空间数据插值

合集下载

20 空间数据的处理-空间插值

20 空间数据的处理-空间插值


局部内插


局部内插 – 将地形区域按一定的方法进行分块,对每一块根据地形曲面特 征单独进行曲面拟合和高程内插,每一块都可用不同的曲面进 行表达。称为空间分块内插。 局部方法: – (1)泰森多边形 – (2)距离反比权值插值(反距离权重内插) – (3)样条函数内插技术 – 克里金内插方法 – 密度估算 – 线性内插、 – 双线性内插 – 多项式内插 – 多层曲面叠加法等。
XY
n
N 1
l
X Y
n
i jN l l
n Zl n a00 Z l X l n a10 N Yl n Z l X lN n N 1 a N0 n Yl a01 Z lYl a11 n n i j N X l Yl Z l X lYl a n Yl N N ij n i j Z l X l Yl a0 N n Z l Yl N
地理信息系统基础
Geographical Information System
WWW . SDJTU .
空间插值
教学内容


§1 插值概论
§2 内插方法 §3 整体内插


§4 局部内插
§5 Kriging 方法
§1 插值概论

插值 – 用已知点来估算其他未知点的过程。
在GIS中,空间插值主要用于栅格数据,估算出栅格中 每个单元的值。空间插值是将点数据转换为面数据的一 种方法。 需要插值的原因: – 现有数据不能完全覆盖所要求的区域 – 现有离散曲面的分辨率、像元大小、方向与要求不 符; – 现有连续曲面的数据模型与要求不一致;

空间插值方法对比整理版

空间插值方法对比整理版

• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)

空间插值

空间插值

将内插点周围的16个点的数据带入多项式,可计算 出所有的系数。
16个点
样条函数
Kriging插值
Kriging 插值方法在空间相关范围分析的基础上,用相关 范围内的采样点来估计待插点属性值。 (1)数据检验与分析,删去明显偏离实际的采样数据点。 (2)数据预处理。 (3)绘制方差图,了解空间变量的集聚范围与方向。 (4)克里金插值估计。 相对来说,克里金插值则能较好地反映各种地形变化,但 克里金方法的计算量很大,因此在对大面积区域大数据量 内插时,这是一个不能不考虑的因素。
测量怎么拟合?
●测量数据是二维的,所以需要用二维的 拟合方式。
二元二次或高次多项式:
自然表面的拟合要求
●多数自然现象的分布比较复杂,即比一次 趋势面生成的倾斜面更加复杂。因此,拟合 更加复杂的面要求用更高次的趋势面模型。 比如三次趋势面模型。
z b b x b y b x2 b xy b y 2 x, y 0 1 2 3 4 5 b x3 b x 2 y b xy2 b y3 6 7 8 9
h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。 2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵 轴代表半方差。半方差图中有三个参数nugget(表示距离为零时的半方差),sill (表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方 差随距离增加,超过该范围,半方差值趋于恒定)。利用做出的半方差图找出与 之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括 高斯模型、线性模型、球状模型、指数模型、圆形模型
面来逼近(或拟合)现象的实际表面——这种数
学表面叫趋势面。
总之,趋势面分析就是用多项式方程来近

实验3空间插值分析实验

实验3空间插值分析实验

卫星遥感数据
通过卫星遥感技术获取地 表覆盖、植被分布、水体 等空间信息数据。
数据预处理
数据清洗
对原始数据进行清洗,去 除异常值、缺失值和重复 值,确保数据的准确性和 可靠性。
数据格式化
将不同来源和格式的数据 进行统一格式化处理,以 便进行后续的空间插值分 析。
数据转换
根据空间插值分析的需要, 将数据转换为相应的空间 坐标系和投影方式。
将本次实验的插值结果与已知的观测数据进行对比,分析其误差 和精度。
对比结果
通过对比发现,本次实验的插值结果与观测数据较为接近,误差 较小,精度较高。
误差分析
对误差进行了来源分析,发现误差主要来源于数据本身的波动和 插值方法的局限性。
误差来源与改进方向
误差来源
误差主要来源于数据本身的波动和插值方法的局限性。具体来说,数据波动可能由于观测设备的误差、观测环境 的干扰等因素造成;而插值方法的局限性则可能由于所选方法的假设条件与实际情况的差异、算法本身的误差等 造成。
在实验过程中,我们采用了多种空间插值方法,包括全局插值和局部插值。通过对比分析,我们发现局 部插值方法在处理非均匀分布的数据时具有更好的预测效果。
实验结果表明,空间插值分析在解决实际问题中具有广泛的应用前景,尤其在地理信息系统、环境监测、 气象预报等领域。
应用前景与展望
随着大数据和人工智能技术的不断发展,空间插 值分析将与这些技术相结合,进一步提高预测的 准确性和效率。例如,利用机器学习算法优化插 值参数,提高预测精度。
利用全局样条曲线对整个数据集进行 拟合,以估计未知点的值。这种方法 在处理大规模数据集时效率较高,但 可能无法捕捉到局部变化。
混合插值方法
局部多项式全局样条插值法

空间插值方法

空间插值方法


数据拟合问题就是根据若干参考点上的已知值求出待定点 上(未知点)的研究值。数据拟合问题通常可分为插值问 题和光顺逼近问题。 插值问题的解要求严格经过已知量测点,而光顺逼近问题 的解虽不要求严格经过已知点,但它要求在某种约束条件 下(比如最上 乘意义下 最小曲面能或最小粗糙度意义 下(比如最上二乘意义下、最小曲面能或最小粗糙度意义 下)达到整体逼近效果。
6/21/2010
空间插值方法
第6讲 空间插值方法及 TIN/TEN构建算法

6.1 问题的提出 6.2 空间数据插值方法概述 6.3 几种空间数据插值方法原理
6.1 空间插值问题的提出

6.2 空间数据插值方法概述

GIS在实际应用过程中,很多情况下,比如采样密度不够、 曲线与曲面光滑处理、空间趋势预测、采样结果的可视化 等,必须对空间数据进行插值和拟合,因此空间数据插值 是GIS数据处理的一项重要任务。其主要目的是根据一组 已知的离散数据,按照某种数学关系推求其他未知点和未 知区域的数据的过程。
Delauny三角化方法自提出后并未引起足够多 的重视,到了20世纪80年代才开始研究这个算 法,目前比较有效的算法有:

分治算法 逐点加入法 生长算法 凸壳法

分治算法

分治算法的基本思想是一个递归思想,把点集划分到足够小, 使其易于生成三角网,然后把子集中的三角网合并生成最终 的三角网。 逐点加入法有两个基本步:1.定位,找到包含新加点的三角 形;2.更新,形成新的三角形。 生长法从第一个DT开始,而后由三角形边逐步形成新的DT。 如果二维上的任意一点对应到三维点,可以计算出提升点的 凸壳,除去朝上的凸壳面,剩下的朝下的面就是原始点的DT (这个关系适合于任意n维)。

第六讲 空间插值

第六讲 空间插值

每个采样点对插值结果的影响随距离增加而减弱,因 此距目标点近的样点赋予的权重较大。
n
a ttr0 a ttri * w i i1
wi
1 pow er (D isti )n
n
1 pow er(D isti )n
i1
二、空间插值方法
4. 距离反比加权法—参数对插值结果的影响
权重的影响
权重过高,较近点的影响较大,拟合表面更细致(不光 滑);
趋势面分析的一个基本要求就是,所选择的趋势面模型应 该是剩余值最小,而趋势值最大,这样拟合度精确度才能 达到足够的准确性;
在数学上,拟合数学曲面要注意两个问题:一是数学曲面 类型(数学表达式)的确定,二是拟合精度的确定。
二、空间插值方法
5.1 趋势面模型的建立
设地理要素的实际观测数据为Zi(xi,yi)(i=1,2,…,n),
基本内容
空间插值:定义及应用 空间插值方法及特征
泰森多边形( Voronoi )及不规则三角网(TIN) 距离反比加权法(IDW) 地质统计学(Geostatistics)
利用样条曲线优化插值结果 插值精度评估 三参数插值方法(体数据或者动态演化特征)
为何进行插值?
1. 2D离散点转化为连续面,如地表、地层界面 如基于空间离散点,剖面数据和等高线等来构建连续
不足——对权重函数的选择十分敏感;易受数据点集群的 影响,结果常出现一种孤立点数据明显高于周围数据点的 “鸭蛋”分布模式;
全局最大和最小变量值都散布于数据之中。 距离反比很少有预测的特点,内插得到的插值点数据在样
点数据取值范围内。
二、空间插值方法
5. 趋势面分析
实际的地理曲面分解为趋势面和剩余面两部分,前者反应 地理要素的宏观分布规律,属于确定性因素作用的结果; 而后者则对应于微观区域,被认为是随机因素影响的结果。

空间插值模型的评价与对比

空间插值模型的评价与对比

空间插值模型的评价与对比空间插值是地理信息科学中重要的研究领域,它通过利用已知的空间数据点来估计未知位置的值。

空间插值模型的评价与对比对于提高空间数据的精确性和可靠性至关重要。

本文将探讨空间插值模型的评价方法,并对比常用的插值算法。

一、评价空间插值模型的指标1. 精度指标精度是评价插值模型的重要指标之一。

常用的精度指标包括均方根误差(RMSE)、平均绝对误差(MAE)和平均百分比误差(MAPE)。

RMSE衡量了观测值与插值值之间的差异,值越小表示模型精度越高;MAE计算了观测值与插值值的绝对差异的平均值,同样,值越小表示模型精度越高;MAPE则用百分比表示了观测值与插值值的误差程度,同样,值越小表示模型精度越高。

2. 空间自相关指标空间自相关指标可以反映插值结果的空间分布特征。

其中,Moran's I和Geary's C是常用的空间自相关指标。

Moran's I衡量了观测值与其邻近观测值之间的空间相关性,值介于-1和1之间,其中正值表示正相关,负值表示负相关;Geary's C则衡量了观测值与其邻近观测值之间的差异,值越接近1表示空间自相关性越强。

二、常用的插值算法对比1. 克里金插值法克里金插值法是一种基于统计学原理的插值方法,它通过对已知数据点的空间关系进行分析,建立空间变异模型,从而对未知位置进行估计。

克里金插值法具有较好的精度和稳定性,但对于大规模数据集计算较为耗时。

2. 反距离加权插值法反距离加权插值法是一种简单而常用的插值方法,它假设未知位置的值与其邻近已知点的距离成反比。

该方法简单易懂,计算速度较快,但对于稀疏数据集和局部变异性较大的情况下,插值结果可能较差。

3. 全局插值法全局插值法是一种基于全局模型的插值方法,如径向基函数插值(RBF)和普通克里金插值。

全局插值法通过对整个数据集进行拟合,建立全局模型来估计未知位置的值。

这种方法适用于数据集较为均匀的情况,但对于大规模数据集计算较为耗时。

空间数据插值

空间数据插值

当数据是按正方形格网点布置:
2023/3/15
10
3、双三次多项式(样条函数)内插
是一种分段函数,每次只用少量的数据点,故内插速度很 快;样条函数通过所有的数据点,故可用于精确的内插;可 用于平滑处理。
双三次多项式内插的多项式函数为:
将内插点周围的16个点的数据带入多项式,可计算出所有的系数。
16个点
B、趋势面分析 是一种多项式回归分析技术。多项式回归的基本思
想是用多项式表示线或面,按最小二乘法原理对数据点 进行拟合,拟合时假定数据点的空间坐标X、Y为独立变 量,而表示特征值的Z坐标为因变量。
1、当数据为一维时,1)ຫໍສະໝຸດ 性回归:2023/3/15
6
2)二次或高次多项式:
2、数据是二维的 二元二次或高次多项式
通常使用的采样点数为6—8点。对于不规则分布的 采样点需要不断地改变窗口的大小、形状和方向,以获 取一定数量的采样点。
2023/3/15
13
地理信息系统原理及应用
14
2
一、空间数据内插概念
设已知一组空间数据,它们可以是离散点的形式,也可以是分 区数据的形式,空间数据的内插就是从这些数据中找到一个函数关 系式,使该关系最好地逼近这些已知的空间数据,并能根据该函数 关系式推求出区域范围内其他任意点或任意分区的值。
2023/3/15
3
• 二、内插方法分类
• 内插:在已观测点的区域内估算未观测点的 数据的过程;
2023/3/15
7
C、局部内插
利用局部范围内的 已知采样点的数据内插 出未知点的数据。
2023/3/15
8
1、线性内插
将内插点周围的3个数据点的数据值带入多项式,即可 解算出系数a0、a1、a2 。

GIS空间数据插值方法优劣比较分析

GIS空间数据插值方法优劣比较分析

GIS空间数据插值方法优劣比较分析GIS(地理信息系统)是一种以地理坐标为基础,用于存储、处理、分析和可视化地理数据的强大工具。

在GIS中,空间数据插值是一种常用的技术,用于根据已知的点数据来估计未知地点的属性值。

本文将对常见的GIS空间数据插值方法进行优劣比较分析,以帮助用户选择适合自己需求的方法。

1. Kriging插值法Kriging是一种基于统计模型的插值方法,其基本思想是用已知点的值的权重的线性和来估计未知点的值。

Kriging方法考虑了空间数据的空间相关性,针对空间上的各点给予不同的权重,可以得到较为准确的预测结果。

相比于其他插值方法,Kriging在保持空间一致性和稳定性方面具有优势,但其计算复杂度较高,对于大规模数据和计算资源有要求。

2. 反距离加权插值法反距离加权法是一种简单而直观的插值方法。

其基本思想是根据已知点到未知点的距离的倒数来给予权重,在插值时对已知点的值进行加权平均。

反距离加权插值法对于局部数据的变化敏感,对离插值点较近的点给予较大的权重,因此适用于局部变化较为明显的情况。

然而,反距离加权法没有考虑空间相关性,容易受到离群点的影响。

3. 最近邻插值法最近邻插值法是一种简单而快速的插值方法。

其基本思想是在已知点中找到最近的邻居点,将其值作为未知点的值。

最近邻插值法适用于空间数据较为离散、空间相关性较小的情况。

然而,最近邻插值法无法提供流畅的表面,结果可能是一个由离散点组成的表面。

4. 样条插值法样条插值法是一种平滑而连续的插值方法。

其基本思想是通过插值节点处的多项式函数来逼近已知点的形态。

样条插值法能够提供流畅的表面,并在插值点周围具有较高的精度。

但样条插值法对于大规模数据的计算较为复杂,且对插值节点选取较为敏感,需要合适的节点密度来平衡平滑性与精度。

综上所述,不同的GIS空间数据插值方法具有各自的优势和劣势。

Kriging插值法在保持空间一致性和稳定性方面具有优势,但计算复杂度较高;反距离加权法适用于局部变化较为明显的情况,但容易受到离群点的影响;最近邻插值法简单而快速,适用于空间数据较为离散的情况,但无法提供流畅的表面;样条插值法能够提供流畅的表面,具有较高的精度,但计算复杂度较高,对插值节点选取敏感。

空间插值

空间插值

一、空间插值的要素
进行空间插值要有两个基本条件:已知点和插值方 法 1 控制点 控制点是已知数值的点,也称为已知点、样本点 或观测点。 控制点提供了为空间插值建立插值方法的必要数 据。 空间插值的一个基本假设是估算点的数值受到邻 近控制点的影响比较远控制点的影响更大。
二、空间插值的类型
空间插值有多种分类方法 第一,它可以分为全局和局部拟合法。 全局插值法利用现有的每个已知点来估算未 知点的值。 而局部插值法则是用已知点的样本来估算位 置点的值。 这两种方法的区别就是用于估算的控制点数 目不一样
• 但是平整的纸张无法精确贴合带有山谷地 形的地表。不过,如果可以将纸张弯曲一 下,就会更贴合。为数学公式添加一个项 也可以达到类似的效果,即平面的弯曲。 平面(纸张无弯曲)是一个一阶多项式 (线性)。二阶多项式(二次)允许一次 弯曲,三阶多项式(三次)允许两次弯曲, 依此类推;在 Geostatistical A展示出一 个与山谷拟合的二阶多项式。
• 橙色点是使用经测量 的绿色采样点根据拟 合的多项式(绿色线) 预测而来的, • 而褐色点是根据浅紫 色多项式预测而来的。
在以下两幅图中,为预测另外两个位置(蓝 绿色点和绿色点)对另外两个多项式(黄色 线和灰色线)进行了拟合。
将针对各位置重复执行上述过程。您可以看 到如何为以下采样点创建表面(紫色表面 线)。
何时使用全局多项式插值法
• 使用全局多项式插值法获得的是一个可表示感兴 趣区域表面渐进趋势的平滑表面。 • 全局多项式插值法用于下列情况: • 在全局多项式插值法中,将利用可描述某种物理 过程(例如,污染情况和风向)的低阶多项式创 建渐变表面。不过,应注意的是,使用的多项式 越复杂,为其赋予物理意义就越困难。此外,计 算得出的表面对异常值(极高值和极低值)非常 敏感,尤其是在表面的边缘处。

空间数据插值方法的评价

空间数据插值方法的评价

空间数据插值方法的评价摘要:一、空间数据插值方法概述1.插值方法分类2.常见插值方法介绍二、空间数据插值方法的评价1.评价指标2.评价方法三、常见空间插值方法的优缺点分析1.反距离权重法(IDW)2.克里金法(Kriging)3.自然邻域法(Natural Neighbor)4.样条函数法(Spline)5.趋势面法(Trend)四、实际应用案例分析1.气象站点数据插值2.污染场地空间插值五、空间数据插值方法的选择与优化1.数据特点对插值方法的影响2.插值参数的设置正文:一、空间数据插值方法概述空间数据插值方法是将离散的点数据转换为连续的空间表面,以便于表现和分析空间现象的分布。

根据插值原理和算法,空间数据插值方法可分为以下几类:1.反距离权重法(IDW):该方法根据插值点与已知点之间的距离进行加权平均,距离越近的点对插值结果的影响越大。

2.克里金法(Kriging):这是一种基于统计学的插值方法,利用已知点的坐标和观测值构建插值表面。

克里金法考虑了数据的空间相关性,适用于具有一定规律分布的数据。

3.自然邻域法(Natural Neighbor):该方法根据已知点周围的邻居点进行插值,通过搜索半径确定邻域大小。

自然邻域法适用于数据分布较为密集的情况。

4.样条函数法(Spline):这是一种基于数学函数的插值方法,通过分段多项式描述空间表面。

样条函数法适用于具有一定光滑度的数据分布。

5.趋势面法(Trend):该方法通过拟合数据的趋势线或曲面来进行插值,适用于具有明显趋势的数据。

二、空间数据插值方法的评价空间数据插值方法的优劣需要通过一系列评价指标和评价方法来进行衡量。

常用的评价指标包括均方根预测误差(RMSE)、平均绝对误差(MAE)等。

评价方法主要包括交叉验证、网格评估等。

三、常见空间插值方法的优缺点分析1.反距离权重法(IDW):优点是计算简便,缺点是对于离群值较敏感,插值结果可能出现震荡。

空间插值方法对比整理版

空间插值方法对比整理版

优点
能够处理非线性数据,对局部变化敏 感且具有较好的平滑效果。
缺点
计算复杂度较高,需要选择合适的核 函数和参数。
03
全局插值方法对比
线性插值
01
02
03
定义
线性插值是利用两点之间 的直线关系来估计未知点 的值。
公式
$z(x) = z(x_0) + frac{(x x_0) times (z(x_1) z(x_0))}{x_1 - x_0}$
06
各种方法的优缺点比较
计算复杂度
全局插值方法
计算复杂度较低,适用于大规模数据集,但牺牲了局部拟合 精度。
局部插值方法
计算复杂度较高,适用于小规模数据集,能更好地拟合局部 变化。
预测精度
全局插值方法
预测精度相对较低,适用于对全局趋 势的预测。
局部插值方法
预测精度较高,适用于对局部细节的 预测。
存在问题
尽管现有的空间插值方法取得了一定的成果,但在实际应用中仍存在一些问题。例如,对于复杂地形 和地貌的插值效果不够理想,插值结果的稳定性和可靠性有待提高。此外,现有方法在处理大规模数 据时效率较低,不能满足实时性要求。
未来研究方向与展望
研究方向
为了解决现有问题,未来的研究可以从以下几个方面展开:一是开发更为智能、自适应的插值算法,以提高 插值结果的稳定性和可靠性;二是研究如何将机器学习、深度学习等先进技术应用于空间插值中,以提高插 值的精度和效率;三是探索如何利用高性能计算技术,如并行计算、云计算等,实现大规模数据的快速处理。
适用于各种类型的空间数据,尤其适 用于具有空间结构性和随机性的数据。
特点
考虑了空间数据的结构性和随机性, 能够较好地反映空间数据的变异特征, 插值结果较为准确。

空间插值方法

空间插值方法

空间插值方法一、空间插值方法概述空间插值方法是指在给定的有限点数据集合上,通过某种数学模型,对未知位置的数值进行估计或预测的方法。

它广泛应用于地理信息系统、遥感、气象、环境监测等领域中,是一种重要的数据处理和分析手段。

常见的空间插值方法包括:反距离权重法、克里金法、径向基函数插值法等。

二、反距离权重法1. 原理反距离权重法是一种基于距离加权平均的插值方法。

其基本思想是:对于未知点,用已知点到未知点之间的距离作为权重系数,将已知点的观测值按照这些系数进行加权平均,得到未知点的估计值。

该方法假设空间变量在空间上具有连续性,并且与其邻近区域内观测值相关。

2. 步骤(1)确定待插值点和邻近观测点(2)计算待插值点与邻近观测点之间的欧式距离或曼哈顿距离等(3)根据距离计算每个邻近点的权重系数(4)将邻近点的观测值按照权重系数进行加权平均,得到待插值点的估计值3. 优缺点反距离权重法简单易懂,计算速度快,适用于数据密度较小、空间变异性较大的情况。

但其估计结果容易受到邻近点数量和距离的影响,可能出现插值误差较大的情况。

三、克里金法1. 原理克里金法是一种基于统计学原理的空间插值方法。

其基本思想是:通过对已知点之间的空间关系进行建模,利用半方差函数来描述变量在空间上的相关性,并通过最小二乘法求解出半方差函数中未知参数,从而得到未知位置处的预测值。

该方法假设空间变量在空间上具有稳定性,并且与其邻近区域内观测值相关。

2. 步骤(1)确定待插值点和邻近观测点(2)计算待插值点与邻近观测点之间的欧式距离或曼哈顿距离等(3)根据距离和半方差函数计算每个邻近点的权重系数(4)利用最小二乘法求解半方差函数中的未知参数(5)将邻近点的观测值按照权重系数进行加权平均,得到待插值点的估计值3. 优缺点克里金法能够考虑空间变异性和空间相关性,插值结果较为准确,但需要对半方差函数进行拟合,模型复杂度较高,计算量大。

四、径向基函数插值法1. 原理径向基函数插值法是一种基于核函数的空间插值方法。

空间插值介绍简洁明了

空间插值介绍简洁明了

(2)“实际”验证
将部分已知变量值的样本点作为“训练数据集”,用于插值 计算;另一部分样点 “验证数据集”,该部分站点不参加 插值计算。然后利用“训练数据集” 样点进行内插,插值 结果与“训练数据集”验证样点的观测值对比,比较插值的 效果。
插值方法
1. 最近邻法(Nearest Neighbor) 2. 算术平均值(Arithmetic Mean) 3. 距离反比法(Inverse Distance) 4. 高次曲面插值(Multiquadric) 5. 趋势面插值(Polynomial) 6. 最优插值(Optimal) 7. 样条插值(Spline Surface) 8. 径向基函数插值(Radial Basis Functions) 9. 克里金插值(Kriging) 10. 最小曲率 (Minimum Curvature)
公式
其数学表达式为:
v e vi vi 表示 i 点的变量值。 其中ve 表示待估点变量值,
i 点必须满足如下条件:
d ei min( d e1 , d e 2 , d en )
d ij xi x j y i y j
一、最近邻法(Nearest Neighbor)
• 最近邻点法又叫泰森多边形方法。它采用一种极端的边界内 插方法—只用最近的单个点进行区域插值(区域赋值)。 • 泰森多边形按数据点位置将区域分割成子区域,每个子区域 包含一个数据点,各子区域到其内数据点的距离小于任何到 其它数据点的距离,并用其内数据点进行赋值。
⑤ 可视化、可操作性(插值软件选择):三维的透视图等。
插值验证
(1) 交叉验证 交叉验证法(cross-validation),首先假定每一测点 的要素值未知,而采用周围样点的值来估算,然后计算所有 样点实际观测值与内插值的误差,以此来评判估值方法的优 劣。 各种插值方法得到的插值结果与样本点数据比较。

空间插值方法

空间插值方法

7.空间插值7.1空间插值的概念和理论空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。

空间内插算法是一种通过已知点的数据推求同一区域其它未知点数据的计算方法;空间外推算法则是通过已知区域的数据,推求其它区域数据的方法。

在以下几种情况下必须作空间插值:1)现有的离散曲面的分辨率,象元大小或方向与所要求的不符,需要重新插值。

例如将一个扫描影象(航空像片、遥感影象)从一种分辨率或方向转换到另一种分辨率或方向的影象。

2)现有的连续曲面的数据模型与所需的数据模型不符,需要重新插值。

如将一个连续的曲面从一种空间切分方式变为另一种空间切分方式,从TIN到栅格、栅格到TIN或矢量多边形到栅格。

3)现有的数据不能完全覆盖所要求的区域范围,需要插值。

如将离散的采样点数据内插为连续的数据表面。

空间插值的理论假设是空间位置上越靠近的点,越可能具有相似的特征值;而距离越远的点,其特征值相似的可能性越小。

然而,还有另外一种特殊的插值方法——分类,它不考虑不同类别测量值之间的空间联系,只考虑分类意义上的平均值或中值,为同类地物赋属性值。

它主要用于地质、土壤、植被或土地利用的等值区域图或专题地图的处理,在“景观单元”或图斑内部是均匀和同质的,通常被赋给一个均一的属性值,变化发生在边界上。

7.2空间插值的数据源连续表面空间插值的数据源包括:●摄影测量得到的正射航片或卫星影象;●卫星或航天飞机的扫描影象;●野外测量采样数据,采样点随机分布或有规律的线性分布(沿剖面线或沿等高线);●数字化的多边形图、等值线图;空间插值的数据通常是复杂空间变化有限的采样点的测量数据,这些已知的测量数据称为“硬数据”。

如果采样点数据比较少的情况下,可以根据已知的导致某种空间变化的自然过程或现象的信息机理,辅助进行空间插值,这种已知的信息机理,称为“软信息”。

但通常情况下,由于不清楚这种自然过程机理,往往不得不对该问题的属性在空间的变化作一些假设,例如假设采样点之间的数据变化是平滑变化,并假设服从某种分布概率和统计稳定性关系。

空间插值IDW

空间插值IDW
空间插值
空间插值是用已知点的 数值来估算其它点的数 值的过程
例如:在一个没有数据记录的地点,其降水量可 通过对附近气象站已知降水量记录的插值来估 算出来。
为什么插值为栅格?
在GIS应用中主要用于估算出栅格 中每个象元的值。因此空间插值 是将点数据转换成面数据的一种 方法,目的是使点数据也能用于 空间分析和建模。
空间插值的理论假设是:空间位置上越靠近的点,越可能具有相 似的特征值,而距离越远的点,其特征值相似的可能性越小。空 间插值方法正是依据该假设设计的,分为整体插值方法和部分插值方 法两类。
整体插值:用研究区域所有采样点的数据进行全区域特征拟合, 如边界内插法、趋势面分析等。
部分插值:仅仅用邻近的数据点来估计未知点的值,如最邻近点 法(泰森多边形方法)、移动平均插值方法(距离倒数插值法)、 样条函数插值方法、空间自协方差最佳插值方法(克里金插值)等。
nA1 += nTemp; nValue += nTemp * ValueList[i]; }
nValue = nValue / nA1; return nValue; }
IDW实现-公共函数2
//获取要素参数 protected void getFeaturesParameters(ref double[] nPointsX, ref double[] nPointsY, ref double[] nValues)
nValues[i] = Convert.ToDouble(pFeature.get_Value(this.m_nFieldIndex)); i++; pFeature = pCursor.NextFeature(); } }
IDW实现-公共函数3

空间插值方法大致总结

空间插值方法大致总结

前段时间要对气象要素进行插值,翻看了多种方法,做了个PPT报告.对每个方法有简单的介绍极一些总结,不一定都是个人看法,参考了多方书面(sufer,ArcGIS应用教程)以及坛子里,百度上等搜到的资料的看后笔记,有些注了出处有些忘了.截图共享下,也不知有用没用.有错的地方请跟贴指正,谢谢啦!--------------------------------所谓空间数据插值,即通过探寻收集到的样点/样方数据的规律,外推/内插到整个研究区域为面数据的方法.即根据已知区域的数据求算待估区域值, 影响插值精度的主要因素就是插值法的选取空间数据插值方法的基本原理:任何一种空间数据插值法都是基于空间相关性的基础上进行的。

即空间位置上越靠近,则事物或现象就越相似, 空间位置越远,则越相异或者越不相关,体现了事物/现象对空间位置的依赖关系。

(/dky/nb/page/2000-3-3/2000332117262480.htm,南京师范大学地理科学学院地理信息系统专业网络课程教程)➢由于经典统计建模通常要求因变量是纯随机独立变量,而空间插值则要求插值变量具备某种程度的空间自相关性的具随机性和结构性的区域化变量。

即区域内部是随机的,与位置无关的,而在整体的空间分布上又是有一定的规律可循的,这也是不宜用简单的统计分析方法进行插值预估的原因。

从而空间统计学应用而生。

➢无论用哪种插值方法,根据统计学假设可知,样本点越多越好,而样本的分布越均匀越好。

常用的空间数据插值方法之一:趋势面分析⏹趋势面分析(Trend analyst)。

严格来说趋势面分析并不是在一种空间数据插值法。

它是根据采样点的地理坐标X,Y值与样点的属性Z值建立多元回归模型,前提假设是,Z值是独立变量且呈正态分布,其回归误差与位置无关。

⏹根据自行设置的参数可建立线性、二次…或n次多项式回归模型,从而得到不同的拟合平面,可以是平面,亦可以是曲面。

精度以最小二乘法进行验证。

如何进行空间数据的插值与模拟

如何进行空间数据的插值与模拟

如何进行空间数据的插值与模拟引言:随着科技的发展,空间数据的收集和应用变得越来越重要。

在地质勘探、环境监测、经济分析等领域,我们常常需要对空间数据进行插值和模拟,以获取缺失或未来的数据。

本文将探讨如何进行空间数据的插值与模拟,旨在帮助读者更好地理解和应用这一技术。

一、插值的基本概念和方法1.1 插值的定义和意义空间数据的插值是指通过已有的离散点数据推断或估计没有采样的地点的值。

插值的目的是填补数据空白,使得我们能够更全面地了解某一区域的特征。

在地理信息系统、气象学、地质学等领域,插值技术广泛应用于地质构造分析、气象预报、环境评估等工作中。

1.2 插值方法的选择常用的插值方法包括反距离加权法、克里金插值法、样条插值法等。

在选择插值方法时,我们需要考虑数据的空间分布、数据的性质和准确性等因素。

不同的插值方法适用于不同的场景,例如,反距离加权法适用于数据密集、密布的场景,而克里金插值法适用于数据稀疏、空间关联强的场景。

二、插值方法的具体应用2.1 反距离加权法反距离加权法是一种基于距离的插值方法,它假设权重与样本点的距离成反比。

通过计算目标点与已知点之间的距离,然后将距离的倒数作为权重,最后将权重乘以已知点的观测值并求和,得到目标点的估计值。

2.2 克里金插值法克里金插值法是一种基于空间自相关性的插值方法,它利用已知点周围的点与目标点之间的空间关系进行预测。

克里金插值法通过建立一个模型,对空间上各点之间的相关性进行估计,并基于此模型进行插值。

具体步骤包括:数据预处理、半方差函数的拟合、克里金方程参数的确定等。

三、空间数据的模拟方法3.1 模拟的定义和目的空间数据的模拟是指通过已有的数据生成符合某一模型的新数据,以补充缺失的数据或预测未来的数据。

模拟的目的是为了解决实际问题,如预测资源分布、模拟自然灾害等。

通过模拟,我们可以获取更完整和更全面的数据,为决策提供科学依据。

3.2 模拟方法的选择常用的模拟方法包括随机模拟、高斯模拟、马尔科夫链模拟等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档