扰 是 指 对 一个 特 定 设 MI 备 的效应不 能分 解 为一 串能清 晰可 辨 的效应 的 电磁 骚 扰 杂散 骚扰 是 除载频 和与 正常 调制 相关 的频 带 以外 离 散 频 率 上 的骚 扰 .可 以分 为传 导 和 辐 射 两
种 杂 散 (p r u mi in )项 目是针 对手 机 而 S ui sE 8 o s o S
2 E MC测试 项 目及 测试 目的
电磁兼容标准和测试整改
测试区域内不能有任何金属、带反射吸收等物体存在。
三、电磁兼容性的测试方法
➢ 辐射发射RE-测试方法 在30 MHz~1000 MHz频率范围内进行测试(一般用峰值检波),在1m~4m高度范 围内升降天线,在0°~360°之间旋转转台,以寻找各个频率点上EUT的最大 骚扰电平。此时,天线应在某一适当的高度,转台应置于某一适当的角度。记录 此高度、角度与接收天线的极化方向。
辐射抗扰度的测量有两种,低 于150MHz的频率用电流电压耦 合注入法,30MHz以上的用直 接辐射
三、电磁兼容性的测试方法
➢ 电压波动与闪烁-电压波动 对电压波动的描述有3个指标: 相对稳态电压变化特性dc:指至少间隔一个电压变化的两个相邻稳态电压差值与 额定电压的百分比值,标准规定不得大于3%。
相对电压变化特性d(t):指电压处在至少为1s的稳态条件下,各周期间的电压有 效值相对于电压变化的时间函数。标准规定在超过200ms测量时间内,其相对稳
EUT和辅助设备单元的布局应符合实际使用中的典型布局方法放置并具有复现性 ,EUT的所有辅助测试设备应与EUT平行放置,各设备之间的间距在10cm以上,
各在连线接束线的束中尽心量位避置免以交40叉cm走的线长,度距来离回地对面折应保持4敏0c感m以设上备距离,连接线较长的
测试区域内不能有任何金属、带反射吸收等物体存在。
➢ 电磁兼容性:
电子线路、设备、系统互相不影响,从电磁的角度具有相容性的状态为电磁兼容性。
- 设备内电路模块之间的相容性 - 设备之间的相容性 - 系统之间的相容性
一、什么是电磁兼容
➢ 哪些产品需要做EMC测试
电磁兼容测试标准大全!
电磁兼容测试标准大全!本文对电磁兼容标准进行一个汇总,包括LED照明、新能源汽车、家用电器、通信设备、医疗设备以及低压电器相关的电磁兼容主要依据标准。
1、LED照明电磁兼容主要依据标准CISPR 15/GB 17743:《电气照明和类似设备的无线电骚扰特性的限值和测量方法》IEC 61547/GB T 18595:《一般照明用设备的电磁兼容抗扰度要求》IEC 61000-3-2/GB 17625.1:《电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A)》IEC 61000-3-3/GB 17625.2:《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》IEC 62493/GB T31275:《照明设备对人体电磁辐射的评价》2、新能源汽车电磁兼容主要依据GB T 18487.1-2015:《电动车辆传导充电系统一般要求》GB T 18487.2-2001:《一般照明用设备的电磁兼容抗扰度要求》GB T 18487.3-2001:《电动车辆传导充电系统电动车辆交流直流充电机(站)》GB/T 20234.1-2015:《电动汽车传导充电用连接装置第1部分:通用要求》GB/T 20234.2-2015:《电动汽车传导充电用连接装置第2部分:交流充电接口》GB/T 20234.3-2015:《电动汽车传导充电用连接装置第3部分:直流充电接口》GB/T 27930-2015:《电动汽车非车载传导式充电机与电池管理系统之间的通信协议》NB/T 33001-2010:《电动汽车非车载传导式充电机技术条件》NB/T 33002-2010:《电动汽车交流充电桩技术要求》NB/T 33008.1-2013:《电动汽车充电设备检验试验规范第一部分:非车载充电机》QC/T 895-2011:《电动汽车用传导车载充电机》3、车载电子电磁兼容主要依据标准CISPR 25、GB/T 18655:《车辆、船和内燃机无线电骚扰特性用于保护车载接收机的限值和测量方法》ISO11452-1/-2/-3/-4/-5/-7/-8/-9/-10/-11:《道路车辆电气/电子部件对窄带辐射电磁能的抗扰性试验方法》GB/T 17619:《机动车电子电器组件的电磁辐射抗扰性限值和测量方法》ISO7637-1/-2/-3 、GB/T 21437.1/.2/.3:《道路车辆由传导和耦合引起的电骚扰》ISO10605、 GB/T 19951:《道路车辆静电放电产生的电骚扰试验方法》ISO16750-2、GB/T 28046.2:《道路车辆电气及电子设备的环境条件和试验第2部分电气负荷》ISO21848:《道路车辆42V供电电压的电气和电子设备电气负荷》4、医疗设备电磁兼容主要依据标准CISPR 11/EN 55011/GB 4824:《工业、科学和医疗(ISM)射频设备电磁骚扰特性限值和测量方法》IEC 60601-1-2/YY 0505:《医用电气设备第1-2部分:安全通用要求并列标准:电磁兼容要求和试验》IEC 61326-1/GB T18268.1:《测量、控制和实验室用的电设备电磁兼容性要求第1部分:通用要求》IEC 61326-2-6/GB T18268.26:《测量、控制和实验室用的电设备电磁兼容性要求第26部分:特殊要求体外诊断(IVD)设备》IEC 61000-3-2/GB 17625.1:《电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A)》IEC 61000-3-3/GB 17625.2:《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》5、家用电器电磁兼容主要依据标准CISPR 14-1/GB 4343.1:《家用电气、电动工具和类似器具的电磁兼容要求第1部分:发射》CISPR 14-2/GB 4343.2:《家用电气、电动工具和类似器具的电磁兼容要求第2部分:抗扰度》IEC 61000-3-2/GB 17625.1:《电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A)》IEC 61000-3-3/GB 17625.2:《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》6、通信设备电磁兼容主要依据标准CISPR 22/EN 55022/GB 9254:《信息技术设备的无线电骚扰限值和测量方法》CISPR 24/GB/T 17618:《信息技术设备抗扰度限值和测量方法》7、低压电器电磁兼容主要依据标准CISPR11/GB 4824:《工业、科学和医疗(ISM)射频设备电磁骚扰特性限值和测量方法》IEC 60947-1/GB 10408.1:《低压开关设备和控制设备第1部分:总则》IEC 60947-2/GB 10408.2:《低压开关设备和控制设备第2部分:断路器》IEC 60947-3/GB 10408.3:《低压开关设备和控制设备第3部分:开关、隔离器、隔离开关、以及熔断器组合电器》IEC 60947-4/GB 10408.4:《低压开关设备和控制设备第4-1部分:接触器和电动机起动器机电式接触器和电动机起动器(含电动机保护器)》IEC 60947-5/GB 10408.5:《低压开关设备和控制设备第5-1部分:控制电路电器和开关元件机电式控制电路电器》IEC 60947-6/GB 10408.6:《低压开关设备和控制设备第4-2部分:接触器和电动机起动器交流半导体电动机控制器和起动器(含软起动器)》IEC 60947-10/GB 10408.10:《低压开关设备和控制设备第5-2部分:控制电路电器和开关元件接近开关》。
电磁兼容测试标准
电磁兼容测试标准电磁兼容测试是指在电磁环境中,各种电子设备和系统能够在不相互干扰的情况下正常工作的能力。
电磁兼容测试标准是为了保证电子设备和系统在电磁环境中的稳定性和可靠性,从而保障电子设备和系统的正常运行和安全性。
本文将对电磁兼容测试标准进行详细介绍,包括其概念、分类、测试方法以及相关标准的内容。
首先,电磁兼容测试标准主要包括电磁兼容性和电磁干扰两个方面。
电磁兼容性是指一个设备在电磁环境中不会产生电磁干扰,也不会对其他设备产生电磁干扰。
而电磁干扰则是指一个设备在电磁环境中受到其他设备的电磁干扰而无法正常工作。
因此,电磁兼容测试标准的主要目的就是为了确保设备在电磁环境中能够正常工作,同时不会对其他设备产生干扰。
其次,根据测试对象的不同,电磁兼容测试标准可以分为辐射测试和传导测试两种。
辐射测试是指对设备在电磁场中的辐射特性进行测试,包括电磁辐射和抗电磁辐射能力;传导测试则是指对设备在电磁场中的传导特性进行测试,包括电磁传导和抗电磁传导能力。
这两种测试方法可以全面评估设备在电磁环境中的兼容性和干扰性能,从而为设备的设计和生产提供参考依据。
此外,电磁兼容测试标准还涉及到一系列的测试方法和标准。
常见的测试方法包括辐射测试、传导测试、电磁场强度测试、电磁干扰抑制能力测试等;而相关的标准则包括国际标准、国家标准、行业标准等。
这些测试方法和标准的制定和执行,可以帮助设备制造商和用户全面了解设备在电磁环境中的性能表现,从而提高设备的可靠性和稳定性。
综上所述,电磁兼容测试标准对于保障电子设备和系统在电磁环境中的稳定性和可靠性具有重要意义。
通过对电磁兼容性和电磁干扰的测试,可以确保设备在电磁环境中不会相互干扰,从而保障设备的正常运行和安全性。
因此,制定和执行电磁兼容测试标准是非常必要和重要的,也是电子设备制造商和用户应该高度重视的问题。
希望本文所述内容能够对电磁兼容测试标准有所帮助,也希望相关行业能够进一步完善相关标准和方法,从而更好地确保设备在电磁环境中的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁兼容作业电磁兼容标准与测试班级:电气工程及其自动化0703班姓名:***学号:*********电磁兼容标准及测试一.概述随着科学技术的发展,特别是微电子、信息、通讯等高科技的迅速进步与发展,对电磁骚扰的控制与防护提出了繁多而又复杂的问题。
在世界各国,特别是欧洲的一些先进国家,经过几十年对电磁干扰和抗干扰等问题的研究和控制,已将这些技术研究形成了一门新兴的学科——电磁兼容(Electromagnetic Compatibility)。
电磁兼容就是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统,系统、广义的还包括生物体),可以共存并不致引起降级的一门科学,国家标准GB/T 4365-1995《电磁兼容术语》对电磁兼容所下的定义为:“设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力”。
就是说在规定的电磁环境中,任何设备、系统都不因受电磁干扰而降低工作性能,并且其本身所发射的电磁能量也不大于规定的极限值,以免影响其它设备或系统的正常工作,从而达到互不干扰而共存的目地。
国际无线电干扰特别委员会(法文缩写是CISPR)是国际电工委员会(IEC)的一个特别委员会,它成立于1934年,是最早开始系统地对电磁兼容进行研究的国际性的标准化组织。
该委员会成立的初衷主要是保护广播、通讯不受电磁干扰的影响。
围绕这方面的问题,对车辆、家电、电动工具、工科医射频设备、高压架空线路等提出了一系列骚扰限值(包括射频辐射和传导两方面,工作频率多在9kHz~18GHz)和测试方法的标准。
近几年来随着它的业务范围不断扩大,也开展了一些抗扰度标准的研究。
它更主要的重点还是研究电磁骚扰限值及其测量方法。
二、电磁兼容标准早在一九三四年国际电工委员会就成立了无线电干扰特别委员会简称CISPR,专门研究无线电干扰问题,制定有关标准,旨在保护广播接收效果。
当初只有少数国家参加该委员会,如比利时、法国、荷兰和英国等。
经过多年的发展人们对电磁兼容的认识发生了深刻的变化,1989年欧洲共同体委员会颁发了89/336/EEC指令,明确规定,自1996年1月1日起,所有电子、电器产品须经过EMC性能的认证,否则将禁止其在欧共体市场销售。
此举在世界范围内引起较大反响,EMC已成影响国际贸易的一项重要指标。
随着技术的发展CISPR工作范围也由当初保护广播接收业务扩展到涉及保护无线电接收的所有业务。
国际电工委员会IEC有两个专们从事电磁兼容标准化工作的技术委员会:一个就是CISPR成立于1934年;另一个是电磁兼容委员会TC77,成立于1981年。
CISPR最初关心的主要是广播接收频段的无线电骚扰问题,之后在EMC标准化工作方面进行了不懈的努力。
CISPR已基本上将工业和民用产品的EMC考虑在其标准中。
CISPR 还起草了通用射频骚扰限额值国际标准草案,这样,对那些新开发的以及暂时还不能与现有CISPR产品标准相对应的产品,可以用射频骚扰限额值来加以限制。
几年前CISPR将其工作频率范围扩展为DC~400GHz,目前实际工作范围为9kHz~18GHz,以前的CISPR标准主要涉及无线电干扰限额值及其测量方法,近年来在抗扰度方面加强了研究,并已制定了一些标准。
TC77最初主要关心低压电网系统的EMC 问题(9kHz以下频段),后来将其工作范围扩大到整个EMC所涉及的频率范围及产品。
目前CISPR已制定有CISPR22(1997)《信息技术设备的无线电骚扰特性的测量方法及限值》等14个标准;TC77也已制定了25个IEC标准,其中IEC61000-4系列标准是目前国际上比较完整和系统的抗扰度基础标准。
我国的EMC测试及标准化工作始于六十年代,当时国内的一些院所建立了相对简陋的试验室,开展无线电干扰(骚扰)测试研究,同时参考前苏联和欧美国家标准制定我国的EMC标准。
自从1986年成立了全国无线电干扰标准化委员会后,我国才开始有组织有系统地对应CISPR/IEC开展国内EMC标准化工作。
目前全国无线电干扰标准化委员会已成立了八个分技术委员会,其中七个分会与CISPR/A、B、C…F、G分会相对应,S分会是根据我国国情而成立的,它主要涉及无线电系统与非无线电系统之间的电磁兼容问题。
目前我国已制定了六十多项EMC国家标准,其中基础标准为GB4365-1995电磁兼容术语;GB/T6113-1995无线电干扰和抗扰度测量设备规范。
三、电磁兼容测试电磁兼容测试贯穿在产品的设计、开发生产、使用和维护的整个周期,对设备达到电磁兼容起到至关重要的作用。
电磁兼容(EMC)测试按其目的可分为诊断测试和达标测试。
诊断测试的目的是调查产生电磁兼容问题的原因,确定产生噪声和被干扰的具体部位,从而为采取抑制措施做准备。
达标测试是根据有关电磁兼容标准规定的方法对设备进行测试,评估其是否达到标准提出的要求。
产品在定型和进人市场之前必须进行达标测试。
电磁兼容(EMC)测试按其内容可分为电磁骚扰(EMI)发射测试和设备的抗扰度(EMS)测试。
EMI测试是测量设备向外界发射的骚扰,EMS测试时给设备外加各种骚扰,测试设备的敏感度,即抗干扰能力。
应该指出的是电磁兼容测试并不仅仅是根据标准的规定进行的简单操作。
同样的测量仪器、场地和测试步骤,不同的人操作得出的结果可能大相径庭,这主要取决于操作人员的素质。
电磁兼容测试人员应具备广泛的知识,因为电磁兼容问题涉及到电磁场、微波、传输线、天线、电波传播、电路、计算机等基础理论;同时还应对各种被检测的设备的工作原理要有大概的了解,对标准规定的方法要进行仔细的研究,知其然,还要知其所以然。
在实际测试中,要善于发现问题,并且能用所学原理解决问题,从而不断地积累经验。
3.1电磁骚扰发射测试电磁骚扰发射(EMI)包括辐射发射(RE)和传导发射(CE)。
辐射发射测试是测量受试设备(EUT)通过空间传播的骚扰辐射场强。
传导发射测试是测量受试设备(EUT)通过电源线或信号线向外发射的骚扰电压和电流。
3.1.1 骚扰的辐射发射测试(9KHz~18GHz)在30MHz~18GHz频率段,测量骚扰的电场强度。
1GHz以下使用开阔场地或半电波暗室,模拟半自由空间;1GHz以上使用全电波暗室,模拟自由空间。
如采用替代法测量,则测试场地可用开阔场地、半电波暗室或全电波暗室,测量结果用发射功率表示。
在9KHz~30MHz频率段,测量骚扰的磁场强度。
如果EUT较小,则将其放在大磁环天线(LLA)中,测量骚扰磁场的感应电流。
如果EUT较大,则采用远天线法,用单小环在规定距离测量骚扰的磁场强度。
3.1.1.1 30MHz~1000MHz频率段的辐射发射测试为了对辐射骚扰有一个统一的度量,标准不但对测量布置、测量方法作了规定,而且对骚扰测量仪、天线和测量场地都作了严格的规定,现分别加以讨论。
(1) 测量布置和测量方法标准要求测试在开阔场地或半电波暗室内进行,场地必须符合NSA (归一化场地衰减)的要求。
测试布置如图1所示。
测试天线和受试设备(EUT)之间的距离应符合远场条件,标准规定为3、10m或30m。
远场的场结构比较简单,电场方向、磁场方向和电波传播方向三者互相垂直,波阻抗即电场强度与磁场强度之比为377Ω,场强随距离一次方衰减。
近场的场结构比较复杂,在电波传播方向存在电场或磁场的分量,三者不一定互相垂直,波阻抗不为常数而是随距离变化,场强随距离平方或三次方衰减。
图1 30MHz~1000MHz辐射发射测试的布置比较近场和远场的特性可知,在远场条件下测量场强一致性和重复性较好,测量误差较小。
在远场条件下测试距离d应满足下列情况:a) d ≥λ/2π, 如EUT被看作是偶极子天线,则误差为3dB。
b) d ≥λ,可看作是平面波,如EUT被看作是偶极子天线,则误差为0.5dB。
c) d ≥ 2D2/λ, D为EUT的最大尺寸,该条件仅适用于D>>λ的情况。
在30MHz~1000MHz频率段,λ为10m~0.3m, d=3m、10m、30m时都符合上述远场条件。
国内暗室绝大部分只能进行3m法测试,而标准上给出的限值很多都是针对10m法测试的,所以应该将它们转换为3m法的限值,转换公式为:L2 =L1 (d1/d2)或L2 (dB) = L1 (dB)+ 20lg(d1/d2)式中L1和 L2分别为测试距离为d1 和d2时的辐射限值,例如GB9245中仅规定了信息技术设备在10m 测量距离处的辐射骚扰限值,由此可转换为3m处限值,如表1所示。
表1 B级ITE在10m和3m处的辐射限值一般不同频率段的限值是不一样的,过渡频率点应该采取较低的限值,表1中230MHz的限值应取较低值:30dB(µV/m)(10m法),40dB(µV/m)(3m法)。
在确定测试距离时常遇到起始点和终止点的问题,起始点是被测设备(EUT)的边框,这在标准上有明确的规定。
终止点应该在天线的什么部位?当天线是对称振子天线或双锥天线时,终止点在天线的中间部位。
当天线是喇叭天线时,终止点应为喇叭口。
但当天线是对数周期天线和混合宽带天线时,终止点就不好确定,标准中也没有明确规定。
对数周期天线,根据其工作原理,在频率较高时是短振子起作用,;频率较低时是长振子起作用。
如果把终止点定在对数天线的顶端,则高频测量时距离约为3m,而低频测量时距离偏移较大。
由于天线接收的场强E∝f/d,而由距离引起的测量误差为△E∝f△d/d2,显然对于同样的距离偏移,频率越高,产生的场的测量误差就越高,所以笔者认为终止点放在对数周期天线的顶端比较合适。
如果天线上已有天线中心的标记,则终止点放在天线中心的标记处。
由于达标测试是测量EUT 可能辐射的最大值,所以EUT 应放在转台上(可360°旋转)以便寻找EUT 的最大骚扰辐射方向。
台式EUT 离地面高度通常为0.8m ,立式EUT 则直接放置地面,接触点与地面应绝缘。
接收天线的高度应该在1~4m (如测试距离为3m 或10m )或2~6m (如测试距离为30m )内扫描,记录最大辐射场强。
EUT 的辐射电磁波到达天线有两条途径,如图2所示。
一条是直达波A E ,一条是通过地面的反射波B E ,天线接收到的总场强为直达波和反射波的矢量和,即B A E E E +=由于二条路径长度不同,电磁波到达天线所需时间不同,因此A E 和B E 有一定相位差Δφ,总场强与Δφ有关。
如果A E 和B E 同相,则两者相加,总场强最大;如果A E 和B E 反相,则两图2 辐射电磁波的直达波和反射波 者相减,总场强最小。
Δφ与天线高度有关,当接收天线在1~4m 之间移动时,接收到的场强也以驻波方式变化,波峰和波谷间的高度差约为λ/2,因此可以保证在30MHz 仍能找到最大场强。